二次函数的应用—面积问题
二次函数的应用课件面积问题(共10张PPT)
(1)y=x2-3x+4
(2)y=1-27 x+ 2
(4)y=100-5x2
(5)y=-6x2+12x
(6)y=- 3 x2-4x+1 2
∴抛物线的顶点坐标是(5,50) 答:当矩形窗框的宽为5m时,长为1. 解:设矩形的宽为x米,矩形的透光面积为y米。 某商店将每件商品进价为8元的商品按每10元出售,一天可售出约100件。 某商店将每件商品进价为8元的商品按每10元出售,一天可售出约100件。 答:当矩形窗框的宽为5m时,长为1.
y=-2(x-5)2+50 答:与墙垂直的一边长为5m时,花圃的面积最大,最大面积为50m2。 (4)y=100-5x2 (3)y=7x2- x+
y=- (x-1)2+
将这个函数关系式配方,得: 将这种商品的售价降低多少时,能使销售利润最大?
因为x=1时,满足0<x<2,这时
=1.
y=-2(x-5) +50 解将:这设 种矩商形品的的宽售为价降x米低,多矩少形时的,透2能光使面销积售为利y米润。最大?
(3)y=7x2- x+
y即=:-2(yx=--52)x22++520∴0x 抛物线的顶点坐标是(5,50)
其销售量可增加约10件。将这种商品的售价降低多少时, 能使销售利润最大?
请同学们完成这个问 题的解答
你会解吗?
例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。窗 框的长、宽各为多少时,它的透光面积最大?最大透光面积是多少?
解:设矩形的宽为x米,矩形的透光面积为y米。由题意 得:
y=x· 6-3x 2
(0<x<2)
即:y=- 3 x2+3x
《二次函数的应用——面积最大问题》说课稿—获奖说课稿.docx
《实际问题与二次函数》说课稿各位评委:你们好!很高兴有机会参加这次比赛,并能得到各位专家的指导,我说课的课题是:实际问题与二次函数——最大值问题。
所用教材是人民教育出版社九年级上第22章第三节实际问题与二次函数,本节共需四课吋,面积最大是第一节,利润最大是第二节。
下面我将从教材内容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方面对本节课进行说明。
一、教学内容的分析1、地位与作用:实际问题与二次函数也可以称作二次函数的应用,本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。
新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题乂是生活中利用二次函数知识解决最常见、最有实际应用价值的问题Z-,它生活背景丰富,学生比较感兴趣,对于面积问题、利润问题学生易于理解和接受,故而在这儿作专题讲解。
目的在于让学生通过掌握求最大值这一类题,学会用建模的思想去解决其它和函数有关的应用问题。
此部分内容是学习一次函数及其应用后的巩固与延伸,又为高小乃至以后学习更多函数打下坚实的理论和思想方法基础。
2、课时安排:教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最人、利润最大、运动小的二次函数、综合应用四课时。
3 •学情及学法分析对九年级学生來说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最値,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,口的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标屮知识与技能呈螺旋式上升的规律。
二、教学目标、重点、难点的确定结合木节课的教学内容和学生现有的学习水平,我确定木节课的教学目标如下:1•知识与技能:通过本节学习,巩固二次函数y=3x? + bx + c QHO)的图象与性质,理解顶点与最值的关系,会求解最值问题。
二次函数应用 面积问题
(2)如果中间有n(n>1)道篱笆隔墙,要使鸡场的面积 最大,鸡场的长应多少?
50 - x 解: S x n2 1 ( x 2 50 x) n2 1 625 2 ( x 25) n2 n2
所以要使鸡场的面积最大,鸡场的长因为25m.
(3)结论:不论中间有多少道隔栏,要使鸡场的面积 最大,鸡场的长都为25m.
农户需要利用一面墙再砌三面墙,围成一块矩形菜地, 设备足以砌12m长墙的材料,设与已有的一面墙相邻的每面 墙长度为xm (1)求矩形面积S与x的关系式,写出x的取值范围. (2)求x等于多少时矩形面积S最大?最大面积是多少? (3)画出S关于x的函数图像. (4)当x等于多少时,矩形面积为15㎡. (5)结合图像,为了使矩形的面积大于或等于15㎡,x的 取值范围应该怎样? (6)当x等于多少时,矩形的面积等于12㎡. (7)结合图像,当x的取值范围怎样时,矩形的面积将小于 12㎡.
3
2.中间有无隔栏
问题2:要建立一个长方形的养鸡场,鸡场的一边靠墙(墙 长足够长),如果用50m长的篱笆围成中间有一道篱笆的鸡 场,设它的长度为xm. (1)要使鸡场的面积最大,鸡场的长应多少m? 解:设鸡场的面积为 S㎡, 50 - x x 所以S = 3 鸡场的宽为 50 - x m 3
Байду номын сангаас
1 2 = (x 50 x) 3 x 1 625 2 = (x 25) 3 3 所以要使鸡场的面积最大,鸡场的长应为25m.
3.面数是否变化
问题3 :用长为18m的篱笆(虚线部分),两面 靠墙围成矩形的苗圃。 y x (1)设矩形的一边长为x(m),面积为y㎡,求y关于x的 函数关系式,并写出自变量x取值范围。 解 :矩形的一边长为x m,则其邻边长为(18-x)m, 所以 y=x(18-x) =-x² +18x(0<x<18) (2)当x为何值时,所谓苗圃的面积最大,最大面积是多少? 解: y = -x² +18x = - (x-9)² +81 因为(0<x<18) 所以当x=9m时,面积y最大面积为81㎡。
1.4二次函数的应用(第1课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)
1.4 二次函数的应用第1课时 几何图形的面积问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会分析实际问题中的二次函数关系;2.学会用二次函数表示几何图形中的关系,并用来求实际问题中的最大值与最小值;导入新课问题1:从地面竖直向上抛出一小球,小球的高度 h (单位:m )与小球的运动时间 t (单位:s )之间的关系式是 h= 30t - 5t 2(0≤t ≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?t/sh/mO1234562040h= 30t - 5t2解决思路:通过图象可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是这个函数的图象的最高点.也就是说,当t 取顶点的横坐标时,这个函数有最大值.思考:如何求二次函数的顶点坐标呢?知识点一 二次函数的实际应用——几何图形面积问题由于抛物线 y = ax 2+ bx + c 的顶点是最低(高)点,当 时,二次函数 y = ax 2+ bx + c有最小(大)值思考:如何求出二次函数 y = ax 2+ bx + c 的最小(大)值?二次函数的顶点式可以很直观地看出最大值或最小值当 时小球运动的时间是 3s 时,小球最高.小球运动中的最大高度是 45 m.t/sh/m O 1234562040h= 30t - 5t2我们来求一下问题1:例用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?1.矩形面积公式是什么?2.如何用l表示另一边?3.面积S的函数关系式是什么?l30-lS=l(30-l),即S=-l2+30l (0<l<30).S=l(30-l),即S=-l2+30l (0<l<30).因此,当时,S有最大值,也就是说,当l是15m时,场地的面积S最大.归纳总结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值;3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.典例精析【例1】某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的两处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为28m,则当能建成的饲养室总占地面积最大时,中间隔开的墙长是( )米.A.4B.5C.6D.8【详解】解:设中间隔开的墙长为x m,能建成的饲养室总占地的面积为Sm2,根据题意得,S=x×(28+2-3x)=-3(x-5)2+75,-3<0,有最大值,∴当x=5时,S取得最大值,故选:B.【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.练一练1.如图,某跑道的周长为400m 且两端为半圆形,要使矩形内部操场的面积最大,直线跑道AB 段的长应为.【详解】解:设矩形直线跑道AB=xcm ,矩形面积为ycm 2,由题意得: y=400−2ᵆᵰ·ᵆ=−2ᵰ(ᵆ−100)2+20000ᵰ∵−2ᵰ<0,∴当x=100时,y 最大,即直线跑道长应为100m .故答案为:100m2.如图,一块矩形区域ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为18米(篱笆的厚度忽略不计),求当矩形ABCD 的面积最大时AB 的长.【详解】解:设AB=x 米,矩形的面积设为y (平方米),则AB+EF+CD=3x ,∴AD=BC=18−3ᵆ2.∴y=x·18−3ᵆ2=−32ᵆ2+9ᵆ.由于二次项系数小于0,所以y 有最大值,∴当AB=x=-ᵄ2ᵄ=3时,函数y 取得最大值.∴当AB=3米时,矩形ABCD 的面积最大.1.如图,要围一个矩形菜园ABCD,共中一边AD是墙,且AD的长不能超过26m,其余的三边AB,BC,CD用篱笆,且这三边的和为40m.有下列结论:①AB的长可以为6m;②AB的长有两个不同的值满足菜园ABCD的面积为192m2;③菜园ABCD面积的最大值为200m2.其中,正确结论的个数是( )A.0B.1C.2D.3【详解】设AB的长为xm,矩形ABCD的面积为ym2,则BC的长为(40-2x)m,由题意得y=x(40-2x)=-2x2+40x=-2(x-10)2+200,其中0<40-2x≤26,即7≤x<20,①AB的长不可以为6m,原说法错误;③菜园ABCD面积的最大值为200m2,原说法正确;②当y=-2(x-10)2+200=192时,解得x=8或x=12,∴AB的长有两个不同的值满足菜园ABCD面积为192m2,说法正确;综上,正确结论的个数是2个,故选:C.2.把一根长4a的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A.ᵄ2B.ᵄ2�C.ᵄ22D.ᵄ243.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为38m ,门宽为2m .这个矩形花圃的最大面积是.【详解】解:设花圃的长为x,面积为y,则y 关于x 的函数表达式为:y=12(38+2−��ᵆ)ᵆ=−12ᵆ2+20ᵆ=−12(x-20)2+200又∵38+2-x>0,x≥22≤x<404.如图,小明想用长16米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是平方米.【详解】解:设AB=x米,矩形ABCD的面积为S,则BC=(16-2x)米,∴S=x(16-2x)=2x2+16x=-2(x-4)2+32即矩形ABCD的最大面积为32平方米故答案为:32.5.用一段长为24m 的篱笆围成一个一边靠墙的矩形养鸡场,若墙长10m ,则这个养鸡场最大面积为 m 2.【详解】设养鸡场长为x 米,则宽为12(24−��ᵆ)米,面积为S 平方米,根据题意得:S=x×12(24−ᵆ)=−12ᵆ2+12ᵆ,(0<x≤10),∵二次函数图象对称轴为:直线x=12,开口向下,∴ 当0<x≤10时,S 随x 的增大而增大,∴当x=10时,S 取得最大值为70.故答案是:70.6.如图所示,矩形花圃ABCD的一边利用足够长的墙,另三边用总长为32米的篱笆围成.设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值?并求出最大值.【详解】(1)∵AB边长为xm,四边形为矩形,且剩余三边长总和为32m,∴BC边长为(32-2x)m,∴S=AB·BC=x(32-2x)=-2x2+32x;(2)函数化为顶点式,即得S=-2(x-8)2+128,可知x=8时,S有最大值128m2.【点睛】此题考查了二次函数的实际应用,根据简单等量关系解决问题,二次函数化为顶点式即可得到函数最值,正确理解题意列得函数解析式是解题的关键.7.如图,嘉嘉欲借助院子里的一面长15m的墙,想用长为40m的网绳围成一个矩形ABCD给奶奶养鸡,怎样使矩形ABCD的面积最大呢?同学淇淇帮她解决了这个问题.淇淇的思路是:设BC的边长为xcm,矩形ABCD的面积为Sm2,不考虑其他因素,请帮他们回答下列问题:(1)求S与x的函数关系式,直接写出x的取值范围;(2)x为何值时,矩形ABCD的面积最大?【详解】(1)解:S=x(40−��ᵆ2)=-12ᵆ2+20ᵆ,ᵆ的取值范围为0< ᵆ�≤15;(2)解:∵S=-12ᵆ2+20ᵆ ,-12<0,∴当x=-20−1=20时,S 有最大值,当x <20时,S 随x 的增大而增大,而0<x≤15,∴x=15时,S 有最大值,即矩形ABCD 的面积最大.课堂小结二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内.谢谢~。
二次函数的应用-——最大面积问题教学设计
二次函数的应用-——最大面积问题教学设计《二次函数的应用——面积最大问题》教学设计二次函数的应用——面积最大问题。
所用教材是山东教育出版社材九年级上册第三章第六节二次函数的应用,本节共需四课时,面积最大是第一节。
下面我将从教材内容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方面对本节课进行说明。
一、教学内容的分析1、地位与作用:二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。
新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题奠定基础。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。
此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
2、课时安排教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。
3.学情及学法分析学生由简单的二次函数y=x2学习开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y =a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和图像的性质。
对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
二次函数的应用——面积问题
生演板,生ห้องสมุดไป่ตู้题,师批改……
师生共看演板
通过作业再一次内化知识,构建知识系统。
通过变式训练进一步引发学生思考,激发学生学习兴趣,提高学生解决问题的能力。
2、由于长年累月的日晒雨淋,墙体部分损坏,只剩下8 m,现改变菜园的围法。如图3,矩形菜园的一边由墙AB和一节篱笆BF构成,且这边的长度不少于12 m,另三边由篱笆ADEF围成,求菜园面积的最大值。
小组讨论完成
分小组展示……
师总结:在表示面积时,墙长8 m,篱笆长32 m,那矩形周长为m?如果设DE=x m,则AD=m。
这题对学生有两个难点,(1)如何建立模型,将菜园面积表示出来;(2)当顶点横坐标不在自变量范围内时,最值在哪里取到?
活动三:课堂小结
生总结:……
培养总结能力,反馈课堂学习效果
活动四:课后巩固
二次函数的应用——面积问题
教学任务分析
教学目标
知识技能
1.通过图形之间的关系列出函数解析式
2.用二次函数的知识分析解决有关面积问题的实际问题
教学思考
培养学生建模思想
解决问题
通过图形间的关系,进一步体会函数,体验运动变化的思想
情感态度
通过本节课的教学,使学生能够正确面对困难,迎接挑战的坚强品质
重点
用二次函数的知识分析解决有关面积问题的实际问题
难点
通过图形之间的关系列出函数解析式
教学过程设计
问题与情境
师生活动
设计意图
课后随想
活动一:课前预习
已知二次函数
1、该函数图象的开口方向是;对称轴是;顶点坐标;
二次函数在面积计算应用
二次函数在面积计算应用二次函数是数学中的一种重要的函数类型,它的形式可以表示为$f(x) = ax^2 + bx + c$,其中$a$、$b$和$c$都是常数,$a$不等于0。
二次函数是一个抛物线,它在平面直角坐标系中呈现出一些特殊的性质和应用。
在几何学中,二次函数可以用于求解面积计算问题。
下面将介绍三个常见的应用:求解矩形面积最大值、求解三角形面积最大值和求解锥形体积最大值。
首先,考虑一个矩形的面积最大化问题。
假设我们要在固定的周长下找到一个矩形的最大面积。
假设矩形的宽度为$x$,长度为$y$,则周长满足$2x + 2y = C$,其中$C$是一个常数。
根据周长的限制条件,我们可以将长度$y$表示为$y = \frac{C}{2} - x$。
矩形的面积为$A = xy =x\left(\frac{C}{2} - x\right)$。
为了求解面积的最大值,我们考虑求解函数$A = x\left(\frac{C}{2} - x\right)$的极值点。
为了找到极值点,我们求解函数的导数。
将函数$A =x\left(\frac{C}{2} - x\right)$展开,可以得到$A = \frac{C}{2}x -x^2$。
对其求导数,我们得到$A' = \frac{C}{2} - 2x$。
令导数等于0,我们可以解得$x = \frac{C}{4}$。
将此值代入到原函数中,我们可以得到面积的最大值为$A =\left(\frac{C}{4}\right)\left(\frac{C}{4}\right) =\frac{C^2}{16}$。
因此,当周长固定时,矩形的面积最大为$\frac{C^2}{16}$。
同样地,我们求解函数的导数。
对函数$A = \frac{1}{2}x^2$求导,我们得到$A' = x$。
令导数等于0,我们可以解得$x = 0$。
然而,这个结果并不符合我们的问题条件,因为边长不能为0。
二次函数的实际应用——面积最大(小)值问题
二次函数的实际应用——面积最大(小)值问题[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.[例3]如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.。
二次函数的应用——最大面积问题教学设计
二次函数的应用——最大面积问题的教学设计一、学情分析:众所周知,二次函数与解析几何是初中数学的两个难点,而在中考中往往都是将二者融合形成综合性问题,当然也是学生一直感觉头疼的一个问题。
新课程标准指出,学生对有关的数学内容进行探索、实践和思考的过程就是数学学习的过程,也是学生获得数学活动经验的过程。
将时间还给学生、以学生为主体是每一节课的追求。
通过学生自主学习在反比例函数中求三角形时所用到的方法分享,对其中分割法中的竖直高乘以水平宽的一半进行着重分析,探究其基本原理,从而用此通法解决二次函数中三角形最大面积问题,当然重点分析此发的同时也鼓励一题多解、多解归一。
二、教学目标1、借助反比例函数中三角形面积的几种计算方法总结得出通法:“水平宽乘以竖直高的一半”。
2、通过自主学习小组合作讨论,从特殊的图形出发、层层深入让学生在探索过程中体会“水平宽乘以竖直高的一半”这一方法。
从而从本质理解“水平宽乘以竖直高的一半”。
3、运用“水平宽乘以竖直高的一半”表示出二次函数中基本三角形的面积结合二次函数的最值思想求出三角形面积的最值问题。
三、教学重难点:教学重点:运用“水平宽乘以竖直高的一半”表示出二次函数中基本三角形的面积结合二次函数的最值思想求出三角形面积的最值问题教学难点:从特殊的图形出发、层层深入让学生在探索过程中体会“水平宽乘以竖直高的一半”这一方法。
从而从本质理解“水平宽乘以竖直高的一半”。
四、教学设计【自主学习】学生课前自主完成、并在上课时小组讨论、交流并与大家分享。
的图象都引例:如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.方法提炼:补:补成矩形减去三个直角三角形。
补:延长CA与y轴交于点D,用三角形BCD面积减去三角形BAD面积。
二次函数的应用(面积问题)
A
D
B
C
练习3、如图,一边靠城墙,其他三边用1200m 长的篱笆围成一块矩形土地,城墙长为400 m, 且城墙的对面设置一个宽为100m的入口,设矩 形ABCD的边AB=x m,面积为S㎡。 (1)写出S与x之间的函数关系式; (2)当x取何值时,面积S最大,最大值是多少?
A
D
B
C
课时训练
1、如图,在△ABC中∠B=90º ,AB=12Байду номын сангаасm,BC=24cm, 动点P从A开始沿AB边以2cm/s的速度向B运动,动 点Q从B开始沿BC边以4cm/s的速度向C运动,如果P、 Q分别从A、B同时出发。 (1)写出△PBQ的面积S与运动时间t之间的函数 关系式,并写出自变量t的取值范围; (2)当t为何值时,△PBQ的面积S最大,最大值 是多少? A
∵ a=-1<0, ∴ y有最大值 当x=3cm时,y最大值=9 cm2,此时矩形的另一边也为3cm 答:矩形的两边都是3cm,即为正方形时,矩形的面积最大。 next
练习1、如图,一边靠城墙,其他三边用1200m 长的篱笆围成一块矩形土地,城墙长为700m, 400m 设矩形ABCD的边AB=x m,面积为S㎡。 (1)写出S与x之间的函数关系式; (2)当x取何值时,面积S最大,最大值是多少?
A
D
B
C
练习2、如图,一边靠城墙,用1200m长的篱笆 围成一块矩形土地且中间用篱笆隔开,城墙长为 400 m,设矩形ABCD的边AB=x m,面积为S ㎡。 (1)写出S与x之间的函数关系式; (2)当x取何值时,面积S最大,最大值是多少?
例1、已知:用长为1200m的篱笆围成一块矩形土地, AB长为xm,面积为Sm2,问何时矩形的面积最大,且最大 面积是多少? A C
二次函数的应用(面积问题)
(1)求抛物线解析式 (2)在抛物线上是否存在点F,使△ BCF的面积是5,若存在求出点8 F的坐标,若不存在,说明理由
7
6
5
B
F4
3
2
HE 1
16
14
12
10
8
6
4 C2
O2
4D
显示函数 f
1
显示对象AB
隐藏对象
如图,在平面直角坐标系xoy中,二次函数y=ax2+bx-4(a≠0 的图象与x轴交于点A(-2,0),C(8,0)两点,与y轴 交于点B,其对称轴与x轴交于点D。 (1)求该二次函数的解析式; (2)如图,若点P(m,n)是该二次函数图象上的一个动点 (其中m>0,n<0),连结PB,PD,BD,求三角形BDP面积的 最大值及此时点P的坐标。
二次函数的应用(面积问题)
授课教师:李晓霞 营口市第二十九中学
5
4.5
1、如图,抛物线y=ax2+bx过A(4,0),B(41,3)两点。 ((12))求点抛P是物A线B上解方析抛式物线上的任意一3点.5 , B 设点P的横坐标是m,PQ y轴交AB于点Q3 ,
用含m的关系式表示线段PQ的长。 2.5
(3)在(2)的条件下,求当 ABP的2面积
最大时,点P的坐标。
1.5
(当4△)A点BPP的是面抛积物是线6上时一,动求点出,点且P的位坐于标第1。四象限,
0.5
y = x2 + 4∙x
7 隐藏函6数 f
5
4
3
2
1
O E1
2
3
显示函数 g
0.5
显示线段AP,PB,三角形ABP
1、如图,△
二次函数的应用——面积最大问题》说课稿—获奖说课稿
二次函数的应用——面积最大问题》说课稿—获奖说课稿22.过程与方法:培养学生利用所学知识构建数学模型,解决实际问题的能力,掌握建模思想,熟练掌握最值问题的解法。
23.情感态度与价值观:通过实际问题的应用,让学生感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱。
本节课的重点是最值问题的解法和建模思想的培养,难点是对实际问题的分析和建模思想的掌握。
三、教学方法的选择本节课采用“引导发现、归纳总结、启发式教学”等多种教学方法,其中引导发现法是本节课的核心教学方法,通过引导学生发现实际问题中的规律和模式,培养学生独立思考和解决问题的能力;归纳总结法是巩固知识的有效方法,通过对学生已有的知识进行梳理和总结,加深对知识的理解和记忆;启发式教学法则是在教学中采用启发式问题,激发学生的思考和求知欲,提高学生的研究兴趣和积极性。
四、教学过程的设计本节课的教学过程分为四个环节:导入、讲授、练、归纳总结。
导入环节通过引入实际问题,激发学生的兴趣和求知欲,让学生认识到最值问题的实际应用价值;讲授环节通过具体例子和图像分析,讲解最值问题的解法和建模思想;练环节则通过多种形式的练,巩固学生的知识和技能;归纳总结环节则对本节课的知识点进行总结和梳理,加深对知识的理解和记忆。
五、教学效果预测通过本节课的教学,学生将能够掌握最值问题的解法和建模思想,能够熟练应用所学知识解决实际问题,同时也能够感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱,为学生今后的研究打下坚实的理论和思想方法基础。
2、___要在一块长为20米、宽为15米的空地上建一个长方形花园,他想让花园的面积最大,你能帮他算一下最大面积是多少吗?3、某公司生产一种产品,销售价格为每个10元,生产成本为每个5元,每天能生产1000个,你能帮助他们算一下每天的最大利润是多少吗?设计思路]通过这三个问题,引导学生发现实际问题中的最值问题,从而引出二次函数的最值问题。
高职考复习二次函数的应用(一)
函数的应用面积问题1.某开心农场要用一段长为40m的篱笆,围成一个矩形菜园ABCD,若设菜园的边长AB为x m,m。
菜园的面积为y2(1)求y与x之间的函数关系式,写出x的取值范围;(2)当x为何值时,菜园面积最大?并求出最大值?2.某广告公司设计一块周长为8米的距形广告牌,广告设计费为每平方米1000元,高距形一边长为x米,面积为S平方米。
(1)求S与x的函数关系式及x的取值范围。
(2)为使广告牌费用最多;广告牌的长和宽分别设计为多少米?此时广告费为多少?3.现在阳台种菜成为部分人的爱好.如图所示,一块种菜的小菜地一面靠墙(墙长度为1.2米),另外三面由总长为2米的栅栏围成,设宽为x米,面积为y平方米,(1)求菜地的另一边的长(用x表示);(2)求y与x之间的函数关系,并写出自变量x的取值范围;(3)当x为何值时,菜地的面积最大?并求出最大值.4.张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的略函数关系式(写出自变量x的取值范围).(2)当x为何值时,S有最大值?并求出最大值.5.如图所示,计划用12m的材料建一个窗框,(1)求窗框面积y与窗框长度x之间的函数关系式;(2)求窗框的长与宽各为多少米时,窗户的透光面最大?最大面积是多少?6.有长20米的铝条材料,做成一个如图所示的日字型框(制作中耗材不计),当窗框的长和宽为多少米时,达到最大的进光量,并求出最大进光面积。
7.有一批材料可以建成长为200米的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图),求围成的矩形的最大面积.8.杭州动物园欲围成相同面积的长方形虎笼四间,一面可利用原有的墙(长度够用),其他各面用钢筋网围成,如图。
现有可围36米长的钢筋网材料,设每间虎笼的长为x米。
二次函数中的面积计算问题
二次函数中的面积计算问题[典型例题]例. 如图,二次函数2y x bx c =++图象与x 轴交于A,B 两点(A 在B 的左边),与y 轴交于点C ,顶点为M ,MAB ∆为直角三角形, 图象的对称轴为直线2-=x ,点P 是抛物线上位于,A C 两点之间的一个动点,则PAC ∆的面积的最大值为(C ) A .274 B .112 C . 278D .3二次函数中面积问题常见类型: 一、选择填空中简单应用 二、不规则三角形面积运用S= 三、运用四、运用相似三角形五、运用分割方法将不规则图形转化为规则图形例1. 如图1,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是 ( B )xy ABCOM例2. 解答下列问题:如图1,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.思路分析此题是二次函数中常见的面积问题,方法不唯一,可以用割补法,但有些繁琐,如图2我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形面积等于水平宽与铅垂高乘积的一半.掌握这个公式后,思路直接,过程较为简单,计算量相对也少许多,答案:(1)由已知,可设抛物线的解析式为y 1=a (x -1)2+4(a ≠0).把A (3,0)代入解析式求得a =-1,∴抛物线的解析式为y 1=-(x -1)2+4,即y 1=-x 2+2x +3.图2图1设直线AB 的解析式为y 2=kx +b ,由y 1=-x 2+2x +3求得B 点的坐标为(0,3).把A (3,0),B (0,3)代入y 2=kx +b ,解得k =-1,b =3.∴直线AB 的解析式为y 2=-x +3.(2)∵C (1,4),∴当x =1时,y 1=4,y 2=2.∴△CAB 的铅垂高CD =4-2=2.S △CAB =21×3×2=3(平方单位).(3)解:存在.设P 点的横坐标为x ,△PAB 的铅垂高为h则h =y 1-y 2=(-x 2+2x +3)-(-x +由S △PAB =89S △CAB 得:21×3×(-x 2+3x )整理得4x 2-12x +9=0,解得x =23.把x =23代入y 1=-x 2+2x +3,得y 1=415.∴P 点的坐标为(23,415).例3. (贵州省遵义市)如图,在平面直角坐标系中,Rt △AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕点O 逆时针方向旋转90°得到△COD (点A 转到点C 的位置),抛物线y =ax 2+bx +c (a ≠0)经过C 、D 、B 三点.(1)求抛物线的解析式;(2)若抛物线的顶点为P ,求△PAB 的面积;(3)抛物线上是否存在点M ,使△MBC 的面积等于△PAB 的面积若存在,请求出点M图2思路分析:根据题目所给信息,函数关系式和△PAB 的面积很容易求出。
专题58 二次函数中的面积问题(解析版)
例题精讲求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法.【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积.这是在“补”,同样可以采用“割”:()111222ABC ACD BCD S S S AE BF CD AE BF=+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6.下面求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4,将4代入直线AB 解析式得D 点纵坐标为2,故D 点坐标为(4,2),CD =5,165152ABC S =⨯⨯= .【方法总结】作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABC S ⨯ 水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ;(3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标;(4)根据C 、D 坐标求得铅垂高;(5)利用公式求得三角形面积.例题精讲【例1】.如图,抛物线y=﹣x2﹣2x+3与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C.点P为抛物线第二象限上一动点,连接PB、PC、BC,求△PBC面积的最大值,并求出此时点P的坐标.解:令x=0,则y=3,∴C(0,3),设直线BC的解析式为y=kx+3(k≠0),把点B坐标代入y=kx+3得﹣3k+3=0,解得k=1,∴直线BC的解析式为y=x+3,设P的横坐标是x(﹣3<x<0),则P的坐标是(x,﹣x2﹣2x+3),过点P作y轴的平行线交BC于M,则M(x,x+3),∴PM=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x,=PM•|x B﹣x C|=(﹣x2﹣3x)×3=﹣(x2+3x)=﹣(x+)2+,∴S△PBC∵﹣<0,有最大值,最大值是,∴当x=﹣时,S△PBC∴△PBC面积的最大值为;当x=﹣时,﹣x2﹣2x+3=,∴点P坐标为(﹣,).变式训练【变1-1】.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式和直线AC的解析式;(2)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.解:(1)∵y=ax2+bx+3经过A(1,0),C(4,3),∴,解得:,∴抛物线的解析式为:y=x2﹣4x+3;设直线AC的解析式为y=kx+h,将A、C两点坐标代入y=kx+h得:,解得:,∴直线AC的解析式为y=x﹣1;(2)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,解得:m=﹣,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为AF•sin45°=×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,).【变1-2】.如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣+bx+c 经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M 的坐标.解:(1)令x=0,得y=﹣x+2=2,∴A(0,2),令y=0,得y=﹣x+2=0,解得x=4,∴C(4,0).把A、C两点代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)过M点作MN⊥x轴,与AC交于点N,如图,设M(a,﹣a2+a+2),则N(a,﹣a+2),=•MN•OC=(﹣a+2﹣a2﹣a﹣2)×4=﹣a2+2a,∴S△ACMS△ABC=•BC•OA=×(4+2)×2=6,=S△ACM+S△ABC=﹣a2+2a+6==﹣(a﹣2)2+8,∴S四边形ABCM∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2).【例2】.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,过点A的直线l交抛物线于点C(2,m),点P是线段AC上一个动点,过点P作x轴的垂线交抛物线于点E.(1)求抛物线的解析式;(2)当P在何处时,△ACE面积最大.解:(1)抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)把C(2,m)代入y=x2﹣2x﹣3得m=4﹣4﹣3=﹣3,则C(2,﹣3),设直线AC的解析式为y=mx+n,把A(﹣1,0),C(2,﹣3)代入得,解得,∴直线AC的解析式为y=﹣x﹣1;设E(t,t2﹣2t﹣3)(﹣1≤t≤2),则P(t,﹣t﹣1),∴PE=﹣t﹣1﹣(t2﹣2t﹣3)=﹣t2+t+2,∴△ACE的面积=×(2+1)×PE=(﹣t2+t+2)=﹣(t﹣)2+,当t=时,△ACE的面积有最大值,最大值为,此时P点坐标为(,﹣).变式训练【变2-1】.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求这个抛物线的函数表达式;(2)若点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.解:(1)抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:,故抛物线的表达式为:,则点C(0,2),函数的对称轴为:x=﹣1;(2)连接OP,设点,=S△APO+S△CPO﹣S△ODC=则S=S四边形ADCP=,∵﹣1<0,故S有最大值,当时,S的最大值为.【变2-2】.如图,在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A,动点D在直线BC下方的二次函数图象上.(1)求二次函数的表达式;(2)连接DC,DB,设△BCD的面积为S,求S的最大值.解:(1)把x=0代y=x﹣2得y=﹣2,∴C(0,﹣2).把y=0代y=x﹣2得x=4,∴B(4,0),设抛物线的解析式为y=(x﹣4)(x﹣m),将C(0,﹣2)代入得:2m=﹣2,解得:m=﹣1,∴A(﹣1,0).∴抛物线的解析式y=(x﹣4)(x+1)=x2﹣x﹣2;(2)如图所示:过点D作DF⊥x轴,交BC与点F.设D(x,x2﹣x﹣2),则F(x,x﹣2),DF=(x﹣2)﹣(x2﹣x﹣2)=﹣x2+2x.△BCD2+4.∴当x=2时,S有最大值,最大值为4.1.如图,抛物线y=﹣x2+x+2与x轴交于A,B两点,与y轴交于点C,若点P是线段BC上方的抛物线上一动点,当△BCP的面积取得最大值时,点P的坐标是()A.(2,3)B.(,)C.(1,3)D.(3,2)解:对于y=﹣x2+x+2y=﹣x2+x+2=0,解得x=﹣1或4,令x=0,则y =2,故点A、B、C的坐标分别为(﹣1,0)、(4,0)、(0,2),过点P作y轴的平行线交BC于点H,由点B、C的坐标得,直线BC的表达式为y=﹣x+2,设点P的坐标为(x,﹣x2+x+2),则点H的坐标为(x,﹣x+2),+S△PHC=PH×OB=×4×(﹣x2+x+2+x﹣2)=﹣则△BCP的面积=S△PHBx2+4x,∵﹣1<0,故△BCP的面积有最大值,当x=2时,△BCP的面积有最大值,此时,点P的坐标为(2,3),故选:A.2.如图1,抛物线与x轴交于A、B两点,与y轴交于点C,直线过B、C两点,连接AC.(1)求抛物线的解析式;(2)点P为抛物线上直线BC上方的一动点,求△PBC面积的最大值,并求出点P坐标;(3)若点Q为抛物线对称轴上一动点,求△QAC周长的最小值.解:(1)令x=0,则y=2,∴C(0,2),令y=0,则x=4,∴B(4,0),将点B(4,0)和点C(0,2)代入,得,解得:,∴抛物线的解析式为y=﹣x2+x+2;(2)作PD∥y轴交直线BC于点D,设P(m,﹣m2+m+2),则D(m,﹣m+2),∴PD=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,=×4×(﹣m2+2m)=﹣m2+4m=﹣(m﹣2)2+4,∴S△PBC∴当m=2时,△PBC的面积有最大值4,此时P(2,3);(3)令y=0,则,解得x=﹣1或x=4,∴A(﹣1,0),∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线的对称轴为直线x=,∵A点与B点关于对称轴对称,∴AQ=BQ,∴AQ+CQ+AC=BQ+CQ+AC≥BC+AC,∴当B、C、Q三点共线时,,△QAC周长最小,∵C(0,2),B(4,0),A(﹣1,0),∴BC=2,AC=,∴AC+BC=3,∴△QAC周长最小值为3.3.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出△PBC面积的最大值.若没有,请说明理由.解:(1)根据题意得:,解得,则抛物线的解析式是y=﹣x2﹣2x+3;(2)理由如下:由题知A、B两点关于抛物线的对称轴x=﹣1对称,∴直线BC与x=﹣1的交点即为Q点,此时△AQC周长最小,对于y=﹣x2﹣2x+3,令x=0,则y=3,故点C(0,3),设BC的解析式是y=mx+n,则,解得,则BC的解析式是y=x+3.x=﹣1时,y=﹣1+3=2,∴点Q的坐标是Q(﹣1,2);(3)过点P作y轴的平行线交BC于点D,设P的横坐标是x,则P的坐标是(x,﹣x2﹣2x+3),对称轴与BC的交点D是(x,x+3).则PD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x.=(﹣x2﹣3x)×3=﹣x2﹣x==﹣(x+)2+,则S△PBC∵﹣<0,故△PBC的面积有最大值是.4.如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的二次函数解析式:(2)若点P在抛物线上,点Q在x轴上,当以点B、C、P、Q为顶点的四边形是平行四边形时,求点P的坐标;(3)如图2,点H是直线BC下方抛物线上的动点,连接BH,CH.当△BCH的面积最大时,求点H的坐标.解:(1)∵y过A(﹣1,0),B(5,0)把A(﹣1,0),B(5,0)代入抛物线y=ax2+bx﹣5得,解得y=x2﹣4x﹣5;(2)当x=0时,y=﹣5,∴C(0,﹣5),设P(m,m2﹣4m﹣5),Q(n,0),①BC为对角线,则x Q﹣x C=x B﹣x P,y Q﹣y C=y B﹣y P,解得,(舍去),∴P(4,﹣5),②CP为对角线,则x Q﹣x C=x P﹣x B,y Q﹣y C=y P﹣y B,解得或,∴P(2+,5)或(2﹣,5),③CQ为对角线时,CP∥BQ,则点P (4,﹣5);综上P (4,﹣5)或(2﹣,5)或(2+,5);第三种,CQ 为对角线不合要求,舍去;(3)过H 作HD ∥y 轴交BC 于D ,∴S △BCH =S △CDH +S △BDH =HD (x H ﹣x C )+HD (x B ﹣x H )=HD (x B ﹣x C )=HD ,设BC :y =kx +b 1,∵BC 过B 、C 点,代入得,,,∴y =x ﹣5,设H (h ,h 2﹣4h ﹣5),D (h ,h ﹣5),S △BCH =HD =×[h ﹣5﹣(h 2﹣4h ﹣5)]=﹣(h ﹣)2+,∴当h =时,H (,﹣)时,S △BCHmax =.5.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=OC,∵点C(0,﹣3),∴OC=3,∴OE=,∴E(0,﹣),∴点P的纵坐标为﹣,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,∴x2﹣2x﹣3=﹣,∴x=或x=,∵点P在直线BC下方的抛物线上,∴0<x<3,∴点P(,﹣);(3)如图2,过点P作PF⊥x轴于F,则PF∥OC,由(1)知,二次函数的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴A(﹣1,0),∴设P(m,m2﹣2m﹣3)(0<m<3),∴F(m,0),=S△AOC+S梯形OCPF+S△PFB=OA•OC+(OC+PF)•OF+PF•BF∴S四边形ABPC=×1×3+(3﹣m2+2m+3)•m+(﹣m2+2m+3)•(3﹣m)=﹣(m﹣)2+,∴当m=时,四边形ABPC的面积最大,最大值为,此时,P(,﹣),即点P运动到点(,﹣)时,四边形ABPC的面积最大,其最大值为.6.如图,抛物线y=ax2+bx+c与坐标轴交点分别为A(﹣1,0),B(3,0),C(0,2),作直线BC.(1)求抛物线的解析式;(2)点P为抛物线上第一象限内一动点,过点P作PD⊥x轴于点D,设点P的横坐标为t(0<t<3),求△ABP的面积S与t的函数关系式;(3)条件同(2),若△ODP与△COB相似,求点P的坐标.解:(1)把A(﹣1,0),B(3,0),C(0,2)代入y=ax2+bx+c得:,解得:a=﹣,b=,c=2,∴抛物线的解析式为y=﹣x2+x+2.(2)设点P的坐标为(t,﹣t2+t+2).∵A(﹣1,0),B(3,0),∴AB=4.∴S=AB•PD=×4×(﹣t2+t+2)=﹣t2+t+4(0<t<3);(3)当△ODP∽△COB时,=即=,整理得:4t2+t﹣12=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).当△ODP∽△BOC,则=,即=,整理得t2﹣t﹣3=0,解得:t=或t=(舍去).∴OD=t=,DP=OD=,∴点P的坐标为(,).综上所述点P的坐标为(,)或(,).7.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.解:(1)∵点C的横坐标为3,∴y=×3+=2,∴点C的坐标为(3,2),把点C(3,2)代入抛物线,可得2=9a﹣9a﹣4a,解得:a=,∴抛物线的解析式为y=;(2)设点P(m,0),Q(m+1,0),由题意,点D(m,m+)m,E(m,),G(m+1,m+1),F(m+1,),∵四边形DEFG为平行四边形,∴ED=FG,∴()﹣(m+)=()﹣(m+1),即=,∴m=0.5,∴P(0.5,0)、Q(1.5,0);(3)设以D、E、F、G为顶点的四边形面积为S,由(2)可得,S=()×1÷2=(﹣m2+m+)=,∴当m=时,S最大值为,∴以D、E、F、G为顶点的四边形面积有最大值,最大值为.8.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.E是BC上一点,PE∥y轴.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一动点,求BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当m为何值时MN=BM,解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得解这个方程组,得.故直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴S△BCP∵﹣<0,∴当t=时,S=.△BCP最大(3)M(m,﹣m+3),N(m,m2﹣4m+3),∴MN=|m2﹣3m|,BM=|m﹣3|,当MN=BM时,m2﹣3m=(m﹣3),解得m=.9.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.解:(1)把x=0代入y=x﹣3得y=﹣3,则C点坐标为(0,﹣3),把y=0代入y=x﹣3得x﹣3=0,解得x=4,则A点坐标为(4,0),把A(4,0),C(0,﹣3)代入y=﹣x2+mx+n得,解得,所以二次函数解析式为y=﹣x2+x﹣3;(2)存在.过D点作直线AC的平行线y=kx+b,当直线y=kx+b与抛物线只有一个公共点时,点D 到AC的距离最大,此时△ACD的面积最大,∵直线AC的解析式为y=x﹣3,∴k=,即y=x+b,由直线y=x+b和抛物线y=﹣x2+x﹣3组成方程组得,消去y得到3x2﹣12x+4b+12=0,∴△=122﹣4×3×(4b+12)=0,解得b=0,∴3x2﹣12x+12=0,解得x1=x2=2,把x=2,b=0代入y=x+b得y=,∴D点坐标为(2,).10.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0),B(3,0),过点B的直线y==x﹣2交抛物线于点C.(1)求该抛物线的函数表达式;(2)若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求△PBC面积的最大值.解:(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx﹣3中,得:,解得:,∴该抛物线表达式为y=x2﹣2x﹣3.(2)如图1,过点P作PD∥y轴,交x轴于点D,交BC于点E,作CF⊥PD于点F,连接PB,PC,设点P(m,m2﹣2m﹣3),则点E(m,m﹣2),∴PE=PD﹣DE=﹣m2+2m+3﹣(﹣m+2)=﹣m2+m+1,联立方程组:,解得:,.∵点B坐标为(3,0),∴点C的坐标为(﹣,﹣),∴BD+CF=3+||=.=S△PEB+S△PEC=PE•BD+PE•CF∴S△PBC=PE(BD+CF)=(﹣m2+m+1)×=﹣(m﹣)2+,(其中﹣<m<3).∵﹣<0,∴这个二次函数有最大值.的最大值为.∴当m=时,S△PBC11.如图,在平面直角坐标系xOy中,已知直线y=x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).(1)求抛物线的解析式;=S△OAB?若存在,请求出点P的坐标,若不(2)在抛物线上是否存在一点P,使S△P AB存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+ON的最小值.解:(1)∵直线y=x﹣2与x轴交于点A,与y轴交于点B,∴点A(4,0),点B(0,﹣2),设抛物线解析式为:y=a(x+1)(x﹣4),∴﹣2=﹣4a,∴a=,∴抛物线解析式为:y=(x+1)(x﹣4)=x2﹣x﹣2;(2)如图1,当点P在直线AB上方时,过点O作OP∥AB,交抛物线于点P,∵OP∥AB,∴△ABP和△ABO是等底等高的两个三角形,=S△ABO,∴S△P AB∵OP∥AB,∴直线PO的解析式为y=x,联立方程组可得,解得:或,∴点P(2+2,1+)或(2﹣2,1﹣);当点P''在直线AB下方时,在OB的延长线上截取BE=OB=2,过点E作EP''∥AB,交抛物线于点P'',连接AP'',BP'',∴AB∥EP''∥OP,OB=BE,=S△ABO,∴S△AP''B∵EP''∥AB,且过点E(0,﹣4),∴直线EP''解析式为y=x﹣4,联立方程组可得,解得,∴点P''(2,﹣3),综上所述:点P坐标为(2+2,1+)或(2﹣2,1﹣)或(2,﹣3);(3)如图2,过点M作MF⊥AC,交AB于F,设点M(m,m2﹣m﹣2),则点F(m,m﹣2),∴MF=m﹣2﹣(m2﹣m﹣2)=﹣(m﹣2)2+2,∴△MAB的面积=×4×[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,∴当m=2时,△MAB的面积有最大值,∴点M(2,﹣3),如图3,过点O作∠KOB=30°,过点N作KN⊥OK于K点,过点M作MP⊥OK于P,延长MF交直线KO于Q,∵∠KOB=30°,KN⊥OK,∴KN=ON,∴MN+ON=MN+KN,∴当点M,点N,点K三点共线,且垂直于OK时,MN+ON有最小值,即最小值为MP,∵∠KOB=30°,∴直线OK解析式为y=x,当x=2时,点Q(2,2),∴QM=2+3,∵OB∥QM,∴∠PQM=∠PON=30°,∴PM=QM=+,∴MN+ON的最小值为+.12.直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B 两点.(1)求这个二次函数的表达式;(2)若P是直线AB上方抛物线上一点;①当△PBA的面积最大时,求点P的坐标;②在①的条件下,点P关于抛物线对称轴的对称点为Q,在直线AB上是否存在点M,使得直线QM与直线BA的夹角是∠QAB的两倍?若存在,直接写出点M的坐标;若不存在,请说明理由.解:(1)直线y=﹣x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为:(4,0)、(0,2),将点A、B的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+2;(2)①过点P作y轴的平行线交BC于点N,设P(m,﹣m2+m+2),点N(m,﹣m+2),则:△PBA的面积S=PN×OA=×4×(﹣m2+m+2+m﹣2)=﹣2m2+8m,当m=2时,S最大,此时,点P(2,5);②点P(2,5),则点Q(,5),设点M(a,﹣a+2);(Ⅰ)若:∠QM1B=2∠QAM1,则QM1=AM1,则(a﹣)2+(a+3)2=(a﹣4)2+(﹣a+2)2,解得:a=,故点M1(,);(Ⅱ)若∠QM2B=2∠QAM1,则∠QM2B=∠QM1B,QM1=QM2,作QH⊥AB于H,BQ的延长线交x轴于点N,则tan∠BAO==,则tan∠QNA=2,故直线QH表达式中的k为2,设直线QH的表达式为:y=2x+b,将点Q的坐标代入上式并解得:b=2,故直线QH的表达式为:y=2x+2,故H(0,2)与B重合,M2、M1关于B对称,∴M2(﹣,);综上,点M的坐标为:(,)或(﹣,).13.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)交y轴于点A,交x轴于点B(﹣3,0)和点C(1,0).(1)求此抛物线的表达式.(2)若点P是直线AB下方的抛物线上一动点,当△ABP的面积最大时,求出此时点P 的坐标和△ABP的最大面积.(3)设抛物线顶点为D,在(2)的条件下直线AB上确定一点H,使△DHP为等腰三角形,请直接写出此时点H的坐标(﹣,﹣).解:(1)将点B(﹣3,0)和点C(1,0)代入y=ax2+bx﹣3,得,∴,∴y=x2+2x﹣3;(2)令x=0,则y=﹣3,∴A(0,﹣3),设直线AB的解析式为y=kx+b,∴,∴,∴y=﹣x﹣3,过点P作PG⊥x轴交AB于点G,设P(t,t2+2t﹣3),则G(t,﹣t﹣3),∴PG=﹣t﹣3﹣t2﹣2t+3=﹣t2﹣3t,∴S△ABP=×3×(﹣t2﹣3t)=﹣(t+)2+,当t=﹣时,S△ABP有最大值,此时P(﹣,﹣);(3)由y=x2+2x﹣3的顶点D(﹣1,﹣4),设H(m,﹣m﹣3),∵△DHP为等腰三角形,∴DH=PH,∴(m+1)2+(﹣m+1)2=(m+)2+(﹣m+)2,解得m=﹣,∴H(﹣,﹣),故答案为:(﹣,﹣).14.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标.解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1;(2)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,同理可得:AN=,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+;(3)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,PF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).15.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C (0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.(3)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由.解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图1,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)∴S△PBC×4=﹣2(t﹣2)2+8,最大值为8,此时t2﹣3t﹣4=﹣6,∴当t=2时,S△PBC∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.(3)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图2,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2).16.已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图1,抛物线的对称轴交x轴于点M,连接BC、CM.求△BCM的周长及tan∠BCM的值;(3)如图2,过点A的直线m∥BC,点P是直线BC上方抛物线上一动点,过点P作PD⊥m,垂足为点D,连接BD,CD,CP,PB.当四边形BDCP的面积最大时,求点P 的坐标及四边形BDCP面积的最大值.解:(1)将A(﹣1,0),B(3,0)分别代入y=﹣x2+bx+c得:,解得,∴y=﹣x2+2x+3.(2)由解析式可得M(1,0),C(0,3),∴.∴△BCM的周长为.如图1,过点M作MN⊥BC于点N,∵OB=OC,∴∠OBC=∠BMN=45°.∴.∴.∴.=S△BDC+S△BPC,(3)由题意可知:S四边形BDCP∵过点A的直线m∥BC,∴.∵A(﹣1,0),B(3,0),∴AB=4.∵抛物线y=﹣x2+2x+3交y轴于点C(0,3),∴OC=3.∴.如图2,过点P作PF⊥x轴,垂足为点F,交BC于点E,直线BC的解析式为:y=﹣x+3.设P(x,﹣x2+2x+3),则E(x,﹣x+3),∵点P是直线BC上方抛物线上一动点,∴PE=PF﹣EF=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x.则=.∴.当时,四边形BDCP的面积最大,最大面积为.此时,点P的坐标为.17.如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B (1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.∴,解得,∴y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点(﹣1,﹣4),∵顶点(﹣1,﹣4)关于原点的对称点为(1,4),∴抛物线F2的解析式为y=﹣(x﹣1)2+4,∴y=﹣x2+2x+3;(3)由题意可得,抛物线F3的解析式为y=﹣(x﹣1)2+6=﹣x2+2x+5,①联立方程组,解得x=2或x=﹣2,∴C(﹣2,﹣3)或D(2,5);②设直线CD的解析式为y=kx+b,∴,解得,∴y=2x+1,过点M作MF∥y轴交CD于点F,过点N作NE∥y轴交CD于点E,设M(m,m2+2m﹣3),N(n,﹣n2+2n+5),则F(m,2m+1),E(n,2n+1),∴MF=2m+1﹣(m2+2m﹣3)=﹣m2+4,NE=﹣n2+2n+5﹣2n﹣1=﹣n2+4,∵﹣2<m<2,﹣2<n<2,∴当m=0时,MF有最大值4,当n=0时,NE有最大值4,=S△CDN+S△CDM=×4×(MF+NE)=2(MF+NE),∵S四边形CMDN∴当MF+NE最大时,四边形CMDN面积的最大值为16.18.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y =a(x﹣h)2+k.抛物线H与x轴交于点A、B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式.(2)如图1,点P在线段AC上方的抛物线H上运动(不与A、C重合),过点P作PD ⊥AB,垂足为D,PD交AC于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值.(3)如图2,点Q是抛物线H的对称轴l上的一个动点,在抛物线H上,是否存在点P,使得以点A、P、C、Q为顶点的四边形是平行四边形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.参考:若点P1(x1,y1)、P2(x2,y2),则线段P1P2的中点P0的坐标为.解:(1)由题意得抛物线的顶点坐标为(﹣1,4),∴抛物线H:y=a(x+1)2+4,将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,解得:a=﹣1,∴抛物线H的表达式为y=﹣(x+1)2+4;(2)如图1,由(1)知:y=﹣x2﹣2x+3,令x=0,得y=3,∴C(0,3),设直线AC的解析式为y=mx+n,∵A(﹣3,0),C(0,3),∴,解得:,∴直线AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),则E(m,m+3),∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∵﹣1<0,∴当m=﹣时,PE有最大值,∵OA=OC=3,∠AOC=90°,∴△AOC是等腰直角三角形,∴∠ACO=45°,∵PD⊥AB,∴∠ADP=90°,∴∠ADP=∠AOC,∴PD∥OC,∴∠PEF=∠ACO=45°,∵PF⊥AC,∴△PEF是等腰直角三角形,∴PF=EF=PE,=PF•EF=PE2,∴S△PEF=×()2=;∴当m=﹣时,S△PEF最大值(3)①当AC为平行四边形的边时,则有PQ∥AC,且PQ=AC,如图2,过点P作对称轴的垂线,垂足为G,设AC交对称轴于点H,则∠AHG=∠ACO=∠PQG,在△PQG和△ACO中,,∴△PQG≌△ACO(AAS),∴PG=AO=3,∴点P到对称轴的距离为3,又∵y=﹣(x+1)2+4,∴抛物线对称轴为直线x=﹣1,设点P(x,y),则|x+1|=3,解得:x=2或x=﹣4,当x=2时,y=﹣5,当x=﹣4时,y=﹣5,∴点P坐标为(2,﹣5)或(﹣4,﹣5);②当AC为平行四边形的对角线时,如图3,设AC的中点为M,∵A(﹣3,0),C(0,3),∴M(﹣,),∵点Q在对称轴上,∴点Q的横坐标为﹣1,设点P的横坐标为x,根据中点公式得:x+(﹣1)=2×(﹣)=﹣3,∴x=﹣2,此时y=3,∴P(﹣2,3);综上所述,点P的坐标为(2,﹣5)或(﹣4,﹣5)或(﹣2,3).。
二次函数的实际应用(面积最值问题含答案)
二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -= x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米)答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元 那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -=)5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x xxyO AB M O(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x ∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.5易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得 ==+21y y +== ∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,将的坐标代入,得解得.所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是.过点作垂直交抛物线于,则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数面积问题
基础知识
()
在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:
1.运用配方法求最值;
2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;
3.建立函数模型求最值;
4.利用基本不等式或不等分析法求最值.
知识典例
(夯实基础)(30分钟)
[例1]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm /s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q 两点同时出发,分别到达B、C两点后就停止移动.
(1)运动第t秒时,△PBQ的面积y(cm²)是多少?
(2)此时五边形APQCD的面积是S(cm²),写出S与t的函数关系式,并指出自变量的取值范围.
(3)t为何值时s最小,最小值时多少?
[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?
()(5分钟)
[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.
强化练习
x
[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.
(1)判断图(2)中四边形EFGH是何形状,并说明理由;
(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?
回顾小结
()(2分钟)
1.某人从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)
h.
的函数关系式是,那么小球运动中的最大高度
最大
2.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.
5 m 12 m A
B C
D
3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( )
A .424m
B .6 m
C .15 m
D .2
5m 4.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( )
A .7
B .6
C .5
D .4
5.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:
3
5321212++-=x x y ,则该运动员此次掷铅球的成绩是( ) A .6 m
B .12 m
C .8 m
D .10m x
y O A
B M
O
(图5) (图6) (图7) 6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所
在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面
340m ,则水流落地点B 离墙的距离OB 是( )
A .2 m
B .3 m
C .4 m
D .5 m
7.小明在某次投篮中,球的运动路线是抛物线21 3.55
y x =-
+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( )
A .4.6m
B .4.5m
C .4m
D .3.5m
8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).
(1)求y 与x 之间的函数关系,并写出自变量的取值范围;
(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?
9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.
(1)要使鸡场面积最大,鸡场的长度应为多少m ?
(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?
x
10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.
A B C D
P Q
11.如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,•分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?
12.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.
13.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大?最大面积是多少?
14.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关
系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)
(1)分别求出利润与关于投资量的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?
15.如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;
(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.
16.一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;
(2)求支柱的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.。