高中数学必修5用构造法求数列的通项公式
构造法求数列通项公式
作者:刘高峰 2016.10 北京师范大学东莞石竹附属学校
复习回顾
一、观察法:如数列 二、公式法:
1, 1 , 1 , 1 , 1 , 3579
1、等差数列:an a1 (n 1)d
2、等比数列:an a1qn1
3、an Sn Sn1 (n 2) ——(作差法)
巩固练习
练习2:已知数列{an }中,a1
3 2
,2an
an1
6n
3,
求an .
课后思考
1、形如 an1 pan an2 bn c 如何求通项公式? 已知数列{an} 满足:a1 1, an1 2an 3n2 4n 5, 求an .
2、形如 an1 pan qn 如何求通项公式? 已知数列{an}满足:a1 1, an1 3an 2n , 求 an .
课后作业
1、已知数列an中,a1 1 ,an1 2an 3,求 an .
2、已知数列an 中,a1 1, an 4an1 n 1, (n 2),
求 an .
再见!
巩固练习
练习1:已知数列{an }中,a1
2
,an1
1 2
an
1 2
,
求数列的通项an .
知识延伸
例2、已知数列{an} 中,a1 , 1 an1 3an 2n , 求 an .
规律总结
an1 pan kn b
an1 x(n 1) y p(an xn y)
问题探究
例1、已知数列{an}满足:a1 1 ,且an1 2an 1 , (1)证明:数列{an 1} 是等比数列; (2)求 an .
(完整版)用构造法求数列的通项公式汇总
用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校 徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:中,若求a n }{n a 数列),(411,211N n a a a nn ∈+==++4,n n nn b b a b ==+1,1则设即=4,n n b b -+1}是等差数列。
n b {∴可以通过等差数列的通项公式求出,然再求后数列{ a n }的通项。
n b 练习:1)数列{ a n }中,a n ≠0,且满足求a n),(,311,2111N n a a a nn ∈+==+2)数列{ a n }中,求a n 通项公式。
,22,111+==+n nn a a a a 3)数列{ a n }中,求a n .),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且二.构造形如的数列。
2n n a b =例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+ 解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,,),2(2,211N n n a a a n n ∈≥==-求数列{ a n }的通项公式。
高三用构造法求数列通项公式
用构造法求数列通项公式已知数列的递推公式,求其通项公式是数列中重要的题型之一,在近年的高考试卷中也经常出现此类题型,解决这个问题除验算—猜想—证明的方法外;利用公式的变形构造一个新数列来求解也是重要的手段,下面通过例题分析阐述常用的变形方法,供参考。
一、配凑构造例1 数列{a n }的前n 项和记为S n ,已知a 1=1,a n+1=nn 2+S n (n=1,2,3……),求a n .解析:∵a n+1=S n+1-S n ,a n+1=nn 2+S n ∴(n+2)S n =n(S n+1-S n ),整理得nS n+1=2(n+1)S n ,即11++n S n =2·n S n ,故数列{n S n }是以11S=a 1=1为首项,2为公比的等比数列,即nS n =2n-1,S n =n ·2n-1,当n ≥2时,a n =S n -S n-1=n ·2n-1-(n-1)2n-2=(n+1)2n-2,当n=1时也适合,故a n =(n+1)·2n-2n ∈N *.二、相除构造例2 已知数列{a n }的前n 项和为S n ,且满足a n +2S n S n-1=0(n ≥2);a 1=21,求通项a n .解析:当n ≥2时, a n =S n -S n-1=-2 S n S n-1,两边同除以S n S n-1得n S 1- 11-n S =2,又11S =11a =2, ∴数列{n S 1}是以2为首项,2为公差的等差数列,则nS 1=2+2(n-1)=2n, S n =n 21,由a 1=21,n ≥2时,a n =S n -S n-1=n 21-)1(21-n =- )1(21-n n ,二式不能合并.三、平方构造例3 已知函数f(x)=42-x (x ≤-2).(1)求f -1(x),(2)若a 1=1,a n =-f -1(a n-1),求数列{a n }的通项公式.解析:(1)f -1(x)=- 42+x (x ≥0),(2)由a n =-f -1(a n-1),∴a n =421+-n a ,两边平方得a n 2-a n-12=4,∴数列{a n 2}是以a 12=1为首项,公差为4的等差数列,∴a n 2=1+(n-1)4=4n-3,又a n >0,∴a n =34-n .四、开方构造例4 已知函数f(x)=(x +2)2(x>0),设正项数列{a n }的首项a 1=2,前n 项和S n 满足S n =f(S n-1)(n ≥2且n ∈N *),求通项a n .解析:∵a n >0,∴S n >0,由S n =f(S n-1)=(1-n S +2)2两边开方得n S =1-n S +2,∴数列{n S }是以1S =1a =2为首项,公差d=2的等差数列,即n S =2+(n-1)2=2n,则S n =2n 2,当n ≥2时,a n =S n -S n-1=4n-2,当n=1时,a 1=2也适合上式,故a n =4n-2(n ∈N *).五、待定系数法例5 已知数列{a n }中,a 1=1,且a n+1=3a n -1(n ∈N *),求a n .解析:设a n+1+x=3(a n +x),则a n+1=3a n +2x,又a n+1=3a n -1,则2x=-1,即x=-21,故而a n+1-21=3(a n -21),则数列{a n -21}是以首项a 1-21=21,公比为3的等比数列,∴a n -21=21·3n-1,即a n =21·3n-1+21. 六、公式变形例6 已知正项数列{a n }的前项和S n 满足S n =21(a n +na 1),求通项a n . 解析:由S 1=a 1=21(a 1+11a )得a 1=1,又a n =S n -S n-1(n ≥2)∴S n =21(a n +na 1)= 21(S n -S n-1+11--n n S S )可得S n +S n-1=11--n n S S ,即S n 2-S n-12=1,∴数列{S n 2}是首项为S 12=a 12=1,公差为1的等差数列.∴S n 2=1+(n-1)·1=n ,又S n >0,∴S n =n ,当n ≥2时,a n =S n -S n-1=n -1-n ,当n=1时,a 1=1也适合,故通项a n =n -1-n .七、取倒数例7 已知数列{a n }中,a 1=2,a n =2211+--n n a a (n ≥2),求通项a n .解析:由题意知a n ≠0,在a n =2211+--n n a a 两边同时取倒数得,n a 1=1122--+n n a a =11-n a +21,即n a 1-11-n a =21,∴数列{n a 1}是首项为11a ,公差为21的等差数列,∴n a 1=21+(n-1)21=2n , 则a n =n 2.。
数列构造法
构造法求数列的通项公式在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法;这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式;构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉. 供参考;1、构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.例1设各项均为正数的数列的前n项和为S,对于任意正整数n,都有等式:n成立,求的通项a n.解:, ∴,∵,∴.即是以2为公差的等差数列,且.∴例2数列中前n项的和,求数列的通项公式.解:∵当n≥2时,令,则,且是以为公比的等比数列,∴.2、构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.例3设是首项为1的正项数列,且,n∈N,求数列的通项公式a n.解:由题设得.∵,,∴.∴.例4数列中,,且,n∈N,求通项公式a n.解:∵∴n∈N3、构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.例5数列中,,前n项的和,求.解:,∴∴4、构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.例6设正项数列满足,n≥2.求数列的通项公式.解:两边取对数得:,,设,则是以2为公比的等比数列,,,,∴例7已知数列中,,n≥2时,求通项公式.解:∵,两边取倒数得.可化为等差数列关系式.∴。
高考数学复习知识点讲解课件21--- 构造法求数列的通项公式
例3 数列{an}满足a1=1,a2=3,且an+2=3an+1-2an,n∈N*,求{an} 的通项公式.
12
2.已知在数列{an}中,a1=1,a2=2,an+1=2an+3an-1,求{an}的通项 公式.
12
解 ∵an+1=2an+3an-1,
∴an+1+an=3(an+an-1),
∴{an+1+an}是以a2+a1=3为首项,3为公比的等比数列,
∴an+1+an=3·3n-1=3n,
①ห้องสมุดไป่ตู้
又an+1-3an=-(an-3an-1),
解 ∵an+2=3an+1-2an, ∴an+2-an+1=2(an+1-an), ∴aan+n+2-1-aan+n 1=2, ∴{an+1-an}是以a2-a1=2为首项,2为公比的等比数列, ∴an+1-an=2n, ∴当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =2n-1+2n-2+…+21+20 =11--22n=2n-1.
∴{an+1-3an}是以a2-3a1=-1为首项,-1为公比的等比数列,
∴an+1-3an=(-1)·(-1)n-1=(-1)n,
②
由①②得4an=3n-(-1)n,
∴an=3n-4-1n.
12
12
解 ∵an+1=3an+2n+1, ∴2ann++11=32·a2nn+1, ∴2ann++11+2=32a2nn+2, ∴2a2ann++nn+11+22=32, ∴数列a2nn+2是以a21+2=32为首项,32为公比的等比数列,
(完整版)用构造法求数列的通项公式汇总.docx
用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差 (或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列 ,给出数列的首项和递推公式 ,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:数列 { a n} 中,若 a12, 114(n N ), 求a nan 1a n设 b n1,则 b n 1 b n+4,a n即 b n 1b n=4,{ b n}是等差数列。
可以通过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。
练习: 1)数列 { a n}n1, a n 11, (n n中, a ≠ 0,且满足 a121N ), 求a3a n2)数列 { a n } 中,a11,a n 12a n, 求a n通项公式。
a n23)数列 { a n } 中, a11, a n 0, 且a n2a n a n1an10(n2,n N ), 求 a n.二.构造形如 b n a n2 的数列。
例:正数数列 { a n } 中,若 a15, a n12a n24(n N ),求 a n 解:设 b n a n2,则b n1b n4,即 b n1b n4数列 { b n } 是等差数列,公差是4, b1225 a1b n25( n1)(4)294n即 a n 24n29a n294n , (1n7, n N )练习:已知正数数列 { a n } 中, a12, a n2a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。
三.构造形如 b n lg a n的数列。
例:正数数列 { a n}中,若 11lg a n 1 ,( n2, n N ),求 a n.a =10,且lg a n2解:由题意得:lg a n1,可设 b n lg a n,lg a n21即bn1,b n 121b n 是等比数列,公比为1, b 1 lg 10 12b n 1 ( 1) n 1(1) n 1, (n N) .22(1 )n 1即 lg a n( 1) n 1 , a n 10 22练习:(选自 2002 年高考上海卷)数列 { a n 中,若 12 ,n 是正整数,求数列n}的通项公式。
高中数学必修5用构造法求数列的通项公式
用结构法求数列的通项公式在高中数学教材中,有好多已知等差数列的首项、公比或公差 (或许经过计算能够求出数列的首项 ,公比 ),来求数列的通项公式。
但实质上有些数列其实不是等差、等比数列,给出数列的首项和递推公式 ,要求出数列的通项公式。
而这些题目常常能够用结构法,依据递推公式结构出一个新数列,进而间接地求出原数列的通项公式。
关于不一样的递推公式,我们自然能够采纳不一样的方法结构不一样的种类的新数列。
下边给出几种我们常有的结构新数列的方法:一.利用倒数关系结构数列。
比如:数列 { a n } 中,若 a12,114(n N ), 求a n an 1an设b n 1 , 则b n 1b n+4,a n即 b n 1b n=4,{b n}是等差数列。
能够经过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。
练习: 1)数列 { a n } 中, a n≠0,且知足a111N ), 求a n , a n11, (n23a nn}中, a11, a n 2a n n通项公式。
2)数列 { a1a n, 求a 2n}中 , a11, a n0,且a n2a n a n 1a n1 0(nn3)数列 { a2, n N ), 求 a .二.结构形如 b n a n2的数列。
例:正数数列 { a n } 中,若 a15, a n 12a n24(n N ), 求a n解:设 b n a n 2 , 则b n1bn4,即b n1b n4数列 { b n } 是等差数列,公差是4, b1225 a1b n25(n 1)( 4)294n即 a n 24n29a n294n , (1n7, n N )练习:已知正数数列 { a n } 中, a1 2, a n 2 a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。
三.结构形如 b n lg a n的数列。
例:正数数列 { a} 中,若 a =10,且lg a n lg a n 1 , (n2, n N ), 求a .n11n2解:由题意得:lg a n1,可设 b n lg a n,lg a n 12即b n1,bn 12b n是等比数列,公比为1, b1 lg 10 12b n 1 (1) n 1(1)n 1 ,(n N) .22(1) n 1 , a n( 1 )n 1即 lg a n10 22练习:(选自 2002 年高考上海卷)数列 { a n } 中,若 a1=3, a n 1a n2 ,n 是正整数,求数列 { a n } 的通项公式。
构造法求数列通项
构造法求数列通项
构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,联想出一种适当的辅助模型,进行命题转换,产生新的解题方法,这种思维方法的特点就是“构造”。
若已知条件给的是数列的递推公式要求出该数列的通项公式。
运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f(n+1)=Af(n)(其中A为非零常数)形式,根据等比数列的定义知f(n)是等比数列,根据等比数列的通项公式,先求出f(n)的通项公式,再根据f(n)与an,从而求出an的通项公式。
构造法求递推数列的通项公式
巧用构造法求递推数列的通项公式蒋明权利用递推数列求通项公式,在理论上和实践中均有较高的价值,自从二十世纪八十年代以来,一直是全国高考和高中数学联赛的热点之一。
本文想介绍一下利用构造法求递推数列的通项公式的方法和策略,希望能抛砖引玉。
一、构造等差数列法例1.在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项公式a n 。
解:对原递推式两边同除以n n n ()()++12可得:a n n a n nn n +++=++12112()()()① 令b a n nn n =+()1② 则①即为b b n n +=+12,则数列{b n }为首项是b a 1111132=+=()×,公差是b b n n +-=12的等差数列,因而b n n n =+-=-3221212(),代入②式中得a n n n n =+-12141()()。
故所求的通项公式是a n n n n =+-12141()() 二、构造等比数列法1.定义构造法 利用等比数列的定义q a a n n=+1,通过变换,构造等比数列的方法。
例2.设在数列{a n }中,a a a a n n n 112222==++,,求{a n }的通项公式。
解:将原递推式变形为a a a n n n++=+12222()① a a a n n n+-=-12222()② ①/②得:a a a a n n n n +++-=+-1122222[], 即lg lg[]a a a a n n n n +++-=+-1122222③ 设b a a n n n =+-lg[]22④ ③式可化为a a n n +=12,则数列{b n }是以b 1=lg[]lg lg()a a 11222222221+-=+-=+为首项,公比为2的等比数列,于是b n n n =+=+-22122211lg()lg()×,代入④式得:a a n n +-22=()212+n ,解得a n n n=+++-221121122[()]()为所求。
用构造法求数列的通项公式
用构造法求数列的通项公式首先,我们需要了解什么是数列和通项公式。
数列是由一系列按照一定规律排列的数字组成的序列。
通项公式是指能够通过一个数列中的任意一项来表示它的第n项的公式。
构造法是指通过观察数列中的规律,逐步构造出通项公式的方法。
对于数列的构造方法,有多种不同的途径可以使用。
下面将介绍一些常见的构造法。
1.等差数列:等差数列是指数列中任意两项之间的差都是一个常数d。
要构造等差数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于等差数列1,4,7,10,13,...,我们可以观察到每一项与前一项的差都是3,因此该数列的通项公式可以表示为An=A1+(n-1)d,其中A1为首项,d为公差,n为项数。
2.等比数列:等比数列是指数列中任意两项之间的比都是一个常数r。
要构造等比数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于等比数列2,6,18,54,162,...,我们可以观察到每一项与前一项的比都是3,因此该数列的通项公式可以表示为An=A1*r^(n-1),其中A1为首项,r为公比,n为项数。
3.斐波那契数列:斐波那契数列是一种特殊的数列,每一项都是前两项的和。
要构造斐波那契数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于斐波那契数列1,1,2,3,5,8,...,我们可以观察到每一项都是前两项的和,因此该数列的通项公式可以表示为An=An-1+An-2,其中A1和A2为首两项,n为项数。
4.平方数列:平方数列是指数列中每一项都是一些整数的平方。
要构造平方数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于平方数列1,4,9,16,25,36,...,我们可以观察到每一项都是一些整数的平方,因此该数列的通项公式可以表示为An=n^2,其中n为项数。
5.阶乘数列:阶乘数列是指数列中每一项都是小于等于该项的正整数的阶乘。
要构造阶乘数列的通项公式,可以通过观察数列中的规律来得到。
数列通项的求法—构造法
数列通项的求法—构造法由递推关系给出的数列,求其通项常用的方法有累加(乘)法或迭代法。
但很多情况下可通过构造化归为等差或等比数列求其通项。
下面就相邻两项或三项递推关系给出的数列求通项作一些探究。
一 形如“)(1n f ka a n n +=+”型的数列例1 已知数列}{n a 满足232,111+==+n n a a a ,求n a . 解析:设)(321λλ+=++n n a a ,比较,得6-=λ, 则56),6(32611-=--=-+a a a n n ,即数列}6{-n a 是首项为5-,公比为32的等比数列,1)32(56-⋅-=-∴n n a ,即1)32(56-⋅-=n n a 例2 已知数列}{n a 满足n n a a a n n 232,1211++==+,求n a . 解析:设① )(32)1()1(221C Bn An a C n B n A a n n +++=++++++ 则n n C B A n B A An 231)312(3122+=---+--, 比较系数,得27,12,3-==-=C B A ,代入①知,数列}27123{2-+-n n a n 是首项为17-,公比为32的等比数列. 12)32(1727123-⋅-=-+-∴n n n n a ,即12)32(1727123-⋅-+-=n n n n a 例3 已知数列}{n a 满足n n n a a a 232,111+==+,求n a . 解析Ⅰ:设)2(32211n n n n a a ⋅+=⋅+++λλ,比较,得43,134-==-λλ, 则21243),243(32243111-=⋅-⋅-=⋅-++a a a n n n n 即数列}243{n n a ⋅-是首项为21-,公比为32的等比数列. 11)32(21243,)32(21243--⋅-⋅=⋅-=⋅-∴n n n n n n a a 即 解析Ⅱ:由n n n a a 2321+=+,有n n n n n n n a b a a 2,21231211=+⋅=++设, 则21311+=+n n b b ,仿例1求n b 从而求得n a .解析Ⅲ:由n n n a a 2321+=+,有1321321321)()(+++⋅=-n n n n n a a ,设n n n a b )(32=, 则11321++⋅=-n n n b b ,用累加法求n b 从而求得n a . 一般地,由)(,11n f ka a a a n n +==+给出的数列,当t rn qn pa n f n +++=2)(时,都可通过分解)(n f 构造)()1()1(21211D Cn Bn Aa a k D n C n B Aa a n n n n ++++=+++++++++ 再利用待定系数法确定A ,B ,C ,D ,从而转化为等比数列求其通项.二 形如“n n n ra qa pa +=++12”型的数列例4.设数列}{n a 满足:*++∈-===N n a a a a a n n n ,6316,16,21221,求n a .解析:设))(16(112n n n n a a a a λλλ++=++++,则63)16(-=+λλ,解得97--=或λ 取,27),7(97712112=--=--=+++a a a a a a n n n n 且,有λ }7{1n n a a -+则数列是首项为2,公比为9的等比数列,11927-+⋅=-n n n a a 再令)9(7911-++=+n n n n k a k a ,比较,得1-=k 从而数列}9{1--n n a 是首项为1,公比为7的等比数列 11719--⋅=-∴n n n a 即1179--+=n n n a一般地,由相邻三项的递推关系给出的数列,求其通项时,可通过分解中间项构造等比数列转化为相邻两项的递推关系,从而求其通项.三 其它类型的数列例5 已知数列}{n a 满足:n n n n a a a a a -=⋅-=++111,1,求n a .解析:0,11≠∴-=n a a ,由n n n n a a a a -=⋅++11,有1111-=-+nn a a , 则数列}1{na 是首项为1-,公差为1-的等差数列, n n a n -=--+-=∴)1)(1(11 即na n 1-= 例6(06安徽)数列}{n a 的前n 项和为n S ,已知),3,2,1)(1(,2121 =--==n n n a n S a n n 写出1-n n S S 与的递推关系式)(2≥n ,并求n S 关于n 的表达式.解析:当2≥n 时,1--=n n n S S a ,则有① 即 )1()1(),1()(12212-+=----=--n n S n S n n n S S n S n n n n n11122++-=∴-n n S n n S n n 由①得 n n n n b S nn n S n n S n n =+≥=--+-1),2(1111设 则有 )2(11≥=--n b b n n ,数列}{n b 是首项为1,公差为1的等差数列,n n b n =⋅-+=∴1)1(1, 从而n S nn n =+1, 即12+=n n S n 解本例的一般思路是由1-n n S S 与的递推关系)2(≥n ,先归纳,猜想n S ,再用数学归纳法证明。
用构造法求数列的通项公式的分类和求解方法汇总
用构造法求数列的通项公式重庆市綦江县东溪中学任德辉求数列的通项公式是近几年高考重点考察的内容,两类特殊数列等差数列和等比数列可以根据公式直接求解,还有些特殊数列可用累加法、累乘法等来直接求解,但有些数列却不能直接求解,它们往往要转化为等差、等比数列和其他数列后再运用各自的通项公式求解,从而体现化归思想在数列中的运用,此时可用构造法求解。
所谓构造法就是在解决某些数学问题中通过对条件和结论的充分剖析,有时会联想出一些适当的辅助模型,以促成命题的转换,产生新的解题方法。
下面就构造法求数列的通项公式的分类和解题方法分别进行论述。
一、用构造法求数列的通项公式依照构造目标数列的不同可以分为构造等差数列、构造等比数列和构造其他数列。
1.构造等差数列例1、(2009湖北)已知数列{}的前n项和,令,求证数列{}是等差数列,并求数列{}的通项公式。
解:∵,∴∴等式两边都乘以得,即,∴数列{}是以1为首项公差为1的等差数列,=∴例2、数列中,若,,则()A. B. C. D.解:又是首项为公差3的等差数列。
所以选A2.构造等比数列例3、(2010上海已知数列{}的前n项和为,且。
证明:{}是等比数列并求{}的通项公式证明:当时,,当时,∴,∴{}时首项为-15,公比为的等比数列。
==+13、构造其他数列例4、(2009全国)在数列{}中,设,求数列{}的通项公式。
并求出解:由已知得,,即∴,,….,以上各式相加可得,即小结:本题构造了一个数列{},虽然不是等差、等比数列但可以用累加法并用等比数列求和公式求出通项公式。
本题还可以用参数法进一步构造另一个等差或等比数列:由,得,令得再用后面例5的解法求得,进而求得和二、构造法求数列通项公式的解题方法由题目给出目标数列与否这个标准来判断,用构造法求数列的通项公式的方法可以分为以下几类:1、如果数列明确要证明一个与原数列有关的新数列是等差或等比数列,此时可以用拼凑法来求解。
构造法求数列通项公式
精心整理构造法求数列通项公式求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。
一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12解析:由a n+1=33+n n a a 得,a n+1a n 设b n =n a 1,则b n+1-b n =31数列{b n }是首相b 1=2,公差根据等差数列的通项公式得b n =∴数列通项公式为a n =53+n评析:na 1的例2n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。
解析:当a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1=S n S n-1两边除以S n S n-1得,nS 1-11-n S =2,∴{nS 1}是首相为1,公差为2的等差数列∴nS 1=1+2(n-1)=2n-1,∴S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1)当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式,∴a n ={21138422≥=+--n n n n评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原数列的通项公式,条件变形是难点。
二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
“构造法”求数列的通项公式
“构造法”求数列的通项公式作者:侯保霞来源:《神州》2011年第26期数列問题历年来都是高考命题的热点,求数列的通项公式更是高考重点考查的内容之一,常用的等差数列或等比数列可直接求出它们的通项公式,但有一些数列要通过构造来形成等差数列或等比数列,借助于构造出的等差数列或等比数列求原来数列的通项公式。
1.形如■的形式,令A(+m)= B(+ m),然后对比系数求m的值,从而构造出等比数列。
例1:数列{an}中,■,求数列{an}的通项公式。
解析:设■,即■,与■对比系数得■即■,而■所以,数列{■}是首项为■,公比为■的等比数列,所以■,即■2. 递推式的两边同除以关于n的幂的形式构造等差数列。
例2:数列{bn}满足,■,求数列{bn}的通项公式。
解析:等式■的两边同除以2n+1,得到■即■所以,数列{■}为首项是■=1,公差是1的等差数列,所以,■3. 构造出数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式.例3设{an}是首项为1的正项数列,且■,求数列的通项公式an.解:由题设得■4. 构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种方法.例4:数列{an}中,■,前n项的和■,求an+1.■5. 形如■的形式,递推式的两边同除以■,构造倒数式。
例5:数列{an}是首项为1的正项数列并且满足,■(n∈N*),求数列{an}的通项公式。
■总之,构造等差数列或等比数列来求数列的通项公式,是求通项公式的重要方法也是高考重点考查的数学思想,当然题是千变万化的,构造方式也会跟着千差万别,要具体问题具体分析,需要我们反复推敲归纳,从而确定其形式,应该说构造方法的形成是在探索中前进,在前进中探索。
怎么利用构造法求数列的通项公式
怎么利用构造法求数列的通项公式用构造法求数列的通项公式求数列的通项公式是高考重点考查的内容,作为两类特殊数列----等差数列·等比数列可直接根据它们的通项公式求解,但也有一些数列要通过构造转化为等差数列或等比数列,之后再应用各自的通项公式求解,体现化归思想在数列中的具体应用。
例1:数列{an}中,a1=1,an+1=2an+1则an=()a.2nb.2n+1c.2n-1d.2n+1解法1:an+1=2an+1∴an+1+1=2an+2=2(an+1)又a1+1=2an+1+1an+1+1}就是首项为2公比为2的等比数列an+1=2⋅2=2,∴an=2-1,所以选c概括总结:若数列{an}满足用户an+1=pan+q(p≠1,q为常数),则而令an+1+λ=p(an+λ)去结构等比数列,并利用对应项成正比谋λ的值,求通项公式。
例2:数列{an}中,a1=1,a2=3,an+2=3an+1-2an,则an=解:an+2-an+1=2(an+1-an)a2-a1=2∴{an-an-1}领衔项为2公比也为2的等比数列。
an-an-1=2an=(an-an-1)+(an-1-an-2)++(a2-a1)+a1显然n=1时满足上式∴an=2-1小结:先构造{an-1-an}等比数列,再用叠加法,等比数列求和求出通项公式,基准3:未知数列{an}中a1=5,a2=2,an=2an-1+3an-2,(n≥3)谋这个数列的通项公式。
求解:an=2an-1+3an-2∴an+an-1=3(an-1+an-2)又a1+a2=7,{an+an-1}构成首项为7,公比为3的等比数列,则an+an-1=7⨯3………………………①又an-3an-1=-(an-1-3an-2),a2-3a1=-13,{an-3an-1}形成了一个首项为—13,公比为—1的等比数列则an-3an-1=(-13)⋅(-1)………………………②n-1n-1+13⋅(-1)①⨯3+②4an=7⨯3小结:本题是两次构造等比数列,属于构造方面比较级,最终用加减消元的方法确定出数列的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用构造法求数列的通项公式在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:}{n a 数列中,若),(411,211N n a a a nn ∈+==+求a nn n nn b b a b ==+1,1则设+4, 即n n b b -+1=4,n b {∴}是等差数列。
可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。
练习:1)数列{ a n }中,a n ≠0,且满足),(,311,2111N n a a a nn ∈+==+求a n 2)数列{ a n }中,,22,111+==+n nn a a a a 求a n 通项公式。
3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且求a n . 二.构造形如2n n a b =的数列。
例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+ 解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-,求数列{ a n }的通项公式。
三.构造形如n n a b lg =的数列。
例:正数数列{ a n }中,若a 1=10,且),,2(,lg 21lg 1N n n a a n n ∈≥=-求a n . 解:由题意得:n n n n a b a a lg 21lg lg 1=∴=-可设,, 即,211=-n n b b 110lg 211==∴b b n ,是等比数列,公比为)(,)21()21(111N n b n n n ∈=⋅=∴--.即1)21(110,)21(lg -=∴=-n n n n a a练习:(选自2002年高考上海卷)数列{ a n }中,若a 1=3,21n n a a =+,n 是正整数,求数列{ a n }的通项公式。
四.构造形如m a b n n +=的数列。
例:数列{ a n }中,若a 1=6,a n+1=2a n +1, 求数列{ a n }的通项公式。
解:a n+1+1=2a n +2, 即a n+1+1=2(a n +1) 设 b n = a n +1, 则b n = 2 b n-1则数列{ b n }是等比数列,公比是2,首项b 1= a 1+1=7,11271,27--⋅=+⋅=∴n n n n a b 即 1271-⋅=∴-n n a ,)(N n ∈构造此种数列,往往它的递推公式形如:的形式和2)1(,1+=+≠+⋅=+n a S c d a c a n n n n 。
如:a n+1=c a n +d,设可化成a n+1+x=c(a n +x),a n+1=c a n +(c-1)x用待定系数法得: (c-1)x =d∴ x=1-c d . 又如:Sn +a n =n+2, 则 Sn-1+a n-1=n+1,二式相减得:Sn -Sn-1 +a n -a n-1 =1,即a n +a n -a n-1 =1,∴ 2 a n -a n-1=1,a n =21a n-1+21.如上提到b n = a n +11-c d = a n –1练习:1.数列{ a n }满足a n+1=3a n +2, 求a n2.数列{ a n }满足Sn +a n =2n+1,求a n五.构造形如n n n a a b -=+1的数列。
例:数列{ a n }中,若a 1=1,a 2=3,a n+2 + 4 a n+1 - 5a n =0 (n ∈N),求a n 。
解: a n+2 + 4 a n+1 - 5a n =0得: a n+2 - a n+1 = - 5(a n +1 - a n ) 设b n = a n +1 -a n ,则数列{ b n }是等比数列,公比是-5,首项b 1= a 2- a 1=2,∴a n +1 -a n =2?(-5)n-1即a 2 -a 1=2?(-5) a 3 -a 2=2?(-5)2 a 4 -a 3=2?(-5)3┄a n -a n -1=2?(-5)n-2以上各式相加得:a n -a 1=2?[(-5)+(-5)2+(-5)3+┄+(-5)n-1]即:a n -a 1=2?)5(1511-----n )(3)5(111---+=∴n n a ,即3)5(41---=n n a ,(n )N ∈当递推公式中,a n +1与a n 的系数相同时,我们可构造b n = a n +1 -a n ,然后用叠加法得:b 1+b 2+b 3+b 4+┄+b n = a n -a 1通过求出数列{b n }前n-1项和的方法,求出数列{ a n }的通项公式。
1) 当递推公式中形如:a n+1=a n +an+b ; a n+1=a n +q n (q ≠1) ; a n+1=a n +q n +an+b 等情形时, 可以构造b n = a n +1-a n ,得: b n = an+b ; b n = q n ; b n =q n +an+b 。
求出数列前n-1项的和T n-1,T n-1=b n nn a )1(2)1(-+-; T n-1=qq q n ---1)1(1;T n-1=q q q n ---1)1(1+b n n n a )1(2)1(-+-即: a n -a 1=b n nn a )1(2)1(-+-; a n -a 1=qq q n ---1)1(1;a n -a 1=b n nn a )1(2)1(-+-+q q q n ---1)1(1 从而求出 a n =a 1+b n nn a )1(2)1(-+-; a n = a 1+qq q n ---1)1(1;a n =a 1+b n nn a )1(2)1(-+-+q q q n ---1)1(1。
2)当递推公式中形如:a n+1=a n +)1(1+n n ;a n+1=a n +)12(121+-n n )(;a n+1=a n +11++n n 等情形可以构造b n = a n +1-a n ,得::b n =)1(1+n n ;b n =)12(121+-n n )(;b n =11++n n即b n =111+-n n ;b n =)121121(21+--n n ;b n =n n -+1从而求出求出数列前n-1项的和T n-1,T n-1=n 11-;T n-1=)1211(21--n ;T n-1=1-n 即: a n -a 1=n 11-;a n -a 1=)1211(21--n ; a n -a 1=1-n从而求出 a n =a 1+n 11-; a n = a 1+)1211(21--n ;a n =a 1+1-n练习:1)数列{ a n }中,若a 1=1,a n+1-a n =2n, 求通项a n.2)数列{ a n }中,若a 1=1,a n+1-a n =2n , 求通项a n.3) 数列{ a n }中,若a 1=2,n a a n n n -+=+21,求通项a n.六.构造形如nn n a a b 1+=的形式。
例:数列{ a n }中,若a 1=1,n n na a n =++1)1(,求a n. 解:由n n na a n =++1)1(得:11+=+n na a n n∴2112=a a , 3223=a a , 4334=a a ,…nn a a n n 11-=- 用累乘法把以上各式相乘得:na a n 11= ∴na n 1=。
当递推公式形如:n n n a q a =+;n n na a n =++1)1(;n n a n na )1(1+=+等形式,我们可以构造nn n a a b 1+=。
可得: n n q b =;1+=n n b n ;nn b n 1+=. 然后用叠乘法得:11321a a b b b b nn =-Λ。
令数列{b n }的前n-1项的积为A n-1,则 2)1(1--=n n n qA ;n A n 11=-;nA n 11=- 从而得到:=1a a n 2)1(-n n q ;=1a a n n 1;=1a a n n1 1a a n =2)1(-n n q ;n a a n 11⋅=;na a n 11⋅=。
练习:1)数列{ a n }中,若a 1=2,n n n a a 2=+,求a n. 七.构造形如n n n ma ab -=+1的形式。
例:数列{ a n }中,a 1=2,S n =4a n-1+1,求a n.解:S n =4a n-1+1,S n-1=4a n-2+1 二式相减:S n -S n-1=4a n-1-4a n-2a n =4a n-1-4a n-2a n -2a n-1=2(a n-1-a n-2)设b n =a n+1-2a n ,当递推公式形如 S n+1=4a n +2;a n+2=pa n+1+qa n (p+q=1) 等形式时,因a n -2a n+1=2(a n+1-2a n );a n+2-a n+1=(p-1)(a n+1-a n ), 我们构造b n =a n+1-2a n ; b n =a n+1-a n ,由等比数列知识得b n =(a 2-a 1)·2n-1; b n =(a 2-a 1)·(p -1)n-1 从而得到a n+1=2a n +(a 2-a 1)2n-1;a n+1=a n (a 2-a 1)(1-q)n-1 由类型四求出a n 。