关于中点的几点联想

合集下载

初中数学中点问题

初中数学中点问题

你口前•学习过哪些和中点有关的知识点,请写出来?知识点一、中点有关联想归类:【知识梳理】一.中点有关联想归类:1. 等腰三角形中遇到底边上的中点,常联想"三线合一”的性质;2. 直角三角形中遇到斜边上的中点,常联想“斜边上的中线,等于斜边的一半”;3. 三角形中遇到两边的中点,常联想“三角形的中位线定理”;4. 两条线段相等,为全等提供条件(遇到两平行线所截得的线段的中点时,常联想“八字型”全等三角形);5. 有中点时常构造垂直平分线;6. 有中点时,常会出现面积的一半(中线平分三角形的面积);7. 倍长中线。

二.与中点问题有关的四大辅助线:1•出现三角形的中线时,可以延长(简称“倍长中线”);2. 出现直角三角形斜边的中点,作斜边中线;3. 出现三角形边上的中点,作中位线;4. 出现等腰三角形底边上的中点,构造“三线合一”。

三.几何证明之辅助线构造技巧:1. 假如作一条辅助线,能起到什么作用;2. 常作那些辅助线能与已知条件联系更紧密,且不破坏已知条件。

【例题精讲】例1、(2018•广东)如图,四边形ABCD中,AB = AD=CD,以AB为直径的经过点C,连接AC, OD交于点E.(1) 证明:OD〃BC;(2) 若AC = 2BC,证明:DA与OO相切;【课堂练习】1・如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1, CE=3, H 是AF 的中点,那么CH 的长是()2. (2018-南京)如图,在"BC 中,用直尺和圆规作A3、AC 的垂直平分线,分别交AB 、AC 于点D 、E,连接3. (2020-徐州)如图,在 RtA ABC 中,ZABC=90°, D 、E 、F 分别为 AB. BC 、CA 的中点,若 BF=5,则 DE4. (2019-泰州)如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则△ ABC 的重心是() A.点DB.点EC •点FD.点GDE.若 BC=Wcm,则 DE= ___________ cm.5. (2020-苏州)如图,在MBC 中,已知AB = 2, AD1BC.垂足为D, BD = 2CD •若E 是AQ 的中 点,则EC =.6. (2020-镇江)如图,在△SBC 中,BC = 3 ,将△SBC 平移5个单位得到△力i/C — 点P 、Q 分别是43、7. (2020黑龙江牡丹江)如图,四边形ABCD 内接于0O ,连接BD ・若AC = BC , Z3DC = 50。

2020年中考最全复习资料专题22 关于中点的联想

2020年中考最全复习资料专题22  关于中点的联想

专题 22 关于中点的联想阅读与思考线段的中点把线段分成相等的两部分,图形中出现中点,可以引起我们丰富的联想:首先它和三角形的中线紧密联系;若中点是在直角三角形的斜边上,又可以引用“斜边上的中线等于斜边的一半”结论;其次,中点又与中位线息息相关;另外,中点还可以与中心对称相连.解答中点问题的关键是恰当地添加辅助线,如作中线倍长、作直角三角形的斜边上的中线、构造三角形、梯形中位线、构造中心对称图形等,如图所示:例题与求解【例1】如图,△ABC边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值为___________.(安徽省竞赛试题)例2题图例1题图F解题思路:∠A的平分线与BP边上的垂线互相重合,通过作辅助线,点P可变为某线段的中点,利用三角形中位线定理解题.【例2】如图,边长为1的正方形EFGH在边长为3的正方形ABCD所在的平面上移动,始终保持EF ∥AB,线段CF,DH的中点分别为M,N,则线段MN的长度为( ) (北京市竞赛试题)A.102B.172C.173D.2103解题思路:连接CG,取CG的中点T,构造三角形中位线、梯形中位线.【例3】如图,在△ABC 中,AB =AC ,延长AB 到D ,使BD =AB ,E 为AB 中点,连接CE ,CD ,求证:CD =2EC . (宁波市竞赛试题)解题思路:图形中有两个中点E ,B ,联想到与中点相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,关键是恰当添加辅助线.【例4】如图1,P 是线段AB 上一点,在AB 的同侧作△APC 和△BPD ,使∠APC =∠BPD ,PC =PA ,PD =PB ,连接CD ,点E ,F ,G ,H 分别是AC ,AB ,BD ,CD 的中点,顺次连接E ,F ,G ,H .(1) 猜想四边形EFGH 的形状,直接回答,不必说明理由;(2) 当点P 在线段AB 的上方时,如图2,在△APB 的外部作△APC 和△BPD ,其他条件不变,(1)中的结论还成立吗?说明理由;(3) 如果(2)中,∠APC =∠BPD =90°,其他条件不变,先补全图3,再判断四边形EFGH 的形状,并说明理由. (营口市中考试题)BAPAFP BG D H CE HGF E PABC D图① 图② 图③解题思路:结论随着条件的改变也许发生变化,但解决问题的方法是一致的,即通过连线,为三角形中位线定理的应用创造条件.例3图CA D【例5】如图,以△ABC 的AB ,AC 边为斜边向形外作直角三角形ABD 和ACE ,且使∠ABD =∠ACE ,M 是BC 的中点,求证:DM =EM . (“祖冲之杯”邀请赛试题)解题思路:显然△DBM 不全等于△ECM ,必须通过作辅助线,构造全等三角形证明DM =EM .【例6】如图,已知△ABC 中,∠ACB =90°,AB 边上的高CH 与△ABC 的两条内角平分线AM ,BN 分别交于P ,Q 两点,PM ,QN 的中点分别为E ,F ,求证:EF ∥AB . (全国初中数学联赛题)解题思路:从图形的形成过程,逐步探索相应结论.将原问题分解为多个小问题.○能 ○力 ○训 ○练 A 级1.如图,若E ,F ,G ,H 分别是四边形ABCD 各边的中点,则四边形EFGH 是____________.(1)如果把条件中的四边形ABCD 依次改为矩形、菱形、正方形或等腰梯形,其他条件不变,那么所得的四边形EFGH 分别为_______________________;(2)如果把结论中的平行四边形EFGH 依次改为矩形、菱形、正方形,那么原四边形ABCD 应具备的条件是_______________________. (湖北省黄冈市中考试题)2.如图,已知AG ⊥BD ,AF ⊥CE ,BD ,CE 分别是∠ABC 和∠ACB 的角平分线,若BF =2,ED =3,GC 例5图EDM ABC例6图CB D第1题图第2题图C3.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,E 是AC 的中点,若BC =16,DE =5,则AD =______________. (南京市中考试题)4.如图,在△ABC 中,AB =AC ,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连接DN ,EM ,若AB =13cm ,BC =10cm ,DE =5cm ,则图中阴影部分的面积为________________.(北京市中考试题)5.A ′,B ′,C ′,D ′顺次为四边形ABCD 的各边的中点,下面条件中使四边形A ′B ′C ′D ′为正方形的条件是( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是等腰梯形 D .四边形ABCD 中,AC ⊥BD 且AC =BD6.若等腰梯形的两条对角线互相垂直,中位线长为8cm ,则该等腰梯形的面积为( ) A .16cm 2 B .32cm 2 C .64cm 2 D .112cm 27.如图,梯形ABCD 中,AD ∥BC ,E ,F 分别是BD ,AC 的中点,若AD =6cm ,BC =18cm ,则EF 的长为( )A .8cmB .7cmC .6cmD .5cm8.如图,在梯形ABCD 中,AD ∥EF ∥GH ∥BC ,AE =EG =GB ,AD =18,BC =32,则EF +GH =( ) A .40 B .48 C .50 D .56 (泰州市中考试题)B第8题图 第9题图9.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于点D ,M 是BC 的中点,求证:DM =12AB .第4题图第3题图A第7题图10. 如图,在△ABC 中,BD =CE ,BE ,CD 的中点分别是M ,N ,直线MN 分别交AB ,AC 于点P ,Q ,求证:AP =AQ .11.在图1至图3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ; (2)将图1中的CE 绕点C 顺时针旋转一个锐角,得到图2,求证:△FMH 是等腰直角三角形; (3)将图2中的CE 缩短到图3的情况,△FMH 还是等腰直角三角形吗?(不必说明理由) (2009年河北省中考试题)12.在六边形ABCDEF 中,AB ∥DE ,BC ∥EF ,CD ∥FA ,AB +DE =BC +EF ,A 1,B 1,D 1,E 1分别是边AB ,BC ,DE ,EF 的中点,A 1D 1=B 1E 1.求证:∠CDE =∠AFE .第12题图F E第10题图图1AHC (M )DEBFG (N )G图2AHC DEBFNMAHCDE图3BFG MNB 级1.如图,正方形ABCD 两条对角线相交于点E ,∠CAD 的平分线AF 交DE 于点G ,交DC 于点F ,若GE =24,则FC =_________________.2.如图,四边形ABCD 的对角线AC ,BD 相交于点F ,M ,N 分别是AB ,CD 的中点,MN 分别交BD ,AC 于点P ,Q ,且∠FPQ =∠FQP ,BD =10,则AC =_________. (重庆市竞赛试题)3.如图,在△ABC 中,∠BAC =120°,以AB ,AC 为边分别向形外作正三角形ABD 和正三角形ACE ,M 为AD 的中点,N 为AE 的中点,P 为BC 的中点,则∠MPN =_________. (北京市竞赛试题)4.如图,已知A 为DE 的中点,设△DBC ,△ABC ,△EBC 的面积分别为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( )A .S 2=32(S 1+S 3)B .S 2=12(S 3―S 1)C .S 2=12(S 1+S 3)D .S 2=32(S 3―S 1) 5.如图,在图形ABCD 中,AB ∥DC ,M 为DC 的中点,N 为AB 的中点,则 ( ) A .MN >12(AD +BC ) B .MN <12(AD +BC )C .MN =12(AD +BC ) D .无法确定MN 与12(AD +BC )的关系6.如图,凸四边形ABCD 的面积是a ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,那么图中的阴影部分的面积为( )A .18aB .16aC .14aD .12a(江苏省竞赛试题)7.如图,在△ABC 中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE =DF ,过E ,F 分别作CA ,CB 的垂线,相交于点P .求证:∠PAE =∠PBF . (全国初中数学联赛试题)第5题图DC M 第2题图CF第1题图F第3题图 第4题图D第6题图ABE第7题图EPF8.如图,锐角△ABC 中,作高BD 和CE ,过顶点B ,C 分别作DE 的垂线BF 和CG ,求证:EF =DG .(全俄奥林匹克数学竞赛试题)9. 如图,在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°,如果BM 2+CN 2=DM 2+DN 2.求证:AD 2=14(AB 2+AC 2). (北京市竞赛试题)10.已知:△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°.如图1,连接DE ,设M 为DE 的中点.(1)求证:MB =MC ;(2)设∠BAD =∠CAE ,固定△ABD ,让Rt △ACE 绕顶点A 在平面内旋转到图2的位置,试问:MB =MC 是否还成立?请说明理由. (江苏省竞赛试题)图2图1第9题图 ABC D第8题图BG11.已知△OAB ,△OCD 都是等腰直角三角形,∠AOB =∠COD =90°.(1) 如图1,点C 在OA 边上,点D 在OB 边上,连接AD ,BC ,M 为线段AD 的中点,求证:OM ⊥BC . (2) 如图2,在图1的基础上,将△OCD 绕点O 逆时针旋转α(α为锐角),M 为线段AD 的中点.①求证:OM =12BC ;②OM ⊥BC 是否还成立?若成立,请证明;若不成立,请说明理由.图1图2BBODC12.如图1,在△ABC 中,点P 为BC 边的中点,直线a 绕顶点A 旋转,若点B ,P 在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接PM ,PN .(1)延长MP 交CN 于点E (如图2). ①求证:△BPM ≌△CPE ; ②求证:PM =PN .(2)若直线a 绕点A 旋转到如图3的位置时,点B ,P 在直线a 的同侧,其他条件不变,此时PM =PN 还成立吗?若成立,请证明;若不成立,请说明理由.(3) )若直线a 绕点A 旋转到与BC 边平行的位置时,其他条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 是否成立.不必说明理由. (沈阳市中考试题)图3图2图1BB。

关于中点的联想

关于中点的联想
三角形的中位线在数量上是第三边的一半在位置上涉及到平行它起着传递角的位置关系和线段长度的功能
关于中点的联想
线段的中点把线段分成相等的 两部分,是几何图形中的一个特殊 的点,图形中出现的中点,可以引 发我们丰富的联想。
例1、如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中 点,MN⊥AC于点N,求MN的长度。
练习:在Rt △ABC中, ∠ACB=90 °,点E是AC的中点, 延长BC到点F,使BC=2CF,若AB=10,求EF的长。
B
D
B
D
C
C
A
E
A
E
F
F
EF=5
熟悉一下基本图形:
1、等腰三角形三线合一 2、中线倍长 3、直角三角形斜边上的中线 4、三角形的中位线
练习: 在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB, 垂足为E,求DE:EA的值。
A E
B
D
C
DE : EA 3
例2、如图,在△ABC中,AB=10,AC=26,BC边上的中线
AD=12,求BC的长。
A
10
26
解:延长AD到E,使得DE AD
12
AD是BC边上的中线, BD CD
AB 10,AD 12, BD 102 122 2 61
BC 4 61
中线与中点联系紧密,中线倍长 是处理中线的常用手段。
例2、如图,在△ABC中,AB=10,AC=26,BC边上的中线 AD=12,求BC的长。
A
E
B
D
C
构造中点,中位线是解题的常用技巧。
练习:如图,在△ABC中,AB=3,AC=5,BC边上的 中线AD=A2,求△ABC的面积。

热点突破-与中点有关的联想(初中几何证明)

热点突破-与中点有关的联想(初中几何证明)
10,则EF的长为⁠ 4
⁠.
例2题图
模型解读
遇到直角三角形斜边的中点:连中线构造斜边上的中线.
结论:出现两个等腰三角形.
变式2
如图,已知在△ABC中,BD⊥AC于点D,
CE⊥AB于点E,M,N分别是BC,DE的中点.若BC=
10,DE=6,则△MDE的面积为⁠ 12
变式2题图ຫໍສະໝຸດ ⁠.类型三见多个中点,联想到中位线
A.3
B.4
第4题图
C.2
B )
D.3 ��
5.如图,在△ABC中,AB=AC=5,BC=6,点M为BC


的中点,MN⊥AC于点N,则MN的长是⁠
第5题图
⁠.
6.如图,在正方形ABCD和正方形CEFG中,点D在CG
上,BC=1,CE=3,H是AF的中点,那么CH的长
是⁠ ⁠.
第6题图

2MN=6.∴AC=AD+DC=16.
类型四
见中线
联想
倍长中线
典例精讲
例4 如图,在△ABC中,BD是AC边上的中线,
BD⊥BC,∠ABC=120°,AB=8,则BC的长为

B )
例4题图
A.3
B.4
C.5
D.6
变式4
如图,在Rt△ABC中,∠BAC=90°,点D为BC
的中点,点E,F分别为AB,AC上的点,且ED⊥FD,
的中点,且S△ABC=16,则S△DEF=(
A.2
B.8
第1题图
C.4
A
D.1

2.如图,在△ABC中,∠ACB=90°,∠A=30°,CE=
2,边AB的垂直平分线交AB于点D,交AC于点E,则AE

中点联想

中点联想

中点联想线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:1.中线倍长;2.作直角三角形斜边中线;3.构造中位线;4.构造中心对称全等三角形等.基本图形:解读:(一)遇到中点时常见的五种思路:1.遇到等腰三角形底边的中点时考虑:三线合一2.遇到直角三角形斜边的中点时考虑:斜边的中线等于斜边的一半。

3.遇到三角形一边上的中线时考虑:倍长中线4.遇到平行线所截线段的中点时考虑:类倍长中线5.多个中点考虑(或构造):中位线(二)例题:1.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A. B. C. D.2.如图, 在△ABC中,BE,CF分别为边AC,AB的高,D为BC的中点,M为EF的中点。

求证:D M⊥EF3.如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.(三)练习1.已知,如图,在等腰△ABC中,AB=AC,D是BC的中点,过A 的直线MN//BC,在直线MN上点A的两侧分别取点E,F且AE=AF。

求证:DE=DF2.如图,在等腰三角形ABC中,AB=AC,D是BC的中点,过A作AE⊥DE,AF⊥DF,且AE=AF,求证:∠EDB=FDC.3.如图, 在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。

如果点M,N分别在线段AB,AC上移动,在移动中保证AN=AM,请判断△OMN 的形状,并证明你的结论。

4.如图,△ABC中,BC=18,若BD⊥AC于D,CE⊥AB于E,F、G分别为BC、DE的中点,若ED=10,求FG的长.5. 如图,在△ABC中,AB≠AC,D、E在BC上,点E为DC的中点,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.6. 如图,AD是△ABC的中线,E、F分别是AB、AC的中点,求证:AD与EF互相平分.7.如图,已知在矩形ABCD中,E为CB延长线上一点,CE=AC,F是AE 的中点.(1)求证BF⊥DF(用两种方法正明)(2)若AB=8,AD=6,求DF的长.8.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE ⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上)(1)∠DCF= ∠BCD,(2)EF=CF;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF ∙∙(四)中考重现1.如图,已知:在矩形ABCD中,O为AC的中点,直线l经过点B,且直线l绕着点B旋转,AM⊥l于点M,CN⊥l于点N,连接OM,ON(1)当直线l经过点D时,如图1,则OM、ON的数量关系为;(2)当直线l与线段CD交于点F时,如图2(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由;(3)当直线l与线段DC的延长线交于点P时,请在图3中做出符合条件的图形,并判断(1)中的结论是否仍然成立?不必说明理由.2.如图1,在正方形ABCD和正方形CGEF(CG>BC)中,点B,C,G在同一直线上,点M是AE的中点.(1)探究线段MD,MF的位置及数量关系,并证明.(2)若将图1中的正方形CGEF绕点C顺时针旋转,使D,C,G 三点在一条直线上,如图2,其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)将图1中的正方形CGEF绕点C顺时针旋转,使正方形CGEF 的对角线CE恰好与正方形ABCD的边BC在同一条直线上,如图3,其他条件不变,则(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.3.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)4..如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转,得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=AC,CD=CE,如图③,写出PM与PN的数量关系,并加以证明.5.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.。

提分微课01 关于中点的联想教学课件

提分微课01 关于中点的联想教学课件
∴∠BCE=∠BCD-∠ECD=72°-36°=36°,
∴∠BEC=180°-∠B-∠BCE=180°-72°-36°=72°,
A.1
B. 2
C.
3
2

D.2
)
∵P 是 Rt△ABC 的重心,
1
∴CD 是△ABC 的中线,PD= CD.
3
又∵AC=BC,∴CD⊥AB.
1
∵∠ACB=90°,∴CD= AB=3.
2
∴PD=1,即点 P 到 AB
图W1-1
所在直线的距离等于 1.
故选 A.
2.如图W1-2,在△ABC中,AB=12,
2
图W1-11
∴△APB 是直角三角形,

∴tan∠HAP= =


2 - 2
=
12
5
12
5
32 -( )
12
5
9
5
4
= = .
2
3
12.[2019·苏州模拟]如图W1-12,在Rt△ABC
中,∠ACB=90°,AC=10,BC=5,将直角三角板
的直角顶点与AC边的中点P重合,直角三角




∴ =
3
3 2
4
4
= ,∵AP= 2,∴CF=
.
14.[2018·滨州]在△ABC中,∠A=90°,AB=AC,点D为BC的中点.
(1)如图W1-14①,若点E,F分别为AB,AC上的点,且DE⊥DF,求证:BE=AF.
(2)若点E,F分别为AB,CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图
又∵D为BC的中点,△ABC是等腰直角三角形,
∴BD=AD,∠ABC=∠DAC=45°.

中点有关的联想

中点有关的联想

// 1 DG = M N
3.倍长类中线
(1)如图,已知在△ABC中,点D是BC 边中点,点E是AB边任意一点,连接DE.
【辅助线】延长ED至F
,使DE
=
DF
,可得△BDE≌△C DF
,BE
//
=
CF

(2)在平行四边形ABCD中,点E是BC 边中点,点F 是AB边任意一点,连接F E. 【辅助线】延长F 和 E DC 相交于点G,可得△BF ≌ E △C , GE EF = , EG BF = CG.
中点有关的联想
一、线段中点
如图,若点C 是线段AB的中点,AC
= BC
=
. 1 AB
2
二、三角形的中线
1.三角形中线的定义
三角形的中线:连接三角形的一个顶点和它所对的边的中点的线段叫做三角形的中线.
如图,BD
=
C
, 即为 D AD
△ABC
的一条中线.
【拓展】三角形三条中线都在三角形内部且交于一点,交点叫做三角形的重心.
(4)角平分线+垂直出等腰三角形. 如图,OC 平分∠AOB,点D是OC 上的点,ED⊥OC交OA于点E. 【辅助线】延长ED交OB于点F ,可得△EOF 是等腰三角形.
(5)扩展直角三角形为等腰三角形.
如图:△AC B为直角三角形,∠AC B
=

90

【辅助线】延长BC 至点D,使CD = BC,连接AD,可得△ABD是等腰三角形.
2
2
C M + F C = F M ⇒ BE + F C = F E
五、中位线
1.三角形中位线的定义
中位线:连接三角形两边中点的线段叫做三角形的中位线. 如图,在△ABC中,D、E分别是AB、AC 的中点,连接DE,则DE即为△ABC的中位线.

中点的联想

中点的联想

想中位线定理,得出 FG∥BC,FE∥AC,且 AC=2FE.
在 Rt△ADC 中,G 是斜边 AC 的中点,联想到直角三角形斜边
上的中线等于斜边的一半,由此得出 AC=2DG,从而得出 FE=DG,
图7
最终求证四边形 EFGD 是等腰梯形 .
联想四:出现“两条平行线所截得的线段的中点”时,联想“八字形”全等三角形 .
3C 37
联想二:出现“直角三角形斜边上的中点”时,联想“斜边上的中线等于斜边的一半”.
联想三:出现“三角形两边的中点”时,联想“三角形的中位线定理”.
例 如图 7,在△ABC 中,AD 是 BC 边上的高,点 E,F,G 分别是
BC,AB,AC 的中点,求证:四边形 EFGD 是等腰梯形 .
【分析】因为点 E,F,G 分别是 BC,AB,AC 的中点,可以由此联
学会了这六种关于中点的联想,当你再看到题目出现中点时,一定能快速找到证明的方法 .
1. 如图 a,点 E,F 分别是矩形 ABCD 的边 AB,BC 的中点,连接 AF,CE,且两条线的交点为 G,
3C 39
图a 2. 如图 b,三角形 ABC,D 为 BC 的中点,BE⊥AF,CF⊥AF,求证:DE= DF.
图b 3. 如图 c,以△ABC 的边 AB,AC 为斜边向外作 Rt△ABD 和 Rt△ACE, 且∠ABD=∠ACE=α,点 P 是 BC 的中点,求证:DP=EP.
图c
唯美英语哲理 You never get a second chance to make a first impression. 永远没有第二次机会,给人留下第一
首先,我们先来看一道例题 . 例 如图 1,已知 E 点为中点,∠BAE=∠CDE,求证:AB=CD. 【分析】要想证明 AB=CD,可以联想到两个全等三角形,但是根据题目的条件可知,△ABE 与 △CDE 并不全等,因此我们必须构造出我们需要的全等三角形 . 方法一:如图 2,延长 DE 至 F,使 DE=EF,连接 BF,通过证明△BEF≌△CED,得到 BF=CD,又 因为∠F=∠CDE=∠BAE,得到△ABF 是等腰三角形,从而得出 AB=CD. 方法二:如图 3,延长 DE 至 F,使 EF=EA,连接 CF. 这个方法与方法一类似,只不过构造的全 等三角形是△ABE 和△CFE. 方法三:如图 4,过点 C 和点 B 分别作 DE 边上的垂线,垂足为 G,F,此时△BFE 和△CGE 全 等,得到 BF=CG,又因为∠BAE=∠CDE,所以△ABF≌△DCG,从而得出 AB=CD.

专讲6:由中点想到什么

专讲6:由中点想到什么

第6讲 由中点想到什么【知识归纳】 线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:1.中线倍长;2.作直角三角形斜边中线;3.构造中位线;4.构造中心对称全等三角形等.5【典例剖析】【例1】 已知AD 为△ABC 的角平分线,AB<AC ,在AC 上截取CE=AB ,M 、N ,分别为BC 、AE 的中点。

求证:MN//AD【例2】如图,梯形ABCD 中,AD ∥BC ,AC ⊥BD 于O ,试判断AB+CD 与AD+BC的大小,并证明你的结论.【例3】 如图,任意五边形ABCDE ,M 、N 、P 、Q 分别为AB 、CD 、BC 、DE 的中点,K 、L 分别为MN 、PQ 的中点,求证:KL ∥AE 且KL=41AE .A B C D N ME【例4】 如图,已知在△ABC 中,D 为AB 的中点,分别延长CA 、CB 到E 、F ,使DE=DF ,过E 、F 分别作CA 、CB 的垂线,相交于点P .求证:∠PAE=∠PBF .【例5】如图3,四边形ABCD 中,AC =6,BD =8,且AC ⊥BD 。

顺次连结四边形ABCD 各边中点,得到四边形1111D C B A ;再顺次连结四边形1111D C B A 各边中点,得到四边形2222D C B A ……如此进行下去得到四边形n n n n D C B A(1)证明:四边形1111D C B A 是矩形;(2)写出四边形n n n n D C B A 的面积和周长;【例6】在四边形ABCD 中,E 为边AB 上一点,△ADE 和△BCE 是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,求证:四边形PQMN 为菱形。

【过关训练】1.BD 、CE 是△ABC 的中线,G 、H 分别是BE 、CD 的中点,BC=8,则GH= .2.如图,△ABC 中、BC =a ,若D 1、E 1;分别是AB 、AC 的中点,则112a D E =;若 D 2、E 2分别是D 1B 、E 1C 的中点,则2213()224a D E a a =+=:若 D 3、E 3分别是D 2B 、E 2C 的中点.则33137()248D E a a a =+=……若Dn 、En 分别是D n-1B 、E n-1C 的中点,则DnEn= (n ≥1且 n 为整数).3.如图,△ABC 边长分别为AD=14,BC=l6,AC=26,P 为∠A 的平分线AD 上一点,且BP ⊥AD ,M 为BC 的中点,则PM 的值是 .4.如图,梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,AC=5cm ,BD=12cm ,则该梯形的中位线的长等于 cm .5.如图,在梯形ABCD 中,AD ∥EF ∥GH ∥BC ,AE=EG=GB=AD=18,BC=32,则EF+GH=( )A .40B .48C 50D .566.如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别是对角线BD 、AC 的中点,若AD=6cm ,BC=18㎝,则EF 的长为( )A .8cm D .7cm C . 6cm D .5cm7.如图,矩形纸片ABCD 沿DF 折叠后,点C 落在AB 上的E 点,DE 、DF 三等分∠ADC ,AB 的长为6,则梯形ABCD 的中位线长为( )A .不能确定B .23C .3D .3+18.已知四边形ABCD 和对角线AC 、BD ,顺次连结各边中点得四边形MNPQ ,给出以下6个命题:①若所得四边形MNPQ 为矩形,则原四边形ABCD 为菱形;②若所得四边形MNPQ 为菱形,则原四边形ABCD 为矩形;③若所得四边形MNPQ 为矩形,则AC ⊥BD ;④若所得四边形MNPQ 为菱形,则AC=BD ;⑤若所得四边形MNPQ 为矩形,则∠BAD=90°;⑥若所得四边形MNPQ 为菱形,则AB=AD .以上命题中,正确的是( )A .①②B .③④C .③④⑤⑥D .①②③④9.如图,已知△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE ,G 为垂足.求证:(1)G 是CE 的中点;(2)∠B=2∠BCE .10.如图,已知在正方形ABCD 中,E 为DC 上一点,连结BE ,作CF ⊥BE 于P ,交AD 于F 点,若恰好使得AP=AB ,求证:E 是DC 的中点.11.如图,在梯形ABCD 中,AB ∥CD ,以AC 、AD 为边作平行四边形ACED ,DC 的延长线交BE 于F .(1)求证:EF =FB ;(2)S △BCE 能否为S 梯形ABCD 的31?若不能,说明理由;若能,求出AB 与CD 的关系.12.如图,已知AG ⊥BD ,AF ⊥CE ,BD 、CF 分别是∠ABC 和∠ACB 的角平分线,若BF=2,ED=3,GC=4,则△ABC 的周长为 .13.四边形ADCD 的对角线AC 、BD 相交于点F ,M 、N 分别为AB 、CD 中点,MN 分别交BD 、AC 于P 、Q ,且∠FPQ =∠FQP ,若BD=10,则AC= .14.四边形ABCD 中,AD>BC ,C 、F 分别是AB 、CD 的中点,AD 、BC 的延长线分别与EF 的延长线交于H 、G ,则∠AHE ∠BGE(填“>”或“=”或“<”号)15.如图,在△ABC 中,DC=4,BC 边上的中线AD=2,AB+AC=3+7,则S △ABC 等于( )A .15B .255C .32D .273 16.如图,正方形ABCD 中,AB =8,Q 是CD 的中点,设∠DAQ=α,在CD 上取一点P ,使∠BAP =2α,则CP 的长是( ) A .1 D .2 C .3 D .317.如图,已知A 为DE 的中点,设△DBC 、△ABC 、△EBC 的面积分别为S 1,S 2,S 3,则S 1、S 2、S 3之间的关系式是( )A .)(23312S S S +=B .)(21132S S S -=C .)(21312S S S +=D .)(23132S S S -= 18.已知:△ABD 和△ACE 都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE ,设M 为D 正的中点.(1)求证:MB=MC ;(2)设∠BAD=∠CAE ,固定△ABD ,让Rt △ACE 绕顶点A 在平面内旋转到图乙的位置,试问:MB ;MC 是否还能成立?并证明其结论.19、以△BC 的AB 、AC 边为斜边向形外作Rt △ABD 和Rt △ACE ,且使∠ABD=∠ACE ,M 是BC 的中点,求证:DM=DN20 已知:如图l ,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥ CE ,垂足分别为F 、G ,连结FG ,延长AF 、AG ,与直线BC 相交,易证FG=21(AB+BC+AC). (1) 若BD 、CF 分别是△ABC 的内角平分线(如图2);(2) 若BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线(如图3),则在图2、图3两种情况下,线段FG 与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.A BC M DE。

中点的妙用(没有相似,适合初二下学期学完平行四边形作总结练习)

中点的妙用(没有相似,适合初二下学期学完平行四边形作总结练习)

中点的妙用班别:______姓名:__________学号:_______联想是一种非常重要的数学品质。

善于联想,才能更好地解决问题。

那么看到“中点”,你会想到什么呢? 1、等腰三角形中遇到底边上的中点,常联想“三线合一”的性质;2、直角三角形中遇到斜边上的中点,常联想“斜边上的中线等于斜边的一半”;3、三角形中遇到两边的中点,常联想“三角形的中位线定理”;4、两条线段相等,为全等提供条件(特别是八字模型)5、有中点时,常联想“中垂线”;6、有中点时,常联想“面积相等”;7、重要方法:倍长中线。

8、中点三角形性质:已知D 、E 、F 分别是边BC 、AC 、AB 的中点,那么(1)△ABC 和△DEF 的边长关系是___________________;(2)△ABC 和△DEF 的周长关系是___________________; (3)△ABC 和△DEF 的面积关系是___________________; (4)图中有_____个三角形彼此全等;图中有______个平行四边形. 9B例1:如图,在△ABC 中,∠A=90°,AB=AC ,O 是BC 的中点,如果在AB 和AC 上分别有一个动点M 、N 在移动,且在移动时保持AN=BM ,请你判断△OMN 的形状,并说明理由.练习:如图1所示,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于( ).A .B .C .D .例2:如图,在四边形ABCD 中,∠DAB=∠DCB=90°,对角线AC 与BD 相交于点O ,M 、N 分别是边BD 、AC 的中点. (1)求证:MN ⊥AC ;(2)当AC=8cm ,BD=10cm 时,求MN 的长.练习:如图,E 是正方形ABCD 边AB 的中点,DF ⊥CE 于点M .说明:AM=AD .例3:已知:△ABC 中,AD 是BC 中线,E 、F 分别是AB 、AC 中点.求证:AD 、EF 互相平分.例4:在四边形ABCD 中,若AB =CD ,E 、F 、G 、H 分别为AD 、BC 、BD 、AC 的中点,求证:四边形EFGH 是菱形.6595125165练习1:如图,在四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD的中点,且AC=BD.求证:OM=ON.练习2:如图,在△ABC中,D、E为边AB、AC上的点,且BD=EC,连接DC、BE,并分别取中点N、M,连接MN并延长交AB、AC于点F、G,求证:AF=AG.例5:如图,四边形ABCD中,AD∥BC,E是AB的中点,DE⊥CE,求证:AD+BC=DC. 练习:△ABC中,D为BC中点,AB=5,AD=6,AC=13。

初中数学培优专题学习专题22 关于中点的联想

初中数学培优专题学习专题22  关于中点的联想
(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;
(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)
(2009年河北省中考试题)
12.在六边形ABCDEF中,AB∥DE,BC∥EF,CD∥FA,AB+DE=BC+EF,A1,B1,D1,E1分别是边AB,BC,DE,EF的中点,A1D1=B1E1.求证:∠CDE=∠AFE.
求证:CD=2EC.(宁波市竞赛试题)
解题思路:图形中有两个中点E,B,联想到与中点相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,关键是恰当添加辅助线.
【例4】如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使∠APC=∠BPD,PC=PA,PD=PB,连接CD,点E,F,G,H分别是AC,AB,BD,CD的中点,顺次连接E,F,G,H.
2.如图,已知AG⊥BD,AF⊥CE,BD,CE分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为_______________.(重庆市竞赛试题)
3.如图,在△ABC中,AB=AC,AD⊥BC于点D,E是AC的中点,若BC=16,DE=5,则AD=______________.(南京市中考试题)
(1)延长MP交CN于点E(如图2).
①求证:△BPM≌△CPE;
②求证:PM=PN.
(2)若直线a绕点A旋转到如图3的位置时,点B,P在直线a的同侧,其他条件不变,此时PM=PN还成立吗?若成立,请证明;若不成立,请说明理由.
(3) )若直线a绕点A旋转到与BC边平行的位置时,其他条件不变.请直接判断四边形MBCN的形状及此时PM=PN是否成立.不必说明理由.(沈阳市中考试题)

八年级数学培优专题22 关于中点的联想

八年级数学培优专题22 关于中点的联想

专题 22 关于中点的联想阅读与思考线段的中点把线段分成相等的两部分,图形中出现中点,可以引起我们丰富的联想:首先它和三角形的中线紧密联系;若中点是在直角三角形的斜边上,又可以引用“斜边上的中线等于斜边的一半”结论;其次,中点又与中位线息息相关;另外,中点还可以与中心对称相连.解答中点问题的关键是恰当地添加辅助线,如作中线倍长、作直角三角形的斜边上的中线、构造三角形、梯形中位线、构造中心对称图形等,如图所示:例题与求解【例1】如图,△ABC边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP ⊥AD,M为BC的中点,则PM的值为___________. (安徽省竞赛试题)例2题图例1题图F解题思路:∠A的平分线与BP边上的垂线互相重合,通过作辅助线,点P可变为某线段的中点,利用三角形中位线定理解题.【例2】如图,边长为1的正方形EFGH在边长为3的正方形ABCD所在的平面上移动,始终保持EF ∥AB,线段CF,DH的中点分别为M,N,则线段MN的长度为( ) (北京市竞赛试题)A.102B.172C.173D.2103解题思路:连接CG,取CG的中点T,构造三角形中位线、梯形中位线.【例3】如图,在△ABC 中,AB =AC ,延长AB 到D ,使BD =AB ,E 为AB 中点,连接CE ,CD , 求证:CD =2EC . (宁波市竞赛试题)解题思路:图形中有两个中点E ,B ,联想到与中点相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,关键是恰当添加辅助线.【例4】如图1,P 是线段AB 上一点,在AB 的同侧作△APC 和△BPD ,使∠APC =∠BPD ,PC =P A ,PD =PB ,连接CD ,点E ,F ,G ,H 分别是AC ,AB ,BD ,CD 的中点,顺次连接E ,F ,G ,H .(1) 猜想四边形EFGH 的形状,直接回答,不必说明理由;(2) 当点P 在线段AB 的上方时,如图2,在△APB 的外部作△APC 和△BPD ,其他条件不变,(1)中的结论还成立吗?说明理由;(3) 如果(2)中,∠APC =∠BPD =90°,其他条件不变,先补全图3,再判断四边形EFGH 的形状,并说明理由. (营口市中考试题)BAPAFP BG D H CE HGF E PABC D图① 图② 图③解题思路:结论随着条件的改变也许发生变化,但解决问题的方法是一致的,即通过连线,为三角形中位线定理的应用创造条件.例3图CA D【例5】如图,以△ABC 的AB ,AC 边为斜边向形外作直角三角形ABD 和ACE ,且使∠ABD =∠ACE ,M 是BC 的中点,求证:DM =EM . (“祖冲之杯”邀请赛试题)解题思路:显然△DBM 不全等于△ECM ,必须通过作辅助线,构造全等三角形证明DM =EM .【例6】如图,已知△ABC 中,∠ACB =90°,AB 边上的高CH 与△ABC 的两条内角平分线AM ,BN 分别交于P ,Q 两点,PM ,QN 的中点分别为E ,F ,求证:EF ∥AB . (全国初中数学联赛题)解题思路:从图形的形成过程,逐步探索相应结论.将原问题分解为多个小问题.○能 ○力 ○训 ○练 A 级1.如图,若E ,F ,G ,H 分别是四边形ABCD 各边的中点,则四边形EFGH 是____________.(1)如果把条件中的四边形ABCD 依次改为矩形、菱形、正方形或等腰梯形,其他条件不变,那么所得的四边形EFGH 分别为_______________________;(2)如果把结论中的平行四边形EFGH 依次改为矩形、菱形、正方形,那么原四边形ABCD 应具备的条件是_______________________. (湖北省黄冈市中考试题)2.如图,已知AG ⊥BD ,AF ⊥CE ,BD ,CE 分别是∠ABC 和∠ACB 的角平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为_______________. (重庆市竞赛试题)例5图 EDMABC例6图CB D第1题图第2题图C3.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,E 是AC 的中点,若BC =16,DE =5,则AD =______________. (南京市中考试题)4.如图,在△ABC 中,AB =AC ,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连接DN ,EM ,若AB =13cm ,BC =10cm ,DE =5cm ,则图中阴影部分的面积为________________.(北京市中考试题)5.A ′,B ′,C ′,D ′顺次为四边形ABCD 的各边的中点,下面条件中使四边形A ′B ′C ′D ′为正方形的条件是( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是等腰梯形 D .四边形ABCD 中,AC ⊥BD 且AC =BD 6.若等腰梯形的两条对角线互相垂直,中位线长为8cm ,则该等腰梯形的面积为( ) A .16cm 2 B .32cm 2 C .64cm 2 D .112cm 27.如图,梯形ABCD 中,AD ∥BC ,E ,F 分别是BD ,AC 的中点,若AD =6cm ,BC =18cm ,则EF 的长为( )A .8cmB .7cmC .6cmD .5cm8.如图,在梯形ABCD 中,AD ∥EF ∥GH ∥BC ,AE =EG =GB ,AD =18,BC =32,则EF +GH =( )A .40B .48C .50D .56 (泰州市中考试题)B第8题图 第9题图9.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于点D ,M 是BC 的中点,求证:DM =12AB .第4题图第3题图A第7题图10. 如图,在△ABC 中,BD =CE ,BE ,CD 的中点分别是M ,N ,直线MN 分别交AB ,AC 于点P ,Q ,求证:AP =AQ .11.在图1至图3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ; (2)将图1中的CE 绕点C 顺时针旋转一个锐角,得到图2,求证:△FMH 是等腰直角三角形; (3)将图2中的CE 缩短到图3的情况,△FMH 还是等腰直角三角形吗?(不必说明理由) (2009年河北省中考试题)12.在六边形ABCDEF 中,AB ∥DE ,BC ∥EF ,CD ∥F A ,AB +DE =BC +EF ,A 1,B 1,D 1,E 1分别是边AB ,BC ,DE ,EF 的中点,A 1D 1=B 1E 1.求证:∠CDE =∠AFE .第12题图F E第10题图图1AHC (M )DEBFG (N )G图2AHC DEBFNMAHCDE图3BFG MNB 级1.如图,正方形ABCD 两条对角线相交于点E ,∠CAD 的平分线AF 交DE 于点G ,交DC 于点F ,若GE =24,则FC =_________________.2.如图,四边形ABCD 的对角线AC ,BD 相交于点F ,M ,N 分别是AB ,CD 的中点,MN 分别交BD ,AC 于点P ,Q ,且∠FPQ =∠FQP ,BD =10,则AC =_________. (重庆市竞赛试题)3.如图,在△ABC 中,∠BAC =120°,以AB ,AC 为边分别向形外作正三角形ABD 和正三角形ACE ,M 为AD 的中点,N 为AE 的中点,P 为BC 的中点,则∠MPN =_________. (北京市竞赛试题)4.如图,已知A 为DE 的中点,设△DBC ,△ABC ,△EBC 的面积分别为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( )A .S 2=32(S 1+S 3)B .S 2=12(S 3―S 1)C .S 2=12(S 1+S 3)D .S 2=32(S 3―S 1)5.如图,在图形ABCD 中,AB ∥DC ,M 为DC 的中点,N 为AB 的中点,则 ( ) A .MN >12(AD +BC ) B .MN <12(AD +BC )C .MN =12(AD +BC ) D .无法确定MN 与12(AD +BC )的关系6.如图,凸四边形ABCD 的面积是a ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,那么图中的阴影部分的面积为( )A .18aB .16aC .14aD .12a(江苏省竞赛试题)7.如图,在△ABC 中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE =DF ,过E ,F 分别作CA ,CB 的垂线,相交于点P .求证:∠P AE =∠PBF . (全国初中数学联赛试题)第5题图DCM第2题图CF第1题图F第3题图第4题图D第6题图ABE第7题图EPF8.如图,锐角△ABC 中,作高BD 和CE ,过顶点B ,C 分别作DE 的垂线BF 和CG ,求证:EF =DG .(全俄奥林匹克数学竞赛试题)9. 如图,在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°,如果BM 2+CN 2=DM 2+DN 2.求证:AD 2=14(AB 2+AC 2). (北京市竞赛试题)10.已知:△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°.如图1,连接DE ,设M 为DE 的中点.(1)求证:MB =MC ;(2)设∠BAD =∠CAE ,固定△ABD ,让Rt △ACE 绕顶点A 在平面内旋转到图2的位置,试问:MB =MC 是否还成立?请说明理由. (江苏省竞赛试题)图2图1第9题图ABC D第8题图BG11.已知△OAB ,△OCD 都是等腰直角三角形,∠AOB =∠COD =90°. (1) 如图1,点C 在OA 边上,点D 在OB 边上,连接AD ,BC ,M 为线段AD 的中点,求证:OM ⊥BC . (2) 如图2,在图1的基础上,将△OCD 绕点O 逆时针旋转α(α为锐角),M 为线段AD 的中点.①求证:OM =12BC ;②OM ⊥BC 是否还成立?若成立,请证明;若不成立,请说明理由.图1图2BBODDC12.如图1,在△ABC 中,点P 为BC 边的中点,直线a 绕顶点A 旋转,若点B ,P 在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接PM ,PN .(1)延长MP 交CN 于点E (如图2). ①求证:△BPM ≌△CPE ; ②求证:PM =PN .(2)若直线a 绕点A 旋转到如图3的位置时,点B ,P 在直线a 的同侧,其他条件不变,此时PM =PN 还成立吗?若成立,请证明;若不成立,请说明理由.(3) )若直线a 绕点A 旋转到与BC 边平行的位置时,其他条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 是否成立.不必说明理由. (沈阳市中考试题)图3图2图1BB。

由中点想到什么

由中点想到什么

初三数学培优之: 由中点想到什么由中点想到什么?常见的联想路径是:1.中线倍长;2.作直角三角形斜边中线;3.构造中位线;4.构造中心对称全等三角形等.5.三角形等积熟悉以下基本图形,基本结论:例题求解【例1】 如图,在△ABC 中,∠B=2∠C ,AD ⊥BC 于D ,M 为BC 的中点, AB=10cm ,则MD 的长为 .【例2】 如图,在四边形ABCD 中,一组对边AB=CD ,另一组对边AD ≠BC ,分别取AD 、BC 的中点M 、N ,连结MN .则AB 与MN 的关系是( )A .AB=MNB .AB>MNC .AB<MND .上述三种情况均可能出现【例3】如图,在△ABC 中,AB=AC ,延长AB 到D ,使BD =AB ,E 为AB 中点,连结CE 、CD ,求证:CD=2EC .【例4】 已知:如图l ,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥ CE ,垂足分别为F 、G ,连结FG ,延长AF 、AG ,与直线BC 相交,易证FG=21(AB+BC+AC). 若(1)BD 、CF 分别是△ABC 的内角平分线(如图2);(2)BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线(如图3),则在图2、图3两种情况下,线段FG 与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.【例5】 如图,任意五边形ABCDE ,M 、N 、P 、Q 分别为AB 、CD 、BC 、DE 的中点,K 、L 分别为MN 、PQ 的中点,求证:KL ∥AE 且KL=41AE .学历训练1.BD 、CE 是△ABC 的中线,G 、H 分别是BE 、CD 的中点,BC=8,则GH= . 2.如图,△ABC 中、BC =a ,若D 1、E 1;分别是AB 、AC 的中点,则112a D E =;若 D 2、E 2分别是D 1B 、E 1C 的中点,则2213()224a D E a a =+=:若 D 3、E 3分别是D 2B 、E 2C 的中点.则33137()248D E a a a =+=……若Dn 、En 分别是D n-1B 、E n-1C 的中点,则DnEn= (n ≥1且 n 为整数).3.如图,△ABC 边长分别为AD=14,BC=l6,AC=26,P 为∠A 的平分线AD 上一点,且BP ⊥AD ,M 为BC 的中点,则PM 的值是 .4.如图,梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,AC=5cm ,BD=12cm ,则该梯形的中位线的长等于 cm .5.如图,在梯形ABCD 中,AD ∥EF ∥GH ∥BC ,AE=EG=GB=AD=18,BC=32,则EF+GH=( )A .40B .48C 50D .566.如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别是对角线BD 、AC 的中点,若AD=6cm ,BC=18㎝,则EF 的长为( )A .8cm D .7cm C . 6cm D .5cm7.如图,矩形纸片ABCD 沿DF 折叠后,点C 落在AB 上的E 点,DE 、DF 三等分∠ADC ,AB 的长为6,则梯形ABCD 的中位线长为( )A .不能确定B .23C .3D .3+18.已知四边形ABCD 和对角线AC 、BD ,顺次连结各边中点得四边形MNPQ ,给出以下6个命题:①若所得四边形MNPQ 为矩形,则原四边形ABCD 为菱形;②若所得四边形MNPQ 为菱形,则原四边形ABCD 为矩形;③若所得四边形MNPQ 为矩形,则AC ⊥BD ;④若所得四边形MNPQ 为菱形,则AC=BD ;⑤若所得四边形MNPQ 为矩形,则∠BAD=90°;⑥若所得四边形MNPQ 为菱形,则AB=AD .以上命题中,正确的是( )A .①②B .③④C .③④⑤⑥D .①②③④9.如图,已知△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE ,G 为垂足.求证:(1)G 是CE 的中点;(2)∠B=2∠BCE .10.如图,已知在正方形ABCD 中,E 为DC 上一点,连结BE ,作CF ⊥BE 于P ,交AD 于F 点,若恰好使得AP=AB ,求证:E 是DC 的中点.11.如图,在梯形ABCD 中,AB ∥CD ,以AC 、AD 为边作平行四边形ACED ,DC 的延长线交BE 于F .(1)求证:EF =FB ;(2)S △BCE 能否为S 梯形ABCD 的31?若不能,说明理由;若能,求出AB 与CD 的关系. 12.如图,已知AG ⊥BD ,AF ⊥CE ,BD 、CF 分别是∠ABC 和∠ACB 的角平分线,若BF=2,ED=3,GC=4,则△ABC 的周长为 .13.四边形ADCD 的对角线AC 、BD 相交于点F ,M 、N 分别为AB 、CD 中点,MN 分别交BD 、AC 于P 、Q ,且∠FPQ =∠FQP ,若BD=10,则AC= .14.四边形ABCD 中,AD>BC ,C 、F 分别是AB 、CD 的中点,AD 、BC 的延长线分别与EF 的延长线交于H 、G ,则∠AHE ∠BGE(填“>”或“=”或“<”号)15.如图,在△ABC 中,DC=4,BC 边上的中线AD=2,AB+AC=3+7,则S △ABC 等于( )A .15B .255C .32D .273 16.如图,正方形ABCD 中,AB =8,Q 是CD 的中点,设∠DAQ=α,在CD 上取一点P ,使∠BAP =2α,则CP 的长是( ) A .1 D .2 C .3 D .317.如图,已知A 为DE 的中点,设△DBC 、△ABC 、△EBC 的面积分别为S 1,S 2,S 3,则S 1、S 2、S 3之间的关系式是( )A .)(23312S S S +=B .)(21132S S S -=C .)(21312S S S +=D .)(23132S S S -=18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、CB的垂线,相交于点P.求证:∠PAE=∠PBF.19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定△ABD,让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论.21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CC l、DD l,垂足分别为A l、B1、C l、D1.(1)求证AA1+ CC l = BB1 +DD l;(2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为A l、B1、C l、D1,那么AA1、BB1、CC l、DD l之间存在什么关系?(3)如图丙,如果将MN再向上移动,使其两侧各有2个顶点,这时过A、B、C、D向直线MN引垂线,垂足分别为A l、B1、C l、D1,那么AA1、BB1、CC l、DD1之间又存在什么关系?。

关于中点的几点联想

关于中点的几点联想

关于中点的几点联想一、与中点有关的知识点:1、 2、 3、二、由中点产生的联想:三、例题:(1)如图,△ABC 中,D 为BC 中点,E 为AC 上一点,AD 、BE 相交于点F ,且BF=AC 。

求证:EA=EF 。

(2)如图,在梯形ABCD 中,E 为CD 中点,EF 垂直AB 于F ,且AB=6,EF=8,求梯形的面积。

(3)如图,△ABC 中,BD ⊥AC,CE ⊥AB,M 为BC 中点,且MN ⊥ED,求证:N 为ED 中点。

BCB CM4.如图24-1,已知点D 在AC 上,ABC ∆和ADE ∆都是等腰直角三角形,点M 为EC 的中点. (1)求证:BMD ∆为等腰直角三角形.图24-1(2)将ADE ∆绕点A 逆时针旋转︒45,如图24-2,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由.图24-2(3)将ADE ∆绕点A 逆时针旋转︒135,如图24-3,(1)中的“BMD ∆为等腰直角三角形”成立吗? 请说明理由.图24-35.在□ABCD 中,(4).已知正方形ABCD 和等腰Rt BEF ∆,BE=EF ,∠BEF=90︒,按图1放置,使点F 在BC 上,取DF 的中点G ,联结EG 、CG.(1)探索EG 、CG 的数量关系和位置关系并证明;(2)将图1中△BEF 绕B 点顺时针旋转45︒,再联结DF ,取DF 中点G (如图2),问(1)中的结论是否仍然成立?证明你的结论;(3)将图1中△BEF 绕B 点转动任意角度(旋转角在0︒到90︒之间),再联结DF ,取DF 的中点G (如图3),问(1)中的结论是否仍然成立?证明你的结论.图1 图2 图3(第25题图)如图:正方形ABCD 和正方形AEFG 有公共的顶点A ,连接BG, DE, M 为DE 的中点,连AM,1. 图1中AE ,AG 分别与AB , AD 重合时,AM 和BG 的数量和位置关系分别是( )和( )2. 如图2中将正方形AEFG 绕A 逆时针旋转∂(090oo<∂<)时1中的结论是否成立,试证明。

中考数学复习《中点联想解析》

中考数学复习《中点联想解析》

中考数学复习中点联想训练本文基于教学实践和反思提出了在初中数学教学中对“中点”的一些认识。

并对中点问题进行了详细分类,对每种类型进行了举例、分析,特别是对各类中点问题的基本思路做了探讨和研究,并且针对学生在解题上存在的问题,提出了中点问题教学的几点建议:(1)在中点问题教学中,要积极培养学生的观察能力,提高学生的图形结合能力。

(2)在中点问题教学中,要培养学生的分析能力与概括能力,并帮助学生实现各部分知识之间的联系与转换,从而提高学生的综合分析问题和概括问题的能力。

(3)在中点问题教学中,要给学生有专题性的训练,从而提高学生解中点问题的能力。

1.与中点有关的定理(1)直角三角形斜边上的中线等于斜边的一半.(2)等腰三角形“三线合一”的性质.(3)三角形的中位线定理.(4)垂径定理及其推论.2.与中点有关的辅助线(1)构造三角形的中位线,如连结三角形两边的中点;取一边的中点,然后与另一边的中点相连结;过三角形一边的中点作另一边的平行线等等.(2)延长角平分线的垂线,构造等腰三角形的“三线合一”.(3)把三角形的中线延长一倍,构造平行四边形.一、中点在普通三角形中的应用【例题】(2017广西河池)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【同步训练】(2017齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.【考点】KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.二、中点在等腰三角形中的应用【例题】(2016·广西桂林·3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH= .【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】在BD上截取BE=CH,连接CO,OE,根据相似三角形的性质得到,求得CH=,根据等腰直角三角形的性质得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代换得到∠OCH=∠ABD,根据全等三角形的性质得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.【解答】解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.【同步训练】(2016·湖北随州·10分)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当tan∠PAB=1,c=4时,a= 4,b= 4;如图2,当∠PAB=30°,c=2时,a= ,b= ;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【考点】四边形综合题.【分析】(1)①首先证明△APB,△PEF都是等腰直角三角形,求出PA、PB、PE、PF,再利用勾股定理即可解决问题.②连接EF,在RT△PAB,RT△PEF中,利用30°性质求出PA、PB、PE、PF,再利用勾股定理即可解决问题.(2)结论a2+b2=5c2.设MP=x,NP=y,则AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.(3)取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用(2)中结论列出方程即可解决问题.【解答】(1)解:如图1中,∵CE=AE,CF=BF,∴EF∥AB,EF=AB=2,∵tan∠PAB=1,∴∠PAB=∠PBA=∠PEF=∠PFE=45°,∴PF=PE=2,PB=PA=4,∴AE=BF==2.∴b=AC=2AE=4,a=BC=4.故答案为4,4.如图2中,连接EF,,∵CE=AE,CF=BF,∴EF∥AB,EF=AB=1,∵∠PAB=30°,∴PB=1,PA=,在RT△EFP中,∵∠EFP=∠PAB=30°,∴PE=,PF=,∴AE==,BF==,∴a=BC=2BF=,b=AC=2AE=,故答案分别为,.(2)结论a2+b2=5c2.证明:如图3中,连接EF.∵AF、BE是中线,∴EF∥AB,EF=AB,∴△FPE∽△APB,∴==,设FP=x,EP=y,则AP=2x,BP=2y,∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2,b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2,c2=AB2=AP2+BP2=4x2+4y2,∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.(3)解:如图4中,在△AGE和△FGB中,,∴△AGE≌△FGB,∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,同理可证△APH≌△BFH,∴AP=BF,PE=CF=2BF,即PE∥CF,PE=CF,∴四边形CEPF是平行四边形,∴FP∥CE,∵BE⊥CE,∴FP⊥BE,即FH⊥BG,∴△ABF是中垂三角形,由(2)可知AB2+AF2=5BF2,∵AB=3,BF=AD=,∴9+AF2=5×()2,∴AF=4.三、中点在直角三角形中的应用【例题】(2017毕节)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD 上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.12【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】先根据直角三角形的性质求出CD的长,再由三角形中位线定理即可得出结论.【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故选A.【同步训练】(2017•黄石)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=,则∠CDE+∠ACD=()A.60°B.75°C.90°D.105°【考点】KS:勾股定理的逆定理;KP:直角三角形斜边上的中线.【分析】根据直角三角形的性质得到BC=2CE=,根据勾股定理的逆定理得到∠ACB=90°,根据三角函数的定义得到∠A=60°,求得∠ACD=∠B=30°,得到∠DCE=60°,于是得到结论.【解答】解:∵CD⊥AB,E为BC边的中点,∴BC=2CE=,∵AB=2,AC=1,∴AC2+BC2=12+()2=4=22=AB2,∴∠ACB=90°,∵tan∠A==,∴∠A=60°,∴∠ACD=∠B=30°,∴∠DCE=60°,∵DE=CE,∴∠CDE=60°,∴∠CDE+∠ACD=90°,故选C.【点评】本题考查了勾股定理的逆定理,直角三角形的性质,三角函数的定义,熟练掌握勾股定理的逆定理是解题的关键.四、中位线在三角形的应用【例题】(2017毕节)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD 上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.12【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】先根据直角三角形的性质求出CD的长,再由三角形中位线定理即可得出结论.【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故选A.【同步训练】(2017湖北宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.五、中点在圆的性质中的应用【例题】(2017广西百色)已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.【考点】MI:三角形的内切圆与内心.【分析】(1)易证∠EOF+∠C=180°,∠DOE+∠B=180°和∠EOF=∠DOE,即可解题;(2)连接OB、OC、OD、OF,易证AD=AF,BD=CF可得DF∥BC,再根据AE长度即可解题.【解答】解:(1)△ABC为等腰三角形,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,∴∠CFE=∠CEF=∠BDO=∠BEO=90°,∵四边形内角和为360°,∴∠EOF+∠C=180°,∠DOE+∠B=180°,∵=,∴∠EOF=∠DOE,∴∠B=∠C,AB=AC,∴△ABC为等腰三角形;(2)连接OB、OC、OD、OF,如图,∵等腰三角形ABC中,AE⊥BC,∴E是BC中点,BE=CE,∵在Rt△AOF和Rt△AOD中,,∴Rt△AOF≌Rt△AOD,∴AF=AD,同理Rt△COF≌Rt△COE,CF=CE=2,Rt△BOD≌Rt△BOE,BD=BE,∴AD=AF,BD=CF,∴DF∥BC,∴=,∵AE==4,∴AM=4×=.【同步训练】(2017呼和浩特)如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧的中点,AC与BD交于点E.(1)求证:DC2=CE•AC;(2)若AE=2,EC=1,求证:△AOD是正三角形;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH的面积.【考点】MR:圆的综合题.【分析】(1)由圆周角定理得出∠DAC=∠CDB,证明△ACD∽△DCE,得出对应边成比例,即可得出结论;(2)求出DC=,连接OC、OD,如图所示:证出BC=DC=,由圆周角定理得出∠ACB=90°,由勾股定理得出AB==2,得出OB=OC=OD=DC=BC=,证出△OCD、△OBC是正三角形,得出∠COD=∠BOC=∠OBC=60°,求出∠AOD=60°,即可得出结论;(3)由切线的性质得出OC⊥CH,求出∠H=30°,证出∠H=∠BAC,得出AC=CH=3,求出AH和高,由三角形面积公式即可得出答案.【解答】(1)证明:∵C是劣弧的中点,∴∠DAC=∠CDB,∵∠ACD=∠DCE,∴△ACD∽△DCE,∴=,∴DC2=CE•AC;(2)证明:∵AE=2,EC=1,∴AC=3,∴DC2=CE•AC=1×3=3,∴DC=,连接OC、OD,如图所示:∵C是劣弧的中点,∴OC平分∠DOB,BC=DC=,∵AB是⊙O的直径,∴∠ACB=90°,∴AB==2,∴OB=OC=OD=DC=BC=,∴△OCD、△OBC是正三角形,∴∠COD=∠BOC=∠OBC=60°,∴∠AOD=180°﹣2×60°=60°,∵OA=OD,∴△AOD是正三角形;(3)解:∵CH是⊙O的切线,∴OC⊥CH,∵∠COH=60°,∴∠H=30°,∵∠BAC=90°﹣60°=30°,∴∠H=∠BAC,∴AC=CH=3,∵AH=3,AH上的高为BC•sin60°=,∴△ACH的面积=×3×=.六、中点在四边形中的性质应用【例题】(2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【考点】KR:勾股定理的证明.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.【同步训练】(2016·山东省德州市·4分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)【考点】平行四边形的判定与性质.【分析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【解答】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,,∴△APC≌△BPD,∴AC=BD∵点E,F,G分别为边AB,BC,CD的中点,∴EF=AC,FG=BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线,属于中考常考题型.七、中点在其它图形中的综合应用【达标训练】1.(2016·陕西·3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对 B.3对 C.4对 D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C .2. (2016·山东省东营市·3分)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD =2.其中正确的结论有( ) A.4个 B .3个 C .2个 D .1个第10题图F E DB CA【知识点】特殊平行四边形——矩形的性质、相似三角形——相似三角形的判定与性质、锐角三角函数——锐角三角函数值的求法【答案】B.【解析】∵矩形ABCD 中,∴AD ∥BC .∴△AEF ∽△CAB ….......................①正确; ∵△AEF ∽△CAB ,∴AF CF =AE BC =12,∴CF =2AF ……………………………②正确; 过点D 作DH ⊥AC 于点H .易证△ABF ≌△CDH (AAS ).∴AF =CH .∵EF ∥DH ,∴AF FH =AE ED=1.∴AF =FH .∴FH =CH . ∴DH 垂直平分CF .∴DF =DC . ……………………………………………③正确;第10题答案图G H F E D A C B设EF =1,则BF =2.∵△ABF ∽△EAF .∴AF EF =BF AF.∴AF =EF •BF =1×2= 2. ∴tan ∠ABF =AF BF =22.∵∠CAD =∠ABF ,∴tan ∠CAD =tan ∠ABF =22.…………④错误. 故选择B.【点拨】本题考查了矩形的性质、相似三角形的判定和性质,图形面积的计算,锐角三角函数值的求法,正确的作出辅助线是解本题的关键.3. (2016·湖北荆门·3分)如图,已知点A (1,2)是反比例函数y=图象上的一点,连接AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点;若△PAB 是等腰三角形,则点P 的坐标是 (﹣3,0)或(5,0)或(3,0)或(﹣5,0) .【考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【分析】由对称性可知O 为AB 的中点,则当△PAB 为等腰三角形时只能有PA=AB 或PB=AB ,设P 点坐标为(x ,0),可分别表示出PA 和PB ,从而可得到关与x 的方程,可求得x ,可求得P 点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A 、B 两点关于O 对称,∴O为AB的中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点的坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).4. (2017广西)如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.5.(2017江苏徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC= 14 .【考点】KX:三角形中位线定理.【分析】根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,BC=2DE,进而由DE的值求得BC.【解答】解:∵D,E分别是△ABC的边AC和AC的中点,∴DE是△ABC的中位线,∵DE=7,∴BC=2DE=14.故答案是:14.6.(2017.江苏宿迁)如图,在△ABC中,∠ACB=90°,点D,E,F分别是AB,BC,CA的中点,若CD=2,则线段EF的长是 2 .【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】首先利用直角三角形斜边上的中线等于斜边的一半求得AB的长,然后根据三角形的中位线定理求解.【解答】解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,即CD是直角三角形斜边上的中线,∴AB=2CD=2×2=4,又∵E、F分别是BC、CA的中点,即EF是△ABC的中位线,∴EF=AB=×2=2,故答案为:2.7.(2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为8 .【分析】根据直角三角形的性质求出DM,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵AM⊥BM,点D是AB的中点,∴DM=AC=3,∵ME=DM,∴ME=1,∴DE=DM+ME=4,∵D是AB的中点,DE∥BC,∴BC=2DE=8,故答案为:8.【点评】本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.(2017哈尔滨)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【考点】MR:圆的综合题.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB ﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.【解答】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.9.(2017黑龙江佳木斯)如图,在△ABC中,AB=BC=8,AO=BO,点M是射线CO上的一个动点,∠AOC=60°,则当△ABM为直角三角形时,AM的长为4或4或4 .【考点】KQ:勾股定理;KH:等腰三角形的性质.【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【解答】解:如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM==4;如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM==4,∴Rt△ABM中,AM==4,综上所述,当△ABM为直角三角形时,AM的长为4或4或4.故答案为:4或4或4.10.(2017•营口)如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是()A.∠ECD=112.5°B.DE平分∠FDC C.∠DEC=30° D.AB=CD【考点】KX:三角形中位线定理;KH:等腰三角形的性质.【分析】由AB=AC,∠C AB=45°,根据等边对等角及三角形内角和定理求出∠B=∠ACB=67.5°.由Rt△ADC中,∠CAD=45°,∠ADC=90°,根据三角形内角和定理求出∠ACD=45°,根据等角对等边得出AD=DC,那么∠ECD=∠ACB+∠ACD=112.5°,从而判断A正确;根据三角形的中位线定理得到FE=AB,FE∥AB,根据平行线的性质得出∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.根据直角三角形的性质以及等腰三角形的性质得到FD=AC,DF⊥AC,∠FDC=45°,等量代换得到FE=FD,再求出∠FDE=∠FED=22.5°,进而判断B正确;由∠FEC=∠B=67.5°,∠FED=22.5°,求出∠DEC=∠FEC﹣∠FED=45°,从而判断C错误;在等腰Rt△ADC中利用勾股定理求出AC=CD,又AB=AC,等量代换得到AB=CD,从而判断D正确.【解答】解:∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°.∵Rt△ADC中,∠CAD=45°,∠ADC=90°,∴∠ACD=45°,AD=DC,∴∠ECD=∠ACB+∠ACD=112.5°,故A正确,不符合题意;∵E、F分别是BC、AC的中点,∴FE=AB,FE∥AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°.∵F是AC的中点,∠ADC=90°,AD=DC,∴FD=AC,DF⊥AC,∠FDC=45°,∵AB=AC,∴FE=FD,∴∠FDE=∠FED=(180°﹣∠EFD)=(180°﹣135°)=22.5°,∴∠FDE=∠FDC,∴DE平分∠FDC,故B正确,不符合题意;∵∠FEC=∠B=67.5°,∠FED=22.5°,∴∠DEC=∠FEC﹣∠FED=45°,故C错误,符合题意;∵Rt△ADC中,∠ADC=90°,AD=DC,∴AC=CD,∵AB=AC,∴AB=CD,故D正确,不符合题意.故选C.【点评】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.。

遇到中点引发六联想

遇到中点引发六联想

遇到中点引发六联想联想是一种非常重要的数学品质。

善于联想,才能更好的寻求解决问题的方法。

同学们当你遇到中点时,你会产生哪些联想呢?相信你阅读下文后,能给你带来一定的启示。

1、等腰三角形中遇到底边上的中点,常联想“三线合一”的性质 例1、如图1所示,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于【 】(2008年安徽省)A .65 B .95 C .125 D .165分析:由AB=AC=5,所以,三角形ABC 是等腰三角形,且边BC 是底边;由点M 为BC 中点,如果连接AM ,则根据等腰三角形的三线合一,得到AM 是底边BC 上的高线,这样就能求出三角形ABC 的面积,而三角形AMC 的面积是等腰三角形面积的一半,在三角形AMC 中利用三角形的面积公式,求可以求得MN 的长。

解:连接AM ,因为,AB=AC=5,所以,三角形ABC 是等腰三角形,且边BC 是底边;因为,点M 为BC 中点,则根据等腰三角形的三线合一,得到AM ⊥BC ,在直角三角形AMC 中,AC=5,CM=21BC=3, 所以,AM=222235-=-CM AC =4,所以,三角形ABC 的面积是:21×BC ×AM=21×6×4=12, 所以,三角形ACM 的面积是:6; 所以,6=21×AC ×MN , 所以,MN=512. 所以,选择C 。

2、直角三角形中遇到斜边上的中点,常联想“斜边上的中线,等于斜边的一半”例2、在三角形ABC中,AD是三角形的高,点D是垂足,点E、F、G分别是BC、AB、AC的中点,求证:四边形EFGD是等腰梯形。

分析:由点E、F、G分别是BC、AB、AC的中点,1AC,根据三角形中位线定理,知道FG∥BC,FE∥AC,FE=21AC,由直角三角形ADC,DG是斜边上的中线,因此,DG=2所以,EF=DG,这样,我们就可以说明梯形EFGD是等腰梯形了。

八年级数学竞赛例题专题讲解22:关于中点的联想

八年级数学竞赛例题专题讲解22:关于中点的联想

专题 22 关于中点的联想阅读与思考线段的中点把线段分成相等的两部分,图形中出现中点,可以引起我们丰富的联想:首先它和三角形的中线紧密联系;若中点是在直角三角形的斜边上,又可以引用“斜边上的中线等于斜边的一半”结论;其次,中点又与中位线息息相关;另外,中点还可以与中心对称相连.解答中点问题的关键是恰当地添加辅助线,如作中线倍长、作直角三角形的斜边上的中线、构造三角形、梯形中位线、构造中心对称图形等,如图所示:例题与求解【例1】如图,△ABC边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP ⊥AD,M为BC的中点,则PM的值为___________. (安徽省竞赛试题)例2题图例1题图F解题思路:∠A的平分线与BP边上的垂线互相重合,通过作辅助线,点P可变为某线段的中点,利用三角形中位线定理解题.【例2】如图,边长为1的正方形EFGH在边长为3的正方形ABCD所在的平面上移动,始终保持EF ∥AB,线段CF,DH的中点分别为M,N,则线段MN的长度为( ) (北京市竞赛试题)A.102B.172C.173D.2103解题思路:连接CG,取CG的中点T,构造三角形中位线、梯形中位线.【例3】如图,在△ABC 中,AB =AC ,延长AB 到D ,使BD =AB ,E 为AB 中点,连接CE ,CD , 求证:CD =2EC . (宁波市竞赛试题)解题思路:图形中有两个中点E ,B ,联想到与中点相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,关键是恰当添加辅助线.【例4】如图1,P 是线段AB 上一点,在AB 的同侧作△APC 和△BPD ,使∠APC =∠BPD ,PC =P A ,PD =PB ,连接CD ,点E ,F ,G ,H 分别是AC ,AB ,BD ,CD 的中点,顺次连接E ,F ,G ,H .(1) 猜想四边形EFGH 的形状,直接回答,不必说明理由;(2) 当点P 在线段AB 的上方时,如图2,在△APB 的外部作△APC 和△BPD ,其他条件不变,(1)中的结论还成立吗?说明理由;(3) 如果(2)中,∠APC =∠BPD =90°,其他条件不变,先补全图3,再判断四边形EFGH 的形状,并说明理由. (营口市中考试题)BAPAFP BG D H CE HGF E PABC D图① 图② 图③解题思路:结论随着条件的改变也许发生变化,但解决问题的方法是一致的,即通过连线,为三角形中位线定理的应用创造条件.例3图CA D【例5】如图,以△ABC 的AB ,AC 边为斜边向形外作直角三角形ABD 和ACE ,且使∠ABD =∠ACE ,M 是BC 的中点,求证:DM =EM . (“祖冲之杯”邀请赛试题)解题思路:显然△DBM 不全等于△ECM ,必须通过作辅助线,构造全等三角形证明DM =EM .【例6】如图,已知△ABC 中,∠ACB =90°,AB 边上的高CH 与△ABC 的两条内角平分线AM ,BN 分别交于P ,Q 两点,PM ,QN 的中点分别为E ,F ,求证:EF ∥AB . (全国初中数学联赛题)解题思路:从图形的形成过程,逐步探索相应结论.将原问题分解为多个小问题.○能 ○力 ○训 ○练 A 级1.如图,若E ,F ,G ,H 分别是四边形ABCD 各边的中点,则四边形EFGH 是____________.(1)如果把条件中的四边形ABCD 依次改为矩形、菱形、正方形或等腰梯形,其他条件不变,那么所得的四边形EFGH 分别为_______________________;(2)如果把结论中的平行四边形EFGH 依次改为矩形、菱形、正方形,那么原四边形ABCD 应具备的条件是_______________________. (湖北省黄冈市中考试题)2.如图,已知AG ⊥BD ,AF ⊥CE ,BD ,CE 分别是∠ABC 和∠ACB 的角平分线,若BF =2,ED =3,GC =4,则△ABC 的周长为_______________. (重庆市竞赛试题)例5图 EDMABC例6图CB D第1题图第2题图C3.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,E 是AC 的中点,若BC =16,DE =5,则AD =______________. (南京市中考试题)4.如图,在△ABC 中,AB =AC ,M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的点,连接DN ,EM ,若AB =13cm ,BC =10cm ,DE =5cm ,则图中阴影部分的面积为________________.(北京市中考试题)5.A ′,B ′,C ′,D ′顺次为四边形ABCD 的各边的中点,下面条件中使四边形A ′B ′C ′D ′为正方形的条件是( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是等腰梯形 D .四边形ABCD 中,AC ⊥BD 且AC =BD 6.若等腰梯形的两条对角线互相垂直,中位线长为8cm ,则该等腰梯形的面积为( ) A .16cm 2 B .32cm 2 C .64cm 2 D .112cm 27.如图,梯形ABCD 中,AD ∥BC ,E ,F 分别是BD ,AC 的中点,若AD =6cm ,BC =18cm ,则EF 的长为( )A .8cmB .7cmC .6cmD .5cm8.如图,在梯形ABCD 中,AD ∥EF ∥GH ∥BC ,AE =EG =GB ,AD =18,BC =32,则EF +GH =( )A .40B .48C .50D .56 (泰州市中考试题)B第8题图 第9题图9.如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于点D ,M 是BC 的中点,求证:DM =12AB .第4题图第3题图A第7题图10. 如图,在△ABC 中,BD =CE ,BE ,CD 的中点分别是M ,N ,直线MN 分别交AB ,AC 于点P ,Q ,求证:AP =AQ .11.在图1至图3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ; (2)将图1中的CE 绕点C 顺时针旋转一个锐角,得到图2,求证:△FMH 是等腰直角三角形; (3)将图2中的CE 缩短到图3的情况,△FMH 还是等腰直角三角形吗?(不必说明理由) (2009年河北省中考试题)12.在六边形ABCDEF 中,AB ∥DE ,BC ∥EF ,CD ∥F A ,AB +DE =BC +EF ,A 1,B 1,D 1,E 1分别是边AB ,BC ,DE ,EF 的中点,A 1D 1=B 1E 1.求证:∠CDE =∠AFE .第12题图F E第10题图图1AHC (M )DEBFG (N )G图2AHC DEBFNMAHCDE图3BFG MNB 级1.如图,正方形ABCD 两条对角线相交于点E ,∠CAD 的平分线AF 交DE 于点G ,交DC 于点F ,若GE =24,则FC =_________________.2.如图,四边形ABCD 的对角线AC ,BD 相交于点F ,M ,N 分别是AB ,CD 的中点,MN 分别交BD ,AC 于点P ,Q ,且∠FPQ =∠FQP ,BD =10,则AC =_________. (重庆市竞赛试题)3.如图,在△ABC 中,∠BAC =120°,以AB ,AC 为边分别向形外作正三角形ABD 和正三角形ACE ,M 为AD 的中点,N 为AE 的中点,P 为BC 的中点,则∠MPN =_________. (北京市竞赛试题)4.如图,已知A 为DE 的中点,设△DBC ,△ABC ,△EBC 的面积分别为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( )A .S 2=32(S 1+S 3)B .S 2=12(S 3―S 1)C .S 2=12(S 1+S 3)D .S 2=32(S 3―S 1)5.如图,在图形ABCD 中,AB ∥DC ,M 为DC 的中点,N 为AB 的中点,则 ( ) A .MN >12(AD +BC ) B .MN <12(AD +BC )C .MN =12(AD +BC ) D .无法确定MN 与12(AD +BC )的关系6.如图,凸四边形ABCD 的面积是a ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,那么图中的阴影部分的面积为( )A .18aB .16aC .14aD .12a(江苏省竞赛试题)7.如图,在△ABC 中,D 为AB 的中点,分别延长CA ,CB 到点E ,F ,使DE =DF ,过E ,F 分别作CA ,CB 的垂线,相交于点P .求证:∠P AE =∠PBF . (全国初中数学联赛试题)第5题图DC M第2题图CF第1题图F第3题图 第4题图D第6题图ABE第7题图EPF8.如图,锐角△ABC 中,作高BD 和CE ,过顶点B ,C 分别作DE 的垂线BF 和CG ,求证:EF =DG .(全俄奥林匹克数学竞赛试题)9. 如图,在△ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且∠MDN =90°,如果BM 2+CN 2=DM 2+DN 2.求证:AD 2=14(AB 2+AC 2). (北京市竞赛试题)10.已知:△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°.如图1,连接DE ,设M 为DE 的中点.(1)求证:MB =MC ;(2)设∠BAD =∠CAE ,固定△ABD ,让Rt △ACE 绕顶点A 在平面内旋转到图2的位置,试问:MB =MC 是否还成立?请说明理由. (江苏省竞赛试题)图2图1第9题图 ABC D第8题图BG11.已知△OAB ,△OCD 都是等腰直角三角形,∠AOB =∠COD =90°. (1) 如图1,点C 在OA 边上,点D 在OB 边上,连接AD ,BC ,M 为线段AD 的中点,求证:OM ⊥BC . (2) 如图2,在图1的基础上,将△OCD 绕点O 逆时针旋转α(α为锐角),M 为线段AD 的中点.①求证:OM =12BC ;②OM ⊥BC 是否还成立?若成立,请证明;若不成立,请说明理由.图1图2BBODC12.如图1,在△ABC 中,点P 为BC 边的中点,直线a 绕顶点A 旋转,若点B ,P 在直线a 的异侧,BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,连接PM ,PN .(1)延长MP 交CN 于点E (如图2). ①求证:△BPM ≌△CPE ; ②求证:PM =PN .(2)若直线a 绕点A 旋转到如图3的位置时,点B ,P 在直线a 的同侧,其他条件不变,此时PM =PN 还成立吗?若成立,请证明;若不成立,请说明理由.(3) )若直线a 绕点A 旋转到与BC 边平行的位置时,其他条件不变.请直接判断四边形MBCN 的形状及此时PM =PN 是否成立.不必说明理由. (沈阳市中考试题)图3图2图1BB。

提分微课01 关于中点的联想

提分微课01 关于中点的联想

11.如图W1-11,在矩形ABCD中,AB=3,
BC=2,H是AB的中点,将△CBH沿CH折叠,
点B落在矩形内点P处,连接AP,则
tan∠HAP=
.
图W1-11
[答案]4
3
[解析]如图所示,连接 PB 交 CH 于点 O.
∵ H 是 AB 的中点,∴ HB=12AB=32.∵ 将△ CBH
沿 CH 折叠,点 B 落在矩形内点 P 处,
6.如图W1-6,在边长为4的等边三角形ABC中,D,E分别为AB,BC的中点,EF⊥AC于点
F,G为EF的中点,连接DG,则DG的长为
.
图W1-6
[答案] 19
2
[解析]连接 DE, ∵ D,E 分别为 AB,BC 的中点,∴ DE∥AC,2DE=AC=4,EC=2, ∵ EF⊥AC,∴ DE⊥EF.∴ △ DEG 为直角三角形, 在 Rt△ EFC 中,EC=2,∠C=60°, ∴ EF= 3. ∵ G 为 EF 的中点,∴ EG= 23. 在 Rt△ DEG 中,DE=2,EG= 23,由勾股定理得,DG= ������������2 + ������������2= 219. 故答案为 219.
图W1-14
解:(1)证明:如图①,连接AD. ∵ ∠BAC=90°,AB=AC, ∴ ∠BDA=∠EDF=90°, ∴ ∠BDE+∠EDA=∠EDA+∠ADF. ∴ ∠BDE=∠ADF. 又∵ D为BC的中点,△ABC是等腰直角三角形, ∴ BD=AD,∠B=∠DAC=45°. ∴ △BDE≌△ADF(ASA).∴ BE=AF.
类型二 构造中位线法
4.如图 W1-4,在△ ABC 中,延长 BC 至 D,使得 [答案]B

看到中点可以联想到的知识点

看到中点可以联想到的知识点

看到中点可以联想到的知识点
1. 嘿,看到中点能想到啥?那可不就是一场比赛的中途呀!就像跑步比赛,跑到中点时,哎呀,这前面的努力有没有白费可就看这了!比如咱参加的那次长跑,到中点时真觉得累得不行了,但咬咬牙还是坚持下去了。

2. 看到中点,会不会想到人生旅程的中间呀?这时候回头看看走过的路,哇塞,感慨好多啊!就像朋友小李,在中年这个中点时刻,常常回忆过去,他说那都是珍贵的记忆呢!
3. 哎呀呀,说到中点,不就是那部电视剧中间的精彩转折嘛!剧情到了中点,各种冲突都爆发出来了。

就像那部超火的剧,看到中点的时候,人物关系变得特别复杂,看得人揪心啊!
4. 你们说,中点是不是像计划执行到一半的时候呀?这时候得看看进度咋样了。

就像上次我们做项目,到了中点发现有些滞后,赶紧调整策略呢!
5. 嘿,中点不就是一天时间的中午嘛!这可是个重要的节点呢。

比如每天到了中午,都得思考要吃啥好吃的,这可太让人纠结了!
6. 看到中点啊,还能想到友谊的中间阶段呢。

相处到中点的时候,彼此的了解已经很多了,是更加亲密还是会有矛盾呢?像我和那谁,在中点的时候真的经历了一些考验呢!
我的观点结论:中点是个很有意思的概念,能让我们联想到好多不同的方面和经历呀!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于中点的几点联想
一、与中点有关的知识点:1、 2、 3、
二、由中点产生的联想:
三、例题:(1)如图,△ABC 中,D 为BC 中点,E 为AC 上一点,AD 、BE 相交于点F ,且BF=AC 。

求证:EA=EF 。

(2)如图,在梯形ABCD 中,E 为CD 中点,EF 垂直AB 于F ,且AB=6,EF=8,求梯形的面积。

(3)如图,△ABC 中,BD ⊥AC,CE ⊥AB,M 为BC 中点,且MN ⊥ED,求证:N 为ED 中点。

B
C
B C
M
4.如图24-1,已知点D 在AC 上,ABC ∆和ADE ∆都是等腰直角三角形,点M 为EC 的中点. (1)求证:BMD ∆为等腰直角三角形.
图24-1
(2)将ADE ∆绕点A 逆时针旋转︒45,如图24-2,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由.
图24-2
(3)将ADE ∆绕点A 逆时针旋转︒135,如图24-3,
(1)中的“BMD ∆为等腰直角三角形”成立吗? 请说明理由.
图24-3
5.在□ABCD 中,
(4).已知正方形ABCD 和等腰Rt BEF ∆,BE=EF ,∠BEF=90︒,按图1放置,使点F 在BC 上,取DF 的中点G ,联结EG 、CG.
(1)探索EG 、CG 的数量关系和位置关系并证明;
(2)将图1中△BEF 绕B 点顺时针旋转45︒,再联结DF ,取DF 中点G (如图2),问(1)中的结论是否仍然成立?证明你的结论;
(3)将图1中△BEF 绕B 点转动任意角度(旋转角在0︒到90︒之间),再联结DF ,取DF 的中点G (如图3),问(1)中的结论是否仍然成立?证明你的结论.
图1 图2 图3
(第25题图)
如图:正方形ABCD 和正方形AEFG 有公共的顶点A ,连接BG, DE, M 为DE 的中点,连AM,
1. 图1中AE ,AG 分别与AB , AD 重合时,AM 和BG 的数量和位置关系分别是( )和( )
2. 如图2中将正方形AEFG 绕A 逆时针旋转∂(090o
o
<∂<)时1中的结论是否成立,试证明。

3. 若图3中将正方形AEFG 绕A 逆时针旋转∂(90180o
o
<∂<)时1中的结论是否成立,试证明。

如有
侵权请
联系
告知
删除,感谢你们的配合!
D
A G
F E C B
G F
E
C
B A D
D
G F E C B A A E B C D G P
M F F
M
P
G
D
C B E
A F
M
G
D
C
B E
A。

相关文档
最新文档