第4章 糖类代谢2
《医学生物化学》第4章糖代谢重点难点
《医学生物化学》第4章糖代谢重点难点《医学生物化学》第4章糖代谢-重点难点一、糖类的生理功用:①氧化供能:糖类是人体最主要的供能物质,占全部供能物质供能量的70%;与供能有关的糖类主要是葡萄糖和糖原,前者为运输和供能形式,后者为贮存形式。
②作为结构成分:糖类可与脂类形成糖脂,或与蛋白质形成糖蛋白,糖脂和糖蛋白均可参与构成生物膜、神经组织等。
③作为核酸类化合物的成分:核糖和脱氧核糖参与构成核苷酸,DNA,RNA等。
④转变为其他物质:糖类可经代谢而转变为脂肪或氨基酸等化合物。
二、糖的无氧酵解:糖的无氧酵解是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。
其全部反应过程在胞液中进行,代谢的终产物为乳酸,一分子葡萄糖经无氧酵解可净生成两分子ATP。
糖的无氧酵解代谢过程可分为四个阶段:1.活化(己糖磷酸酯的生成):葡萄糖经磷酸化和异构反应生成1,6-双磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-双磷酸果糖(F-1,6-BP)。
这一阶段需消耗两分子ATP,己糖激酶(肝中为葡萄糖激酶)和6-磷酸果糖激酶-1是关键酶。
2.裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解为两分子3-磷酸甘油醛,包括两步反应:F-1,6-BP→磷酸二羟丙酮+3-磷酸甘油醛和磷酸二羟丙酮→3-磷酸甘油醛。
3.放能(丙酮酸的生成):3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括五步反应:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。
此阶段有两次底物水平磷酸化的放能反应,共可生成2×2=4分子ATP。
丙酮酸激酶为关键酶。
4.还原(乳酸的生成):利用丙酮酸接受酵解代谢过程中产生的NADH,使NADH重新氧化为NAD+。
即丙酮酸→乳酸。
三、糖无氧酵解的调节:主要是对三个关键酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶进行调节。
动物生化四章糖类代谢
6. 琥珀酸脱氢生成延胡索酸
• 琥珀酸脱氢酶催化琥珀酸氧化成为延胡索酸 • 该酶结合在线粒体内膜上,是三羧酸循环中唯一与内膜结合
的酶。而其他三羧酸循环的酶则都是存在线粒体基质中的 • 这酶含有铁硫中心和共价结合的FAD(电子受体),来自琥
珀酸的电子通过FAD和铁硫中心,然后进入电子传递链到O2 ,只能生成2分子ATP。
• 磷酸丙糖异构酶催化磷酸二羟丙酮转变为3-磷酸甘 油醛,此反应也是可逆的。
到此,1分子葡萄糖生成2分子3-磷酸甘油醛,通过两次磷酸化作用消耗2分子ATP
6. 3-磷酸甘油醛氧化反应
• 由3-磷酸甘油醛 脱氢酶催化3-磷 酸甘油醛氧化脱 氢并磷酸化生成 含有1个高能磷 酸键的1,3-二磷 酸甘油酸。
• 在缺氧条件下丙酮酸被还原为乳酸(lactate)称为糖 酵解
• 有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA 进入三羧酸循环,生成CO2和H2O。
糖酵解过程
• 糖酵解分为两个阶段共10个反应 • 每个分子葡萄糖经第一阶段共5个反应,消耗2个分子ATP为耗能过程 • 第二阶段5个反应生成4个分子ATP为释能过程。
• 消耗了两分子水 • 形成12个ATP分子
• 4对氢经线粒体内递氢体系传递 • NADH+H+氧化成3分子ATP(3×3=9) • FADH2则生成2分子ATP • 三羧酸循环本身只产生一个ATP(GTP)分子
• 循环是糖、脂肪、氨基酸最终氧化分解产生能量的 共同途径
• 循环中许多成分可以转变成其他物质
• 反应脱下的氢和 电子转给脱氢酶 的辅酶NAD+生成 NADH+H+,磷酸 根来自无机磷酸 。
7. 1,3-二磷酸甘油酸的高能磷酸键转移反应
生物化学课件糖类代谢(共84张PPT)
丙酮酸氧化脱羧
• 基本反应: • 糖酵解生成的丙酮酸可穿过线粒体膜进
入线粒体内室。在丙酮酸脱氢酶系的催 化下,生成乙酰辅酶A。
丙酮酸脱氢酶系
CO
2
丙酮酸 脱羧酶
TPP
硫辛酸
二氢硫辛酸 脱氢酶
FAD
乙酰硫辛酸
二氢硫辛酸
个葡萄糖分子,以(14)糖苷键聚合 而成。呈螺旋结构,遇碘显紫蓝色。 • 支链淀粉中除了(14)糖苷键构成糖 链以外,在支点处存在(16)糖苷键 ,分子量较高。遇碘显紫红色。
(2).纤维素
• 由葡萄糖以(14)糖苷键连接而成 的 直链,不溶于水。
(3).几丁质(壳多糖)
• N-乙酰-D-葡萄糖胺,以(14)糖苷键 缩合而成的线性均一多糖。
四、三羧酸循环(TCA) 五、磷酸戊糖途径(PPP/HMP)
六、其它糖进入单糖分解的途径
动物细胞
磷酸戊糖途径 糖酵解
丙酮酸氧化
三羧酸循环
胞饮 中心体
细胞膜 细胞质 线粒体 高尔基体
细胞核
吞噬 分泌物
内质网 溶酶体 细胞膜
植物细胞
细胞壁 叶绿体
有色体 白色体 液体 晶体
一、葡萄糖的主要分解代谢途径
H2C-COOH
H2C-COOH HO-C-COOH
H2C-COOH
HC-COOH C-COOH
H2C-COOH
HC-COOH C-COOH
H2C-COOH
HO-C-COOH H C-COOH H2C-COOH
HO-C-COOH H C-COOH H2C-COOH
CO -COOH CH -COOH CH2-COOH
第二单元 物质代谢和能量代谢 第四章 糖代谢
第二单元物质代谢和能量代谢第四章糖代谢二、生化术语1.中间代谢:通常指消化吸收的营养物质和体内原有的物质在一切组织和细胞中进行的各种化学变化。
2.糖原(glycogen):动物细胞中葡萄糖的贮存形式。
肌糖原主要供给肌肉收缩时能量的需要,肝糖原主要维持血糖的稳定。
3.血糖:血液中的葡萄糖。
其水平的稳定对确保细胞执行正常功能具有重要意义(正常人的血糖值为每100ml血含有80~120mg葡萄糖)。
4.糖酵解(glycolysis):在无氧条件下,由葡萄糖氧化分解转化为丙酮酸的过程。
5.发酵(fermentation):指葡萄糖及其他有机物的厌氧降解过程,生成乳酸称乳酸发酵,生成乙醇称生醇发酵。
6.丙酮酸脱氢酶系(pyruvate dehydrogenase complex):一种多酶复合体,分布在线粒体内膜上,催化丙酮酸氧化脱羧,生成乙酰辅酶A。
在大肠杆菌中,这种复合体包括3种酶(丙酮酸脱氢酶E1、和6种辅因子(TPP+、硫辛酸、辅酶A、FAD、NAD 二氢硫辛酸转乙酰基酶E2、二氢硫辛酸脱氢酶E3)+、Mg2+)。
7.三羧酸循环(tricarboxylic acid cycle 简称TCA循环):以乙酰CoA和草酰乙酸缩合成柠檬酸后再经一系列反应又重新生成草酰乙酸的环状途径。
该途径的第一个代谢物是柠檬酸,所以又称柠檬酸循环;柠檬酸含有三个羧基,故称三羧酸循环;德国科学家H.Krebs发现,又称Krebs循环。
8.回补反应(anaplerotic reaction):三羧酸循环的中间代谢物也是其他物质生物合成的前体,当它们为了同化的目的而被移去时,必须进行“补充”或“填充”,才能维持TCA循环的正常进行。
如丙酮酸在丙酮酸羧化酶的催化下生成草酰乙酸反应。
9.乙醛酸循环(glyoxylate cycle):存在于植物和微生物中,是将2个乙酰CoA转变成一分子草酰乙酸的环状途径。
循环中有乙醛酸,所以称乙醛酸循环。
糖代谢第二次PPT课件
还原型谷胱甘肽 A
2G-SH
AH2 氧化型谷胱甘肽
G-S-S-G
NADP+ NADPH+H+
➢还原型谷胱甘肽是体内重要的抗氧化剂,可
以保护一些含-SH基的蛋白质或酶免受氧化剂
尤其是过氧化物的损害。
➢在红细胞中还原型谷胱甘肽更具有重要作用。
它可以保护红细胞膜蛋白的完整性。
➢蚕豆病
--
➢ 第二阶段:非氧化反应 包括一系列基团转移。
--
35
1. 磷酸戊糖生成
H C O H 6-磷酸葡萄糖脱氢酶
C =O
H C OH
NADP+
H C OH
HO C H O
HO C H O
H2O
H C OH HC
NADPH+H+ ⑴
H C OH HC
C H 2O P 6-磷酸葡萄糖
C H 2O P
6-磷酸葡萄糖酸内酯
6-磷酸葡萄糖酸脱氢酶
NADP+
CO2
H
CCHH22OOHH CC = OO C OH
NADPH+H+ ⑵
H C OH
C H 2O P 5-磷酸核酮糖
--
CCOOO — H C OH HHO C HH H C OH H C OH
C H 2O P 6-磷酸葡萄糖酸
5-磷酸核糖
36
NADP+
NADPH+H+
* 部位:胞液及线粒体
--
4
一、有氧氧化的反应过程
第一阶段:酵解途径
第二阶段:丙酮酸的氧化脱羧 第三阶段:三羧酸循环 第四阶段:氧化磷酸化
H2O
第四章糖代谢ppt课件
⑥结合糖 糖与非糖物质的结合物。
糖脂 (glycolipid): 糖蛋白 (glycoprotein):
三、糖的主要生理功能
1.氧化供能:50~70% 2.构成组织细胞的基本成分 3.转变为其它成分
三、糖的主要生理功能 氧化供能:50~70% 构成组织细胞的基本成分 转变为其它成分
目录
四、糖的消化与吸收
H 2 C O PO 3 H 2
6-磷酸葡萄糖
(glucose-6-phosphate)
H
O PO 3 H 2
CH
H C OH
H C OH
HO C H
H C OH
CH 2 OH
1-磷酸葡萄糖
(glucose 1-phosphate)
葡萄糖是体内糖代谢的中心
(1)可转变成其它的糖 (2)主要供能物质 (3)可转变为氨基酸和脂肪酸
第四章糖代谢ppt课件
物质代谢:
合成代谢
分解代谢
分解代谢的三个阶段
第一阶段:大分子分解为基本组成单位 第二阶段:基本分子转变为代谢中间产物,
可有少量能量的释放 第三阶段:乙酰CoA氧化生成CO2和H2O
可生成大量ATP
合成代谢的一般特点 由不同酶催化,要消耗ATP和NADPH。
代谢调节:
代谢途径: A E1 B E2 C E3 通过关键酶实现
(D-glucose)
6 CH 2 OH
5
OH
4
OH
OH
3
1C
2
OH
OH
α-D-吡喃葡萄糖
6CH 2 OH O OH
OH OH
C H
OH
β-D-吡喃葡萄糖
葡萄糖及其磷酸酯
高中生物 第四章 糖类代谢
P 果糖-6-P
P 果糖-6-P
P
P
果糖-1,6-2P
P
P
果糖-1,6-2P
P 磷酸二羟丙酮
3-磷酸甘油醛 P
Pi
P 3-磷酸甘油醛
P
P 1,3-二磷酸甘油酸
P
P 1,3-二磷酸甘油酸
P 3-磷酸甘油酸
P 3-磷酸甘油酸
P 2-磷酸甘油酸
P 2-磷酸甘油酸
P
磷酸烯醇式丙酮酸 (PEP)
P
大部分步骤可以逆糖酵解途 径进行,但有三步不可逆反应,需 绕道而行。
糖的异生作用
(四 )丙酮酸的去路
•乳酸发酵
在无氧条 件下,葡萄糖 分解为乳酸, 并释放出少量 能量的过程。
在无氧 条件下,葡 萄糖分解为 乙醇,并释 放少量能量 的过程
•乙醇发酵
四、三羧酸循环
三羧酸循环在线粒体中 进行,在糖酵解中形成的丙酮 酸先进入线粒体中,在有氧的 条件下被分解。
HO-C-COOH H C-COOH H2C-COOH
CO -COOH CH -COOH CH2-COOH
CO -COOH CO2 CO -COOH
CH -COOH
CH2
CH2-COOH
CH2-COOH
CO -COOH
CH2 CH2-COOH
CO2
Pi
H2O
H2C-COOH HO-C-COOH
五 种因 辅子 助
TPP 硫辛酸 CoA-SH FAD NAD
(二) 三羧酸 循环的反应历程
H2C-COOH HO-C-COOH
H2C-COOH
H2C-COOH HO-C-COOH
H2C-COOH
HC-COOH C-COOH
生物化学教案第四章糖代谢
生物化学教案第四章糖代谢第四章糖代谢教案第一节糖的分类及生理功能一、教学目标1.了解糖的分类。
2.了解糖在生物体内的生理功能。
3.掌握糖对人体能量供给的重要性。
二、教学内容1.糖的分类及结构特点。
2.糖的生理功能。
3.糖对人体能量供给的重要性。
三、教学步骤1.导入引入本节课的主题,让学生回顾上一章关于生物大分子的知识,形成知识链条。
2.知识讲解(1)糖的分类及结构特点a.单糖:葡萄糖、果糖等b.双糖:蔗糖、乳糖、麦芽糖等c.多糖:淀粉、糖原、纤维素等d.结构特点:含有2个或多个羟基,是羟基代谢的主要物质。
(2)糖的生理功能a.能量供给:糖是生物体内重要的能量源,提供细胞代谢所需的能量。
b.结构组成:糖是构成细胞壁、核酸、骨骼、关节软骨等的重要成分。
c.调节体内物质平衡:糖可调节体内的水、电解质平衡,调节血液渗透压。
d.保护细胞膜:糖能稳定细胞膜结构,防止脂质氧化。
(3)糖对人体能量供给的重要性a.葡萄糖是人体最重要的糖类,是细胞内氧化还原反应的重要底物。
b.人体细胞通过葡萄糖与氧气进行氧化反应,产生大量的能量。
3.案例分析提供一个案例,由学生分组讨论糖对人体能量供给的重要性,并列举一些与糖代谢相关的疾病。
4.小结总结本节课的重点内容,强调糖作为生物体内重要能量源的重要性。
四、教学方法1.讲授结合讨论,激发学生的思考和探索能力。
2.案例分析,让学生将知识运用到实际问题中。
五、教学评价1.学生对糖的分类和结构特点有一定的了解。
2.学生能够理解糖对人体能量供给的重要性。
3.学生在案例分析中能够灵活运用所学知识。
六、教学改进1.可以增加实验环节,让学生亲自操作提取糖,并观察糖的相关特性。
2.可以引入一些实际生活中与糖代谢相关的例子,让学生更好地理解知识。
以上是关于第四章糖代谢的教案,希望能对您有所帮助!。
糖代谢 第四章
6-磷酸果糖 ATP 反应④、⑤:
1,6-二磷酸果糖
3-磷酸甘油醛
+
磷酸二羟丙酮
糖酵解途径的10步反应结构式
P
糖酵解途径的10步反应
2.糖酵解途径的第二阶段 NAD NADH+H
+ +
反应⑥ 3-磷酸甘油醛
1,3-二磷酸甘油酸 3-磷酸甘油酸
ATP
反应⑦ 1,3-二磷酸甘油酸
ADP
反应⑧ 3-磷酸甘油酸 反应⑨ 2-磷酸甘油酸 反应⑩
四、乳酸循环
糖异生概述 1、概念:由非糖物质转变为葡萄糖的过 程称为糖异生。 2、进行部位:肝脏(肾) 3、原料:丙酮酸、乳酸、生糖氨基酸、 甘油
一、糖异生的途径
(Gluconeogenesis Pathway) 从丙酮酸生成葡萄糖的具体反应过程 称为糖异生途径。 糖异生的途径基本上是糖酵解的逆行过程
糖的有氧氧化(Aerobic Oxidation) 葡萄糖或糖原在有氧条件下彻底氧化 成CO2和H2O,并产生大量能量的过程称为 糖的有氧氧化。
⑪ 糖有氧氧化的反应过程
⑫ 糖有氧氧化的调节 ⑬ 糖有氧氧化生成的ATP ⑭ 巴斯德效应(Pasteur效应)
⑪ 糖有氧氧化的反应过程 分三阶段: 葡萄糖 → 丙酮酸(糖酵解途径) 丙酮酸 → 乙酰CoA 胞液进行 线粒体进行 线粒体
3.限速酶:已糖激酶
6-磷酸果糖激酶-1
丙酮酸激酶
糖酵解途径的10步反应
1.糖酵解的第一阶段 已糖激酶
反应① 葡萄糖
ATP ADP
6-磷酸葡萄糖
或者:糖原 → 1-磷酸葡萄糖 → 6-磷酸葡萄糖
反应② 6-磷酸葡萄糖
6-磷酸果糖
糖酵解途径的10步反应结构式
糖类代谢PPT课件
吸收速率
不同糖类的吸收速率不同, 如葡萄糖的吸收速率较快, 果糖较慢。
吸收部位
小肠是主要的吸收部位, 但结肠也有一定的吸收功 能。
血糖的调节
胰岛素与胰高血糖素
饱腹感与饥饿感
胰岛素降低血糖,胰高血糖素升高血 糖。
饱腹感激素如GLP-1和饥饿感激素如 ghrelin对食欲的调节。
肝糖原与肌糖原
肝糖原分解为葡萄糖进入血液以维持 血糖稳定,肌糖原则储存葡萄糖。
感谢观看
THANKS
三羧酸循环过程中释放的能量为34分子ATP,其中1分子ATP来自乙酰 CoA与草酸乙酸结合的反应,其余33分子ATP来自其他三个步骤催化的 反应。
氧化磷酸化
氧化磷酸化定义
氧化磷酸化是线粒体内进行的一系列的氧化反应和磷酸化反应,是细胞产生能量的主要方 式。
氧化磷酸化步骤
氧化磷酸化包括两个步骤,分别是电子传递链和ATP合成酶催化的反应。电子传递链将 NADH和FADH2的电子传递给氧,生成H+,同时生成ATP。
02
糖原的合成需要限速 酶
糖原的合成酶是糖原合成的关键酶, 其活性受到多种因素的调节,如激素 、血糖水平等。因此,糖原的合成速 度受到限制。
03
糖原的合成与分解相 互制约
糖原的合成与分解是相互制约的过程 。在血糖水平升高时,糖原的合成增 加,而在血糖水平降低时,糖原的分 解加速。
蔗糖和淀粉的合成
蔗糖是植物体内主要的贮存光合产物 的形式,也是植物体内运输的主要形 式。蔗糖合成酶是蔗糖合成的关键酶。
化的反应。
三羧酸循环
01
三羧酸循环定义
三羧酸循环是线粒体内进行的一系列的氧化反应,是细胞产生能量的主
要方式。
第四章 糖类代谢
第四章糖类代谢一名词解释糖异生/ 糖酵解途径/ 磷酸戊糖途径/ UDPG(1)糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖和糖原的过程。
(2)糖酵解途径:糖酵解途径指糖原或葡萄糖分子分解至生成丙酮酸的阶段,此反应过程一般在无氧条件下进行,又称为无氧分解。
(3)磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路。
磷酸戊糖途径在细胞质中进行。
全部反应分为氧化阶段和非氧化阶段。
(4)UDPG:尿苷二磷酸葡萄糖,是糖原合成酶的糖基供体。
二填空题1.合成糖原的前体分子是UDPG,糖原分解的产物是1-磷酸葡萄糖。
2.1分子葡萄糖转化为2分子乳酸净生成2分子ATP;2分子乳酸异生为葡萄糖要消耗6分子ATP。
3.糖酵解过程中有3个不可逆的酶促反应,这些酶是己糖激酶、磷酸果糖激酶和丙酮酸激酶。
4.糖酵解抑制剂碘乙酸主要作用于3-磷酸甘油醛脱氢酶。
5.调节三羧酸循环最主要的酶是柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶复合体。
6.三碳糖、六碳糖与七碳糖之间相互转变的糖代谢途径是磷酸戊糖途径。
7 磷酸戊糖途径可分为2阶段,分别称为氧化反应阶段和非氧化阶段,其中两种脱氢酶是葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶,它们的辅酶是NADP。
8.丙酮酸激酶是糖酵解途径的关键酶;丙酮酸羧化酶是糖异生途径的关键酶。
9.TCA循环中有两次脱羧反应,分别是由异柠檬酸脱氢酶和α-酮戊二酸脱氢酶复合体催化。
10.TCA循环中发生底物水平磷酸化的化合物是琥珀酰CoA。
催化琥珀酸形成延胡索酸的酶是___琥珀酸脱氢酶,此酶的辅因子是FAD。
11在糖酵解中提供高能磷酸基团,使ADP磷酸化成A TP的高能化合物是1,3-二磷酸甘油酸和磷酸烯醇式丙酮酸12.参与丙酮酸氧化脱羧反应的辅酶为TPP,硫辛酸,FAD,NAD和CoA。
《糖类代谢 》课件
糖类代谢的调节机制
神经内分泌调节
自主神经和内分泌系统协同 作用,调节血糖水平。
糖原质量调节
胰岛素和葡萄糖调节糖原的 磷酸化和脱磷酸化,维持内 部状态稳定。
代谢功能修复
呼吸氧化磷酸化代谢过程中 少量ATP产生,缺氧和能量 短缺可以通过ANS调整血糖 使细胞正常代谢。
糖类代谢和常见疾病
糖尿病
糖代谢失调导致的慢性代谢性 疾病。
肥胖症
正常代谢功能失衡导致能量摄 入和消耗之间的差异过大,引 起体重增加的症状。
牙齿腐烂
口腔中的细菌在糖类的作用下 筛选出有害酸类,对牙釉质进 行破坏性作用。
总结和提问
糖类
是人体能量的主要来源之一。
调节机制
保证身体的正常运转。
代谢
失调会导致疾病。
知识提问
你是否了解糖类代谢造成的疾病?
2
小肠
胰岛素用于调节血糖水平,确保身体的正常功能。
3
血液循环
单糖进入血液后,运送到细胞中使机体产生活动所需的能量。
糖类代谢的重要途径
1 糖酵解
将糖转化为能量产生的过程。
2 糖异生
将非糖类物质转化为糖,提供血糖持续稳 定的途径。
3 糖元循环
4 糖原质量调控
保证葡萄糖内糖原合成、 分解和使用之间的动态平衡状态。
糖类代谢
糖类代谢是我们身体的基本代谢过程之一,对于人体能量供应及调节具有重 要的意义。
糖类的分类和组成
单糖
葡萄糖、果糖、半乳糖是最常 见的单糖。
双糖
蔗糖、乳糖、麦芽糖是最常见 的双糖。
多糖
淀粉、糖原、纤维素是最常见 的多糖。
糖类的消化和吸收
1
嘴巴和胃
口腔中的唾液淀粉酶在碳水化合物的消化过程中尤为重要。胃酸破坏酶,短小的 多糖和双糖会被分解成葡萄糖和单糖。
第四章糖代谢
第四章糖代谢重点内容:1.糖代谢的途径2.糖代谢的生理意义3.要注意的几个知识点糖的代谢开始于口腔,结束于小肠。
—糖的代谢途径主要有:糖酵解,有氧氧化,磷酸戊糖途径1.糖代谢的途径1)糖的无氧酵解途径(糖酵解途径):是在无氧情况下,葡萄糖分解生成乳酸的过程。
它是体内糖代谢最主要的途径。
糖酵解途径包括三个阶段:第一阶段:引发阶段。
葡萄糖的磷酸化、异构化:①葡萄糖磷酸化成为葡萄糖-6-磷酸,由己糖激酶催化。
为不可逆的磷酸化反应,酵解过程关键步骤之一,是葡萄糖进入任何代谢途径的起始反应,消耗1分子ATP.②葡萄糖-6-磷酸转化为果糖-6-磷酸,磷酸己糖异构酶催化;③果糖-6-磷酸磷酸化,转变为1,6-果糖二磷酸,由6磷酸果糖激酶催化,消耗1分子ATP,是第二个不可逆的磷酸化反应,酵解过程关键步骤之二,是葡萄糖氧化过程中最重要的调节点。
第二阶段:裂解阶段。
1,6-果糖二磷酸折半分解成2分子磷酸丙糖(磷酸二羟丙酮和3-磷酸甘油醛),醛缩酶催化,二者可互变,最终1分子葡萄糖转变为2分子3-磷酸甘油醛。
$第三阶段:氧化还原阶段。
能量的释放和保留:①3-磷酸甘油醛的氧化和NAD+的还原,由3-磷酸甘油醛脱氢酶催化,生成1,3-二磷酸甘油酸,产生一个高能磷酸键,同时生成NADH用于第七步丙酮酸的还原。
②1,3-二磷酸甘油酸的氧化和ADP的磷酸化,生成3-磷酸甘油酸和ATP.磷酸甘油酸激酶催化。
③3-磷酸甘油酸转变为2-磷酸甘油酸。
④2-磷酸甘油酸经烯醇化酶催化脱水,通过分子重排,生成具有一个高能磷酸键的磷酸烯醇式丙酮酸。
⑤磷酸烯醇式丙酮酸经丙酮酸激酶催化将高能磷酸键转移给ADP,生成烯醇式丙酮酸和ATP,为不可逆反应,酵解过程关键步骤之三。
⑥烯醇式丙酮酸与酮式丙酮酸互变。
⑦丙酮酸还原生成乳酸。
一分子的葡萄糖通过无氧酵解可净生成2个分子三磷酸腺苷(ATP),这过程全部在胞浆中完成。
2)糖的有氧氧化途径:葡萄糖在有氧条件下彻底氧化成水和二氧化碳称为有氧氧化,有氧氧化是糖氧化的主要方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NAD+ +H+ + NAD+ +H
乙酰硫辛酸 硫辛酸乙 酰转移酶
二氢硫辛酸
O CoASH CH3-C-SCoA
丙酮酸脱氢酶系
(多酶复合体、位于线粒体内膜)
三种酶单体: 丙酮酸脱羧酶( E1 ); 硫辛酸乙酰基转移酶( E2 ), 二氢硫辛酸脱氢酶( E3 )。 六种辅助因子:
TPP ,硫辛酸, NAD+,FAD, HSCoA 和 Mg2+ 。
第四章 糖类代谢 Metabolism of carbohydrate
主要内容和要求:
建立起物质代谢和能量代谢的整体
概念,进而讨论糖的分解与合成,重点 掌握以葡萄糖为代表的单糖的分解与合 成的主要途径。
思考
第一节 新陈代谢的概念和特点
新陈代谢(metabolism)是生命最基本的特征之一,泛指生物与周 围环境进行物质交换和能量交换的过程。生物一方面不断地从周围环境中 摄取能量和物质,通过一系列生物反应转变成自身组织成分,即所谓同化 作用(assimilation);另一方面,将原有的组成成份经过一系列的生化反 应,分解为简单成分重新利用或排出体外,即所谓异化作用(
二、丙酮酸的去路
糖酵解途径 葡萄糖
(有氧或无氧)
丙酮酸
(无氧)
乳酸 乙醇
(有氧) 乙酰 CoA
三羧酸 循环
糖 类 物 质 的 无 氧 氧 化 分 解
丙酮酸的有氧氧化及葡萄糖的有氧分解
O
CH3-C-SCoA
CoASH CO2
葡萄糖
(EPM)
COOH
C==O
丙酮酸脱氢酶系
丙酮酸
NAD+ NADH+H+
需要能量 新 陈 代 谢 能 量 代 谢 物 质 代 谢
释放能量
分解代谢(异化作用)
大分子 小分子
糖的生理功能
糖类是指多羟基醛或酮及其衍生物。糖类在 生物体的生理功能主要有:
① 氧化供能:糖类占人体全部供能量的70%。 ② 作为结构成分:作为生物膜、神经组织等的组分。 ③ 作为核酸类化合物的成分:构成核苷酸等。 ④ 转变为其他物质:转变为脂肪或氨基酸等化合物。
糖的代谢概况
• • • • • • • • 一.动物体内糖的来源 1.小肠吸收 2.由非糖物质转化而来 糖异生,FFA(反刍动物) 二.动物体内糖的代谢 1.葡萄糖通过代谢,供全身利用; 2. 合成糖原 3.转变成 脂肪或AA
二、糖代谢概况
消化吸收 非糖物 质转化 肝糖原 的分解
血液循环(血糖)
+ADP
+ATP
•底物磷酸化:当底物脱氢或脱水或发生重排,可 以生成高能磷酸键,转移给ADP,是之生成ATP。
~
ADP
ATP
底物磷酸化
4.还原(reduction)—乳酸的生成
利用丙酮酸接受酵解代谢过程中产生的NADH, 使NADH重新氧化为NAD+,以确保反应的继续进行。
NADH+H+ ⑿
NAD+
2.裂解(lysis)——磷酸丙糖的生成:
一分子F-1,6-BP裂解为两分子可以互变的磷酸 丙糖(triose phosphate),包括两步反应:
F-1,6-BP 裂解为3-磷酸甘油醛和磷酸二羟丙酮
„„(4)
磷酸二羟丙酮异构为3-磷酸甘油醛
„„(5)
第二阶段: 磷酸己糖的裂解
裂解(lysis)
焦磷酸硫胺素(TPP)在丙酮酸脱羧中的作用
H+ C 丙酮酸
CCH3-C-COOH
OH
CO2
硫辛酸的氢载体作用和酰基载体作用
S S C C
(CH2)4COO(CH2)4COO-
C
氧化型硫辛酸
S
C
-2H
+2H
HS
(CH2)4 COO-
C
C
乙酰二氢硫辛酸
HS HS
C
C
C
二氢硫辛酸
泛酸和 辅酶 A (CoASH)
六、其它糖进入单糖分解的途径
糖的分解供能
葡萄糖在体内主要是分解供能。 这个过程需要经过几十步化学反应 才完成,最终生成6分子CO2 和6分子 H2O,同时释放出大量的能量来供给
机体利用。
葡萄糖的主要分解代谢途径
糖酵解 葡萄糖
(有氧或无氧)
丙酮酸
(无氧)
乳酸 乙醇
(有氧) 6-磷酸葡萄糖 乙酰 CoA
酰基结合 位点 SH
维生素pp和尼克酰胺腺嘌呤二核苷酸( NAD+ )
递氢体作用:
NAD++2H
NADH+H+
R
NAD+:
R=H
NADP+: R=PO3H2
维生素B2和黄素腺嘌呤二核苷酸(FAD)
递氢体作用:FAD+2H
FADH2
三、三羧酸循环(tricarboxylic
1、三羧酸循环的化学历程
生醇发酵: G 丙酮酸
乙醛
乙醇
(一)糖酵解反应过程 1. 活化(activation)
活化阶段是指葡萄糖经磷酸化和异构反应生 成1,6-二磷酸果糖(FDP)的反应过程。该过程共 由三步化学反应组成。
葡萄糖磷酸化生成6-磷酸葡萄糖(G-6-P)
G-6-P异构为6-磷酸果糖(F-6-P)
„„(1)
„„(2)
acid cycle, TCA 循环)
2、三羧循环及葡萄糖有氧氧化的化学计量和能量计量
3、 三羧循环的生物学意义
4、 三羧酸循环的调控 5、草酰乙酸的回补反应(自学)
3、三羧酸循环
三羧酸循环(柠檬酸循环或Krebs循环)是 指在线粒体中,乙酰CoA首先与草酰乙酸缩合生 成柠檬酸,然后经过一系列的代谢反应,乙酰 基被氧化分解,而草酰乙酸再生的循环反应过 程。 三羧酸循环在线粒体中进行。一分子乙酰 CoA氧化分解后共可生成12分子ATP,故此阶段 可生成2×12=24分子ATP。
磷酸戊糖 途径
三羧酸 循环
一、糖酵解
1.概念 糖酵解(glycolysis): 是指葡萄糖在无氧条件下,细胞胞液中,分 解生成乳酸并释放出能量的过程和体外生醇 发酵相似。 糖酵解:在缺氧情况下,葡萄糖生成乳酸的过程。
酵解途径:由葡萄糖分解转变成丙酮酸的过程。该
途 径 也 称 作 Embden-Meyethof-Parnas 途 径 , 简 称 EMP途径。
dissimilation ),通过上述过程不断地进行自我更新。
特点:特异、有序、高度适应和灵敏调节、代谢途径逐步进行
新陈代谢的研究方法
示踪法(化合物示踪、同位素示踪)
抗代谢物和酶抑制剂的利用 体内试验(in vivo)和体外试验(no vivo)
新陈代谢的概念及内涵
小分子 大分子
合成代谢(同化作用)
O
CoASH
CH3-C-SCoA
柠檬酸 草酰乙酸酸
三羧酸循环 (TCA)
NADH
NAD+
柠檬酸的 生成阶段
顺乌头酸
苹果酸
异柠檬酸
NAD+
NADH +CO2
H2O
草酰乙酸 再生阶段
延胡索酸
氧化脱 羧阶段
-酮戊二酸
FADH2
NAD+
NADH +CO2
琥珀酸
FAD
GTP
琥珀酰CoA
TCA第一阶段:柠檬酸生成
氧化分解供能
有 氧 氧 化 无 氧 氧 化 磷 酸 戊 糖 途 径
糖 类 物 质
合成糖原
肝 糖 原 肌 糖 原
合成肌体重要物质
转化成非糖物质
第二节 单糖的分解代谢
一、生物体内单糖的主要分解代谢途径及细胞定位
二、糖酵解(EMP)
三、丙酮酸的去路:无氧降解和有氧降解途径 四、三羧酸循环(TCA)
五、磷酸戊糖途径(PPP)
F-6-P再磷酸化为1,6-二磷酸果糖( F-1,6-BP )
„„(3)
第一阶段:葡萄糖的磷酸化
活化(activation)
ATP ADP
异构酶
葡萄糖激酶
ATP
磷酸果 糖激酶
ADP
激酶:从ATP转移磷酸基团 到受体上的酶。需要Mg2+
• 己糖激酶是糖酵解途径的第一个限速酶
磷酸果糖激酶是糖酵解途径的最重要的限 速酶
3
兑换率 1:3 兑换率 1:2
9ATP 2ATP
12ATP
NADH
1 FADH2
葡萄糖完全氧化产生的ATP
酵解阶段: 2 ATP 2 1 NADH 丙酮酸氧化:2 1NADH 三羧酸循环:2 1 GTP 2 3 NADH 2 1 FADH2
兑换率 1:3 兑换率 1:3 (或2)
*
NADH+H+ +CO2
由一分子葡萄糖氧化分解产生两分子丙酮酸,故可生成两分子乙酰 CoA ,两分子CO2和两分子(NADH+H+),可生成2×3分子ATP 。
反应为不可逆;丙酮酸脱氢酶系是糖有氧氧化途径的关键酶之一。
丙酮酸脱氢酶系
CO2
丙酮酸 脱羧酶 硫辛酸 二氢硫辛 酸脱氢酶
NAD+
TPP
FAD
醛缩酶
异构酶
3.放能(releasing energy)——丙酮酸的生成
3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等 反应生成丙酮酸,包括六步反应。
3-磷酸甘油醛脱氢并磷酸化生成1,3-二磷酸甘油酸
„„(6)
1,3-二磷酸甘油酸脱磷酸,将其交给ADP生成ATP
„„(7)
3-磷酸甘油酸异构为2-磷酸甘油酸