人教B版数学必修1第三章3.1.2 指数函数课 件

合集下载

第三章-3.1.2-函数的单调性高中数学必修第一册人教B版

第三章-3.1.2-函数的单调性高中数学必修第一册人教B版

(2) =
2 2 −3
.

【解析】因为 =
2 2 −3

3

= 2 − ,且函数的定义域为 −∞, 0 ∪ 0, +∞ ,
(切勿认为定义域为)
3

3

又函数 = 2和 = − 在区间 −∞, 0 上均单调递增,所以 = 2 − 在区间
−∞, 0 上单调递增.
同理可得 = 2
3
[ , 4),
2
4, +∞ .1源自又 = 在 ∈ −∞, 0 和(0,
=
25
]上单调递减,所以由复合函数的单调性可知函数
4
1
3
的单调递增区间为[ , 4)和
4+3− 2
2
4, +∞ .
例13 设 是定义在上的函数,对, ∈ ,恒有
( + ) = ⋅ ≠ 0, ≠ 0 ,且当 > 0时,0 < < 1.

2 +
2 +
→2.作差.
∵ > > 0,2 > 1 > −,
∴ − > 0,2 − 1 > 0,2 + > 0,1 + > 0,

− 2 −1
1 + 2 +
> 0,→4.定号.
即 1 > 2 ,∴ 函数 在 −, +∞ 上单调递减.→5.下结论.
递增
【解析】A是假命题,“无穷多个”不能代表“所有”“任意”;
以 =
1
为例,

在 −∞, 0 和 0, +∞ 上均单调递减,但在整个区间上并不是减

2020版数学同步新导练人教B必修一课件:第三章 基本初等函数(Ⅰ) 3.1 3.1.2(二)

2020版数学同步新导练人教B必修一课件:第三章 基本初等函数(Ⅰ) 3.1 3.1.2(二)

+1)<f(2x)的 x 的取值范围是( )
A.(-∞,-1]
B.(0,+∞)
C.(-1,0)
D.(-∞,0)
解析:D 将函数 f(x)的图象画出来,观察图象可知会有
2x<0, 2x<x+1,
解得 x<0,所以满足 f(x+1)<f(2x)的 x 的取值范围是
(-∞,0),故选 D.
二、填空题 7.若函数 f(x)=2|x-a|(a∈R)满足 f(1+x)=f(1-x),且 f(x)在 [m,+∞)单调递增,则实数 m 的最小值等于________. 解析:由 f(1+x)=f(1-x)得函数 f(x)关于 x=1 对称,故 a =1,则 f(x)=2|x-1|,由复合函数单调性得 f(x)在[1,+∞)上递增, 故 m≥1,所以实数 m 的最小值等于 1. 答案:1
值范围为( )
A.(-∞,0)
B.(-∞,1)
C.(0,1)
D.(1,+∞)
解析:C 由题意 f(x)=-f(-x),即22xx-+a1=-22- -xx+ )(2x

1)

0

a

1

f(x)

2x+1 2x-1
,由
f(x)

2x+1 2x-1
>3
,得
1<2x<2,0<x<1,故选 C.
解析:∵f(x)为奇函数,g(x)为偶函数,又 f(x)-g(x)=12x, ∴-f(x)-g(x)=12-x,即f-xf-xg-xg=x2=-x2,x,①② 解 ∴得g(0f)(=x)=-21-,x-2g(2-x,2)g=(x-)=18- 7,2xf+ (12)2=-x-,34, ∴g(-2)<g(0)<f(1). 答案:g(-2)<g(0)<f(1)

高一上学期数学人教B版学必修一第三章3.1.2指数函数课件(共17张PPT)

高一上学期数学人教B版学必修一第三章3.1.2指数函数课件(共17张PPT)
例题学习,初步应用模型
例1.比较下列各题中两个值的大小 :
① 1.72.5 ,1.73 ;

0.80.1,0.80.2 ;
③已知
(4)a (4)b 77
较a与b的大小
分析:运用对指数函数的图象及性质进行解答:直 接用性质,数形结合方法。
小结反思 本节课学习了哪些知识?
定义:y=ax (a>0,且a≠1)
y=ax 这类函数又叫什么函数呢?
指数函数!
用数学语言下定义 如何科学定义指数函数?
y a一x 般地,形如
(a0,且a 1)的函数叫做指数
函数,其中x是自变量 。
在本定义中要注意要点有?
⑴自变量:x在指数位置 ⑵定义域:R ⑶a的范围:0<a<1,a>1
⑷对应法则:y ax
用数学语言下定义
Байду номын сангаас
为什么有限制条件:a0,且a 1?
y与x有怎样的函数关系?
(1)如果 时我可以由一个复制成二个,
0<a<1,在R上是 函数 (2)如果 ,
, 比如
,这时对于
如如何何科 科学学定定义义指指数数函函等数数??,在实数范围内函数值不存在;
比较下列各题中两个值的大小 :
问题2: 庄子曰:一尺之棰,日取其半 ,万世不竭。
比较下列各题中两个值的大小 :
y 1 x 3
y
y 3x y 2x
y ax
(0 a 1)
1 1
0
x
0
1
1
0x
x
数形结合,深入理解 •思考:这两组图象有何共同特征?
1.定义域: R
2.值域: (0,+∞) 3.过定点(0,1) 即x=0 时,y=1 4.a>1,R上是增 函数 0<a<1,在R上是减 函数

高中数学人教B版必修一课件3.1.2b指数函数的性质应用

高中数学人教B版必修一课件3.1.2b指数函数的性质应用

R [1,+∞)
(-∞,2]单调递减 [2,+∞)单调递增
以x=2为对称轴
小结: 通过指数函数的性质和函数图象变换的知识, 可以帮助我们研究一些函数的定义域、值域、 单调性;甚至于一些更详细的函数特征。
做学案卷
局限:图象仍然不能直接画出时?
例3.求出下列函数的定义域、值域、单调区间.
1 x
( 6 )y 3
y=ax(0<a<1)
(0,1)
y=1 O ⑴定义域: (2)值域 y=1 O
(0,1)
R (0,+∞) 非奇非偶函数 (3)奇偶性 (4)单调性 在R上是增函数 在R上是减函数 (5)特征: 当x=0时,y=1即过点(0,1) 以x轴为渐近线 当x>0时,0<y<1 当x>0时,y>1 当x<0时,y>1 当x<0时,0<y<1
例2.画出函数图象,找出以下5个函数的联系, 研究(2),(3),(5)的函数性质
(1)y 2 ( 2 )y 2 2 |x 2| |x| ( 4 )y 2 ( 5 )y 2
x
x
( 3 )y | 2 2 |
x
y
y=1
(5) 特征: 过点(2,1)
O
x
定义域 值域 单调性
(7 )y 2
x 2 2x 5
1 ( 8 )y ( ) 3
x 1
练习:求出下列函数的定义域、值域、单调区间
(1)y 5
x 1
(2)y 2
x 2 2x 3
1 (3)y ( ) 2
3 2x x 2
小结: 通过指数函数性质和复合函数的方法可以帮 助我们研究一些较复杂的函数。但是缺点就 是较为抽象。

最新人教版高一数学必修1(B版)全册完整课件

最新人教版高一数学必修1(B版)全册完整课件

阅读与欣赏
聪明在于学习,天才由于积累
2.1 函数
2.1.1 函数
2.1.3 函数的单调性
2.1.5 用计算机作函数的图象(选学)
2.2.3 待定系数法
2.4 函数与方程
2.4.1 函数的零点
本章小结
第三章 基本初等函数(Ⅰ)
3.1.2 指数函数
3.2.2 对数函数
3.3 幂函数
本章小结
附录1 科学计算自由软件——SCILAB简介
后记
第一章 集合
最新人教版高一数学必修1(B版)全 册完整课件
1.1 集合与集合的表示方法 1.1.1 集合的概念
最新人教版高一数学必修1(B版)全 册完整课件
最新人教版高一数学必修1(B版) 全册完整课件目录
0002页 0019页 0052页 0105页 0130页 0161页 0206页 0251页 0332页 0378页 0404页 0430页 0447页 0449页 0467页 0485页 0487页
ቤተ መጻሕፍቲ ባይዱ
第一章 集合
1.1.2 集合的表示方法
1.2.2 集合的运算

人教B版数学必修1第三章3.1.2 指数函数课 件优秀课件资料

人教B版数学必修1第三章3.1.2 指数函数课 件优秀课件资料
一 ·复习
am an a m n
am an
amn (a 0)
(am )n amn
(ab)m ambm
规定:
零的零次幂没有意义
a0 1(a 0)
零的负整数次幂没有意义
an
1 an
(a
0, n
N )
二、引入:
❖ 平方根、立方根的概念
22=4 (-2)2=4
-2和2叫4 的平方根
23=8
11、没有一种不通过蔑视、忍受和奋斗就可以征服的命运。 8. 对于世界,我微不足道,但对于我自己,我就是全部。 15.壮志与毅力是事业的双翼。
27、牛吃草,马吃料,牛的享受最少,出力最大,所以还是当一头黄牛最好。我甘愿为党、为人民当一辈子老黄牛。 10、成功需要付出代价,不成功需要付出更高的代价。 8.不是井里没水,是挖的不够深。不是成功来的慢,而是放弃的太快。所以成功不是靠奇迹,而是靠轨迹。失败的人习惯了放弃,而成功的人 永远选择了坚持!
1
1
1
1
1
1
⑤(a 2 b 2)(a 2 b 2)(a 2)2 (b 2)2
a b
1
1
11
⑥(a 2 b 2)2 a b 2a 2b 2
幂的运算同样满足乘法公式 及运算律。
例2.计算
例3.化简下列各式
2 1
(1)
(
1
5x 3 y2
x 1
y
1 2
)(
5
1
x3
1
y6
)
4
6
m m1 2
a
0, (当n为偶数) 0.
观察发现
5 (2)5 -2 4 (3)4 3
210 32 3 312 81

高中数学第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算教案新人教B版必修1

高中数学第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算教案新人教B版必修1

3。

1。

1 实数指数幂及其运算错误!教学分析在初中,学生已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把整数指数推广到分数指数,进而推广到有理数指数幂,再推广到无理指数幂,并将幂的运算性质由整数指数幂推广到实数指数幂.本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)等,同时,充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.2.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.3.掌握根式与分数指数幂的互化,渗透“转化"的数学思想.通过运算训练,养成学生严谨治学、一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.4.能熟练地运用实数指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用实数指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)实数指数幂性质的灵活应用.课时安排2课时错误!第1课时导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题.思路 2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题.推进新课错误!提出问题错误!讨论结果:(1)整数指数幂的运算性质:a n=a·a·a·…·a,a0=1(a≠0);00无意义;a-n=错误!(a≠0);a m·a n=a m+n;(a m)n=a mn;(a n)m=a mn;(ab)n=a n b n.其中n、m∈N+.(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①错误!=a错误!,②错误!=a错误!,③错误!=a错误!,④错误!=a错误!结果的a的指数是2,4,3,5分别写成了错误!,错误!,错误!,错误!,形式上变了,本质没变.根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).(3)利用(2)的规律,错误!=5错误!,错误!=7错误!,错误!=a错误!,错误!=x错误!。

高中数学人教B版必修一课件3.1.1实数指数幂及其运算(42张PPT)

高中数学人教B版必修一课件3.1.1实数指数幂及其运算(42张PPT)

(1)(n a)n=___a___(n>1,且 n∈N*);
n (2)
an=

a n为奇数, |a| n为偶数.
5.分数指数幂的运算法则
1
(1)an
n =____a____(a>0);
m
(2)a n
=__(_n_a_)_m__=____n_a_m__(a>0,m、n∈N*,且mn 为既
约分数);
m
(3)a- n
=____(a>0,m、n∈N*,且mn 为既约分数).
预习效果展示
1.如果 a>0,b>0,m、n 都是有理数,则下列各式错误的
是( )
A.(am)-n=a-mn
B.ama-n=am-n
C.(ab)n=an·b-n [答案] D
D.am+an=am+n
[解析] 根据有理指数幂的运算法则可知选项D错误.
3.1 指数与指数函数 第三章
3.1.1 实数指数幂及其运算 第三章
课前自主预习
情境引入导学
2010年11月1日,全国人口普查全面展开,而2000年我国 约有13亿人口.我国政府现在实行计划生育政策,人口年增 长率较低.若按年增长率1%计算,到2010年底,我国人口将 增加多少?到2020年底,我国人口总数将达到多少?如果我 们放开计划生育政策,年增长率是2%,甚至是5%,那么结果 将会是怎样的呢?会带来灾难性后果吗?
×-760+80.25×4 2+(3 2×
3)6-
-3223;
(2) a3b2·3 ab2 (a>b,b>0).
4 a
3 b4·
b a
[解析]
(1)原式=3213
3
+24
1
×24
+22×33-3213

人教B版高中数学必修一 《函数及其表示方法》函数的概念与性质PPT课件(第1课时函数的概念)

人教B版高中数学必修一 《函数及其表示方法》函数的概念与性质PPT课件(第1课时函数的概念)
(4)A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B 中元素对应.
24
[解] (1)对于A中的元素0,在f的作用下得0,但0不属于B,即A 中的元素0在B中没有元素与之对应,所以不是函数.
(2)对于A中的元素±1,在f的作用下与B中的1对应,A中的元素 ±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一 元素对应,是“多对一”的对应,故是函数.
43
1.判断两个函数相同 函数的定义主要包括定义域和定义域到值域的对应法则,因此, 判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完 全一致的两个函数才算相同.
44
2.对函数定义的再理解 (1)函数的定义域必须是非空实数集,因此定义域为空集的函数不 存在.如 y= 11-x+ x-3就不是函数;集合 A 中的元素是实数,即 A≠∅且 A⊆R.
5若 fx是实际问题的解析式,则应符合实际问题,使实际问题 有意义.
34
2.下列函数的定义域不是 R 的是( )
A.y=x+1
B.y=x2
C.y=1x
D.y=2x
C [A 中为一次函数,B 中为二次函数,D 中为正比例函数,定
义域都是 R;C 中为反比例函数,定义域是{x|x≠0},不是 R.]
35
17
(1)C [选项 A 中,由于 f(x)= x2=|x|,g(x)=x 两函数对应法则不 同,所以它们不是同一函数;
选项 B 中,由于 f(x)=x 的定义域为 R,g(x)=xx2的定义域为{x|x≠0}, 它们的定义域不相同,所以它们不是同一函数;
选项 C 中,f(x)=3 x3=x,g(x)=x 的定义域和对应法则完全相同, 所以它们是同一函数;

高一数学人教B版必修1教学教案:指数函数含解析

高一数学人教B版必修1教学教案:指数函数含解析

3.1.2 指数函数及其性质(1)—教学设计一、三维目标1.知识与技能掌握指数函数的概念、图象和性质.能借助计算机软件或计算器画指数函数的图象.能由指数函数图象探索并理解指数函数的性质.2.过程与方法学习的过程中体会研究具体函数的过程和方法,如具体到一般,数形结合的方法等.通过探讨理解指数函数y=a x中为什么要规定a>0,a≠1?明确数学概念的严谨性和科学性.3.情感态度与价值观通过实例引入指数函数,激发学生学习指数函数的兴趣,逐步培养学生的应用意识.让学生了解数学来自生活,数学又服务于生活的哲理.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力.教学过程中,通过现代信息技术的合理应用,让学生探究、理解和掌握指数函数的性质,体会具体到一般数学讨论方式及数形结合的思想.二、教学重点指数函数的概念和性质.三、教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质.四、教具准备多媒体课件、投影仪、大屏幕、自制ppt课件.五、教学过程1.总体设计:引入—讲授新课—探究性质-课堂练习—课时小结—课后作业2.具体安排:以问题为载体,带领学生探求新知(一)以生活实例,引入新课(5分钟)(多媒体课件展示)在本章的开头,问题1中时间x 与GDP 值y 的对应关系y=1.073x问题(2)中时间t 和碳14含量P 的对应关系P =(21)5730t你们能从这两个解析式中发现他们有什么共同特征呢?我们发现:在关系式y=1.073x和P =(21)5730t中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式y=1.073x和P =(21)5730t都是函数关系式,且函数y=1.073x和函数P =(21)5730t =[(21)57301]t ,在形式上是相同的,解析式的右边都是指数式,且自变量都在指数位置上. 师:你能从以上两个解析式中抽象出一个更具有一般性的函数模型吗? (生交流,师总结得出如下结论)生:用字母a 来代替1.073与(21)57301.结论:函数y =1.073x和函数P =(21)5730t都是函数y =a x 的具体形式.函数y =a x是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数.(引入新课,书写课题) (二)讲解新课1.指数函数的概念(10分钟) (师结合引入,给出指数函数的定义)一般地,函数y =a x (a >0,a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R .合作探究:(1)定义域为什么是实数集? (生思考,师适时点拨,给出如下解释)结论:在a >0的前提下,x 可以取任意的实数,所以函数的定义域是R .合作探究:(2)在函数解析式y =a x中为什么要规定a >0,a ≠1?(生思考,师适时点拨,给出如下解释,并明确指数函数的定义域是实数R ) 结论:这是因为(ⅰ)a =0时,当x >0,a x 恒等于0;当x ≤0,a x 无意义.(ⅱ)a <0时,例如a =-41,x =-41,则a x =(-41)41无意义.(ⅲ)a =1时,a x 恒等于1,无研究价值. 所以规定a >0,且a ≠1.合作探究:(3)判断下列函数是否是指数函数:①y =2·3x ;②y =3x -1;③y =x 3;④y =-3x ;⑤y =(-4)x ;⑥y =πx ;.生:只有⑥为指数函数.跟踪训练1、函数y =(a 2-3a +3)a x 是指数函数,求a 的值.【方法指导】指数函数的概念是一个“形式上”的定义,也就是只有符合y =a x (a >0,且a ≠1)形式的函数是指数函数.【解析】由y =(a 2-3a +3)a x是指数函数,可得⎩⎨⎧a 2-3a +3=1,a >0,且a ≠1,解得⎩⎨⎧a =1或a =2,a >0,且a ≠1.∴a =2.方法引导:指数函数的形式就是y =a x ,a x 的系数是1,其他的位置不能有其他的系数,但要注意化简以后的形式.有些函数貌似指数函数,实际上却不是,例如y =a x +k (a >0,且a ≠1,k ∈Z );有些函数看起来不像指数函数,实际上却是指数函数,例如y =a -x (a >0,且a ≠1),这是因为它的解析式可以等价化归为y =a -x =(a -1)x ,其中a -1>0,且a -1≠1.如y =23x 是指数函数,因为可以化简为y =8x .要注意幂底数的范围和自变量x 所在的部位,即指数函数的自变量在指数位置上.2.指数函数的图象和性质探究(15分钟)师:指数函数y =a x ,其中底数a 是常数,指数x 是自变量,幂y 是函数值.底数a 有无穷多个取值,不可能逐一研究,研究方法是什么呢?(生思考)师:要抓住典型的指数函数,分析典型,进而推广到一般的指数函数中去.那么选谁作典型呢?先来研究a >1的情况生:函数y =2x 的图象. 师:作图的基本方法是什么? 生:列表、描点、连线.合作探究:(1)我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过用计算机完成以下表格,并且用计算机画出函数y =2x 的图象 生:x -3 -2.5 -2-1.5 -10 0.5 1 1.5 2 2x y 811412124借助多媒体手段画出图象.师:研究函数要考虑哪些性质?生:定义域、值域、单调性、奇偶性等.师:通过图象和解析式分析函数y =2x 的性质应该如何呢?生:图象左右延伸,说明定义域为R ;图象都分布在x 轴的上方,说明值域为R +;图象上升,说明是增函数;不关于y 轴对称也不关于原点对称,说明它既不是奇函数也不是偶函数.师:再研究0<a <1的情况,类似地,从中选择一个具体函数进行研究,可选什么函数?生:我们选择函数y =(21)x 的图象作典型.合作探究:(2)用计算机完成以下表格并绘出函数y =(21)x 的图象. 生:x-3 -2 -1.5 -1 0 11.5 22.5 y =(21)x84211214作出函数y =(21)x 的图象.师:函数y =2x 的图象与函数y =(21)x 的图象有什么关系?可否利用y =2x 的图象画出函数y =(21)x 的图象?生:两个函数的图象关于y 轴对称,可以通过函数y =2x 的图象画出函数y =(21)x 的图象。

【B版】人教课标版高中数学必修一《指数函数》教学教案1-新版

【B版】人教课标版高中数学必修一《指数函数》教学教案1-新版

3.1.2 指数函数一、教学目标:知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。

领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点:教学重点:指数函数的概念、图象和性质。

指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一。

作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础;同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

指数函数是学生完全陌生的一类函数, 对于这样的函数应怎样进行较为系统的理论研究是学生面临的难题。

三、学情分析:学生已经学习了函数的知识,,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。

学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。

通过教师启发式引导,学生自主探究完成本节课的学习。

高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。

有好奇心、好胜心、进取心,富有激情、思维活跃。

四、教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第三章3.1.2节《指数函数》。

根据我所任教的学生的实际情况,我将《指数函数》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。

高中数学(人教新课标B版)教学设计 必修一:3.1.2 指数函数

高中数学(人教新课标B版)教学设计 必修一:3.1.2 指数函数

示范教案整体设计教学分析有了前面的知识储备,我们就可以顺理成章地学习指数函数的概念,作指数函数的图象以及研究指数函数的性质.本节安排的内容蕴涵了许多重要的数学思想方法,如数形结合的思想(用指数函数的图象研究指数函数的性质)等.同时,编写时充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质,体会具体到一般数学讨论方式及数形结合的思想.2.让学生了解数学来自生活,数学又服务于生活的哲理.培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力.3.通过训练点评,让学生更能熟练指数幂运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:指数函数的概念和性质及其应用. 教学难点:指数函数性质的归纳、概括及其应用. 课时安排 2课时教学过程第1课时导入新课思路1.用清水漂洗衣服,若每次能洗去污垢的34,写出存留污垢y 与漂洗次数x 的关系式,它是函数关系式吗?若是,请计算若要使存留的污垢不超过原有的164,则至少要漂洗几次?教师引导学生分析,列出关系式y =(14)x ,发现这个关系式是个函数关系且它的自变量在指数的位置上,这样的函数叫做指数函数,引出本节课题.思路2.教师复习提问指数幂的运算性质,并要求学生计算23,20,2-2,1621324149,27,16-.再提问怎样画函数的图象,学生思考,分组交流,写出自己的答案8,1,14,2,9,17,先建立平面直角坐标系,再描点,最后连线.点出本节课题.推进新课 新知探究 提出问题1.一种放射性物质不断衰减为其他物质,每经过一年剩留量约是原来的84%,求出这种物质经过x 年后的剩留量y 与x 的关系式是__________.2.某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成十六个,依次类推,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的关系式是__________.讨论结果:1.y =0.84x 2.y =2x 提出问题1你能说出函数y =0.84x 与函数y =2x 的共同特征吗?2你是否能根据上面两个函数关系式给出一个一般性的概念?3为什么指数函数的概念中明确规定a>0,a≠1?4为什么指数函数的定义域是实数集?5如何根据指数函数的定义判断一个函数是否是一个指数函数?请你说出它的步骤.活动:先让学生仔细观察,交流讨论,然后回答,教师提示点拨,及时鼓励表扬给出正确结论的学生,引导学生在不断探索中提高自己应用知识的能力,教师巡视,个别辅导,针对学生共性的问题集中解决.对于问题(1),看这两个函数的共同特征,主要是看底数和自变量以及函数值. 对于问题(2),一般性的概念是指用字母表示不变化的量即常量. 对于问题(3),为了使运算有意义,同时也为了问题研究的必要性.对于问题(4),在(3)的规定下,我们可以把a x 看成一个幂值,一个正数的任何次幂都有意义.对于问题(5),使学生回想指数函数的定义,根据指数函数的定义判断一个函数是否是一个指数函数,紧扣指数函数的形式.讨论结果:(1)对于两个解析式我们看到每给自变量x 一个值,y 都有唯一确定的值和它对应,再就是它们的自变量x 都在指数的位置上,它们的底数都大于0,但一个大于1,一个小于1.0.84与2虽然不同,但它们是两个函数关系中的常量,因为变量只有x 和y.(2)对于两个解析式y =0.84x 和y =2x ,我们把两个函数关系中的常量用一个字母a 来表示,这样我们得到指数函数的定义:一般地,函数y =a x (a >0,a≠1,x ∈R )叫做指数函数,其中x 叫做自变量,函数的定义域是实数集R .(3)a =0时,x >0时,a x 总为0;x≤0时,a x 没有意义. a <0时,如a =-2,x =12,a x =(-2)21=-2显然是没有意义的.a =1时,a x 恒等于1,没有研究的必要.因此规定a >0,a≠1.此解释只要能说明即可,不要深化.(4)因为a >0,x 可以取任意的实数,所以指数函数的定义域是实数集R .(5)判断一个函数是否是一个指数函数,一是看底数是否是一个常数,再就是看自变量是否是一个x 且在指数位置上,满足这两个条件的函数才是指数函数.提出问题1前面我们学习函数的时候,根据什么思路研究函数的性质,对指数函数呢? 2前面我们学习函数的时候,如何作函数的图象?说明它的步骤., 3利用上面的步骤,作函数y =2x 的图象.4利用上面的步骤,作函数xy )21( 的图象.5观察上面两个函数的图象各有什么特点,再画几个类似的函数图象,看是否也有类似的特点?6根据上述几个函数图象的特点,你能归纳出指数函数的性质吗?7把y =2x 和xy )21(=的图象,放在同一坐标系中,你能发现这两个图象的关系吗? 8你能证明上述结论吗?9能否用y =2x 的图象画xy )21(=的图象?请说明画法的理由.10什么是限制函数?活动:教师引导学生回顾需要研究的函数的那些性质,共同讨论研究指数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,投影展示画得好的部分学生的图象,及时评价学生,补充学生回答中的不足.学生独立思考,提出研究指数函数性质的思路,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对指数函数性质的认识,推荐代表发表本组的集体的认识.讨论结果:(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的性质.(2)一般是列表,描点,连线,借助多媒体手段画出图象,用计算机作函数的图象. (3)列表. x … -3 -2 -1 0 1 2 3 … y =2x…1814121248…(4)列表. x … -3 -2 -1 0 1 2 3 … y =(12)x…8421121418…作图如下图.(5)通过观察上图,可知图象左右延伸无止境,说明定义域是实数.图象自左至右是上升的,说明是增函数,图象位于x轴上方,说明值域大于0.图象经过点(0,1),且y值分布有以下特点:x<0时,0<y<1;x>0时,y>1.图象不关于x轴对称,也不关于y轴对称,说明函数既不是奇函数也不是偶函数.通过观察下图,可知图象左右延伸无止境,说明定义域是实数.图象自左至右是下降的,说明是减函数,图象位于x轴上方,说明值域大于0.图象经过点(0,1),且y值分布有以下特点:x<0时,y>1;x>0时,0<y<1.图象不关于x轴对称,也不关于y轴对称,说明函数既不是奇函数也不是偶函数.可以再画下列函数的图象以作比较,y=3x,y=6x,y=(13)x,y=(16)x.重新观察函数图象的特点,推广到一般的情形.(6)一般地,指数函数y=a x在a>1和0<a<1的情况下,它的图象特征和函数性质如下表所示.图象特征函数性质a>1 0<a<1 a>1 0<a<1向x轴正负方向无限延伸函数的定义域为R图象关于原点和y轴不对称非奇非偶函数函数图象都在x轴上方函数的值域为R+函数图象都过定点(0,1) a0=1自左向右,图象逐渐上升自左向右,图象逐渐下降增函数减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1x>0,a x>1 x>0,a x<1在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1x<0,a x<1 x<0,a x>1一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:a>1 0<a<1(7)在同一坐标系中作出y =2x 和y =(12)x 两个函数的图象,如下图.经过仔细研究发现,它们的图象关于y 轴对称.(8)证明:设点P(x 1,y 1)是y =2x 上的任意一点,它关于y 轴的对称点是P 1(-x 1,y 1),它满足方程y =(12)x =2-x ,即点P 1(-x 1,y 1)在y =(12)x 的图象上.反之亦然,所以y =2x 和y =(12)x 两个函数的图象关于y 轴对称.(9)因为y =2x 和y =(12)x 两个函数的图象关于y 轴对称,所以可以先画其中一个函数的图象,利用轴对称的性质可以得到另一个函数的图象,同学们一定要掌握这种作图的方法,对以后的学习非常有好处.(10)由指数函数的定义可知,指数函数的定义域是实数集,但在实际问题中不都如此.例如,开始引进的两个函数的例子,函数y =2x 的定义域是非负整数集,函数y =0.84x 的定义域是正整数集,它们的定义域都是指数函数定义域的子集,而且它们在其定义域内分别与指数函数y =2x ,y =0.84x 取相同的值.通常,我们把这类函数称为指数函数的“限制函数”.应用示例思路1例1判断下列函数是否是一个指数函数?y =x 2,y =8x ,y =2·4x ,y =(2a -1)x (a >12,a≠1),y =(-4)x ,y =πx ,y =6x3+2.活动:学生观察,小组讨论,尝试解决以上题目,学生紧扣指数函数的定义解题,因为y =x 2,y =2·4x ,y =6x 3+2都不符合y =a x 的形式,教师强调y =a x 的形式的重要性,即a 前面的系数为1,a 是一个正常数(也可以是一个表示正常数的代数式),指数必须是x 的形式或通过转化后能化为x 的形式.解:y =8x ,y =(2a -1)x (a >12,a≠1),y =πx 是指数函数;y =(-4)x ,y =x 2,y =2·4x ,y=6x 3+2不是指数函数.2比较下列各题中的两个值的大小:(1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的,再写出(最好用实物投影仪展示写得正确的答案),比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并及时评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y =1.7x 的图象,如下图.在图象上找出横坐标分别为2.5、3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91,所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.70.3>0.93.1. 解法三:利用函数单调性:(1)1.72.5与1.73的底数是1.7,它们可以看成函数y =1.7x ,当x =2.5和3时的函数值;因为1.7>1,所以函数y =1.7x 在R 上是增函数,而2.5<3,所以1.72.5<1.73.(2)0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y =0.8x ,当x =-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y =0.8x 在R 上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2.(3)因为1.70.3>1,0.93.1<1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值.思路2例1求下列函数的定义域和值域: (1)412-x y =;(2)||)32(x y -=.活动:学生先思考,再回答,由于指数函数y =a x (a >0且a≠1)的定义域是R ,所以这类类似指数函数的函数的定义域要借助指数函数的定义域来求,教师适时点拨和提示,求定义域,只需使指数有意义即可,转化为解不等式.解:(1)令x -4≠0,则x≠4,所以函数y =21x -4的定义域是{x ∈R |x≠4},又因为1x -4≠0,所以412-x ≠1,即函数412-x y =的值域是{y|y >0且y≠1}.(2)因为-|x|≥0,所以只有x =0. 因此函数||)32(x y -=的定义域是{x|x =0}.而||)32(x y -==(23)0=1,即函数||)32(x y -=的值域是{y|y =1}. 点评:求与指数函数有关的定义域和值域时,要注意到充分考虑并利用指数函数本身的2比较下列两个数的大小:(1)30.8,30.7;(2)0.75-0.1,0.750.1;(3)1.80.6,0.81.6;(4)53322,)31(--. 活动:教师提示学生指数函数的性质,根据学生的解题情况及时评价学生. 解法一:直接用科学计算器计算各数的值,再对两个数进行大小的比较: 对(1),因为30.8=2.408 225,30.7=2.157 669,所以30.8>30.7;对(2),因为0.75-0.1=1.029 186,0.750.1=0.971 642,所以0.75-0.1>0.750.1; 对(3),因为1.80.6=1.422 864,0.81.6=0.699 752,所以1.80.6>0.81.6;对(4),因为32)31(-=2.080 084,2-35=0.659 754,所以32)31(->2-35.解法二:利用指数函数的性质对两个数进行大小的比较:对(1),因为函数y =3x 在R 上是增函数,0.8>0.7,所以30.8>30.7;对(2),因为函数y =0.75x 在R 上是减函数,0.1>-0.1,所以0.75-0.1>0.750.1; 对(3),由指数函数的性质知1.80.6>1.80=1=0.80>0.81.6,所以1.80.6>0.81.6;对(4),由指数函数的性质知32)31(->(13)0=1=20>2-35,所以32)31(->2-35.解法三:利用图象法来解,具体解法略.点评:在利用指数函数的性质对两个数进行大小比较时,首先把这两个数看作指数函数的两个函数值,利用指数函数的单调性比较.若两个数不是同一函数的两个函数值,则寻求一个中间量,两个数都与这个中间量进行比较,这是常用的比较数的大小的方法,然后得两个数的大小,数学上称这种方法为“中间量法”.知能训练1.下列关系中正确的是()答案:D2.函数y=a x(a>0,a≠1)对任意的实数x、y都有()A.f(xy)=f(x)·f(y)B.f(xy)=f(x)+f(y)C.f(x+y)=f(x)·f(y)D.f(x+y)=f(x)+f(y)答案:C3.函数y=a x+5+1(a>0,a≠1)恒过定点__________.答案:(-5,2)拓展提升探究一:在同一坐标系中作出函数y=2x,y=3x,y=10x的图象,比较这三个函数增长的快慢.活动:学生深刻回顾作函数图象的方法,交流作图的体会.列表、描点、连线,作出函数y=2x,y=3x,y=10x的图象,如下图.x …-2 -1 0 1 2 3 …10 …y=2x…0.25 0.5 1 2 4 8 … 1 024 …y=3x...0.11 0.33 1 3 9 27 (59)049…y=10x…0.01 0.1 1 10 100 1 000 …1010…从表格或图象可以看出:(1)x<0时,有2x>3x>10x;(2)x>0时,有2x<3x<10x;(3)当x从0增长到10,函数y=2x的值从1增加到1 024,而函数y=3x的值从1增加到59 049.这说明x>0时y=3x比y=2x的函数值增长得快.同理y=10x比y=3x的函数值增长得快.因此得:一般地,a>b>1时,(1)x<0时,有a x<b x<1;(2)x=0时,有a x=b x=1;(3)x>0时,有a x>b x>1;(4)指数函数的底数越大,x>0时其函数值增长就越快.探究二:分别画出底数为0.2、0.3、0.5的指数函数的图象(如下图所示),对照底数为2、3、10的指数函数的图象,研究指数函数y=a x(0<a<1)中a对函数的图象变化的影响.由此得:一般地,0<a<b<1时,(1)x>0时,有a x<b x<1;(2)x=0时,有a x=b x=1;(3)x<0时,有a x>b x>1;(4)指数函数的底数越小,x>0时,其函数值减少就越快.课堂小结1.指数函数的定义.2.指数函数的图象和性质.3.利用函数的图象说出函数的性质,即数形结合的思想(方法),它是一种非常重要的数学思想和研究方法.4.利用指数函数的单调性比较几个数的大小,特别是中间变量法.作业课本本节练习B2、3.设计感想本节课是在前面研究了函数性质的基础上,研究具体的初等函数,它是重要的初等函数,它有着丰富的内涵,且和我们的实际生活联系密切,也是以后学习对数函数的基础,在指数函数的概念讲解过程中,既要向学生说明定义域是什么,又要向学生交代,为什么规定底数a 是大于0而不等于1的,本节内容课堂容量大,要提高课堂的效率和节奏,多运用信息化的教学手段,顺利完成本堂课的任务.备课资料例1 (1)求使不等式4x >32成立的x 的集合; (2)已知a 45>a2,求实数a 的取值范围.活动:学生先思考,再讨论,然后回答.(1)由于x 在指数位置上,因此,要利用指数函数的性质进行转化,特别是指数函数的单调性,(2)也是利用指数函数的性质判断底数的范围.解:(1)4x >32,即22x >25.因为y =2x 是R 上的增函数,所以2x >5,即x >52.满足4x >32的x 的集合是(52,+∞).(2)由于45<2,则y =a x 是减函数,所以0<a <1.点评:正确理解和运用指数函数的性质是解题的关键. 例2用函数单调性的定义证明指数函数的单调性.活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1、x 2∈R ,且x 1<x 2,则 y 2-y 1=ax 2-ax 1=ax 1(ax 2-x 1-1).因为a >1,x 2-x 1>0,所以ax 2-x 1>1,即ax 2-x 1-1>0. 又因为ax 1>0, 所以y 2-y 1>0, 即y 1<y 2.所以当a >1时,y =a x ,x ∈R 是增函数. 同理可证,当0<a <1时,y =a x 是减函数.证法二:设x 1、x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则y 2y 1=ax 2ax 1=ax 2-x 1.因为a >1,x 2-x 1>0,所以ax 2-x 1>1,即y 2y 1>1,y 1<y 2.所以当a >1时,y =a x ,x ∈R 是增函数. 同理可证,当0<a <1时,y =a x 是减函数.例3截止到1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少?(精确到亿)活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;经过3年人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;经过x年人口约为13(1+1%)x亿;经过20年人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x年后,我国人口数为y亿,则y=13(1+1%)x,当x=20时,y=13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N,平均增长率为p,则对于经过时间x年后总量y=N(1+p)x,像y=N(1+p)x等形如y=ka x(k∈R,a>0且a≠1)的函数称为指数型函数.(设计者:韩双影)第2课时导入新课思路1.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在上节课的探究中我们知道,函数①y=3x,②y=3x+1,③y=3x-1的图象之间的关系,由其中的一个可得到另外两个的图象,那么,对y=a x与y=a x+m(a>0,m∈R)有着怎样的关系呢?在理论上,含有指数函数的复合函数是否具有奇偶性呢?这是我们本堂课研究的内容.教师点出课题.思路2.我们在第一章中,已学习了函数的性质,特别是单调性和奇偶性是某些函数的重要特点,我们刚刚学习的指数函数,严格地证明了指数函数的单调性,便于我们在解题时应用这些性质,在实际生活中,往往遇到的不单单是指数函数,还有其他形式的函数,有的是指数函数的复合函数,我们需要研究它的单调性和奇偶性,这是我们面临的问题,也是我们本堂课要解决的问题.推进新课新知探究提出问题1指数函数有哪些性质?2利用单调性的定义证明函数单调性的步骤有哪些?3对复合函数,如何证明函数的单调性?4如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质.一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:a>10<a<1(2)依据函数单调性的定义证明函数单调性的步骤是:①取值.即设x1、x2是该区间内的任意两个值且x1<x2.②作差变形.即求f(x2)-f(x1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x2-x1的符号确定f(x2)-f(x1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y=f可以总结为:当函数f(x)和g(x)的单调性相同时,复合函数y=f是增函数;当函数f(x)和g(x)的单调性相异即不同时,复合函数y=f是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考察式子f(x)与f(-x)的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y轴对称,则函数具有奇偶性.应用示例思路1例在同一坐标系下作出下列函数的图象,并指出它们与指数函数y=2x的图象的关系.(1)y=2x+1与y=2x+2;(2)y=2x-1与y=2x-2.活动:教师适当时候点拨,学生回想作图的方法和步骤,特别是指数函数图象的作法,学生回答并到黑板上作图,教师指点学生,列出对应值表,抓住关键点,特别是(0,1)点,或用计算机作图.解:(1)列出函数数据表作出图象如下图.x …-3 -2 -1 0 1 2 3 …2x…0.125 0.25 0.5 1 2 4 8 …2x+1…0.25 0.5 1 2 4 8 16 …2x+2…0.5 1 2 4 8 16 32 …比较可知函数y=2x+1、y=2x+2与y=2x的图象的关系为:将指数函数y=2x的图象向左平行移动1个单位长度,就得到函数y=2x+1的图象;将指数函数y=2x的图象向左平行移动2个单位长度,就得到函数y=2x+2的图象.(2)列出函数数据表作出图象如下图.x …-3 -2 -1 0 1 2 3 …2x…0.125 0.25 0.5 1 2 4 8 …2x-1…0.625 0.125 0.25 0.5 1 2 4 …2x-2…0.312 5 0.625 0.125 0.25 0.5 1 2 …比较可知函数y=2x-1、y=2x-2与y=2x的图象的关系为:将指数函数y=2x的图象向右平行移动1个单位长度,就得到函数y=2x-1的图象;将指数函数y=2x的图象向右平行移动2个单位长度,就得到函数y=2x-2的图象.点评:类似地,我们得到y=a x与y=a x+m(a>0,a≠1,m∈R)之间的关系:y=a x+m(a>0,m∈R)的图象可以由y=a x的图象变化而来.当m >0时,y =a x 的图象向左移动m 个单位得到y =a x +m 的图象;当m <0时,y =a x 的图象向右移动|m|个单位得到y =a x +m 的图象. 上述规律也简称为“左加右减”.思路2例1设a >0,f(x)=e x a +aex 在R 上满足f(-x)=f(x).(1)求a 的值;(2)证明f(x)在(0,+∞)上是增函数.活动:学生先思考或讨论,如果有困难,教师提示,引导.(1)求单独一个字母的值,一般是转化为方程,利用f(-x)=f(x)可建立方程. (2)证明增减性一般用定义法,回忆定义法证明增减性的步骤,规范书写的格式. (1)解:依题意,对一切x ∈R 有f(-x)=f(x)成立,即1ae x +ae x=e x a +a e x .所以(a -1a )(e x -1e x )=0对一切x ∈R 成立.由此可得a -1a =0,即a 2=1.又因为a >0,所以a =1.(2)证明:设0<x 1<x 2,f(x 1)-f(x 2)=e x1-e x2+1e x1-1e x2=(e x1-e x2)(1e x1+x2-1)=e x1(e x2-x1-1)·(1-e x1+x2e x1+x2).由x 1>0,x 2>0,x 2-x 1>0,得x 2+x 1>0,e x2-x1-1>0,1-e x2+x1<0,所以f(x 1)-f(x 2)<0,即f(x)在(0,+∞)上是增函数.点评:在已知等式f(-x)=f(x)成立的条件下,对应系数相等,求出a ,也可用特殊值求解.证明函数的单调性,严格按定义写出步骤,判断过程尽量明显直观.例2已知函数f(x)=3x ,且x =a +2时,f(x)=18,g(x)=3ax -4x 的定义域为. (1)求g(x)的解析式;(2)求g(x)的单调区间,确定其增减性并用定义证明; (3)求g(x)的值域.解:(1)因为f(x)=3x ,且x =a +2时f(x)=18,所以f(a +2)=3a +2=18.所以3a =2. 所以g(x)=3ax -4x =(3a )x -4x . 所以g(x)=2x -4x .(2)因为函数g(x)的定义域为,令t =2x ,因为x ∈时,函数t =2x 在区间上单调递增, 所以t ∈,则g(t)=t -t 2=-(t 2-t)=-(t -12)2+14,t ∈.因为函数t =2x 在区间上单调递增,函数g(t)=t -t 2在t ∈上单调递减,所以函数g(x)在区间上单调递减.证明:设x 1和x 2是区间上任意两个值,且x 1<x 2,g(x 2)-g(x 1)=2x 2-4x 2-2x 1+4x 1=(2x 2-2x 1)-(2x 2-2x 1)(2x 2+2x 1)=(2x 2-2x 1)(1-2x 1-2x 2),因为0≤x 1≤x 2≤1,所以2x 2>2x 1,且1≤2x 1<2,1<2x 2≤2. 所以2<2x 1+2x 2<4.所以-3<1-2x 1-2x 2<-1,可知(2x 2-2x 1)(1-2x 1-2x 2)<0. 所以g(x 2)<g(x 1).所以函数g(x)在区间上单调递减. (3)因为函数g(x)在区间上单调递减, 所以x ∈时,有g(1)≤g(x)≤g(0).因为g(1)=21-41=-2,g(0)=20-40=0, 所以-2≤g(x)≤0.故函数g(x)的值域为.点评:此题是一道有关函数的概念、函数性质的应用、推理、证明综合题,要通盘考虑. 知能训练求函数y =(12)|1+2x|+|x -2|的单调区间.活动:教师提示,因为指数含有两个绝对值,要去绝对值,要分段讨论,同时注意底数的大小,分析出指数的单调区间,再确定函数的单调区间,利用复合函数的单调性学生思考讨论,然后解答.解:由题意可知2与-12是区间的分界点.当x <-12时,因为y =(12)-1-2x -x +2=(12)1-3x =23x -1=12·8x ,所以此时函数为增函数.当-12≤x <2时,因为y =(12)1+2x -x +2=(12)3+x =2-3-x =18·(12)x ,所以此时函数为减函数.当x≥2时,因为y =(12)1+2x +x -2=(12)3x -1=21-3x =2·(18)x ,所以此时函数为减函数.当x 1∈上单调递增,在++…+ =500×1=500.点评:第(2)问是第(1)问的继续,第(1)问是第(2)问的基础,两个问号是衔接的,利用前一个问号解决后一个问号是我们经常遇到的情形,要注意问号与问号之间的联系. 课堂小结本节课复习了指数函数的性质,借助指数函数的性质的运用,我们对函数的单调性和奇偶性也进行了复习巩固,利用单调性和奇偶性解决了一些问题,对常考的函数图象的变换进行了学习,要高度重视,在不断学习中升华提高. 作业课本习题3—1 B 3、5、6.设计感想 指数函数作为一类基本的初等函数,它虽然不具有函数通性中的奇偶性,但是它与其他函数复合构成具有比较复杂的单调性的函数,同时也可以复合出比较特殊的奇函数和偶函数,判断复合函数的单调性和奇偶性要十分小心,严格按规定的要求,有时借助数形结合可帮我们找到解题思路,本堂课是在以前基础上的提高与深化,同时又兼顾了高考常考的内容,因此涉及面广,容量大,要集中精力,加快速度,高质量完成教学任务.备课资料 富兰克林的遗嘱与拿破仑的诺言富兰克林利用放风筝而感受到电击,从而发明了避雷针.这位美国著名的科学家死后留下了一份有趣的遗嘱:“……一千英镑赠给波士顿的居民,如果他们接受了这一千英镑,那么这笔钱应该托付给一些挑选出来的公民,他们得把这些钱按每年5%的利率借给一些年轻的手工业者去生息.这些款过了100年增加到131 000英镑.我希望那时候用100 000英镑来建立一所公共建筑物,剩下的31 000英镑拿去继续生息100年.在第二个100年末了,这笔款增加到4 061 000英镑,其中1 061 000英镑还是由波士顿的居民来支配,而其余的3 000 000英镑让马萨诸塞州的公众来管理.过此之后,我可不敢主张了!”你可曾想过:区区的1 000英镑遗产,竟立下几百万英镑财产分配的遗嘱,是“信口开河”,还是“言而有据”呢?事实上,只要借助于复利公式,同学们完全可以通过计算而作出自己的判断. y n =m(1+a)n 就是复利公式,其中m 为本金,a 为年利率,y n 为n 年后本金与利息的总和.在第一个100年末富兰克林的财产应增加到:y 100=1 000(1+5%)100=131 501(英镑),比遗嘱中写的还多出501英镑.在第二个100年末,遗产就更多了:y 100=131 501(1+5%)100=4 142 421(英镑).可见富兰克林的遗嘱是有科学根据的.遗嘱故事启示我们:在指数效应下,微薄的财产,低廉的利率,可以变得令人瞠目结舌.威名显赫的拿破仑,由于陷进了指数效应的漩涡而使法国政府十分难堪!1797年,拿破仑参观国立卢森堡小学,赠上了一束价值三个金路易的玫瑰花,并许诺只要法兰西共和国存在一天,他将每年送一束价值相等的玫瑰花,以作两国友谊的象征.由于连年征战,拿破仑忘却了这一诺言!1894年,卢森堡王国郑重地向法兰西共和国提出了“玫瑰花悬案”,要求法国政府在拿破仑的声誉和1 375 596法郎的债款中,两者选取其一.这笔巨款就是三个金路易的本金,以5%的年利率,在97年的指数效应下的产物.(设计者:刘玉亭)。

2021人教版数学必修第一册B版课件:3.1.2 第2课时 函数的最大(小)值

2021人教版数学必修第一册B版课件:3.1.2 第2课时 函数的最大(小)值
解析:法一:设 x1,x2 是区间[-3,-2]上的任意两个实数,且 x1<x2, 则 f(x1)-f(x2)=x21+x11-x22+x21 =2x1xx2+1+11-x22x+21x1+1 =x12+x11-xx2+2 1.
由于-3≤x1<x2≤-2, 则 x1-x2<0,x1+1<0,x2+1<0. 所以 f(x1)-f(x2)<0,f(x1)<f(x2). 所以函数 y=x2+x1,x∈[-3,-2]是增函数. 又因为 f(-2)=4,f(-3)=3, 所以函数的最大值是 4,最小值是 3.
∴f(x1)-f(x2)>0, 即 f(x1)>f(x2), ∴f(x)在[-4,0]上是减函数. ∴f(x)min=f(0)=3,f(x)max=f(-4)=9.
利用单调性求最值的一般步骤 (1)判断函数的单调性. (2)利用单调性写出最值.
已知函数 f(x)=x2+x1,x∈[-3,-2],求 f(x)的最大值和最小值.
法二:f(x)=x2+x1=2x+ x+11-2=2+x-+21,所以 f(x)图像的对称中心是(-1,2),在(- ∞,-1),(-1,+∞)是增函数,图像如图:
由图像可知 f(x)在[-3,-2]的值域为[3,4],最小值为 f(-3)=3,最大值为 f(-2)= 4.
探究三 二次函数的最值问题 [例 3] (1)已知二次函数 f(x)=x2-2x+3. ①当 x∈[-2,0]时,求 f(x)的最值; ②当 x∈[-2,3]时,求 f(x)的最值; ③当 x∈[t,t+1]时,求 f(x)的最小值 g(t).
第 2 课时 函数的最大(小)值
内容标准
学科素养
1.理解函数的最大(最小)值及几何意义.
直观想象
2.利用单调性求最值、比较大小、解不等式. 逻辑推理、数学运算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a 实数范围。 ③对于指数幂
,当n 指数n扩大至有理数时,
要注意底数a的变化范围。如当n=0时底数
a≠0;当n为负整数指数时,底数a≠0;当n为
分数时,底数a>0。
11、世界上那些最容易的事情中,拖延时间最不费力。 23、没有口水与汗水,就没有成功的泪水。 8. 在某一时间,想念某一段时光的掌纹。 14. 进入黑名单就意味着你不再是我看重的人,连陌生人都比不上。 8. “我欲”是贫穷的标志。事能常足,心常惬,人到无求品自高。 1. 人生一世,除了亲情、爱情外,友情是决不可缺的,因为亲情是一种深度,爱情是一种纯度,而友情是一种广度。 7. 当一个小小的心念变成成为行为时,便能成了习惯;从而形成性格,而性格就决定你一生的成败。 9. 品格如同树木,名誉如同树阴,有什么时候样的树就在什么样的树阴。 14. 这个社会是存在不公平的,不要抱怨,因为没有用!人总是在反省中进步的! 20、人之所以能,是相信能。 8. 时间不可空过,惟用之于有益的工作;一切无益的行动,应该完全制止。 13. 我不去想是否能够成功,既然选择了远方,便只顾风雨兼程! 2. 那一刻你没出现,以后就真的不用再出现了。 17. 无论才能、知识多么卓着,如果缺乏热情,则无异纸上画饼充饥,无补于事。 13. 要无条件自信,即使在做错的时候。 5. 人生太短暂了,事情是这样的多,能不兼程而进吗? 6. 只要路是对的,就不怕路远。真心的对别人产生点兴趣,是推销员最重要的品格。
a
0, (当n为偶数) 0.
观察发现
5 (2)5 -2 4 (3)4 3
210 32 3 312 81
5
25
344
10
22
12
33
a a 分析归纳:
n
m
nm
1
13
(a 3 )3 a 3 =a
2
(a 3 )3
2 3
a 3 =a2
(n a)n a
3 a 3 a
a 3
3 a2
(2) 1
1
m 2 m2
快乐体验:
1.
81
3 4
的值是(
A
)
16
A. 8
B. 8
C. 3
27
27
2
D. 3 2
2. 3 2 2 化简得( A )
1
A. 22
1
B. 23
1
C. 2 2
5
D. 26
3.下列各式中正确的是( D)
A.00 1 B.(1)1 1
7
C.a 4
1
7 a4
熟能生巧
3 2
34 5
1 2 1
65 3
2
33
No51 2
4
Image 83
1
1 2
9
例1:计算
32
①85 85
32
85 5 8
2
1
②83 (83)2 22 4
111
③3 3 3 3 6 3 3 32 33 36
1 1 1 1
3 2 3 6
32
9
21
2
1
3
④(a 3b 4)3 (a 3)(3 b 4)3 a2b 4
3
D.a 5
1
5 a3
1
1
1
4.设 b 0 ,化简式子 a3b 3 2 a 2b 2 3 ab5 6
a
小结:
①分数指数幂的意义及运算性质
②指数概念的扩充,引入分数指数幂概念后,
指数概念就实现了由整数指数幂向有理数指数
幂的扩充,而且有理指数幂的运算性质对于无理
指数幂也适用,这样指数概念就扩充到了整个
2叫8的立方根
(-2)3=-8
-2叫-8的立方根
25=32 ……
2叫32的5次方根 ……
2n=a
2叫a的n次方根
由此,得n次方根的定义
如果存在实数x使得 xn a(a R, n 1, n N ) 则x叫做a的n次方根.求a的n次方根,叫做把 a开n 次方, 称作开方运算.
a 根指数
n
根式
被开方数
数(幂1)3在底3 数( 1小=-a于1;0(时0, 1无)6 n意、6义(m.1)2 N6
1, =1m. n
这就说明分数指
为既约分数)
3.有实理数数指数幂 a 0,b 0,、为有理数
运算法则:
(1)a a a
(2)(a) a
(3)(ab) a b
注:此运算法则对无理数指数幂同样适用。
xn a
x n a ; (当n是奇数)
x n a. (当n是偶数,且a>0)
n次方根 概念的理解
• (1)25的平方根是___±_5____ • (2)27的立方根是____3____ • (3) -32的五次方根是_-__2__ • (4)16的四次方根是_±__2__ • (5)a6的三次方根是__a_2_____ • (6)0的七次方根是___0_____
2
1
a3 3 a
2
a3 3 a2
1.正分数指数幂
1
a n n a (a 0)
an 1 an
m
a n (n a )m n am 注意:分母是
(a
0,
n、m
N
根,m指为数既约分数)
n
2.负分数指数幂
a 注 乱 分数意,1指:例 mn数底如幂数,的a(a->110m意n)这1义/3个和可n条(2-得1a1件m出)2不/6不应可同当少的具. 结有若果同无:样此的条意件义会,引但起混由
思考1: ( 3 2)3, ( 5 2)5, ( 4 2)4 分别等于什么?
一般地,( n a )n 等于什么?( n a )n a
思考2: 3 (2)3 , 5 25 , 4 24 , 4 (2)4 分别等于什么?
一般地,n an 等于什么?
a, (当n为奇数)
n
an
|
a
|
a, a a,
1
1
1
1
1
1
⑤(a 2 b 2)(a 2 b 2)(a 2)2 (b 2)2
a b
1
1
11
⑥(a 2 b 2)2 a b 2a 2b 2
幂的运算同样满足乘法公式 及运算律。
例2.计算
例3.化简下列各式
2 1
(1)
(
1
5x 3 y2
x 1
y
1 2
)(
5
1
x3
1
y6
)
4
6
m m1 2一 ·复习am an a m nam an
amn (a 0)
(am )n amn
(ab)m ambm
规定:
零的零次幂没有意义
a0 1(a 0)
零的负整数次幂没有意义
an
1 an
(a
0, n
N )
二、引入:
❖ 平方根、立方根的概念
22=4 (-2)2=4
-2和2叫4 的平方根
23=8
相关文档
最新文档