汽车设计转向系统
汽车转向系统设计毕业设计论文
目录摘要 (I)Abstract ..................................................................................I I 第1章绪论 (1)1.1 汽车转向系统简介 (1)1.1.1 转向系的设计要求 (1)1.2 EPS的特点及发展现状 (2)1.2.1 EPS与其他系统比较 (2)1.2.2 EPS的特点 (2)1.2.3 EPS在国内外的应用状况 (3)1.3 本课题的研究意义 (4)第2章电动助力转向系统的总体组成 (5)2.1 电动助力转向系统的机理及类型 (5)2.1.1 电动助力转向系统的机理 (5)2.1.2 电动助力转向系统的类型 (7)2.2 电动助力转向系统的关键部件 (9)2.2.1 扭矩传感器 (9)2.2.2 车速传感器 (9)2.2.3 电动机 (9)2.2.4 减速机构 (10)2.2.5 电子控制单元 (10)2.3 电动助力转向的助力特性 (11)第3章电动助力转向系统的设计 (12)3.1 对动力转向机构的要求 (12)3.2 齿轮齿条转向器的设计与计算 (12)3.2.1 转向系计算载荷的确定 (13)3.2.2 齿轮齿条式转向器的设计 (14)3.2.3 齿轮齿条转向器转向横拉杆的运动分析 (22)3.2.4 齿轮齿条传动受力分析 (24)3.2.5 齿轮轴的强度校核 (24)第4章转向传动机构的优化设计 (29)4.1 结构与布置 (29)4.2 用解析法求内、外轮转角关系 (30)4.3 转向传动机构的优化设计 (32)4.3.1 目标函数的建立 (32)4.3.2 设计变量与约束条件 (33)4.4 研究结论 (36)结论 (37)致谢 (39)参考文献 (40)附录1 (41)附录2 (46)摘要汽车转向系统可按转向的能源不同分为机械转向系统和动力转向系统两类。
汽车电动助力转向系统是一种新型的汽车动力转向系统,与传统液压转向系统相比,采用电动机直接提供助力,具有多方面优越性。
载重汽车转向系统结构设计
载重汽车转向系统结构设计学校:湘潭大学学院:兴湘学院专业:机械设计制造及其自动化姓名:张浩学号:2010963237指导老师:刘柏希老师摘要论文主要阐述了转向系统的设计。
汽车转向系统是汽车的重要组成部分,它直接影响汽车行驶的安全性,其质量严重影响汽车的操纵稳定性。
随着汽车工业的发展,汽车转向系统也在不断的得到改进,虽然电子转向系统已经开始使用,但是传统的机械转向系统依然起着主导作用。
转向系统由于其自身的特点被广泛运用于各类汽车之中。
本文重点设计了转向系统,并对转向系统零件强度、刚度进行了校核,同时还对转向系统计算载荷进行确定,同时对转向系统的其他主要零部件进行了结构设计,同样也对所设计的转向机构进行了分析和研究。
实现了转向系统结构简单紧凑,轴向尺寸短,且零件数目少的优点又能增加助力,从而实现了汽车转向的稳定性和灵敏性。
最后运用三维设计软件对所设计的结构进行了三维模型的建立,通过三维模型的设计与建立,更进一步的验证了所设计结构的合理性。
关键词:转向系统;转向系统;机械转向;转向;液压助力AbstractThis paple mainly tell about the design of circulation ball steering system. Redirector,an important component of the automobile,which is the key assembly decided the safety of the automobile. It seriously affected the quality of the vehicle handing and stability. Along with the development of the auto industry,automobile steering gear is continuously improved, although the electronic steering gear has began to use ,but the traditional mechanical steering gear is still p lays a leading role. Circulation ball type steering system has been widely used in various cars as of its characteristics.This paper designs the circulating ball type steering gear and steering parts strength and stiffness for the checking, but also to determine steering system computational load, at the same time to the other main parts of steering system structure design, also in the design of steering mechanism is analyzed and studied. Implements the redirector simple and compact structure, short axial dimensions, and the advantage of less parts number and can increase power, so as to realize the vehicle steering stability and sensitivity. Finally by using the 3 d design software to design 3 d model of structure, through the design and build 3 d model, further verify the rationality of the design structure.Key words: Steering gear; Steering system; Mechanical steering; Circulating ball type; The hydraulic power目录1 绪论 (1)1.1转向系统的使用背景 (1)1.2转向系统的研究意义 (1)1.3国内外研究现状 (2)1.4主要研究工作 (3)2 转向系统工作原理及其特点 (5)2.1转向系统概述 (5)2.2转向系统特点 (7)3 转向系统主要性能参数 (9)3.1转向系统的效率 (9)3.2传动比的变化特性 (11)3.3转向系统传动副的传动间隙△t (13)3.4转向系统计算载荷的确定 (13)4 转向系统的尺寸参数计算 (15)4.1主要尺寸参数的选择 (15)4.2变厚齿扇 (20)4.3转向系统零件强度计算 (25)4.4转向系统的润滑方转向和密封类型的选择 (27)5 转向传动机构设计 (28)5.1转向传动机构原理 (28)5.2转向梯形的布置 (29)5.3转向梯形机构尺寸的初步确定 (29)5.4梯形校核 (29)5.5转向传送机构的臂、杆与球销 (30)5.6转向横拉杆及其端部 (31)5.7杆件设计结果 (32)6 转向系统的其它部分 (33)6.1万向传动装置 (33)6.2传动轴与中间支承 (35)6.3动力转向机构设计 (35)6.4汽车转向系统的日常维护 (37)7 转向系统三维造型 (39)7.1 solidworks简介 (39)7.2转向系统的三维装配设计 (39)8 结论 (41)参考文献 (42)致谢 (43)毕业设计(论文)知识产权声明............................................ 错误!未定义书签。
第七章 汽车转向系统设计
马 天
力矩反算载荷,动力缸以前零件的计算载荷应取驾驶员作用在转向
飞
盘轮缘上的最大瞬时力(700N)。
29
二、齿轮齿条转向器的设计
汽
车
模数 压力角 齿数 螺旋角 材料
设
齿轮 2~3mm 20º
5~7
9º~15º 16MnCr5
计
15CrNi6
教
齿条 保证啮 12º~35º 保证齿 保证布 45,淬火
逆效率为
马
tg(0 ) tg 0
天
飞
➢导程角必须大于摩擦角,通常0 5°~10°。
18
二、传动比的变化特性
汽
车 转向系统的传动比
设
➢力传动比ip
计
•从轮胎接地面中心作用在两个转向轮上的合力2Fw与作用在
教
转向盘上的手力Fh之比
案
➢转向系角传动比 iω0
•转向盘角速度ωw与同侧转向节偏转角速度ωk之比
21
二、传动比的变化特性
汽 转向器角传动比的变化规律
车
➢由于转向传动机构角传动比近似为1,因此转向器的角传动比变化
设
规律就代表了转向系统传动比特性。
计
➢由于转向阻力矩与车轮偏转角度大致成正比变化,则
教
➢汽车低速急转弯行驶时,转向阻力矩大,应选用大些的转向器
案
角传动比;
➢汽车以较高车速转向行驶时,转向轮转角较小,转向阻力矩也
案
2.分类
➢机械转向系统
➢依靠驾驶员的手力转动转向盘
➢包括转向操纵机构、转向器、转向传动机构
马
天 ➢动力转向系统
飞
➢利用动力系统减轻驾驶员的手力
2
第一节 概述
转向系统设计说明书
转向系统设计说明书转向系统设计说明书一、需求分析1.1系统简介本转向系统设计是为汽车制造企业设计的一款新型转向系统,包括方向盘、转向齿轮、转向杆等组件,用于汽车转向操作。
1.2系统功能本系统主要实现以下功能:(1)实现车辆转向操作;(2)提供灵敏度和舒适性,使驾驶员可以轻松驾驶;(3)确保车辆转向时的安全性。
1.3使用环境本系统主要用于汽车行驶时的转向操作,适用于各类车辆,包括小汽车、大型客车、货车、越野车等。
1.4系统需求(1)具有可靠性和耐用性;(2)转向灵敏度高,操控舒适;(3)保证转向操作安全;(4)可适应各种驾驶员的需求。
二、系统设计2.1系统架构本转向系统采用传统的齿轮传动转向系统。
主要包括方向盘、转向齿轮、转向杆等组件,在行驶过程中通过变换转向齿轮的位置,控制车轮的转向。
2.2系统组成本转向系统包括以下组件:(1)方向盘:由驾驶员操控,控制转向的方向。
(2)转向齿轮:连接车轮的转向轴,通过旋转控制车轮角度,实现左右转向操作。
(3)转向杆:将方向盘的旋转运动转换成转向齿轮的轴向运动。
(4)轴承:用于支撑转向齿轮,使其顺畅运转。
2.3系统工作原理当驾驶员通过方向盘控制转向时,方向盘传递力量到转向齿轮上,通过转向齿轮转动和转向杆的传动作用,使车轮转向。
其中,转向齿轮是通过齿轮副传动,将方向盘的旋转运动转换成轴向运动,控制车轮的转向角度。
2.4系统性能(1)灵敏度:驾驶员控制方向盘时,系统应能快速反应,确保车辆转向灵敏。
(2)舒适性:转向时不应有任何异响或抖动感,使驾驶员的操控更加舒适。
(3)可靠性:系统应具有较高的可靠性和耐久性,确保在各种路况下的转向操作安全。
三、结论本转向系统是一种新型的汽车转向系统,采用传统的齿轮传动技术,实现车辆转向操作。
系统整体性能较强,灵敏度高、舒适性好、可靠性强。
同时,本系统还具有可扩展性,在不断的设计应用和技术进步中,可为用户提供更多更好的服务。
FSAE汽车转向系统设计
FSAE汽车转向系统设计FSAE (Formula Society of Automotive Engineers)汽车转向系统是赛车设计中十分重要的部分。
转向系统的设计需要考虑到车辆的操控性、安全性和性能。
本文将详细介绍FSAE汽车转向系统的设计原理和关键要素。
首先,FSAE汽车转向系统主要包括方向盘、转向齿轮传动、转向杆、转向齿条和转向臂等部件。
方向盘是驾驶员与转向系统之间的接触面,通过方向盘的转动来控制车辆的方向。
转向齿轮传动通过齿轮的配对来将方向盘的转动传递给转向臂。
转向杆与转向臂连接,并通过转向齿条来实现车轮的转向。
其次,FSAE汽车转向系统设计中的一项关键要素是转向比。
转向比是方向盘转动时车轮转动的比例关系。
通常,转向比越小,驾驶员转动方向盘时车轮转动的角度就越大,操控性越敏感。
转向比的选择要根据赛车的具体需求以及赛道的类型来确定。
在一个狭窄、弯道多的赛道上,需要一个较小的转向比来提高操控性能。
而在一个直线较长的赛道上,可以选择一个较大的转向比来提高车辆的稳定性。
另一个重要的设计原理是转向系统的减震装置。
赛车在高速行驶时可能会受到颠簸、冲击等外力的影响,这可能会对车辆的转向系统造成负面影响。
为了降低这些外力对转向系统的影响,可以在转向齿条或转向杆上安装减震装置。
这些减震装置可以减少转向系统的振动和冲击,提高操控性和稳定性。
此外,转向系统的材料选择也是设计中的一个重要方面。
转向系统的部件通常会承受较大的力和扭矩,因此需要选择强度高、耐疲劳性好的材料。
常用的材料包括铝合金、钢和碳纤维等。
选择适当的材料可以提高转向系统的可靠性和寿命。
最后,FSAE汽车转向系统设计还需要考虑到安全性。
转向系统应该设计成可靠的并具备适当的安全装置,以确保驾驶员在高速行驶中的安全。
例如,应该安装刹车支撑杆和碰撞安全装置等,以减少事故时对转向系统的损坏。
总结起来,FSAE汽车转向系统设计需要考虑操控性、安全性和性能。
汽车转向系统ES设计论文
汽车转向系统ES设计论文汽车转向系统(ES)是汽车的重要安全控制系统之一,它具有控制车辆转向动作的功能。
随着汽车技术的发展和智能化水平的提高,汽车转向系统的设计也变得越来越重要。
本文将探讨汽车转向系统的设计,并介绍一些目前比较常见的设计方案。
首先,汽车转向系统的设计应考虑到车辆的稳定性和安全性。
在转向过程中,车辆必须保持平稳,并且转向动作应该准确可靠。
因此,汽车转向系统应该具备快速而精准的响应能力。
一种常见的设计方案是采用电动助力转向系统(EPAS),它通过电动马达提供动力,并且可以根据车速和驾驶员的输入进行精确控制。
EPAS可以实现转向力的实时调节,提高转向精度和驾驶稳定性。
另外,汽车转向系统的设计还需要考虑到能耗和环保性。
传统的液压助力转向系统存在液压流体泄漏和能量浪费的问题。
为了解决这些问题,一种可行的设计方案是采用电子助力转向系统(EPS)。
EPS利用电动机替代了传统的液压泵,从而减少了能源的消耗。
而且,EPS还可以根据驾驶条件和需求调整转向力的大小,提供更好的驾驶体验。
此外,在汽车转向系统的设计中,还需要考虑到自动驾驶技术的应用。
随着自动驾驶技术的发展,汽车转向系统需要能够与其他智能化技术进行联动,实现更高级别的自动驾驶功能。
例如,通过与车辆定位系统和传感器的协同工作,汽车转向系统可以自动感知道路情况,并根据需要进行自动转向。
这样可以大大提高驾驶的安全性和舒适性。
最后,汽车转向系统的设计还应该兼顾可靠性和故障监测与诊断(FDD)功能。
由于汽车在使用过程中可能会遇到各种故障和异常情况,因此必须具备故障检测和诊断功能。
一种常用的设计方法是采用红外传感器和电子控制单元进行实时监测和故障诊断。
当转向系统发生故障时,FDD系统可以及时发出警报并采取相应措施,确保驾驶员和车辆的安全。
综上所述,汽车转向系统的设计应注重提高驾驶稳定性、降低能耗、适应自动驾驶技术和增强故障监测与诊断功能。
未来,随着汽车技术的不断发展,我们可以期待更先进和智能化的汽车转向系统的设计和应用。
轿车转向系统课程设计
轿车转向系统课程设计一、教学目标本课程旨在让学生了解和掌握轿车转向系统的基本原理、结构和功能,培养学生分析和解决实际问题的能力。
具体目标如下:1.知识目标:(1)掌握轿车转向系统的组成及其作用;(2)了解轿车转向系统的各种类型及其工作原理;(3)熟悉轿车转向系统的性能指标及其检测方法。
2.技能目标:(1)能够正确描述轿车转向系统的结构和工作过程;(2)具备分析轿车转向系统故障的能力;(3)掌握轿车转向系统的维修和保养方法。
3.情感态度价值观目标:(1)培养学生对汽车行业的兴趣,提高学生对轿车转向系统重要性的认识;(2)培养学生认真负责、严谨细致的工作态度;(3)培养学生团队协作、共同探讨问题的意识。
二、教学内容本课程的教学内容主要包括以下几个部分:1.轿车转向系统的概述:介绍轿车转向系统的定义、作用及其在汽车中的地位;2.轿车转向系统的组成:详细讲解转向系统各部件的结构、功能和作用;3.轿车转向系统的工作原理:分析各种类型转向系统的工作过程,让学生理解其运作机制;4.轿车转向系统的性能指标:介绍转向系统的性能指标及其检测方法;5.轿车转向系统的故障诊断与维修:讲解转向系统故障的常见原因、诊断方法及维修保养技巧。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行:1.讲授法:教师通过讲解,让学生掌握轿车转向系统的相关理论知识;2.案例分析法:教师提供实际案例,引导学生分析并解决实际问题;3.实验法:学生进行实验操作,让学生亲身体验轿车转向系统的工作过程;4.讨论法:鼓励学生分组讨论,培养学生的团队协作能力和解决问题的能力。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的轿车转向系统教材,为学生提供系统的理论知识;2.参考书:提供相关领域的参考书籍,丰富学生的知识体系;3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣;4.实验设备:准备轿车转向系统的实验设备,让学生能够亲自动手操作,增强实践能力。
汽车设计过学迅转向系统设计解读
采用先进的转向器技术和机构设计,如电动助力转向系 统、可变传动比转向系统等
采用摩擦系数更低的材料和表面处理技术,减少摩擦阻 力
优化设计的效果评估和改进建议
通过实验测试和道路试驾评估优 化后的效果
根据评估结果进行必要的改进和 优化,例如调整转向器的参数、
改进材料等
加强生产过程的质量控制和标准 化管理,确保优化设计的实现和
转向性能的评估指标
操控稳定性
学迅转向系统应能够提供 稳定的操控感,使驾驶员 能够准确、安全地控制车 辆。
转向灵敏度
系统应能够根据驾驶员的 输入做出快速、准确的响 应,以适应不同的驾驶环 境。
回中性
学迅转向系统应具有回中 性,即当驾驶员松开方向 盘时,车辆应能自动回到 直线行驶状态。
学迅转向系统的性能分析方法
对测试数据进行详细记录和分析,以评估系统的性能。
改进建议
根据测试结果,提出针对学迅转向系统的改进建议,以提高其性 能表现。
05
学迅转向系统的优化设计
优化设计的主要方向和目标
提高转向系统的灵敏性和准确性 降低转向系统的摩擦和阻力 提高车辆的操控性和稳定性
优化设计的具体措施和方法
优化转向柱和转向盘的设计,提高手感和操作便利性 加强转向系统的刚度和稳定性,提高车辆的操控性能
02
汽车转向系统概述
转向系统的分类及特点
01
02
03
机械转向系统
采用机械机构传动,结构 简单,操作稳定性好,但 传动效率低,适用于中低 速车辆。
液压助力转向系统
采用液压助力机构,操作 轻便,但需要消耗发动机 动力,适用于中高速车辆 。
电液助力转向系统
采用电液助力机构,具有 高效率和节能环保特点, 但结构复杂,适用于高速 车辆。
汽车转向系统毕业设计论文
因而,EPS可以很容易的实现在全速范围内的最佳助力控制,在低速行驶时保证汽车的转向灵活轻便,在高速行驶时保证汽车转向稳定可靠。在系统的某一部件发生故障时,可以断开电磁离合器使助力系统脱离机械转向系统,并同时驱动故障信号指示灯,保障驾驶的安全性。所以,EPS可以在各种路况和车速下,给驾驶员提供一个安全、稳定、轻便、舒适的驾驶环境。
7.转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。
8.转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。
9.在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。
10.进行运动校核,保证转向轮和转向盘转动方向一致。
2.3转向操纵机构
机械转向器分为齿轮齿条式转向器、循环球式转向器、蜗杆曲柄指销式转向器。由于齿轮齿条式转向器具有结构简单、紧凑;质量轻,刚性大;正 、逆效率都高以及便于布置,传动效率高达90%;齿轮与齿条之间因磨损出现间隙以后,利用装在齿条背部、靠近主动小齿轮处的压紧力可以调节的弹簧,能自动消除齿间间隙,这不仅可以提高转向系统的刚度,还可以防止工作时产生冲击和噪声;转向器占用体积小适于在微车上采用;没有转向摇臂和直拉杆,所以转向转角可以增大,转向灵敏,制造容易,成本低。
汽车悬架和转向系统设计
汽车悬架和转向系统设计1. 概述汽车悬架和转向系统是汽车中至关重要的部分,对汽车的操控性、行驶稳定性和乘坐舒适性有着重要的影响。
悬架系统负责支撑汽车车身,保证车轮与地面的接触,同时吸收来自路面的冲击力;而转向系统则负责使车辆按照驾驶员的指令实现转向操作。
在汽车设计中,悬架和转向系统的设计需要综合考虑多种因素,包括车辆的用途、性能需求、成本以及使用环境等。
本文将介绍汽车悬架和转向系统设计中的关键要点,并探讨一些常见的设计策略和优化方法。
2. 悬架系统设计2.1. 悬架类型常见的汽车悬架类型包括独立悬架和非独立悬架。
独立悬架指的是四个车轮各自独立悬挂,相互之间没有连接,可以独立运动。
非独立悬架指的是四个车轮之间通过悬架系统相连接,受到相互影响。
独立悬架相较于非独立悬架具有更好的悬挂效果,能够提供更好的操控性和乘坐舒适性。
常见的独立悬架类型包括麦弗逊悬架、多连杆悬架和双叉臂悬架等。
2.2. 悬架参数设计悬架系统的参数设计对于汽车的行驶稳定性、乘坐舒适性和操控性都有重要影响。
其中一些关键的参数包括减振器刚度、悬架弹簧刚度、悬架几何参数等。
减振器刚度决定了汽车在受到冲击力时的反应速度,过大或过小的减振器刚度都会影响汽车的乘坐舒适性。
悬架弹簧刚度则负责车身的支撑和回弹,也对乘坐舒适性有重要影响。
悬架几何参数则涉及到悬架的运动轨迹和相对位置,对悬架系统的整体性能起着决定性作用。
2.3. 悬架系统优化悬架系统的优化设计旨在提升汽车的行驶性能和乘坐舒适性。
在悬架系统设计中,常见的优化手段包括材料选择、刚度调整、阻尼控制和减重等。
材料选择是悬架系统设计中的一个重要环节。
采用合适的材料可以提高悬架系统的刚度,同时减轻悬架组件的重量。
刚度调整可以通过调整减振器和弹簧的硬度来实现,以获得更好的悬架效果。
阻尼控制则可以通过控制减振器的阻尼力来实现,以提升汽车的稳定性和乘坐舒适性。
减重是悬架系统设计中的一个重要目标,通过使用轻量化材料和结构设计优化来减轻悬架组件的重量,从而提高汽车的燃油经济性和操控性能。
基于智能控制的汽车转向系统设计与优化
基于智能控制的汽车转向系统设计与优化随着科技的不断发展和社会的进步,汽车已经成为当今社会中不可或缺的工具之一。
汽车转向系统作为汽车中至关重要的组成部分,其设计和优化直接关系到驾驶员的安全和舒适性。
本文将从基于智能控制的角度,探讨汽车转向系统的设计和优化,以提升驾驶体验和行车安全性。
1. 智能控制在汽车转向系统中的应用汽车转向系统通过控制转向角度和转向力矩,实现驾驶员对车辆的操控。
智能控制技术的引入,使得汽车转向系统能够实现更加精确和自适应的控制。
比如,基于智能控制的转向系统可以根据不同驾驶条件,自动调整转向助力的大小,以提供更加舒适和平稳的转向感受。
2. 智能控制算法的选择与设计在设计基于智能控制的转向系统时,合适的控制算法的选择和设计至关重要。
目前,常用的智能控制算法包括模糊控制、神经网络控制和遗传算法等。
不同算法适用于不同的驾驶场景和控制要求,因此需要根据具体情况选择合适的算法,并进行相关参数的优化和调整。
3. 智能控制系统的硬件设计除了算法的选择和设计外,智能控制系统的硬件设计也是非常重要的一环。
智能控制系统通常由传感器、执行器和控制器组成。
传感器用于感知车辆的状态和环境信息,执行器用于转换控制信号为实际行动,控制器则负责实施智能控制算法。
在硬件设计时,需要考虑传感器的准确性和可靠性,执行器的响应速度和精度,以及控制器的计算能力和稳定性。
4. 性能评估与优化完成系统的设计和硬件的搭建后,需要对转向系统的性能进行评估和优化。
评估可以通过实际驾驶测试和仿真模拟等方式进行。
通过收集和分析实验数据,可以评估转向系统在不同驾驶条件下的操控性能和稳定性。
同时,优化可以通过对控制算法和硬件参数的调整来实现,以提升转向系统的响应速度和稳定性。
5. 汽车转向系统智能化的未来趋势随着智能汽车的兴起,汽车转向系统的智能化发展将迎来更加广阔的前景。
未来的汽车转向系统可能会融合更多的感知技术,比如摄像头和激光雷达等,以进一步提升转向系统的自适应性和安全性。
汽车电动助力转向系统的设计
汽车电动助力转向系统的设计概述汽车电动助力转向系统是一种电子辅助转向系统,为驾驶员提供操纵方向盘的力量辅助,以改善驾驶操控性和舒适性。
该系统通过电动助力装置来替代传统的液压助力转向系统,具有更高的效率和响应性。
本文将详细介绍汽车电动助力转向系统的设计原理和关键技术。
设计原理汽车电动助力转向系统的设计基于电动助力装置和转向控制单元的协同工作。
电动助力装置负责提供对转向系统的力量辅助,转向控制单元那么负责监测车辆的转向情况并根据驾驶员的输入进行控制。
电动助力装置电动助力装置由电机、减速器、传感器和控制单元组成。
电机负责提供动力,减速器那么用于降低电机的转速并增加转力。
传感器用于监测转向力和转向角度,并向控制单元提供反应信息。
控制单元根据传感器的反应信号来确定输出力的大小和方向。
转向控制单元转向控制单元由微处理器和控制算法组成。
微处理器负责处理传感器的数据和执行控制算法。
控制算法根据驾驶员的转向输入,计算出相应的助力输出指令,并通过电动助力装置将助力传递给转向系统。
关键技术功率电子技术汽车电动助力转向系统需要提供足够的力量辅助,因此需要采用功率电子技术来实现高效能的能量转换和控制。
功率电子技术包括电机驱动技术、功率开关技术和电源管理技术,它们的协同工作可以有效提高电动助力转向系统的效率和可靠性。
传感器技术传感器技术在汽车电动助力转向系统中起到了至关重要的作用。
传感器可以实时监测转向力和转向角度,从而提供准确的反应信息给控制单元。
常用的传感器包括转向力传感器和转向角度传感器,它们需要具有高精度和可靠性,以确保系统的准确性和稳定性。
控制算法控制算法是汽车电动助力转向系统的核心局部,它决定了系统的性能和操控性。
控制算法根据传感器的反应信息和驾驶员的转向输入,计算出相应的助力输出指令。
常用的控制算法包括比例-积分-微分〔PID〕控制算法和模糊控制算法,它们能够确保系统的稳定性和响应性。
设计考虑功率和效率汽车电动助力转向系统需要提供足够的助力,同时也要确保系统的功率和效率。
转向系统设计规范
转向系统设计规范目录:一、概述二、设计输入1.市场分析报告2.产品概念报告3.技术方案分析报告4.产品信函5.项目描述书三、转向系统设计目标1.承载性目标2.操纵稳定性目标3.安全性目标4.成本目标5.总成重量目标四、转向系统结构参数的确定1、转向系统结构形式(主要部件构成明细)2、安装尺寸的确定3、车架结构与转向元件的物理接口4、前桥总成与转向元件的物理接口5、车身元件与转向元件的物理接口6、其他五、转向系统匹配1、转向轻便性2、助力转向系统流量等匹配六、机械转向设计1.转向器设计2.转向传动轴设计七、动力转向设计1、转向器设计2、转向油泵设计3、转向油罐设计4、其他部件设计八、转向系统验证与试验项目1、动力学模型分析与验证2、整车性能试验项目与可靠性试验项目3、转向器台架试验项目4、转向油泵台架试验项目5、转向油罐台架试验项目7、转向油管台架试验项目8、转向盘台架试验项目9、转向传动轴台架试验项目10、其他附件:转向系统相关标准与设计参考书1、操纵稳定性2、转向器3、转向油罐4、转向油泵5、转向油管6、转向传动轴7、转向盘一、概述本文适用于传统结构的转向系统,主要针对转向器、转向油泵等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。
1、转向系统设计对整车性能的影响转向系统的功能是保证汽车能按驾驶员的意志进行转向行驶。
同时对操纵稳定性有一定的影响。
转向系统按能源的不同分为机械转向系和动力转向系两大类。
机械转向系以驾驶员的体力作为转向能源,其中所有传力件为机械的。
机械转向器由转向操纵机构、转向器和转向传动机构组成。
动力转向系是在机械转向系的基础上加设一套转向加力装置而行成的。
2、转向设计流程概述设计输入→整车设计目标→物理边界确定→主要部件性能指标确定→结构设计→3、转向系统的评价指标3.1汽车操纵稳定性:3.2人机工程学3.3.1 GB7258-2004《机动车运行安全技术条件》:3.3.1.1机动车方向盘的最大自由转动量不允许大于:1)最高设计车速不小于100km/h的机动车:20°2)其他机动车:30°(三轮车除外)3.3.1.2机动车在平坦、硬实、干燥和清洁的水泥或沥青路面上行驶,以10km/h的速度在5S内沿螺旋线从直线行驶过渡到直径24m的圆周行驶,施加于方向盘外缘的最大切向力不应大于245N。
汽车设计_转向系统
第一节概述转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。
机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。
有些汽车还装有防伤机构和转向减振器。
采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。
对转向系提出的要求有:1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。
不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。
2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。
3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动.4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。
5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。
6)操纵轻便。
7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小.8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构.9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。
10)进行运动校核,保证转向盘与转向轮转动方向一致。
正确设计转向梯形机构,可以使第一项要求得到保证。
转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低.为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍.通常用转向时驾驶员作用·在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。
没有装置动力转向的轿车,在行驶中转向,此力应为50—100N;有动力转向时,此力在20—50N.当货车从直线行驶状态,以10km/h速度在柏油或水泥的水平路段上转入沿半径为12m的圆周行驶,且路面干燥,若转向系内没有装动力转向器,上述切向力不得超过250N;有动力转向器时,不得超过120N。
赛车转向系统的设计方案
赛车转向系统的设计方案李宏曰转向系统的主要任务是:1.设计合适的断开点以使悬架跳动对转向的影响尽可能小。
2. 设计合适的转向梯形以使内外转角尽可能符合理论阿克曼曲线。
设计过程如下:1. 确定转向机的布置形式前置,下置,断开式梯形前置。
2. 转向系角传动比的确定由最小转弯半径确定了最大外轮转角,根据最大外轮转角与方向盘转角的关系初步确定转向系角传动比为4:1,转向系角传动比为转向器传动比与转向机构传动比的乘积,转向传动机构角传动比,除用iw ' =d 3 p/d 3 k表示以外,还可以近似地用转向节臂臂长L2与摇臂臂长LI之比来表示,即iw ' =d 3 p/d3 ki疋L2 / LI o现代汽车结构中,L2与L1的比值大约在0. 85〜1. 1之间,取比值为1,则转向器角传动比为4: 1.3. 由转向器角传动比初步确定转向节臂L1的值。
齿轮齿条装置把方向盘的转动转换成横拉杆内球头的直线运动。
计算传动比时需用到齿条的c-factor和转向节臂长度(外球头到主销轴的距离)。
C-factor=齿条行程(in.)/小齿轮转过360°一般的齿条有"1-7/8-in ch齿条”或者"2-i nch齿条” ;c-factor这个尺寸是方向盘转一圈的齿条行程。
一旦齿条的c-factor知道,转向传动比可近似用下式计算:i=arcsi n(c-factor/L)/360L—转向节臂长度本式中长度单位为英寸,角度单位为度。
系统中的压力角越小这个近似值越接近,也就是说在俯视图中横拉杆几乎要与转向节臂垂直。
如果角度比较大的话,那拉杆的布置也会影响传动比。
C-factor 取70, i 为4,计算得L 为76.67mm。
4. 确定断开点的位置(得到转向机的长度和布置高度)在车辆行驶过程中由于道路的不平会引起车轮的上下跳动,与车轮相连接的转向节及转向节臂铰链点N将随车轮上下运动(如图1),其运动规律有上下A臂和转向节臂的运动所确定,同时,N点还通过转向横拉杆,桡骨顶点F摆动,因此当N点上下运动时,其运动轨迹上的点至F的距离不能保持恒定时车轮将发生偏转,摆震,影响车辆的操纵稳定性,同时也加大轮胎磨损,使转向传动系统受到冲击。
转向系统设计规范
中重型卡车设计规范(转向系统)编制:校对:审核:批准:技术中心年月日前言中、重型汽车转向阻力矩较大,因此往往在原有的机械转向系统上加装一套转向助力系统,从而减少驾驶员的转向力矩,达到转向灵活轻便的目的,重型汽车的转向助力系统往往借助汽车本身的装置提供动力,因此统称为动力转向系统。
重型汽车在加装转向助力系统之后,必须只起助力作用而不改变原转向机构的特性,同时对动力转向系统还有如下要求:1.确保转向安全可靠2.转向灵敏操纵轻便3.保持正常直线行驶和转向自动回正4.保持路感5.随动作用一、转向系主要参数及其选择转向系统涉及的参数有:1、原地转向阻力矩Mr ;2、转向器适用前轴负荷G1;3、系统最大压力P ;4、系统最大流量Q;5、管路外径D外;6、转向梯形设计1.1原地转向阻力矩Mr汽车在沥青或混凝土路面上的原地转向阻力矩Mr,推荐用半经验公式:Mr=μ3×G3/P (N·mm)[1]式中μ-轮胎和路面间的滑动摩擦系数,一般取0.7;G–实载前轴负荷,单位为N,该值由实载质量确定。
P-轮胎气压,单位为MPa。
1.2 转向器适用前轴负荷G1,单位为Kg,由整车匹配决定。
可在现有转向器资源上选用。
该参数可初步决定转向器品种,因而可知道转向器动力缸缸径D。
1.3 系统最大压力P:P=4MrπD2rwipη,式中 rw—齿扇啮合半径;Ip—转向机构力传动比,该值一般取1;η—转向器正效率1.4 系统最大流量Q:Q=π2D2dsnP14(1-Δ)ηv[2]式中 ds——初选转向器转向螺杆直径。
n——由人机工程学得知,方向盘的转动的频率为n=(0.5~1.2)S-1,对货车来说,可取较小值0.6;P1——转向器螺杆螺距;Δ——内泄漏系数,范围为0.05~0.10,可取0.1。
ηv——转向油泵容积效率,范围为0.75~0.85,可取0.8。
上式中,ds 、P1由转向器生产厂提供。
1.5 转向操纵力的校核:动力转向操纵力与转向器扭杆和分配阀都有关,目前尚无计算公式,一般由生产厂控制,对于操纵轻便的要求,转向操纵力不应超过(100~150)N。
汽车转向系统设计规范
3 转向系的设计指标要求3.1 转向盘最大自由转动量,(°):10~15(GB 7258-2004规定不得大于20°)3.2 转向盘下缘至座椅表面高度,mm :≥1803.3 转向盘后缘至靠背距离,mm :≥4503.4 转向盘与仪表板的间隙,mm :≥803.5 转向盘外缘至侧面障碍物距离,mm :≥803.6 转向盘中心对座椅中心面的偏移量,mm :≤40 3.7 转向盘平面与汽车对称平面间夹角,(°): 90±5 3.8 转向器与转向管柱夹角,(°):≤60(纵向)3.9 驾驶室翻转后转向花键啮合量,mm :≥203.10 转向器角传动比:≥173.11 转向器自由行程,mm :0.3(中间位置)3.12 转向油泵工作温度,(°):-40~1203.13 转向油罐容积,cm3:≥油泵排量的10%3.14 转向油罐与油泵的高度差,mm :≥203.15驾驶室翻转转向系运动校核:无干涉,转向花键轴与套重合≥40 mm4 动力转向系主要参数及其选择4.1系统油压4.1.1原地转向阻力距Mr (N·mm): Mr=f3G13p式中 f-轮胎和路面间的滑动摩擦系数,一般取0.7;G-实载前轴负荷,单位为N,该值由实载质量确定;p-轮胎气压,单位为MPa4.1.2 转向器适用前轴负荷G1(Kg):由整车匹配决定。
可在现有转向器资源上选用。
该参数可初步决定转向器品种,因而可知道转向器动力缸缸径D。
4.1.3 验算最小转向摇臂长l1应满足:0.85≤β·l2α·l1≥1.1式中β-转向轮的转角,单位为:度α-转向器的摇臂轴摆角,单位为:度l2-转向节臂长,单位为:mm4.1.4 转向直拉杆受力F (N): F = Mr l24.1.5转向摇臂轴受到的力矩M (N·mm): M = F×l14.1.6 转向器油缸实际工作面积S (mm2) : S = πD2 4式中 D-转向器缸径,单位为mm4.1.7 系统所需油压p (MPa): p =M S·r式中 r-转向器的齿扇分度圆半径,单位为:mm 4.2 系统工作流量4.2.1 根据汽车工程手册所述方法计算油泵理论工作流量Q0 (L/min) : Q= 60ntS式中 t-转向螺杆螺距,单位为:mmn-向盘转速, 单位为:r/s ,取 1.254.2.2 实际需要流量Q1 (L/min) : Q1=(1.5~2)Q+QΔ式中Δ-内泄漏系数,单位为:mm,取1.54.2.3 实际控制流量为Q’(L/min) : Q’=Q 0ηv式中ηv-转向油泵容积效率,范围为0.75~0.85,可取0.84.3 转向操纵力的校核:动力转向操纵力与转向器扭杆和分配阀都有关,目前尚无计算公式,一般由生产厂控制,对于操纵轻便的要求,转向操纵力不应超过(100~150)N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节概述转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。
机械转向系依靠驾驶员的手力转动转向盘,经转向器和转向传动机构使转向轮偏转。
有些汽车还装有防伤机构和转向减振器。
采用动力转向的汽车还装有动力系统,并借助此系统来减轻驾驶员的手力。
对转向系提出的要求有:1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。
不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。
2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。
3)汽车在任何行驶状态下,转向轮不得产生自振,转向盘没有摆动。
4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。
5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。
6)操纵轻便。
7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。
8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。
9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。
10)进行运动校核,保证转向盘与转向轮转动方向一致。
正确设计转向梯形机构,可以使第一项要求得到保证。
转向系中设置有转向减振器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。
为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮车轮轨迹计算,其最小转弯半径能达到汽车轴距的2~2.5倍。
通常用转向时驾驶员作用·在转向盘上的切向力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。
没有装置动力转向的轿车,在行驶中转向,此力应为50—100N;有动力转向时,此力在20—50N。
当货车从直线行驶状态,以10km /h速度在柏油或水泥的水平路段上转入沿半径为12m的圆周行驶,且路面干燥,若转向系没有装动力转向器,上述切向力不得超过250N;有动力转向器时,不得超过120N。
轿车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车则要求不超过3.0圈。
·近年来,电动、电控动力转向器已得到较快发展,不久的将来可以转入商品装车使用。
电控动力转向可以实现在各种行驶条件下转动转向盘的力都轻便。
第二节 转向系主要性能参数一、转向器的效率功率P 1从转向轴输入,经转向摇臂轴输出所求得的效率称为正效率,用符号η+表示,η+=(P 1—P 2)/P l ;反之称为逆效率,用符号η-表示,η- =(P 3—P 2)/P 3。
式中,P 2为转向器中的摩擦功率;P 3为作用在转向摇臂轴上的功率。
为了保证转向时驾驶员转动转向盘轻便,要求正效率高。
为了保证汽车转向后转向轮和转向盘能自动返回到直线行驶位置,又需要有一定的逆效率。
为了减轻在不平路面上行驶时驾驶员的疲劳,车轮与路面之间的作用力传至转向盘上要尽可能小,防止打手又要求此逆效率尽可能低。
1.转向器的正效率η+影响转向器正效率的因素有:转向器的类型、结构特点、结构参数和制造质量等。
(1)转向器类型、结构特点与效率 在前述四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是固定销和蜗杆滚轮式转向器的正效率要明显的低些。
同一类型转向器,因结构不同效率也不一样。
如蜗杆滚轮式转向器的滚轮与支持轴之间的轴承可以选用滚针轴承、圆锥滚子轴承和球轴承等三种结构之一。
第一种结构除滚轮与滚针之间有摩擦损失外,滚轮侧翼与垫片之间还存在滑动摩擦损失,故这种转向器的效率ly+仅有54%。
另外两种结构的转向器效率,根据试验结果分别为70%和75%。
转向摇臂轴轴承的形式对效率也有影响,用滚针轴承比用滑动轴承可使正或逆效率提高约10%。
(2)转向器的结构参数与效率 如果忽略轴承和其它地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆和螺杆类转向器,其效率可用下式计算)tan(tan 00ρααη+=+ (7--1) 式中,αo 为蜗杆(或螺杆)的螺线导程角;ρ为摩擦角,ρ=arctanf ;f 为摩擦因数。
2.转向器逆效率η-根据逆效率大小不同,转向器又有可逆式、极限可逆式和不可逆式之分。
路面作用在车轮上的力,经过转向系可大部分传递到转向盘,这种逆效率较高的转向器属于可逆式。
它能保证转向后,转向轮和转向盘自动回正。
这既减轻了驾驶员的疲劳,又提高了行驶安全性。
但是,在不平路面上行驶时,车轮受到的冲击力,能大部分传至转向盘,造成驾驶员“打手”,使之精神状态紧,如果长时间在不平路面上行驶,易使驾驶员疲劳,影响安全驾驶。
属于可逆式的转向器有齿轮齿条式和循环球式转向器。
不可逆式转向器,是指车轮受到的冲击力不能传到转向盘的转向器。
该冲击力由转向传动机构的零件承受,因而这些零件容易损坏。
同时,它既不能保证车轮自动回正,驾驶员又缺乏路面感觉;因此,现代汽车不采用这种转向器。
极限可逆式转向器介于上述两者之间。
在车轮受到冲击力作用时,此力只有较小一部分传至转向盘。
它的逆效率较低,在不平路面上行驶时,驾驶员并不十分紧,同时转向传动机构的零件所承受的冲击力也比不可逆式转向器要小。
如果忽略轴承和其它地方的摩擦损失,只考虑啮合副的摩擦损失,则逆效率可用下式计算0tan tan αραη)(-=- (7—2) 式(7—1)和式(7—2)表明:增加导程角αo,正、逆效率均增大。
受η-增大的影响,αo 不宜取得过大。
当导程角小于或等于摩擦角时,逆效率为负值或者为零,此时表明该转向器是不可逆式转向器。
为此,导程角必须大于摩擦角。
通常螺线导程角选在8°~10°之间。
二、传动比的变化特性1.转向系传动比转向系的传动比包括转向系的角传动比wo i 和转向系的力传动比p i从轮胎接地面中心作用在两个转向轮上的合力2Fw 与作用在转向盘上的手力Fh 之比,称为力传动比,即 ip=2Fw /Fh 。
转向盘转动角速度 ωw 与同侧转向节偏转角速度 ωk 之比,称为转向系角传动比wo i ,即;kk k w wo d d dt d dt d i βϕβϕωω===式中,d φ 为转向盘转角增量;d βk 为转向节转角增量;dt 为时间增量。
它又由转向器角传动比iw 和转向传动机构角传动比iw ′ 所组成,即 iwo=iw iw ′ 。
转向盘角速度ωw 与摇臂轴转动角速度ωK 之比,称为转向器角传动比iw ′, 即pp p w w d d dt d dt d i βϕβϕωω===。
式中,d βp 为摇臂轴转角增量。
此定义适用于除齿轮齿条式之外的转向器。
摇臂轴转动角速度ωp 与同侧转向节偏转角速度ωk 之比,称为转向传动机构的角传动比iw ′,即kk k p k p w d d dt d dt d i ββββωω===’。
2.力传动比与转向系角传动比的关系轮胎与地面之间的转向阻力Fw 和作用在转向节上的转向阻力矩 Mr 之间有如下关系aM F r W = (7—3) 式中,α为主销偏移距,指从转向节主销轴线的延长线与支承平面的交点至车轮中心平面与支承平面交线间的距离。
作用在转向盘上的手力Fh 可用下式表示SWh h D M F 2= (7—4) 式中,Mh 为作用在转向盘上的力矩;Dsw 为转向盘直径。
将式(7—3)、式(7—4)代入 ip=2Fw /Fh 后得到aM D M i h sw r P = (7—5) 分析式(7—5)可知,当主销偏移距a 小时,力传动比 ip 应取大些才能保证转向轻便。
通常轿车的 a 值在0.4~0.6倍轮胎的胎面宽度尺寸围选取,而货车的d 值在40~60mm 围选取。
转向盘直径 Dsw 根据车型不同在JB4505—86转向盘尺寸标准中规定的系列选取。
如果忽略摩擦损失,根据能量守恒原理,2Mr /Mh 可用下式表示wo kh r i d d M M ==βϕ2 (7—6) 将式(7—6)代人式(7—5)后得到aD i i sw wo P 2= (7—7) 当 α 和 Dsw 不变时,力传动比 ip 越大,虽然转向越轻,但 iwo 也越大,表明转向不灵敏。
3.转向系的角传动比iwo转向传动机构角传动比,除用 iw ′=d βp /d βk 表示以外,还可以近似地用转向节臂臂长L 2与摇臂臂长L l 之比来表示,即 iw ′=d βp /d βk i ≈L 2/L l 。
现代汽车结构中,L 2与L 1的比值大约在0.85~1.1之间,可近似认为其比值为 iwo ≈iw=d φ/d β 。
由此可见,研究转向系的传动比特性,只需研究转向器的角传动比 iw 及其变化规律即可。
4.转向器角传动比及其变化规律式(7—7)表明:增大角传动比可以增加力传动比。
从 ip=2Fw /Fh 式可知,当Fw 一定时,增大ip 能减小作用在转向盘上的手力Fh ,使操纵轻便。
考虑到 iwo ≈iw ,由 iwo 的定义可知:对于一定的转向盘角速度,转向轮偏转角速度与转向器角传动比成反比。
角传动比增加后,转向轮偏转角速度对转向盘角速度的响应变得迟钝,使转向操纵时间增长,汽车转向灵敏性降低,所以“轻”和“灵”构成一对矛盾。
为解决这对矛盾,可采用变速比转向器。
齿轮齿条式、循环球式、蜗杆指销式转向器都可以制成变速比转向器。
下面介绍齿轮齿条式转向器变速比工作原理。
根据相互啮合齿轮的基圆齿距必须相等, 即 P bl =P b2。
其中齿轮基圆齿距P bl =πm l cos α1,齿条基圆齿距 P b2=πm2cosα2。
由上述两式可知:当齿轮具有标准模数m1和标准压力角α1与一个具有变模数m2、变压力角α2的齿条相啮合,并始终保持 m1cosoαl=m2cosoα2时,它们就可以啮合运转。
如果齿条中部(相当汽车直线行驶位置)齿的压力角最大,向两端逐渐减小(模数也随之减小),则主动齿轮啮合半径也减小,致使转向盘每转动某同一角度时,齿条行程也随之减小。
因此,转向器的传动比是变化的。
图7—14是根据上述原理设计的齿轮齿条式转向器齿条压力角变化示例。
从图中可以看到,位于齿条中部位置处的齿有较大压力角和齿轮有较大的节圆半径,而齿条齿有宽的齿根和浅斜的齿侧面;位于齿条两端的齿,齿根减薄,齿有陡斜的齿侧面。
循环球齿条齿扇式转向器的角传动比 iw=2πr/P (式7—13)。
因结构原因,螺距 P 不能变化,但可以用改变齿扇啮合半径 r 的方法,达到使循环球齿条齿扇式转向器实现变速比的目的。
随转向盘转角变化,转向器角传动比可以设计成减小、增大或保持不变的。
影响选取角传动比变化规律的因素,主要是转向轴负荷大小和对汽车机动能力的要求。
若转向轴负荷小,在转向盘全转角围,驾驶员不存在转向沉重问题。