初一数学试卷难题好题
初一数学试卷难题+好题
数学题一选择题:1 过点P(-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作()(A) 4条????(B) 3条??????(C) 2条???????(D) 1条2 如果,,那么的值为(???? )A.-2???? B.-1 C.0???? D.23 当-1≤≤2时,满足,则常数的取值范围是()A、B、C、且D、4 若表示一个整数,则整数m可取值的个数是(???? )。
A、6个 ???B、7个???C、8个????D、9个5 如图所示的4个的半径均为1,那么图中的阴影部分的面积为(? )(A) ????(B) ???(C) 4????(D)6?????(第5题) (第6题)6 关于x的不等式2x-a≤-1的解集如图2所示,则a的取值是(?? )。
A、0????B、-3????C、-2????D、-17 已知:的顶点坐标分别为,,,如将点向右平移2个单位后再向上平移4个单位到达点,若设的面积为,的面积为,则的大小关系为(?? ?)A .???B .?????C .????D .不能确定8 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是(??? )A .?B .??C .??D .9 下列说法正确个数有??????(???? )①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小A? 1? ? B?2?? C? 3?? D?4 10如图2所示,在矩形ABCD 中,AE=B=BF=21AD=31AB=2, E 、H 、G 在同一条直线上,则阴影部分的面积等于( )(A)8. (B)12. (C)16. (D)20. 二 填空题:1 有理数在数轴上的位置如图1所示,化简2已知与是同类项,则=__。
3下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的点与有序数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。
(完整版)初一不等式难题-经典题训练(附答案)
初一不等式难题,经典题训练(附答案)1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0521x a x ->⎧⎨-≥-⎩无解,则a 的取值范围是_________3. 若关于x 的不等式(a-1)x-2a +2>0的解集为x<2,则a 的值为( )A 0B 2C 0或2D -1 4. 若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2006()a b +=_________5. 已知关于x 的不等式组的解集41320x xx a +⎧>+⎪⎨⎪+<⎩为x<2,那么a 的取值范围是_________6. 若方程组的解满足4143x y k x y +=+⎧⎨+=⎩条件01x y <+<,则k 的取值范围是( )A. 41k -<<B. 40k -<<C. 09k <<D. 4k >- 7. 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m f 8.不等式()()20x xx +-<的解集是_________9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______10.已知a,b 为常数,若ax+b>0的解集是13x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x <11.如果关于x 的不等式组的整7060x m x n -≥⎧⎨-⎩p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共有( )对A 49B 42C 36D 13 12.已知非负数x,y,z 满足123234x y z ---==,设345x y z ω=++,求的ω最大值与最小值12.不等式A 卷1.不等式2(x + 1) -12732-≤-xx 的解集为_____________。
七年级上数学试卷难题答案
一、选择题1. 题目:下列各数中,有理数是()A. √3B. πC. 0.1010010001…(循环小数)D. √-1答案:C解析:有理数是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数)。
选项A、B是无理数,选项D是虚数,选项C是循环小数,属于有理数。
2. 题目:下列各数中,绝对值最大的是()A. -3B. -2C. -1D. 0答案:A解析:绝对值表示一个数到数轴原点的距离,不考虑方向。
因此,绝对值最大的数是距离原点最远的数。
选项A的绝对值是3,而其他选项的绝对值都是1,所以选项A的绝对值最大。
3. 题目:若a=2,b=-1,则下列各式中,正确的是()A. a+b=3B. a-b=1C. ab=-2D. a÷b=-2答案:C解析:代入a和b的值,得到:A. a+b=2+(-1)=1B. a-b=2-(-1)=3C. ab=2×(-1)=-2D. a÷b=2÷(-1)=-2只有选项C正确。
二、填空题4. 题目:若a=-3,b=2,则|a-b|的值是()答案:5解析:|a-b|=|-3-2|=|-5|=55. 题目:若x²=25,则x的值是()答案:±5解析:x²=25,可以得出x=±√25,即x=±5。
三、解答题6. 题目:已知a、b是方程x²-4x+3=0的两个根,求a+b和ab的值。
答案:a+b=4,ab=3解析:根据韦达定理,方程x²-4x+3=0的两个根a和b满足:a+b=4(系数为-4的一次项的相反数)ab=3(系数为1的常数项)7. 题目:若x=2是方程ax²+bx+c=0的一个根,且a+b+c=0,求方程的另一个根。
答案:x=-1解析:根据题意,x=2是方程ax²+bx+c=0的一个根,代入得到:4a+2b+c=0又因为a+b+c=0,所以:2a+b=0解得b=-2a将b代入原方程,得到:ax²-2ax+c=0因为x=2是方程的一个根,所以:4a-4a+c=0c=0代入b=-2a,得到:b=-2a将b和c代入原方程,得到:ax²-2ax=0因为a≠0,所以:x(x-2)=0解得x=0或x=2由于x=2是方程的一个根,所以另一个根是x=-1。
人教版七年级上册数学难题
人教版七年级上册数学难题一、有理数运算相关难题。
1. 计算:(-2)^2020+(-2)^2021- 解析:- 根据幂运算法则a^m× a^n = a^m + n。
- 对于(-2)^2020,它是一个正数,因为负数的偶次幂是正数。
- 对于(-2)^2021,它可以写成(-2)^2020×(-2)。
- 那么(-2)^2020+(-2)^2021=(-2)^2020+(-2)^2020×(-2)。
- 提取公因式(-2)^2020得(-2)^2020×(1 - 2)。
- 因为(-2)^2020=2^2020,所以2^2020×(-1)= - 2^2020。
2. 若| a|=3,| b| = 5,且a与b异号,求a + b的值。
- 解析:- 因为| a| = 3,所以a=±3;因为| b| = 5,所以b=±5。
- 又因为a与b异号,当a = 3时,b=-5,则a + b=3+( - 5)=-2;当a=-3时,b = 5,则a + b=-3 + 5 = 2。
3. 计算:(-1)+2+(-3)+4+·s+(-99)+100- 解析:- 可以将相邻的两项看作一组,如(-1)+2 = 1,(-3)+4 = 1,以此类推。
- 从1到100共有100个数,两两一组,共有50组。
- 所以原式的值为50×1 = 50。
4. 已知a,b互为相反数,c,d互为倒数,m的绝对值是2,求(a + b)/(m)+m - cd 的值。
- 解析:- 因为a,b互为相反数,所以a + b = 0。
- 因为c,d互为倒数,所以cd = 1。
- 因为m的绝对值是2,所以m=±2。
- 当m = 2时,(a + b)/(m)+m - cd=(0)/(2)+2 - 1 = 1;当m=-2时,(a +b)/(m)+m - cd=(0)/(-2)-2 - 1=-3。
七年级数学期中考试卷难题
一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若m=2,n=-3,则下列式子中值为0的是()A. m+nB. m-nC. mnD. m/n3. 在直角坐标系中,点P(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)4. 下列分式中最简的是()A. 3/9B. 5/10C. 7/14D. 2/45. 若a=5,b=2,则下列代数式中值为负数的是()A. a-bB. a+bC. abD. a/b6. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 三角形D. 梯形7. 若等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 18cmB. 20cmC. 22cmD. 24cm8. 下列函数中,图象是一条直线的是()A. y=x^2B. y=2x+1C. y=3x-2D. y=5x^2-2x+19. 下列方程中,无解的是()A. 2x+3=7B. 3x-5=1C. 4x+2=8D. 5x-6=010. 下列数列中,第10项是100的是()A. 1, 3, 5, 7, ...B. 2, 4, 6, 8, ...C. 3, 6, 9, 12, ...D. 4, 8, 12, 16, ...二、填空题(每题5分,共50分)11. 已知x+y=10,xy=15,则x^2+y^2的值为______。
12. 若一个数是3的倍数,同时又是5的倍数,那么这个数一定是______的倍数。
13. 在直角坐标系中,点A(-4,5)与点B(2,-3)之间的距离是______。
14. 若一个数的平方根是2,那么这个数是______。
15. 在等腰三角形ABC中,AB=AC,若BC=8cm,则AB和AC的长度之和是______cm。
16. 已知一次函数y=kx+b的图象经过点(1,3),且斜率k>0,则该函数图象与x 轴的交点坐标是______。
七年级数学难题
七年级数学难题一、有理数运算相关难题题目:计算:(-2)^3 [(-3)^2 2^2×(-8.5)]÷(-0.5)^2解析:1. 先计算幂运算:(-2)^3=-8,因为负数的奇次幂是负数,(-2)×(-2)×(-2)= 8。
(-3)^2 = 9,2^2=4,(-0.5)^2 = 0.25=(1)/(4)。
2. 再计算括号内的式子:先算乘法:2^2×(-8.5)=4×(-8.5)= 34。
然后计算中括号内的式子:(-3)^2 2^2×(-8.5)=9-(-34)=9 + 34=43。
3. 接着计算除法:43÷(-0.5)^2=43÷(1)/(4)=43×4 = 172。
4. 最后计算原式:(-2)^3-[(-3)^2 2^2×(-8.5)]÷(-0.5)^2=-8-172=-180。
二、一元一次方程相关难题题目:某班有学生45人,会下象棋的人数是会下围棋人数的3.5倍,两种棋都会及两种棋都不会的人数都是5人,求只会下围棋的人数。
解析:1. 设会下围棋的有x人,则会下象棋的有3.5x人。
2. 全班人数可以表示为:只会下围棋的人数+只会下象棋的人数+两种棋都会的人数+两种棋都不会的人数。
只会下围棋的人数为x 5,只会下象棋的人数为3.5x-5。
可列方程:(x 5)+(3.5x-5)+5 + 5=45。
3. 化简方程:x-5+3.5x 5+5+5 = 45。
合并同类项得:4.5x=45。
4. 解得:x = 10。
5. 所以只会下围棋的人数为x-5=10 5=5人。
三、几何图形初步相关难题题目:一个角的补角比它的余角的3倍少20°,求这个角的度数。
解析:1. 设这个角的度数为x。
2. 它的补角为(180 x)^∘,余角为(90 x)^∘。
3. 根据题意可列方程:180 x=3(90 x)-20。
七年级超难数学竞赛题带解析
七年级超难数学竞赛题带解析一、代数部分。
1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。
- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。
- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。
- 那么a^b = 3^-2=(1)/(9)。
2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。
- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。
- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。
- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。
3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。
- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。
4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。
- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。
七年级数学试卷难度前十
一、选择题(每题5分,共50分)1. 下列各数中,是正数的是()A. -2.5B. 0C. -√9D. 32. 已知a > b,下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a - 1 > b + 1D. a + 1 < b - 13. 一个长方形的长是5cm,宽是3cm,它的周长是()A. 10cmB. 15cmC. 16cmD. 20cm4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 圆D. 梯形5. 一个数的平方根是±3,这个数是()A. 9B. 81C. 9或81D. 无法确定6. 已知一个数的绝对值是6,这个数可能是()A. 6B. -6C. 6或-6D. 无法确定7. 在下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 已知x^2 = 25,则x的值为()A. 5B. -5C. 5或-5D. 无法确定9. 一个等腰三角形的底边长是6cm,腰长是8cm,它的周长是()A. 14cmB. 16cmC. 18cmD. 20cm10. 下列各数中,是无理数的是()A. √4B. √9C. √16D. √25二、填空题(每题5分,共50分)11. 3的平方根是______,9的平方根是______。
12. 已知x + y = 10,x - y = 2,则x = ______,y = ______。
13. 一个长方形的长是a cm,宽是b cm,它的面积是______cm²。
14. 已知一个数的绝对值是5,这个数可能是______。
15. 一个等边三角形的边长是a cm,它的周长是______cm。
七年级较难数学题
七年级较难数学题一、有理数运算类。
1. 计算:(-2)^3 - [(-3)^2 - 2^2×(- 8.5)]÷(-0.5)^2- 解析:- 先计算指数运算:(-2)^3=-8,(-3)^2 = 9,2^2=4,(-0.5)^2 = 0.25。
- 再计算括号内的式子:[(-3)^2-2^2×(-8.5)]=(9 - 4×(-8.5))=(9 + 34)=43。
- 然后进行除法运算:43÷0.25 = 172。
- 最后进行减法运算:-8-172=-180。
2. 已知a = - (1)/(2),b=(1)/(4),c = - (1)/(8),求8a - 2b+5c的值。
- 解析:- 将a = - (1)/(2),b=(1)/(4),c = - (1)/(8)代入式子8a - 2b + 5c。
- 8×(-(1)/(2))-2×(1)/(4)+5×(-(1)/(8))- 先计算乘法:8×(-(1)/(2))=-4,2×(1)/(4)=(1)/(2),5×(-(1)/(8))=-(5)/(8)。
- 再计算减法和加法:-4-(1)/(2)-(5)/(8)=-4 - (4)/(8)-(5)/(8)=-4(9)/(8)=-5(1)/(8)。
二、整式加减类。
3. 化简求值:(2x^2-3xy + 4y^2)-3(x^2-xy+(5)/(3)y^2),其中x = - 2,y = 1。
- 解析:- 先去括号:2x^2-3xy + 4y^2-3x^2+3xy - 5y^2。
- 然后合并同类项:(2x^2-3x^2)+(-3xy + 3xy)+(4y^2-5y^2)=-x^2-y^2。
- 当x = - 2,y = 1时,代入-x^2-y^2得:-(-2)^2-1^2=-4 - 1=-5。
4. 已知A = 3x^2+3y^2-5xy,B = 2xy - 3y^2+4x^2,求2A - B。
初一上册数学必考难题
1、在下列各数中,哪个数是一个完全平方数?
A. 30
B. 35
C. 36
D. 39
2、一辆汽车从A地到B地需要4小时,从B地返回A地需要5小时,那么这辆汽车往返一次的平均速度是多少?
A. 40公里/小时
B. 45公里/小时
C. 50公里/小时
D. 55公里/小时
3、小明有100元钱,他买了一本书花了45元,剩下的钱他打算用来买每支价格为5元的笔,他最多可以买几支笔?
A. 10支
B. 11支
C. 12支
D. 13支
4、一个正方形的周长是24厘米,那么这个正方形的面积是多少平方厘米?
A. 16
B. 24
C. 36
D. 48
5、在下列各组数中,哪一组数的和是一个质数?
A. 3, 4, 5
B. 4, 5, 6
C. 5, 6, 7
D. 6, 7, 8
6、一个长方形的长是12厘米,宽是8厘米,如果将这个长方形的长增加1厘米,那么它的面积增加了多少平方厘米?
A. 8
B. 9
C. 10
D. 11
7、小华和小明分别从家出发,小华每分钟走60米,小明每分钟走50米,如果他们在同一时间出发并且方向相同,那么10分钟后他们之间的距离是多少米?
A. 50米
B. 100米
C. 150米
D. 200米
8、在下列各数中,哪个数是一个立方数?
A. 49
B. 64
C. 81
D. 100
答案:
1、C
2、C
3、B
4、B
5、C
6、A
7、C
8、B。
初中数学难题试题及答案
初中数学难题试题及答案1. 已知函数f(x) = 2x^2 - 4x + 3,求f(x)的最小值。
答案:首先求导数f'(x) = 4x - 4,令f'(x) = 0,解得x = 1。
将x = 1代入原函数,得到f(1) = 2(1)^2 - 4(1) + 3 = 1。
因此,f(x)的最小值为1。
2. 一个数列的前三项为1, 2, 3,从第四项开始,每一项是前三项的和。
求数列的第10项。
答案:数列的前几项为1, 2, 3, 6, 11, 20, 37, 68, 125, 230。
因此,数列的第10项为230。
3. 一个圆的半径为5,求圆内接正方形的面积。
答案:圆内接正方形的对角线等于圆的直径,即10。
设正方形的边长为a,则对角线与边长的关系为a^2 + a^2 = 10^2,解得a = 5√2。
因此,正方形的面积为(5√2)^2 = 50。
4. 已知三角形ABC中,∠A = 30°,∠B = 45°,求∠C的度数。
答案:根据三角形内角和定理,三角形的内角和为180°。
因此,∠C = 180° - ∠A - ∠B = 180° - 30° - 45° = 105°。
5. 计算(2x - 3)(x + 4)的展开式。
答案:根据多项式乘法法则,(2x - 3)(x + 4) = 2x^2 + 8x - 3x - 12 = 2x^2 + 5x - 12。
6. 一个长方体的长、宽、高分别为2cm、3cm和4cm,求其体积。
答案:长方体的体积计算公式为V = 长× 宽× 高,所以V = 2cm × 3cm × 4cm = 24cm³。
7. 一个等差数列的前三项为2, 5, 8,求第10项。
答案:等差数列的通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差。
初一数学几何难题练习题(含答案),提高能力专用
1、证明线段相等或角相等
两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
说明:利用三角形全等证明线段求角相等。
常须添辅助线,制造全等三角形,这时应注意:
(1)制造的全等三角形应分别包括求证中一量;(2)添辅助线能够直接得到的两个全等三角形。
说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。
我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。
说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。
证明二:如图5所示,延长ED到M,使DM=ED,连结FE,FM,BM
说明:证明两直线垂直的方法如下:
(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。
(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。
(3)证明二直线的夹角等于90°。
2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手
法。
“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。
初一数学难题及答案
初一数学难题及答案【篇一:初中数学经典几何难题及答案】、已知:如图,o是半圆的圆心,c、e是圆上的两点,cd⊥ab,ef⊥ab,eg⊥co.求证:cd=gf.(初二)dofbea2、已知:如图,p是正方形abcd内点,∠pad=∠pda=150.求证:△pbc是正三角形.(初二)bcad3、如图,已知四边形abcd、a1b1c1d1都是正方形,a2、b2、c2、d2分别是aa1、bb1、cc1、dd1的中点.求证:四边形a2b2c2d2是正方形.(初二)a2a11cb22c d4、已知:如图,在四边形abcd中,ad=bc,m、n分别是ab、cd的中点,ad、bc的延长线交mn于e、f.求证:∠den=∠f.第 1 页共 15 页b1、已知:△abc中,h为垂心(各边高线的交点),o(1)求证:ah=2om;(2)若∠bac=60,求证:ah=ao.(初二)2、设mn是圆o外一直线,过o作oa⊥mn于a,自a引圆的两条直线,交圆于b、c及d、e,直线eb及cd分别交mn于p、q.求证:ap=aq.(初二)3、如果上题把直线mn由圆外平移至圆内,则由此可得以下命题:设mn是圆o的弦,过mn的中点a任作两弦bc、de,设cd、eb分别交mn于p、q.求证:ap=aq.(初二)4、如图,分别以△abc的ac和bc为一边,在△abc的外侧作正方形acde和正方形cbfg,点p是ef的中点.求证:点p到边ab的距离等于ab的一半.第 2 页共 15 页f1、如图,四边形abcd为正方形,de∥ac,ae=ac,ae与cd相交于f.求证:ce=cf.(初二)2、如图,四边形abcd为正方形,de∥ac,且ce=ca,直线ec交da延长线于f.求证:ae=af.(初二)3、设p是正方形abcd一边bc上的任一点,pf⊥ap,cf平分∠dce.求证:pa=pf.(初二)4、如图,pc切圆o于c,ac为圆的直径,pef为圆的割线,ae、af与直线po相交于b、d.求证:ab=dc,bc=ad.(初三)第 3 页共 15 页1、已知:△abc是正三角形,p是三角形内一点,pa=3,pb=4,pc=5.求:∠apb的度数.(初二)2、设p是平行四边形abcd内部的一点,且∠pba=∠pda.求证:∠pab=∠pcb.(初二)4、平行四边形abcd中,设e、f分别是bc、ab上的一点,ae与cf相交于p,且ae=cf.求证:∠dpa=∠dpc.(初二)第 4 页共 15 页经典难题(五)1、设p是边长为1的正△abc内任一点,l=pa+pb+pc,求证:≤l<2.2、已知:p是边长为1的正方形abcd内的一点,求pa+pb+pc的最小值.3、p为正方形abcd内的一点,并且pa=a,pb=2a,pc=3a,求正方形的边长.4、如图,△abc中,∠abc=∠acb=800,d、e分别是ab、ac0,∠eba=20,求∠bed的度数.第 5 页共 15 页【篇二:初中数学经典难题参考答案(第二版)】t>一、选择题1、若一次函数y=kx+1与两坐标轴围成的三角形面积为3,为(c) 66632、若112m?3mn?2n?=3,的值是(b) mnm?2mn?n(第4题图)则k37a、1.5b、c、-2 d、553、判断下列真命题有(c)4、如图,矩形abcd中,已知ab=5,ad=12,p是ad上的动点,pe⊥ac,e,pf⊥bd于f,则pe+pf=(b)602455a、5b、c、d、135125、在直角坐标系中,已知两点a(-8,3)、b(-4,5)以及动点c (0,n)、d(m,0),则当四m边形abcd的周长最小时,比值为 =(b)n2333a、- b、- c、- d、3244二、填空题1|x|3?x26、当x= 负数时,与互为倒数。
七年级数学试卷超难题
一、选择题(每题5分,共25分)1. 已知数列{an}的前n项和为Sn,若an=3n-2,则S10的值为:A. 144B. 153C. 162D. 1712. 在等差数列{an}中,若a1=3,公差d=2,则第100项与第101项的和为:A. 200B. 202C. 204D. 2063. 若方程组$$\begin{cases}x^2 - 3x + 2 = 0 \\y^2 - 5y + 6 = 0\end{cases}$$的解为(x,y),则x+y的值为:A. 1B. 2C. 3D. 44. 在△ABC中,AB=AC,∠BAC=60°,若∠ABC=2∠ACB,则△ABC的周长为:A. 6B. 8C. 10D. 125. 已知函数f(x)=ax^2+bx+c(a≠0),若f(-1)=0,f(2)=5,且f(x)的图像开口向上,则a的值为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)6. 已知数列{an}的通项公式为an=3^n-1,则第10项an10的值为______。
7. 在等比数列{an}中,若a1=2,公比q=3,则第4项a4的值为______。
8. 已知函数f(x)=x^2-4x+3,若f(x)的图像的对称轴为x=______。
9. 在△ABC中,AB=AC,∠BAC=45°,若∠ABC=∠ACB,则△ABC的面积S为______。
10. 已知数列{an}的前n项和为Sn,若an=2^n-1,则S5的值为______。
三、解答题(每题20分,共60分)11. (本题共20分)已知数列{an}的通项公式为an=4^n-3^n,求:(1)数列{an}的前n项和Sn;(2)若数列{bn}的通项公式为bn=3^n-2^n,求bn+an的值。
12. (本题共20分)已知等差数列{an}的公差d=2,且a1+a3+a5=12,求:(1)数列{an}的通项公式;(2)数列{an}的前n项和Sn。
初一期末数学试卷难题推荐
一、背景介绍初中数学是学生学习数学的重要阶段,期末考试作为对一学期学习成果的检验,难度较高的题目往往能够锻炼学生的思维能力,提高解题技巧。
以下是几道适合初一期末考试的难题推荐,供同学们参考。
二、推荐难题1. 难题一:一元二次方程的解法题目:已知一元二次方程ax² + bx + c = 0(a≠0)有两个实数根,且两根之和为2,两根之积为3。
求该方程的解。
解题思路:根据题意,设方程的两根为x₁和x₂,则有:x₁ + x₂ = -b/a = 2x₁ x₂ = c/a = 3根据上述两个等式,列出方程组:-b/a = 2c/a = 3解得 a = -3/2,b = 3,c = -9/2。
将a、b、c的值代入原方程,得到:-3/2x² + 3x - 9/2 = 0解得 x₁ = 1,x₂ = 3/2。
答案:该方程的解为 x₁ = 1,x₂ = 3/2。
2. 难题二:平面几何问题题目:在平面直角坐标系中,点A(2,3)关于直线y=x的对称点为B,点B关于y轴的对称点为C。
求直线BC的方程。
解题思路:首先求出点B的坐标,由于点A关于直线y=x的对称点B在直线y=x上,因此点B的坐标为(3,2)。
然后求出点C的坐标,由于点B关于y轴的对称点C在y轴上,因此点C的坐标为(-3,2)。
最后求出直线BC的方程。
直线BC的斜率为(2-2)/(-3-3)= 0,因此直线BC的方程为y=2。
答案:直线BC的方程为y=2。
3. 难题三:数列问题题目:已知数列{aₙ}的前三项分别为2,3,5,且满足an+1 = an + 2^n(n≥1)。
求该数列的前10项。
解题思路:根据题意,可得数列的递推关系为:a₃ = a₂ + 2^2a₄ = a₃ + 2^3...a₁₀ = a₉ + 2^9根据递推关系,依次计算数列的前10项:a₄ = 3 + 2^2 = 7a₅ = 7 + 2^3 = 15a₆ = 15 + 2^4 = 31a₇ = 31 + 2^5 = 63a₈ = 63 + 2^6 = 127a₉ = 127 + 2^7 = 255a₁₀ = 255 + 2^8 = 511答案:该数列的前10项为2,3,5,7,15,31,63,127,255,511。
初一数学难题及答案
初一数学难题及答案【篇一:初中数学经典几何难题及答案】、已知:如图,o是半圆的圆心,c、e是圆上的两点,cd⊥ab,ef⊥ab,eg⊥co.求证:cd=gf.(初二)dofbea2、已知:如图,p是正方形abcd内点,∠pad=∠pda=150.求证:△pbc是正三角形.(初二)bcad3、如图,已知四边形abcd、a1b1c1d1都是正方形,a2、b2、c2、d2分别是aa1、bb1、cc1、dd1的中点.求证:四边形a2b2c2d2是正方形.(初二)a2a11cb22c d4、已知:如图,在四边形abcd中,ad=bc,m、n分别是ab、cd的中点,ad、bc的延长线交mn于e、f.求证:∠den=∠f.第 1 页共 15 页b1、已知:△abc中,h为垂心(各边高线的交点),o(1)求证:ah=2om;(2)若∠bac=60,求证:ah=ao.(初二)2、设mn是圆o外一直线,过o作oa⊥mn于a,自a引圆的两条直线,交圆于b、c及d、e,直线eb及cd分别交mn于p、q.求证:ap=aq.(初二)3、如果上题把直线mn由圆外平移至圆内,则由此可得以下命题:设mn是圆o的弦,过mn的中点a任作两弦bc、de,设cd、eb分别交mn于p、q.求证:ap=aq.(初二)4、如图,分别以△abc的ac和bc为一边,在△abc的外侧作正方形acde和正方形cbfg,点p是ef的中点.求证:点p到边ab的距离等于ab的一半.第 2 页共 15 页f1、如图,四边形abcd为正方形,de∥ac,ae=ac,ae与cd相交于f.求证:ce=cf.(初二)2、如图,四边形abcd为正方形,de∥ac,且ce=ca,直线ec交da延长线于f.求证:ae=af.(初二)3、设p是正方形abcd一边bc上的任一点,pf⊥ap,cf平分∠dce.求证:pa=pf.(初二)4、如图,pc切圆o于c,ac为圆的直径,pef为圆的割线,ae、af与直线po相交于b、d.求证:ab=dc,bc=ad.(初三)第 3 页共 15 页1、已知:△abc是正三角形,p是三角形内一点,pa=3,pb=4,pc=5.求:∠apb的度数.(初二)2、设p是平行四边形abcd内部的一点,且∠pba=∠pda.求证:∠pab=∠pcb.(初二)4、平行四边形abcd中,设e、f分别是bc、ab上的一点,ae与cf相交于p,且ae=cf.求证:∠dpa=∠dpc.(初二)第 4 页共 15 页经典难题(五)1、设p是边长为1的正△abc内任一点,l=pa+pb+pc,求证:≤l<2.2、已知:p是边长为1的正方形abcd内的一点,求pa+pb+pc的最小值.3、p为正方形abcd内的一点,并且pa=a,pb=2a,pc=3a,求正方形的边长.4、如图,△abc中,∠abc=∠acb=800,d、e分别是ab、ac0,∠eba=20,求∠bed的度数.第 5 页共 15 页【篇二:初中数学经典难题参考答案(第二版)】t>一、选择题1、若一次函数y=kx+1与两坐标轴围成的三角形面积为3,为(c) 66632、若112m?3mn?2n?=3,的值是(b) mnm?2mn?n(第4题图)则k37a、1.5b、c、-2 d、553、判断下列真命题有(c)4、如图,矩形abcd中,已知ab=5,ad=12,p是ad上的动点,pe⊥ac,e,pf⊥bd于f,则pe+pf=(b)602455a、5b、c、d、135125、在直角坐标系中,已知两点a(-8,3)、b(-4,5)以及动点c (0,n)、d(m,0),则当四m边形abcd的周长最小时,比值为 =(b)n2333a、- b、- c、- d、3244二、填空题1|x|3?x26、当x= 负数时,与互为倒数。
初一数学下难题百道及答案
初一数学下册提高训练1、如图1,下列判断: ①∠A 与∠1是同位角;②∠A 与∠B 是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角;其中正确的个数是A 、4个B 、3个C 、2个D 、1个2、 如图2,若AD ∥BC,则图中相等的内错角是A .∠1与∠5,∠2与∠6;B .∠3与∠7,∠4与∠8;C .∠2与∠6,∠3与∠7;D .∠1与∠5,∠4与∠83、一辆汽车在直路上行驶,两次拐弯后,仍按原来的方向行驶,那么这两次拐弯时A 、第一次向右拐30°,第二次向右拐30°B 、第一次向右拐30°,第二次向右拐150°C 、第一次向左拐30°,第二次向右拐150°D 、第一次向左拐30°,第二次向右拐30°4、如图,NO 、QO 分别是∠QNM 和∠PQN 的角平分线,且∠QON=90°,那么MN 与PQA 、可能平行也可能相交B 、一定平行C 、一定相交D 、以上答案都不对5、如图,如果AB ∥CD,则α∠、β∠、γ∠之间的关系是A 、0180=∠+∠+∠γβαB 、0180=∠+∠-∠γβαC 、0180=∠-∠+∠γβα D 、0270=∠+∠+∠γβα6、如图,AB ∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α= A 、10°ABP CD4 3 2 1 ABCE DCBANMQ P OB 、15°C 、20°D 、30° 7、如图,已知AB ∥CD,则角α、β、γ之间的关系为A α+β+γ=1800B α—β+γ=1800C α+β—γ=1800D α+β+γ=3600 8、如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′的度数为 ;9、如图,已知//AE BD ,∠1=130o,∠2=30o ,则∠C =10、如图,已知CD AB //,40=∠B ,CN 是BCE ∠的平分线,CN CM ⊥,求BCM ∠的度数;11、如图,已知CD AB //,CF AE //,求证:DCF BAE ∠=∠;12、如图,已知AB ∥CD,∠1=100°,∠2=120°,求∠α;13、如图所示,AB ∥ED,∠B =48°,∠D =42°, 证明:BC ⊥CD;选择一种辅助线14、如图,若AB ∥CD,猜想∠A 、∠E 、∠D 之间的关系,并证明之;15、已知AB ∥CD,∠B=65°,CM 平分∠BCE,∠MCN=90°,求∠DCN 的度数.16、如图,AB ∥CD,∠BEF =85°,求∠ABE +∠EFC+∠FCD 的度数;17、如图,∠ABC +∠ACB =110°,BO 、CO分别平分∠ABC 和∠ACB,EF 过点O与BC 平行,求∠BOC;18、.如图,CD ∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF 与AB 有怎样的FE DAB CA BC D Eα β γEDBC′F CD ′AFEDCB ANMEDCBA NME DC BA位置关系,为什么19、已知:如图,直线AB∥CD,直线EF 分别交AB,CD于点E,F,∠BEF的平分线与∠DFE的平分线相交于点P.试求∠P 的大小.20、已知AB21、如图,EF∥AD,∠1 =∠2,∠BAC = 70°,求∠AGD的度数;22、已知AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,猜想∠BDE与∠C有怎样的大小关系试说明理由.23、如右图,光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角,即∠1=∠6,∠5=∠3,∠2=∠4;若已知∠1=55°,∠3=75°,求∠2的度数;24、如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时P点与点C、D不重合,试探索∠PAC,∠APB,∠PBD之间的关系又是如何25、已知AB∥CD,试再添上一个条件,使∠1=∠2成立•要求给出两个答案.26、如图,DB∥FG∥EC,A是FG上的一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求∠PAG的度数;27、图,BE∥AO,∠1=∠2,OE⊥OA于点O,EH⊥CO于点H,那么∠5=∠6,为什么123456aABC D_G_F _E_P_D_C_B_A图(11)HOCEBA654321llCB DPlAA BEPFC DEDCBA28、如图,直线AC ∥BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P 落在某个部分时,连结PA 、PB ,构成∠PAC 、∠APB 、∠PBD 三个角.提示:有公共端点的两条重合的射线所组成的角是0°1当动点P 落在第①部分时,试说明∠APB =∠PAC +∠PBD 成立的理由;2当动点P 落在第②部分时,∠APB =∠PAC +∠PBD 是否成立直接回答成立或不成立3当动点P 在第③部分时,全面探究∠PAC 、∠APB 、∠PBD 之间的关系,并写出动点P 的具体位置和相应的结论.选择其中一种结论加以说明.29、按下列条件确定点Px,y 的位置: ⑴x =0,y <0,则点P 在___⑵xy =0,则点P 一定在____; ⑶|x |+|y |=0,则点P 在_____;⑷若xy >0,则点P 在____.30、己知点Px,y 位于第二象限,并且满足y ≤x +4,x 、y 为整数,写出一个符合上述条件的点P 的坐标___; 31、己知点P 在笫四象限,它的横、纵坐标之和为-3,写出一个符合上述条件的点的坐标____;32、已知点P 5a -7,-6a -2在第二、四象限的角平分线上,则a =____;33、已知平行四边形ABCD 的四个顶点的坐标分别为A -2,0,B -1,4,C 4,4,D 3,0,则平行四边形的面积是_____;34、 点P -3,-b 与P ′a -1,3关于x 对称, 则2a +b 200为______;35、己知点Px,y 满足条件x +y <0,xy >0,则点P 在 A 第一象限B 第二象征C 第三象限D 第四象限 36、下列说法中,不正确的是A .点3,0在横轴上,点0,3在纵AB ① ② ③ ④ PCD AB ① ② ③ ④ CD A B ①② ③ ④ CDyxP 1POA轴上B .两条互相垂直的数轴的垂足为原点C .若x ≠y,则x,y 和y,x 表示两个不同点的坐标D .如果Aa,b 、Bc,b 且a ≠c 、b ≠0,则AB ∥x 轴 37、点Mx,y 满足yx=0那么点M 的可能位置是A .x 轴上所有的点B .除去原点后x 轴上的点的全体 C .y 轴上所有的点 D .除去原点后y 轴上的点的全体38、如果两个点到x 轴的距离相等,那么这两个点的坐标必须满足 A 横坐标相等 B 纵坐标相等 C 横坐标的绝对值相等 D 纵坐标的绝对值相等39、对任意实数,点()22P x x x -,一定不.在.A .第一象限B .第二象限C .第三象限D .第四象限40、如图,将边长为1的正三角形OAP 沿x 轴正方向连续翻转2008次,点依次落在点1232008P P P P ⋅⋅⋅,,,的位置,则点的横坐标为 .41、已知点()32M -,,将它先向左平移4个单位,再向上平移3个单位后得到点,则点的坐标是 .42、 将点P 向左平移2个单位,再向上平移1个单位得到()'13P -,,则点P 的坐标是______.43、在平面直角坐标系中,点A 的坐标为(14),,将线段OA 绕点O 顺时针旋转90︒得到线段OA ',则点A '的坐标是 .44、线段CD 是由线段AB 平移得到的.点A –1,4的对应点为C4,7,则点B – 4,– 1的对应点D 的坐标为A.2,9B.5,3C.1,2D.– 9,– 445、一个长方形在平面直角坐标系中三个顶点的坐标为– 1,– 1、–1,2、3,– 1,则第四个顶点的坐标为 A.2,2 B.3,2 C.3,3 D.2,346、已知P0,a 在y 轴的负半轴上,则Q 1,12+---a a 在A. y 轴的左边,x 轴的上方B. y 轴的右边,x 轴的上方C. y 轴的左边,x 轴的下方D. y 轴的右边,x 轴的下方47、已知△ABC 的面积为3,边BC 长为2,以B 原点,BC 所在的直线为x 轴,则点A 的纵坐标为A . 3B .-3C .6D .±348、设点Px,y 在第二象限,且|x|=1,|y|=2,则点P 的坐标是A .-1,2B .-2,2C .-1,-1D .-2,-249、已知点A2,-2,如果点A 关于x 轴的对称点是B,点B 关于原点对称点是C,那么点C 的坐标是A .2,2B .-2,2C .-1,-1D .-2,-250、在平面直角坐标系下,下列各组中关于原点对称又关于y 轴对称的点是A .3,-2-3,-2B .0,30,-3C .3,0-3,0D .3,-2-3,251、 已知点P 关于x 轴的对称点P 1的坐标是2,3,那么点P 关于原点的对称点P 2的坐标是 A .-3,-2 B .2,-3C .-2,-3D .-2,352、 若点Ax,y 在第三象限,则点B -x,-y 关于x 轴的对称点在A . 第一象限B .第二象限C .第三象限D .第四象限53、点Pm,1在第二象限内,则点Q -m,0在A . x 轴正半轴上B .x 轴负半轴上 C .y 轴正半轴上 D . y 轴负半轴上54、平面直角坐标系内,点An,-n 一定不在A . 第一象限B .第二象限C .第三象限D .第四象限55、当32<m <1,点P3m -2,m -1在A .第一象限B .第二象限C .第三象限 D .第四象限56、如果点Pm+3,m+1在直角坐标系的x 轴上,则点P 的坐标为_________ 57、在平面直角坐标系内,点P2x -6,x -5在第四象限,则x 的取值范围是_________58、 一个平行四边形的三个顶点坐标分别为0,02,01,2,另一个顶点在x 轴下方,则其坐标为_____________ 59、 某地的电话月租费24元,通话费每分钟元,则每月话费y 元与通话时间x 分钟之间的关系式是 ,34、 某居民某月的电话费是元,则· 通话时间是 分钟,若通话时间62分钟,则电话费为 元;60、个人出版图书获得的稿费的纳税计算办法是:稿费不高于800元的不纳税;稿费高于800元又不高于4000元的应缴纳超过800元的那一部分稿费的14%的税;稿费高于4000元的应缴纳全部稿费的11%的税;若某人获得一笔稿费后,缴纳个人所得税420元,则稿费 元,若缴税为280元,稿费为 元; 61、点Mx,y 在第四象限,且02=-x ,y+2=0,则点M 的坐标为___________62、如果│3x -13y+16│+│x+3y -2│=0,那么点Px,y 在第 象限.点Qx+1,,y-1在坐标平面内的 位置.63、某单位计划10月份组织员工到外地旅游,估计人数在6~15人之间;甲、乙量旅行社的服务质量相同,且对外报价都是200元,该单位联系时,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示,可先免去一位游客的旅游费用,其余游客九折优惠;⑴ 分别写出两旅行社所报旅游费用y 与人数x 的关系式; ⑵ 若有11人参加旅游,应选择那个旅行社64、某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费元,超计划部分每吨按元收费;(1)写出该单位水费y元与每月用水量x吨之间的关系式①用水量小于等于3000吨;②用水量大于3000吨 ;(2)某月该单位用水3200吨,水费是元;若用水2800吨,水费元; (3)若某月该单位缴纳水费1540元,则该单位用水多少吨65、如图,在平面直角坐标系中,有若干个整数点,其顺序按“→”方向排列,如1,0,2,0,2,1,3,2,3,1,3,0……根据这个规律第100个点的坐标为_______;66、等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为°°°或80°°67、从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是A. n个B. n-1个C. n-2个D. n-3个68、 n边形所有对角线的条数有A. ()12n n-条B. ()22n n-条C. ()32n n-条D. ()42n n-条69、在△ABC中, ∠A=50°, ∠B,∠C 的角平分线相交于点O,则∠BOC的度数是 A. 65° B. 115°C. 130° D. 100°70、如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C∠C除外相等的角的个数是A、3个B、4个C、5个D、6个71、下面说法正确的是个数有①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在 ABC 中,若∠A +∠B=∠C,则此三角形是直角三角形;A 、3个B 、4个C 、5个D 、6个72、如图,将一副三角板叠放在一起,使直角的顶点重合于O, 则∠AOC+∠DOB=A 、900B 、1200C 、1600D 、180073、 以长为3㎝,5㎝,7㎝,10㎝的四条线段中的三条线段为边,构成三角形的个数是 A .1个 B .2个 C .3个 D .4个74、等腰三角形的两边分别为3和6,则这个三角形的周长是 .A 12B 15C 9D 12或1575、给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内;正确的命题有个 个 个个 76、在等腰三角形中,,周长为40cm,一个边另一个边2倍,求三个边_________________77、如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则根据图形填空:⑴BE= =21 ; ⑵∠BAD=F 第(12)题E D CBA第8题=21 ⑶∠AFB= =900; 78、在等腰三角形中,一个角是另一个角的2倍,求三个角_______________________79、如果一个三角形的三边长分别为x ,2,3,那么x 的取值范围是 ; 80、如图,∠1+∠2+∠3+∠4=______度. 81、如图∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上的中线,若∆ABC 的面积是24,则∆ABE 的面积是________; 82、一个多边形的内角和为1800°,则它的边数为 ;83、n 多边形的每一个外角是36°,则n 是 ;84、多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有 条;85、如果把一个多边形截去一个三角形,剩下的多边形的内角和是2160°,那么原来的多边形的边数是 ; 86、一多边形除一内角外,其余各内角之和为2570°,则这个内角等于 ;87、一个角的两边分别平行于另一个角的两边,那么这两个角的关系是: 88、一个角的两边分别垂直于另一个角的两边,那么这两个角的关系是:89、如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB,CD ⊥AB 于D,DF⊥CE,则∠CDF =度;90、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,…,则在第n 个图形中,互不重叠的三角形共有_____________个用含n 的代数式表示.BCADABC DE91、如图;ABCD是一个四边形木框,为了使它保持稳定的形状,需在AC或BD上钉上一根木条,现量得AB=80㎝,BC=60㎝,CD=40㎝,AD=50㎝,试问所需的木条长度至少要多长92、如图,D是△ABC的∠C的外角平分线与BA的延长线的交点,求证:∠BAC>∠B93、如图,∠1 = 20°,∠2 = 25°,∠A = 35°,求∠BDC的度数;94、如图,若∠A=70°,∠ACD=40°,∠ABE=30°,求∠BDC、∠BFC的度数.95、已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4;求等腰三角形各边的长;96、如图,在△ABC中,AB=AC,点D、E 分别在AC、AB上,且BC=BD=DE=EA,求∠A的度数;97、 P、Q是△ABC边上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数; 98、如图,BE、CD相交于点A,CF为∠BCD 的平分线,EF为∠BED的平分线;试探求∠F与∠B、∠D之间的关系,并说明理由;99、如图,△ABC中,∠1=∠2,∠3=∠4,∠5=∠6.∠A=60°.求∠ECF、∠FEC的度数.∠A=α,△ABC的平分线或外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.101、任何一个二元一次方程都有A一个解;B两个解;C三个解;D无数多个解;102、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有A5个B6个C7个D8个EFDCBAABC DFGE12 3 45 6103、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是 Aa <2;B 34->a ; C342<<-a ;D 34-<a ;104、关于x 、y 的方程组⎩⎨⎧=-=+my x my x 932的解是方程3x +2y =34的一组解,那么m 的值是A 2;B -1;C 1;D -2; 105、在下列方程中,只有一个解的是 A ⎩⎨⎧=+=+0331y x y x B ⎩⎨⎧-=+=+2330y x y xC ⎩⎨⎧=-=+4331y x y xD ⎩⎨⎧=+=+3331y x y x 106、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是 A 15x -3y =6 B 4x -y =7C 10x +2y =4D 20x -4y =3 107、下列方程组中,是二元一次方程组的是A ⎪⎩⎪⎨⎧=+=+9114y x y x B ⎩⎨⎧=+=+75z y y x C ⎩⎨⎧=-=6231y x xD ⎩⎨⎧=-=-1y x xy y x 108、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于Aa =-3,b =-14Ba =3,b =-7Ca =-1,b =9Da =-3,b =14109、若5x -6y =0,且xy ≠0,则yx y x 3545--的值等于A 32B 23C 1D -1110、若x 、y 均为非负数,则方程6x =-7y的解的情况是A 无解B 有唯一一个解C 有无数多个解D 不能确定111、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是A 14B -4C -12D 12112、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为A 21=k ,b =-4B 21-=k ,b =4C 21=k ,b =4D 21-=k ,b =-4113、方程|a |+|b |=2的自然数解是□x +5y =13①_____________; 114、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;115、若4x +3y +5=0,则38y -x -5x +6y -2的值等于_________;116、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 117、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________; 118、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________ 119、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ;120、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ;121、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 122、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ; 123、甲、乙两人在解方程组时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;124、使x +4y =|a |成立的x 、y 的值,满足2x +y -12+|3y -x |=0,又|a |+a =0,求a 的值;125、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;126、要使下列三个方程组成的方程组有解,求常数a 的值;2x +3y =6-6a ,3x +7y =6-15a ,4x +4y =9a +9 127、当a 、b 满足什么条件时,方程2b 2-18x =3与方程组⎩⎨⎧-=-=-5231b y x y ax 都无解;128、a 、b 、c 取什么数值时,x 3-ax 2+bx +c程x -1x -2x -3恒等129、m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解: 1是正数;2是正整数并求它的所有正整数解;130、试求方程组⎩⎨⎧-=---=-6|2||5|7|2|y x y x 的解;131、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间132、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土一根扁担,两只筐,这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人133、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米134、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的31,求这两个水桶的容量;135、甲、乙两人在A 地,丙在B 地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A 、B 两地之间的距离;136、有两个比50大的两位数,它们的差是10,大数的10倍与小数的5倍的和的201是11的倍数,且也是一个两位数,求原来的这两个两位数; 137、如果a 、b 表示两个负数,且a <b ,则 . A1>baB ba <1C ba 11<138、a 、b 是有理数,下列各式中成立的是 .A 若a >b ,则a 2>b 2C 若a ≠b ,则|a |≠|b |D 若|a |≠|139|a |+a 的值一定是 .A 大于零B 小于零C不大于零 D 不小于零 140、若由x <y 可得到ax >ay ,应满足的条件是 . A a ≥0 B a ≤0C a >0D a <0141、若不等式a +1x>a +1的解集是x <1,则a 必满足 . A a <0 B a >-1 C a <-1D a <1142、九年级1班的几个同学,毕业前合影留念,每人交元.一张彩色底片元,扩印一张相片元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有 . A2人 B3人C4人D5人143、某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收元不足1km 按1km 计.某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km,那么x 的最大值是 .A11 B8C7144、若不等式组⎩⎨⎧>≤<kx x ,21有解,则k 的取值范围是 . A k <2B k ≥2C k<1D1≤k <2 145、 不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是 . A m ≤2 B m ≥2 C m ≤1146、对于整数a ,b ,c ,d ,定义bd ac cd ba -=,已知3411<<d b,则b +d 的值为_________. 147、若x 是非负数,则5231x-≤-的解集是______. 148、已知x -22+|2x -3y -a |=0,y 是正数,则a 的取值范围是______. 149、6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元. 150、若m >5,试用m表示出不等式5-mx >1-m 的解集______. 151、乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页设以后几天里每天要读x 页,列出的不等式为______. 152、k 满足______时,方程组⎩⎨⎧=-=+4,2y x k y x 中的x 大于1,y小于1.153、解不等式组⎪⎩⎪⎨⎧-<-->-->+.3273,4536,7342x x x x x x 154、 若m 、n 为有理数,解关于x 的不等式-m 2-1x >n . 155、已知关于x ,y 的方程组⎩⎨⎧-=++=+134,123p y x p y x 的解满足x>y ,求p 的取值范围. 156、已知方程组⎩⎨⎧-=++=+②①my x m y x 12,312的解满足x +y <0,求m 的取值范围. 157、适当选择a 的取值范围,使<x <a 的整数解: a) x 只有一个整数解; b) x 一个整数解也没有. 158、当310)3(2kk -<-时,求关于x 的不等式k x x k ->-4)5(的解集.159、 已知A =2x 2+3x+2,B =2x 2-4x -5,试比较A 与B 的大小.160、类型相同当k 取何值时,方程组⎩⎨⎧-=+=-52,53y x k y x 的解x ,y 都是负数.161、 类型相同已知⎩⎨⎧+=+=+122,42k y x k y x 中的x ,y 满足0<y -x <1,求k 的取值范围.162、已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值. 163、关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,求a 的取值范围. 164、类型相同k 取哪些整数时,关于x 的方程5x +4=16k -x 的根大于2且小于10165、类型相同已知关于x ,y 的方程组⎩⎨⎧-=-+=+34,72m y x m y x 的解为正数,求m 的取值范围. 166、若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围. 167、某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车 168、某次数学竞赛活动,共有16道选择题,评分办法是:答对一题给6分,答错一题倒扣2分,不答题不得分也不扣分.某同学有一道题未答,那么这个学生至少答对多少题,成绩才能在60分以上169、某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品 170、 某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件171、一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方172、某城市平均每天产生垃圾700吨,由甲、乙两个垃圾厂处理.如果甲厂每小时可处理垃圾55吨,需花费550元;乙厂每小时处理45吨,需花费495元.如果规定该城市每天用于处理垃圾的费用的和不能超过7150元,问甲厂每天至少要处理多少吨垃圾173、若干名学生,若干间宿舍,若每间住4人将有20人无法安排住处;若每间住8人,则有一间宿舍的人不空也不满.问学生有多少人宿舍有几间174、某零件制造车间有20名工人,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利150元,每制造一个乙种零件可获利260元.在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.a)若此车间每天所获利润为y元,用x的代数式表示y.b)若要使每天所获利润不低于24000元,至少要派多少名工人去制造乙种零件175、某单位要印刷一批宣传资料,在需要支付制版费600元和每份资料元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.a)若该单位要印刷2400份宣传资料,则甲印刷厂的费用是______,乙印刷厂的费用是______.b)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠176、2008年5月12日,汶川发生了里氏级地震,给当地人民造成了巨大的损失.某中学全体师生积极捐款,其中九年级的3个班学生的捐款金额如下表:老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:信息一:这三个班的捐款总金额是7700元;信息二:二班的捐款金额比三班的捐款金额多300元;信息三:一班学生平均每人捐款的金额大于..48元,小于..51元.请根据以上信息,帮助老师解决:(1)二班与三班的捐款金额各是多少元(2)一班的学生人数是多少177、某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,42座客车的租金为每辆320元,60座客车的租金为每辆460元.a)若学校单独租用这两种客车各需多少钱b)若学校同时租用这两种客车8辆可以坐不满,而且比单独租用一种车辆节省租金,请选择最节省的租车方案.183、在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:板房型号甲种板材乙种板材安置人数A型板房54 m226 m2 5B型板房78 m241 m28 问:这400间板房最多能安置多少灾民184、下面调查统计中,适合做普查的是.A.雪花牌电冰箱的市场占有率B.蓓蕾专栏电视节目的收视率C.飞马牌汽车每百公里的耗油量D.今天班主任张老师与几名同学谈话185、为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是.A.这批电视机B.这批电视机的寿命C.所抽取的100台电视机的寿命D.100186、某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是.A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况187、为了了解某校学生的每日动运量,收集数据正确的是.A.调查该校舞蹈队学生每日的运动量 B.调查该校书法小组学生每日的运动量C.调查该校田径队学生每日的运动量 D.调查该校某个班级的学生每日的运动量188、如图1,所提供的信息正确的是.A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多189、某人设计了一个游戏,在一网吧征求了三位游戏迷的意见,就宣传“本游戏深受游戏迷欢迎”,这种说法错误的原因是.A.没有经过专家鉴定B.应调查四位游戏迷C.这三位玩家不具有代表性D.以上都不是190、如图2的两个统计图,女生人数多的学校是.A.甲校B.乙校C.甲、乙两校女生人数一样多D.无法确定191、为了测量调查对象每分钟的心跳次数,甲同学建议测量2分钟的心跳次数再除以2,乙同学建议测量10秒的心跳次数再乘以6,你认为哪位同学的方法更具有代表性.A.甲同学B.乙同学C.两种方法都具有代表性D.两种方法都不合理192、某市股票在七个月之内增长率的变化状况如图3所示.从图上看出,下列结论不正确的是.A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌193、关于如图4所示的统计图中单位:万元,正确的说法是.A.第一季度总产值万元B.第二季度平均产值6万元C.第二季度比第一季度增加万元D.第二季度比第一季度增长% 194、为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.195、某中学要了解初二学生的视力情况,在全校初二年级中抽取了25名学生进行检测,在这个问题中,总体是______,样本是______.196、常用统计图的类型有:______、______、______.197、在扇形统计图中,其中一个扇形的圆心角为72°,则这个扇形所表示的占总体的______.198、根据预测,21世纪中叶我国劳动者构成比例绘制成扇形统计图如图5所示,则第一、二、三产业劳动者的构成比例是______∶______∶______.199、某商场5月份随机抽查了6天的营业额,结果分别如下单位:万元:,,,,,,则估算该商场在第二季度的营业额约是______万元.200、为了了解某所初级中学学生对6月5日“世界环境日”是否知道,从该校全体学生1200名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“世界环境日”约有名学生“不知道”.201、已知全班有40位学生,他们有的步行,有的骑车,还有的乘车来上学,根据以下已知信息完成统计表:202、如果你是班长,想组织一次春游活动,用问卷的形式向全班同学进行调查,你设计的调查内容是请列举一条________________________.上学方式步行骑车乘车划计正正正次数9占百分比。
七年级数学试卷高难度题目
一、选择题(每题5分,共25分)1. 已知函数f(x) = 2x - 3,如果f(x + 1) = 5,那么x的值为:A. 2B. 3C. 4D. 52. 下列各数中,哪个数是二次根式:A. √9B. √16C. √25D. √-43. 已知等差数列{an}中,a1 = 3,公差d = 2,那么第10项an的值为:A. 19B. 20C. 21D. 224. 在直角坐标系中,点A(2,3),点B(-4,1),那么线段AB的中点坐标为:A. (-1,2)B. (-1,3)C. (0,2)D. (0,3)5. 已知一元二次方程x^2 - 5x + 6 = 0,那么该方程的判别式为:A. 1B. 4C. 9D. 25二、填空题(每题5分,共25分)6. 若一个等差数列的前三项分别为a、b、c,且a + b + c = 21,a - c = 9,则该数列的公差d为______。
7. 在平面直角坐标系中,点P(-3,4)关于x轴的对称点坐标为______。
8. 已知一元二次方程x^2 - 4x + 3 = 0的两个根分别为m和n,那么m + n的值为______。
9. 在△ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 7,c = 8,那么sinB的值为______。
10. 若函数f(x) = -3x^2 + 4x + 5的图像开口向下,且与x轴的交点坐标为(1,0),则该函数的顶点坐标为______。
三、解答题(每题20分,共60分)11. (20分)已知等差数列{an}中,a1 = 1,公差d = 3,求:(1)该数列的前10项和S10;(2)若数列{an}的第n项an大于10,求n的最小值。
12. (20分)在平面直角坐标系中,已知点A(2,3),点B(-4,1),点C(x,y)在直线y = 2x - 1上,求:(1)点C的坐标;(2)若△ABC为等腰三角形,求x的值。
13. (20分)已知一元二次方程x^2 - 6x + 9 = 0,求:(1)该方程的判别式;(2)方程的两个根;(3)若该方程的两个根为a和b,求a^2 + b^2的值。
初一数学难题百道及答案 (1)
A. y轴的左边,x轴的上方???? B. y轴的右边,x轴的上方
C. y轴的左边,x轴的下方????D. y轴的右边,x轴的下方
47、已知△ABC的面积为3,边BC长为2,以B原点,BC所在的直线为x轴,则点A的纵坐标为(???)
A.3????? ???B.-3??????? C.6???????? D.± 3
A、可能平行也可能相交 B、一定平行
C、一定相交 D、以上答案都不对
5、如图,如果AB∥CD,则 、 、 之间的关系是()
A、 B、
C、 D、
6、如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ) A、10°B、15°C、20°D、30°
7、如图,已知AB∥CD,则角α、β、γ之间的关系为( )
1分别写出两旅行社所报旅游费用y与人数x的关系式。
⑵若有11人参加旅游,应选择那个旅行社?
64、某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费元,超计划部分每吨按元收费。
(1)写出该单位水费y(元)与每月用水量x(吨)之间的关系式①用水量小于等于3000吨;②用水量大于3000吨。
50、在平面直角坐标系下,下列各组中关于原点对称又关于y轴对称的点是(?)
A.(3,-2)(-3,-2)B.(0,3)(0,-3)C.(3,0)(-3,0)D.(3,-2)(-3,2)
51、已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是(???)
A.(-3,-2)????B.(2,-3)???C.(-2,-3)?????????? D.(-2,3)
初一数学测试(难题)
初中数学测试卷(七年级下)一、选择题1、近似数400万,它的有效数字是( )A 、4B 、4,0C 、4,0,0D 、4,0,0,0,0,0,02、已知点P (0, a )在y 轴的负半轴上,则点Q ()1a a 2+-,在( ) A .第一象限 B . 第二象限 C . 第三象限 D . 第四象限3.不等式 m x m +<-2的解集为2x >,则m 的值为( )A .4B .2 C.0 D.234.如果不等式3x -m ≤0的正整数解为1,2,3,那么m 的取值范围是( ) A 、9 ≤m <12 B 、9 <m ≤12 C 、m <12 D 、m ≥ 9 5.下列五个命题中,结论正确的有( )①连接任意三点组成的图形是三角形.②外角和大于内角和的多边形只有三角形. ③多边形的边数增加一条时,内角和增加180°.④三角形的三个内角中最多有一个钝角,三个外角中最少有一个钝角. ⑤三角形三条高所在直线交于三角形内一点或外一点. A .1个 B .2个 C .3个 D .4个 6.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( )A .正三角形B .正方形C .正八边形D .正六边形 7.若等腰三角形的周长为15,则腰长x 的取值范围是( )A.215415<<x B.155<<x C.15<x D.2150<<x8、某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A 、赔8元B 、赚32元C 、不赔不赚D 、赚8元9、如图是某中学初中各年级学生人数比例统计图,已知八年级学生540人,那么该校七年级学生人数为( )(A )405 (B )216 (C )473 (D )324年级百分比10%20%30%40%50%10.下列命题中正确的个数是 ( )(1)面积相等的直角三角形都是全等直角三角形 (2)所有正方形都是全等图形 (3)面积相等的三角形都是全等的三角形 (4)所有长方形都是全等图形. (5)等边三角形一定是全等三角形 (6)全等三角形的面积一定相等 A. 1个 B.2个 C.3个 D.4个二、 填空题 1、 12052521=-+nn ,则n=2、 已知点A(a ,2)向左平移了5个单位长度后,又向上平移了2个单位长度,得到点C,点C 和点B(4,4)关于y 轴对称,那么a=_______________.3、 若不等式(m -2)x >m-2的解集为x <1,则m 的取值范围是4、已知2316x m x y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.5、如图在锐角△ABC 中,CF 、BE 分别是∠ACD 、∠ABD 的平分线,且相交于点G , 若∠D=140°,∠BGC=110°,则∠A=_______________.6、如图是我国国家统计局公布的“1949年,1978年,1993年高等学校数”条形统计图,看图填表:1949年1978年1993年2055981065高等学校(所)三、解方程组(1)357,23423 2.35x y x y ++⎧+=⎪⎪⎨--⎪+=⎪⎩ (2)⎪⎪⎩⎪⎪⎨⎧=+=+244263n m n m (3)32522(32)28x y x x y x +=+⎧⎨+=+⎩四、解答题1. 如图,△ABO 中,A 、B 两点的坐标分别为(2,3)、(4,1),求△ABO 的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学试卷难题好题Newly compiled on November 23, 2020
数学题
一选择题:
1 过点P(-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作()
(A) 4条(B) 3条(C) 2条(D) 1条
2 如果,,那么的值为()
A.-2 B.-1 C.0 D.2
3 当-1≤≤2时,满足,则常数的取值范围是()
A、B、
C、且
D、
4 若表示一个整数,则整数m可取值的个数是()。
A、6个
B、7个
C、8个
D、9个
5 如图所示的4个的半径均为1,那么图中的阴影部分的面积为()
(A) (B) (C) 4(D)6
(第5题) (第6题)6 关于x的不等式2x-a≤-1的解集如图2所示,则a的取值是()。
A 、0
B 、-3
C 、-2
D 、-1
7 已知: 的顶点坐标分别为
,,,如将点向右平移2个单位后再向上平移4个单位到达点,若设
的面积为
,
的面积为
,则
的大小
关系为( )
A .
B .
C .
D .不能确定
8 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )
A .
B .
C .
D .
9 下列说法正确个数有( )
①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小
A 1 B2 C 3 D4
10如图2所示,在矩形ABCD 中,AE=B=BF=
2
1
AD=31AB=2,
E 、H 、G 在同一条直线上,则阴影部分的面积等于( )
(A)8. (B)12. (C)16. (D)20.
二 填空题:
1 有理数在数轴上的位置如图1所示,
化简
2已知与是同类项,则=__。
3下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的点与有序
数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。
其中正确的个数为 。
4 若方程组
的解x 、y 都是正数,则m 的取值范围是_______________
5 已知2(2)|2|0a b a +++=,则2a b -的值等于 .
6若代数式1-x-22 的值不大于1+3x3 的值,那么x 的取值范围是_____________。
7在 ABC 中,AB=14,BC=2x ,AC=3x ,则x 的取值范围是 。
8若x +2y+3z =10,4x +3y +2z =15,则x +y +z 的值是__________ 9在∆ABC 中,如果∠B -∠A -∠C=50°,∠B=____________。
10如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_________________________。
三 解答题:
1 解方程组:(每小题5分,本题共10分)
(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x
2已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12
y x ,求a b +的值
3 (1)计算(-10)3+[]
2)31()4(22⨯--- ; (2)解方程:
6
7
51413-=
--y y 。
4求不等式组()⎪⎩⎪
⎨⎧-<--≤-x x x x 321334
1312的整数解的和。
四 综合题:
1 利用二元一次方程组解决问题.
截至2009年4月30日,全国共接收国内外社会各界捐赠汶川地震抗震救灾款物合计亿元人民币。
为纪念四川汶川大地震一周年,我校积极组织捐款支援灾区重建,初一(2)班64名同学共捐款683元,捐款情况如下表所示.表中捐款5元和10元的人数不小心被墨水污染已
看不清楚,请你帮助确定表中看不清楚的数据,并说明理由.
捐款(元) 2 5 10 20 人数(人)
4
▓▓▓
▓▓▓
20
2 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品50件.生产一件A 产品需要甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B 产品,需要甲种原料4千克,乙种原料10千克,可获利润1200元.
(1)设生产x 件A 种产品,写出其题意x 应满足的不等式组;(2)由题意有哪几种按要求安排A 、B 两种产品的生产件数的生产方案请您帮助设计出来。
3 在图所示的平面直角坐标系中表示下面各点:A (0,3);B (1,-3);C (3,-5);
D (-3,-5);
E (3,5);
F (5,7);
G (5,0)
(1)A 点到原点O 的距离是 。
(2)将点C 向x 轴的负方向平移6个单位,它与点 重合。
(3)连接CE ,则直线CE 与y 轴是什么关系 (4)点F 分别到x 、y 轴的距离是多少
4 在△ABC 中,∠A=2
1
(∠B +∠C )、∠B -∠C=20°,求∠A 、∠B 、∠C 的度数。
5 我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿住宿的学生可能有多少人
6如图,CB ⊥AB ,垂足为A ,DA ⊥AB ,垂足为B .E 为AB 的中点,AB=BC ,CE ⊥BD . (1)请证明BE 与AD 相等
(2)线段AC 和线段DE 不存在有关系,你认为对吗说说你的理由。
(3)有(2)结论得出一个新的结论并证明。
C
A
B
D
E。