培优专题几何证明题(含答案)
培优增分 第6讲 几何法求线面角、二面角和距离
A.4 C.3
B.2 3 D.2 2
17
D 由题可得 AB=8,因为 AP=BP, 所以 S△ABP=12×8×4=16, 因为 PC⊥平面 ABP,且 PC=4, 所以 VC -ABP=13×16×4=634, 因为 AP=BP=4 2, 所以 AC=BC=4 3,
限时规范训练
18
所以 S△ABC=12×8× 48-16=16 2. 设点 P 到平面 ABC 的距离为 d, 则 VP -ABC=13×16 2d=634,解得 d=2 2.
5= 5
5,即 A1C 与平面 ABCD
所成角的正切值为 5.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
27
限时规范训练
3.把边长为 2的正方形 ABCD 沿对角线 AC 折成直二面角 D -AC -B,
则三棱锥 D -ABC 的外接球的球心到平面 BCD 的距离为( A )
1 2 3 4 5 6 7 8 9 10 11 12 13 14
31
由 PA⊥底面 ABCD 易知 PA⊥AD, 所以 PD= 12+12= 2, 易知 DO=12DB=12 12+12= 22, 所以 sin∠DPO=DPDO=12, 即直线 PD 与平面 PAC 所成角的正弦值为12.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
BC 的中点,l 为平面 O1AC 与平面 O1OD 的交线,则交线 l 与平面 O1BC 所 成角的大小为( B )
A.π2
B.π3
C.π6
D.π4
4
限时规范训练
B 因为O,D分别是AB,BC的中点,所以OD∥AC,
又OD⊂平面O1OD,AC⊄平面O1OD, 所以AC∥平面O1OD, AC⊂平面O1AC,平面O1AC∩平面O1OD=l, 所以AC∥l,OD∥AC,所以OD∥l,
2023年中考数学 几何培优专题:线段等量关系的证明(含答案)
2023中考数学 几何培优专题:线段等量关系的证明(含答案)1. 已知:在ABC △中AB AC =,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,BAE BDF ∠=∠,点M 在线段DF 上,ABE DBM ∠=∠. (1)如图1-1,当45ABC ∠=︒时,求证:2AE MD =;(2)如图1-2,当60ABC ∠=︒时,则线段AE 、MD 之间的数量关系为____________;(3)在(2)的条件下延长BM 到P ,使MP BM =,连接CP ,若7AB =,27AE =,求tan PCB ∠和tan ACP ∠的值.图1-1 图1-2(1)证明:如图1,连接AD .∵AB AC =,BD CD =,∴AD BC ⊥.又∵45ABC ∠=︒,∴cos BD AB ABC =⋅∠,即2AB BD =. ∵BAE BDM ∠=∠,ABE DBM ∠=∠,∴ABE DBM ∽△△.∴2AE AB DM DB ==,∴2AE MD =.(2)∵1cos cos602ABC ∠=︒=,∴1cos 2MD AE ABC AE =⋅∠=⋅,∴2AE MD =.(3)如图2,连接AD ,EP . ∵AB AC =,60ABC ∠=︒, ∴ABC △是等边三角形. 又∵D 为BC 的中点,∴AD BC ⊥,30DAC ∠=︒,12BD DC AB ==.∵BAE BDM ∠=∠,ABE DBM ∠=∠, ∴ABE DBM ∽△△.∴2BE ABBM DB ==,AEB DMB ∠=∠. ∴2EB BM =. 又∵BM MP =, ∴EB BP =.∵60EBM ABC ∠=∠=︒, ∴BEP △为等边三角形, ∴EM BP ⊥, ∴90BMD ∠=︒, ∴90AEB ∠=︒,在Rt AEB △中,AE =7AB =,∴BE∴tan EAB ∠. ∵D 为BC 中点,M 为BP 中点,∴DM//PC .∴MDB PCB ∠=∠,∴EAB PCB ∠=∠.∴tan PCB ∠=.在Rt ABD △中,sin AD AB ABD =⋅∠在Rt NDC △中,tan ND DC NCD =⋅∠,∴NA AD ND =-.过N 作NH AC ⊥,垂足为H .在Rt ANH △中,12NH AN ==,21cos 8AH AN NAH =⋅∠=,∴358CH AC AH =-=,∴tan ACP ∠=.2.如图,在Rt ABC△中,90ACB∠=︒,1AC=,7BC=,点D是边CA延长线的一点,AE BD⊥,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan AFB∠的值;(2)CE AF⋅的值是否随线段AD长度的改变而变化?如果不变,求出CE AF⋅的值;如果变化,请说明理由;(3)当BGE△和BAF△相似时,求线段AF的长.(1)过点E作EH CD⊥于H,如图1,则有90EHA EHD∠=∠=︒.∵90BCD∠=︒,BE DE=,∴CE DE=.∴CH DH=,∴1722 EH BC==.设AH x=,则1DH CH x==+.∵AE BD⊥,∴90 AEH DEH AED∠+∠=∠=︒.∵90AEH EAH∠+∠=︒,∴EAH DEH∠=∠,∴AHE EHD∽△△,∴AH EH EH DH=,∴2EH AH DH=⋅,∴27(1)2x x⎛⎫=+⎪⎝⎭,解得5212x-=(舍负),∴75212tan75212EHEAHAH+∠===-.∵BF//CD,∴AFB EAH∠=∠,∴521tan 7AFB +∠=; (2)CE AF ⋅的值不变.取AB 的中点O ,连接OC 、OE ,如图2, ∵90BCA BEA ∠=∠=︒, ∴OC OA OB OE ===, ∴点A 、C 、B 、E 共圆,∴BCE BAF ∠=∠,180CBE CAE ∠+∠=︒. ∵BF//CD ,∴180BFA CAE ∠+∠=︒, ∴CBE BFA ∠=∠,∴BCE FAB ∽△△, ∴BC CE FA AB=,∴CE FA BC AB ⋅=⋅. ∵90BCA ∠=︒,7BC =,1AC =,∴52AB =,∴752=352CE FA ⋅=⨯;(3)过点E 作EH CD ⊥于H ,作EM BC ⊥于M ,如图3, ∴90EMC MCH CHE ∠=∠=∠=︒, ∴四边形EMCH 是矩形.∵BCE FAB ∽△△,BGE △与FAB △相似, ∴BGE △与BCE △相似, ∴EBG ECB ∠=∠.∵点A 、C 、B 、E 共圆, ∴ECA EBG ∠=∠,∴ECB ECA ∠=∠,∴EM EH =, ∴矩形EMCH 是正方形, ∴CM CH =.∵1452ECB ECA BCA ∠=∠=∠=︒,∴45EBA EAB ∠=∠=︒, ∴EB EA =,∴Rt Rt (HL)BME AHE ≌△△,∴BM AH =.设AH x =,则BM x =,7CM x =-,1CH x =+, ∴71x x -=+,∴3x =,∴4CH =.在Rt CHE △中,42cos 2CH ECH CE CE ∠===, ∴42CE =.由(2)可得352CE FA ⋅=,∴35235=442AF =.3. 已知:ACB △与DCE △为两个有公共顶点C 的等腰直角三角形,且90ACB DCE ∠=∠=︒,AC BC =,DC EC =.把DCE △绕点C 旋转,在整个旋转过程中,设BD 的中点为N ,连接CN .(1)如图3-1,当点D 在BA 的延长线上时,连接AE ,求证:2AE CN =;(2)如图3-2,当DE 经过点A 时,过点C 作CH BD ⊥,垂足为H ,设AC 、BD 相交于F ,若4NH =,16BH =,求CF 的长.(1)证明:延长CN 至点K ,使NK CN =,连接DK , ∵90DCA ACE ∠+∠=︒,90BCE ACE ∠+∠=︒, ∴180DCB ACE ∠+∠=︒,∴KDN CBN ∠=∠,∴DK//BC ,∵DN NB =,CN NK =,DNK BNC ∠=∠, ∴DNK BNC ≌△△,∴DK BC AC ==,∴180KDC DCB ∠+∠=︒,∵KDC ACE ∠=∠, 又∵DK AC =,CD CE =,∵KDC ACE ≌△△, ∴AE CK =,∴2AE CN =;(2)延长CN 交DE 于点P ,延长CH 交DE 于点M ,图3-1D A NB EC图① 图② 备用图D A N BE DF A N H C C B ED B EF A N H KP M C备用图BF AN H CE图3-2A F N H DC B E4. 已知:在ABC △中,90ACB ∠=︒,点P 是线段AC 上一点,过点A 作AB 的垂线,交BP的延长线于点M ,MN AC ⊥于点N ,PQ AB ⊥于点Q ,AQ MN =.(1)如图4-1,求证:PC AN =;(2)如图4-2,点E 是MN 上一点,连接EP 并延长交BC 于点K ,点D 是AB 上一点,连接DK ,DKE ABC ∠=∠,EF PM ⊥于点H ,交BC 延长线于点F ,若2NP =,3PC =,:2:3CK CF =,求DQ 的长.图4-1 图4-2AQNPMAMQDNEPHAQ NPM B CAMQDNEPHB KC F GT图①图②5. 在ABC △中,90ACB ∠=︒.经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于ABC ∠,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)若45ABC ∠=︒,1CD =(如图),则AE 的长为_______; (2)写出线段AE 、CD 之间的数量关系,并加以证明; (3)若直线CE 、AB 交于点F ,56CF EF =,4CD =,求BD 的长.(1)2AE =.(2)线段AE 、CD 之间的数量关系为2AE CD =. 证明:如图1,延长AC 与直线l 交于点G . 依题意,可得12∠=∠. ∵90ACB ∠=︒,∴34∠=∠. ∴BA BG =,∴CA CG =.∵AE l ⊥,CD l ⊥,∴CD //AE . ∵C 为AG 的中点,∴2AE CD =.(3)解:当点F 在线段AB 上时,如图2, 过点C 作CG //l 交AB 于点H ,交AE 于点G . ∴2HCB ∠=∠.∵12∠=∠,∴1HCB ∠=∠. ∴CH BH =.∵90ACB ∠=︒,∴34901HCB ∠+∠∠+∠=︒=. ∴34∠∠=.∴CH AH BH ==. ∵CG //l ,∴FCH △∽FEB △. ∴56CF CH EF EB ==. 设5CH x =,6BE x =,则10AB x =. ∴在AEB △中,90AEB ∠=︒,8AE x =. 由(2)得,2AE CD =.∵4CD =,∴8AE =.∴1x =. ∴10AB =,6BE =,5CH =. ∵CG //l ,∴AGH AEB △△∽. ∴12HG AH BE AB ==.∴3HG =. ∴8CG CH HG =+=. ∵CG //l ,CD //AE ,A C()D B E l图1A C3124G D B E l图2AC124D B El3GHF∴四边形CDEG 为平行四边形. ∴8DE CG ==.∴2BD DE BE =-=.当点F 在线段BA 的延长线上时,如图3, 同理可得5CH =,3GH =,6BE =. ∴2DE CG CH HG ==-=. ∴8BD DE BE =+=. ∴2BD =或8.6. 如图,在平面直角坐标系中,直线l 平行x 轴,交y 轴于点A ,第一象限内的点B 在l 上,连结OB ,动点P 满足90APQ ∠=︒,PQ 交x 轴于点C .(1)当动点P 与点B 重合时,若点B 的坐标是(2,1),求P A 的长.(2)当动点P 在线段OB 的延长线上时,若点A 的纵坐标与点B 的横坐标相等,求:PA PC 的值.(3)当动点P 在直线OB 上时,点D 是直线OB 与直线CA 的交点,点E 是直线CP 与y 轴的交点,若ACE AEC ∠=∠,2PD OD =,求:PA PC 的值.(1)∵点P 与点B 重合,点B 的坐标是(2,1), ∴点P 的坐标是(2,1).∴P A 的长为2.(2)过点P 作PM x ⊥轴,垂足为M ,过点P 作PN y ⊥轴,垂足为N ,如图1所示.∵点A 的纵坐标与点B 的横坐标相等, ∴OA AB =.∵90OAB ∠=︒,∴45AOB ABO ∠=∠=︒. ∵90AOC ∠=︒,∴45POC ∠=︒. ∵PM x ⊥轴,PN y ⊥轴,∴PM PN =,90ANP CMP ∠=∠=︒. ∴90NPM ∠=︒.∵90APC ∠=︒. ∵APN CPM ∠=∠,PN PM =,ANP CMP ∠=∠, ∴ANP CMP ≌△△.∴PA PC =. ∴:PA PC 的值为1:1.(3)①若点P 在线段OB 的延长线上,过点P 作PM x ⊥轴,垂足为M ,过点P 作PN y ⊥轴,垂足为N ,PM 与直线AC 的交点为F ,如图2所示. ∵APN CPM ∠=∠,ANP CMP ∠=∠,∴ANP CMP ∽△△.∴PA PNPC PM=. ∵ACE AEC ∠=∠,∴AC AE =. ∵AP PC ⊥,∴EP CP =.∵PM//y 轴,∴AF CF =,OM CM =.∴12FM OA =.设OA x =,∵PF//OA ,∴PDF ODA ∽△△.∴PF PDOA OD=∵2PD OD =,∴22PF OA x ==,12FM x =.∴52PM x =.∵90APC ∠=︒,AF CF =, ∴24AC PF x ==. ∵90AOC ∠=︒,∴OC =.∵90PNO NOM OMP ∠=∠=∠=︒, ∴四边形PMON 是矩形.∴PN OM =.∴5:::2PA PC PN PM x ===. ②点P 在BO 延长线上时,同理可得:32PM x =,24CA PF x ==,OC =.∴12PN OM OC ==.∴3:::PA PC PN PM x ===. 综上所述::PA PC.7. 正方形ABCD 和等腰直角DEF △有公共点D ,点E 在AD 边上,点F 在CD 的延长线上,连接CE ,AF .(1)试判断线段CE 和AF 的数量关系和位置关系,并证明你的结论;(2)将DEF △绕点D 按顺时针方向旋转,当点E 落在AC 上时,设EF 与AD 交于点M . ①求证:AEM CDE ∽△△;②当34AE EC =时,求AM MD的值.(1)CE AF ⊥,CE AF =.证明略 (2)①∵AC 为正方形ABCD 的对角线 ∴45DAC ACD ∠=∠=︒,∵45FED ∠=︒,180FED AEM CED ∠+∠+∠=︒,180MAE AME AEM ∠+∠+∠=︒, ∴CED AME ∠=∠,∴AEM CDE ∽△△,②∵AEM CDE ∽△△,∴AE AMDC=, ∴设3AE a =,4EC a =,则DC =,4AMa=,∴AM ,∴MD =, ∴2425AM MD =. A B C E A BF D CEM8. 已知:在菱形ABCD 中,O 是对角线BD 上的一动点.(1)如图2-1,P 为线段BC 上一点,连接PO 并延长交AD 于点Q ,当O 是BD 的中点时,求证:OP OQ =;(2)如图2-2,连接AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .若4AD =,60DCB ∠=︒,10BS =,求AS 和OR 的长.图2-1 图2-2(1)证明:∵ABCD 为菱形,∴AD//BC ,∴OBP ODQ ∠=∠,∵O 是是BD 的中点,∴OB OD =,在BOP △和DOQ △中,∵OBP ODQ ∠=∠,OB OD =,BOP DOQ ∠=∠,∴(ASA)BOP DOQ ≌△△,∴OP OQ =. (2)解:如图,过A 作AT BC ⊥,与CB 的延长线交于T .∵ABCD 是菱形,60DCB ∠=︒,∴4AB AD ==,60ABT ∠=︒,∴sin 60AT AB =︒=,cos602TB AB =︒=, ∵10BS =,∴12TS TB BS =+=,∴AS = ∵AD//BS ,∴AOD SOB △△∽. ∴42105AO AD OS SB ===, 则25AS OS OS -=,∴75AS OS =,∵AS =75OS AS ==. 同理可得ARD SRC △△∽,∴4263AR AD RS SC ===,则23AS SR RS -=,∴5AS =,∴3RS AS ==∴OR OS RS =-=-=.A DB C S O R TA QDOBP CA DB C SOR9. 在矩形ABCD 中,点P 在AD 上,2AB =,1AP =.将直角尺的顶点放在P 处,直角尺的两边分别交AB ,BC 于点E ,F ,连接EF (如图3-1). (1)当点E 与点B 重合时,点F 恰好与点C 重合(如图3-2),求PC 的长; (2)探究:将直尺从图3-2中的位置开始,绕点P 顺时针旋转,当点E 和点A 重合时停止.在这个过程中,请你观察、猜想,并解答:①tan ∠PEF 的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF 的中点经过的路线长.图3-1 图3-2(1)在矩形ABCD 中,90A D ∠=∠=︒,1AP =,2CD AB ==,则PB =, ∴90ABP APB ∠+∠=︒,又∵90BPC ∠=︒,∴90APB DPC ∠+∠=︒,∴ABP DPC ∠=∠,∴APB DCP ∽△△,∴AP PBCD PC=,即12=PC =故答案为:(2)①PF PE的值不变,理由为:证明:过F 作FG AD ⊥,垂足为G ,则四边形ABFG 是矩形,∴90A PGF ∠=∠=︒,2GF AB ==, ∴90AEP APE ∠+∠=︒,又∵90EPF ∠=︒, ∴90APE GPF ∠+∠=︒,∴AEP GPF ∠=∠,∴APE GFP ∽△△,∴2PF GFPE AP==,∴Rt EPF △中,tan 2PFPEF PE∠==,∴PF PE的值不变. ②线段EF.A P DEB F CGA P DE BF C A P D ()()B E C F10. 已知:ABC △中,2ACB ABC ∠=∠,AD 为BAC ∠的平分线,E 为线段AC 上一点,过E作AD 的垂线交直线AB 于F . (1)当E 点与C 点重合时(如图4-1),求证:BF DE =;(2)连接BE 交AD 于点N ,M 是BF 的中点,连接DM (如图4-2),若DM BF ⊥,4DC =,:3:2ABD ACD S S =△△,求DN 的长.图4-1 图4-2(1)连接DF ,设AD 与EF 交于点K ,∵AD 是BAC ∠的平分线,∴BAD CAD ∠=∠, ∵EF AD ⊥,∴90AKF AKE ∠=∠=︒,∴AFK AEK ∠=∠,∴AF AE =,∴AFD AED ≌△△, ∴DF DE =,AFD AED ∠=∠,又∵2ACB ABC ∠=∠,∴FBD FDB ∠=∠,∴BF DF =,∴DE BF =; (2)过A 作AP ⊥BC 于点P ,过D 作DQ ⊥AC 于点Q .连接DF ,∵:3:2ABD ACD S S =△△,即132122BD APDC AP ⋅=⋅, ∴32BD DC =,∵4DC =,∴6BD =, AF()BD CE BD CFAMEN图1 图2 A F ()B D C E B D C F A M E N K Q P∵AD 是BAC ∠的平分线,DM AB ⊥,DQ AC ⊥,∴DM DQ =,∴132122AB DMAC DQ ⋅=⋅,∴32AB AC =由(1)可得:AQ AM =,DC BM =,∴AB AC DC =+, ∴32AC DC AC +=,∴8AC =,12AB =,设PC x =,则10BP x =-,又勾股定理得:22222AB BP AC PC AP -=-=, 即22122(10)82x x --=-,解得:1x =,∴3DP =, 又22222AD DP AC PC AP -=-=, ∴272AD =,AD =EF AD ⊥, ∴90AKF AKE ∠=∠=︒. ∵DA 平分BAC ∠, ∴FAD EAD ∠=∠,∴AFE AEF ∠=∠,∴AF AE =, ∴AFD AED ≌△△,∴AFD AED ∠=∠,DF DE =, 又∵DB DF =, ∴6DB DE ==,∴BFD DEC DBF ∠=∠=∠,∴180180C DEC C DBF ︒-∠-∠=︒-∠-∠, ∴2EDC BAC DAE ∠=∠=∠, 又∵2EDC NED ∠=∠, ∴DAE NED ∠=∠, ∵ADE EDN ∠=∠, ∴DAE DEN ∽△△, ∴DA DE DE DN=, ∴2DE DN DA =⋅,即36DN =⋅,∴DN =。
培优专题等腰三角形(含答案)
9、等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
【分类解读】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
新高考数学重难点培优专题讲义——立体几何小题专练(含详细答案解析)
立体几何小题培优讲义高考规律立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.知识梳理【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.,其中是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.2.以立体几何为载体的情境题的求解思路以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.此类问题的求解过程主要分四步:一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【题型1 求几何体的体积与表面积】【例1】(2023·江苏徐州·沛县湖西中学模拟预测)在三棱锥P−ABC中,三条侧棱P A,PB,PC两两垂直,且PA=PB=PC=2,若三棱锥P−ABC的所有顶点都在同一个球的表面上,则该球的体积是()A.4√3πB.4√2πC.6πD.12π【变式1-1】(2023·陕西铜川·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是()(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③V台=13(S上+S下+√S上⋅S下)ℎ)A.6寸B.4寸C.3寸D.2寸【变式1-2】(2023·全国·模拟预测)如图,已知正四棱台ABCD−A1B1C1D1的高为2,AB=2A1B1,P,Q分别为B1C1,C1D1的中点,若四边形PQDB的面积为152,则该四棱台的体积为()A.563B.56C.283D.28【变式1-3】(2023·山东·统考一模)陀螺起源于我国,在山西夏县新石器时代的遗址中,就出土了目前发现的最早的石制陀螺因此,陀螺的历史至少也有四千年,如图所示为一个陀螺的立体结构图,若该陀螺底面圆的直径AB=12cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=4cm,则这个陀螺的表面积是()A.(144+12√13)πcm2B.(144+24√13)πcm2C.(108+12√13)πcm2D.(108+24√13)πcm2【题型2 与球有关的截面问题】【例2】(2023·陕西咸阳·武功县普集高级中学校考模拟预测)已知球O的一个截面的面积为2π,球心O到该截面的距离比球的半径小1,则球O的表面积为()A.8πB.9πC.12πD.16π【变式2-1】(2023·全国·校联考模拟预测)上、下底面均为等边三角形的三棱台的所有顶点都在同一球面上,若三棱台的高为3,上、下底面边长分别为√15,2√6,则该球的表面积为()A.32πB.36πC.40πD.42π【变式2-2】(2023·河南·信阳高中校联考模拟预测)如图,在三棱锥A−BCD中,AB,AC,AD两两垂直,且AB=AC=AD=3,以A为球心,√6为半径作球,则球面与底面BCD的交线长度的和为()A.2√3πB.√3πC.√3π2D.√3π4【变式2-3】(2023·江西南昌·江西师大附中校考三模)已知正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1上的一点,且满足平面BDE⊥平面A1BD,则平面A1BD截四面体ABCE的外接球所得截面的面积为()A.136πB.2512πC.83πD.23π【题型3 体积、面积、周长、距离的最值与范围问题】【例3】(2023·福建莆田·莆田一中校考一模)如图,在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分折成一个无盖的正三棱柱形容器,如图②.则这个容器的容积的最大值为()A.a327B.a336C.a354D.a372【变式3-1】(2023·全国·模拟预测)在直三棱柱ABC−A1B1C1中,∠BAC=60°,侧面BCC1B1的面积为2√3,则直三棱柱ABC−A1B1C1外接球的表面积的最小值为()A.4πB.8πC.4√3πD.8√3π【变式3-2】(2023·山东·山东省实验中学校考二模)正四棱柱ABCD−A1B1C1D1中,AB=2,P为底面A1B1C1D1的中心,M是棱AB的中点,正四棱柱的高ℎ∈[√2,2√2],点M到平面PCD的距离的最大值为()A.2√63B.83C.4√23D.329【变式3-3】(2023·湖南长沙·长沙一中校考模拟预测)已知A,B,C,D是体积为20√53π的球体表面上四点,若AB=4,AC=2,BC=2√3,且三棱锥A-BCD的体积为2√3,则线段CD长度的最大值为()A.2√3B.3√2C.√13D.2√5【题型4 几何体与球的切、接问题】【例4】(2023·河北邯郸·统考三模)三棱锥S−ABC中,SA⊥平面ABC,AB⊥BC,SA=AB=BC.过点A分别作AE⊥SB,AF⊥SC交SB、SC于点E、F,记三棱锥S−FAE的外接球表面积为S1,三棱锥S−ABC的外接球表面积为S2,则S1S2=()A.√33B.13C.√22D.12【变式4-1】(2023·福建龙岩·统考模拟预测)如图,已知正方体的棱长为2,以其所有面的中心为顶点的多面体为正八面体,则该正八面体的内切球表面积为()A.π6B.πC.4π3D.4π【变式4-2】(2023·全国·模拟预测)为了便于制作工艺品,某工厂将一根底面半径为6cm,高为4cm的圆柱形木料裁截成一个正四棱台木料,已知该正四棱台上底面的边长不大于4√2cm,则当该正四棱台的体积最大时,该正四棱台外接球的表面积为()A.128πcm2B.145πcm2C.153πcm2D.160πcm2【变式4-3】(2023·浙江温州·乐清市知临中学校考二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为2√6,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【题型5 空间线段以及线段之和最值问题】【例5】(2023·湖南长沙·长郡中学校联考模拟预测)已知底面边长为a的正四棱柱ABCD−A1B1C1D1内接于半径为√3的球内,E,F分别为B1C1,C1D1的中点,G,H分别为线段AC1,EF上的动点,M为线段AB1的中点,当正四棱柱ABCD−A1B1C1D1的体积最大时,|GH|+|GM|的最小值为()A.√2B.3√22C.2D.1+√2【变式5-1】(2023·安徽合肥·合肥市第六中学校考模拟预测)已知在长方体ABCD−A1B1C1D1中,AB=BC= 1,AA1=√3,在线段A1D上取点M,在CD1上取点N,使得直线MN//平面ACC1A1,则线段MN长度的最小值为()A.√33B.√213C.√37D.√217【变式5-2】(2023·四川绵阳·模拟预测)如图,棱长为2的正方体ABCD−A1B1C1D1中,点P在线段AD1上运动,以下四个命题:;④|C1P|+①三棱锥D−BPC1的体积为定值;②C1P⊥CB1;③直线DC1与平面ABC1D1所成角的正弦值为12|DP|的最小值为√10.其中真命题有()A.1个B.2个C.3个D.4个【变式5-3】(2023·天津和平·耀华中学校考二模)粽子,古称“角黍”,早在春秋时期就已出现,到晋代成为了端午节的节庆食物.现将两个正四面体进行拼接,得到如图所示的粽子形状的六面体,其中点G在线,则下列说法正确的是()段CD(含端点)上运动,若此六面体的体积为163A.EF=2B.EF=4C.EG+FG的最小值为3√2D.EG+FG的最小值为2√6【题型6 空间角问题】【例6】(2023·全国·模拟预测)已知正三棱柱ABC−A1B1C1的侧面积是底面积的6√3倍,点E为四边形ABB1A1的中心,点F为棱CC1的中点,则异面直线BF与CE所成角的余弦值为()A.2√3913B.√3913C.√3926D.3√3926【变式6-1】(2023·河北保定·统考二模)如图,在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=2,对角线B1D与平面A1BC1交于E点.则A1E与面AA1D1D所成角的余弦值为()A.13B.√33C.23D.√53【变式6-2】(2023·全国·模拟预测)在正方体ABCD−A1B1C1D1中,若点N是棱BB1上的动点,点M是线段A1C1(不含线段的端点)上的动点,则下列说法正确的是()A.存在直线MN,使MN//B1C B.异面直线CM与AB所成的角可能为π3C.直线CM与平面BND所成的角为π3D.平面BMC//平面C1NA【变式6-3】(2023·四川遂宁·统考三模)如图,正方体ABCD−A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F(E在F的左边),且EF=√2.下列说法不正确的是()A.当E运动时,二面角E−AB−C的最小值为45∘B.当E,F运动时,三棱锥体积B−AEF不变C.当E,F运动时,存在点E,F使得AE//BFD.当E,F运动时,二面角C−EF−B为定值【题型7 翻折问题】【例7】(2023·四川泸州·统考一模)已知菱形ABCD的边长为6,∠BAD=60°,将△BCD沿对角线BD翻折,使点C到点P处,且二面角A−BD−P为120°,则此时三棱锥P−ABD的外接球的表面积为()A.21πB.28√21πC.52πD.84π【变式7-1】(2023·福建福州·福建省福州第一中学校考模拟预测)在矩形ABCD中,AB=3,AD=4,将△ABD 沿对角线BD翻折至△A′BD的位置,使得平面A′BD⊥平面BCD,则在三棱锥A′−BCD的外接球中,以A′C为直径的截面到球心的距离为()A.√43510B.6√25C.√23910D.√11310【变式7-2】(2023·湖北恩施·校考模拟预测)如图,矩形ABCD中,E、F分别为BC、AD的中点,且BC=2AB=2,现将△ABE沿AE向上翻折,使B点移到P点,则在翻折过程中,下列结论不正确的是()A.存在点P,使得PE∥CFB.存在点P,使得PE⊥EDC.三棱锥P−AED的体积最大值为√26D.当三棱锥P−AED的体积达到最大值时,三棱锥P−AED外接球表面积为4π【变式7-3】(2023·四川·校联考模拟预测)如图,已知△ABC是边长为4的等边三角形,D,E分别是AB,AC 的中点,将△ADE沿着DE翻折,使点A到点P处,得到四棱锥P−BCED,则下列命题错误的是()A.翻折过程中,该四棱锥的体积有最大值为3B.存在某个点P位置,满足平面PDE⊥平面PBCC.当PB⊥PC时,直线PB与平面BCED所成角的正弦值为√33πD.当PB=√10时,该四棱锥的五个顶点所在球的表面积为523【题型8 立体几何中的轨迹问题】【例8】(2023·全国·模拟预测)如图,正方体ABCD−A1B1C1D1的棱长为3,点P是平面ACB1内的动点,M,N分别为C1D1,B1C的中点,若直线BP与MN所成的角为θ,且sinθ=√55,则动点P的轨迹所围成的图形的面积为()A.3π4B.π2C.π3D.π4【变式8-1】(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知四棱柱ABCD−A1B1C1D1的底面ABCD 为正方形,侧棱与底面垂直,点P是侧棱DD1上的点,且DP=2PD1,AA1=3,AB=1.若点Q在侧面BCC1B1(包括其边界)上运动,且总保持AQ⊥BP,则动点Q的轨迹长度为()A.√3B.√2C.2√33D.√52【变式8-2】(2023·河北·统考模拟预测)已知正四棱锥(底面为正方形,且顶点在底面的射影为正方形的中心的棱锥为正四棱锥)P-ABCD的底面正方形边长为2,其内切球O的表面积为π3,动点Q在正方形ABCD 内运动,且满足OQ=OP,则动点Q形成轨迹的周长为()A.2π11B.3π11C.4π11D.5π11【变式8-3】(2023·全国·校联考模拟预测)如图,已知正方体ABCD−A1B1C1D1的棱长为2,P为空间中一点且满足∠APB1=∠ADB1,则以下说法正确的有()A.若P在面AB1C1D上,则其轨迹周长为8√6π9B.若A1P⊥AB1,则D1P的最小值为√3+1−√6C.P的轨迹围成的封闭曲面体积为32√6π227+4√3πD.四棱锥P-ABCD体积最大值为4(2√6+√2+3)9【题型9 以立体几何为载体的情境题】【例9】(2023·云南大理·统考一模)我国古代数学名著《数书九章》中有“天池盆测雨”题,在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为36寸,盆底直径为12寸,盆深18寸.若某次下雨盆中积水的深度恰好是盆深的一半,则该天池盆中水的体积为()A.1404π立方寸B.1080π立方寸C.756π立方寸D.702π立方寸【变式9-1】(2023·广东广州·广东实验中学校考一模)阿基米德多面体是由边数不全相同的正多边形为面的多面体.如图所示的阿基米德多面体有四个全等的正三角形面和四个全等的正六边形面,该多面体是由过正四面体各棱的三等分点的平面截去四个小正四面体得到.若该多面体的所有顶点都在球O的表面上,且点O到正六边形面的距离为√62,则球O的体积为()A.7√1424πB.7√143πC.11√2224πD.11√223π【变式9-2】(2023·河南·校联考模拟预测)如图1所示,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.图2是小明为自家设计的一个花灯的直观图,该花灯由上面的正六棱台与下面的正六棱柱组成,若正六棱台的上、下两个底面的边长分别为4dm和2dm,正六棱台与正六棱柱的高分别为1dm 和6dm,则该花灯的表面积为()A.(108+30√3)dm2B.(72+30√3)dm2C.(64+24√3)dm2D.(48+24√3)dm2【变式9-3】(2023·河南郑州·统考模拟预测)《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为V,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为V1,V2,V3,则下列等式错误的是()A.V1+V2+V3=V B.V1=2V2C.V2=2V3D.V2−V3=V61.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若AB=25m,BC=AD=10m,且等腰梯形所在的平面、等腰三角形所在的平,则该五面体的所有棱长之和为()面与平面ABCD的夹角的正切值均为√145A.102m B.112mC.117m D.125m2.(2023·全国·统考高考真题)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C−AB−D为150°,则直线CD与平面ABC所成角的正切值为()A.15B.√25C.√35D.253.(2023·全国·统考高考真题)已知圆锥PO的底面半径为√3,O为底面圆心,P A,PB为圆锥的母线,∠AOB=120°,若△PAB的面积等于9√34,则该圆锥的体积为()A.πB.√6πC.3πD.3√6π4.(2023·天津·统考高考真题)在三棱锥P−ABC中,点M,N分别在棱PC,PB上,且PM=13PC,PN=23PB,则三棱锥P−AMN和三棱锥P−ABC的体积之比为()A.19B.29C.13D.495.(2021·浙江·统考高考真题)如图已知正方体ABCD−A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN//平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN//平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B16.(2023·全国·统考高考真题)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有()A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体7.(2023·全国·统考高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,∠APB=120°,PA=2,点C在底面圆周上,且二面角P−AC−O为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为4√3πC.AC=2√2D.△PAC的面积为√38.(2023·全国·统考高考真题)已知点S,A,B,C均在半径为2的球面上,△ABC是边长为3的等边三角形,SA⊥平面ABC,则SA=.9.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,AB=4,O为AC1的中点,若该正方体的棱与球O的球面有公共点,则球O的半径的取值范围是.10.(2023·全国·统考高考真题)在正方体ABCD−A1B1C1D1中,E,F分别为AB,C1D1的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.11.(2023·全国·统考高考真题)在正四棱台ABCD−A1B1C1D1中,AB=2,A1B1=1,AA1=√2,则该棱台的体积为.12.(2023·全国·统考高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.立体几何小题【题型1 求几何体的体积与表面积】 (4)【题型2 与球有关的截面问题】 (7)【题型3 体积、面积、周长、距离的最值与范围问题】 (10)【题型4 几何体与球的切、接问题】 (13)【题型5 空间线段以及线段之和最值问题】 (18)【题型6 空间角问题】 (23)【题型7 翻折问题】 (30)【题型8 立体几何中的轨迹问题】 (35)【题型9 以立体几何为载体的情境题】 (40)立体几何是高考的热点内容,属于高考的必考内容之一.从近几年的高考情况来看,高考对该部分的考查,小题主要体现在三个方面:一是有关空间线面位置关系的判断;二是空间几何体的体积和表面积的计算,难度较易;三是常见的一些经典常考压轴小题,涉及到空间角、空间距离与轨迹问题等,难度中等或偏上.【知识点1 空间几何体表面积与体积的常见求法】1.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等体积法:四面体的任何一个面都可以作为底面,只需选用底面面积和高都易求出的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,三棱柱补成四棱柱等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.2.求组合体的表面积与体积的一般方法求组合体的表面积的问题,首先应弄清它的组成部分,其表面有哪些底面和侧面,各个面的面积应该怎样求,然后根据公式求出各个面的面积,最后相加或相减.求体积时也要先弄清各组成部分,求出各简单几何体的体积,再相加或相减.【知识点2 几何体与球的切、接问题的解题策略】1.常见的几何体与球的切、接问题的解决方案:常见的与球有关的组合体问题有两种:一种是内切球,另一种是外接球.常见的几何体与球的切、接问题的解决方案:2.空间几何体外接球问题的求解方法:空间几何体外接球问题的处理关键是确定球心的位置,常见的求解方法有如下几种:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,根据4R2=a2+b2+c2求解.(3)利用平面几何体知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.【知识点3 几何法与向量法求空间角】1.几何法求异面直线所成的角(1)求异面直线所成角一般步骤:①平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线;②证明:证明所作的角是异面直线所成的角;③寻找:在立体图形中,寻找或作出含有此角的三角形,并解之;④取舍:因为异面直线所成角的取值范围是,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2.用向量法求异面直线所成角的一般步骤:(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是,即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.3.几何法求线面角(1)垂线法求线面角(也称直接法);(2)公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解.是斜线与平面所成的角,h是垂线段的长,l是斜线段的长.4.向量法求直线与平面所成角的主要方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,将题目转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.5.几何法求二面角作二面角的平面角的方法:作二面角的平面角可以用定义法,也可以用垂面法,即在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.6.向量法求二面角的解题思路:用法向量求两平面的夹角:分别求出两个法向量,然后通过两个平面的法向量的夹角得到两平面夹角的大小.【知识点4 立体几何中的最值问题及其解题策略】1.立体几何中的几类最值问题立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.2.立体几何中的最值问题的求解方法解决立体几何中的最值问题主要有两种解题方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题.【知识点5 立体几何中的轨迹问题及其解题策略】1.立体几何中的轨迹问题立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.2.立体几何中的轨迹问题的求解方法解决立体几何中的轨迹问题有两种方法:一是几何法:对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法:在图形中,建立恰当的空间直角坐标系,利用空间向量进行求解.【知识点6 以立体几何为载体的情境题的求解策略】1.以立体几何为载体的几类情境题以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等;(2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等;(3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.。
【中考冲刺】初三数学培优专题 24 平面几何的定值问题(含答案)(难)
平面几何的定值问题【阅读与思考】所谓定值问题,是指按照一定条件构成的几何图形,当某些几何元素按一定的规律在确定的范围内变化时,与它有关的元素的量保持不变(或几何元素间的某些几何性质或位置关系不变).几何定值问题的基本特点是:题设条件中都包含着变动元素和固定元素,变动元素是指可变化运动的元素,固定元素也就是“不变量”,有的是明显的,有的是隐含的,在运动变化中始终没有发生变化的元素,也就是我们要探求的定值. 解答定值问题的一般步骤是: 1. 探求定值; 2. 给出证明.【例题与求解】【例1】 如图,已知P 为正方形ABCD 的外接圆的劣弧AD⌒上任意一点. 求证:PA PC PB为定值. 解题思路:线段的和差倍分考虑截长补短,利用圆的基本性质,证明三角形全等.P AB CD【例2】 如图,AB 为⊙O 的一固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当点C 在上半圆(不包括A ,B 两点)上移动时,点P ( ) A . 到CD 的距离保持不变 B . 位置不变C . 等分DB⌒ D . 随C 点的移动而移动 (济南市中考试题)解题思路:添出圆中相关辅助线,运用圆的基本性质,用排除法得出结论.A【例3】 如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足. 求证:不管ST 滑到什么位置,∠SPM 是一定角.(加拿大数学奥林匹克试题)解题思路:不管ST 滑到什么位置,∠SOT 的度数是定值. 从探寻∠SPM 与∠SOT 的关系入手.B【例4】 如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°. 点C 是AB⌒上异于A ,B 的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E . 连接DE ,点G ,H 在线段DE 上,且DG =GH =HE .(1)求证:四边形OGCH 是平行四边形;(2)当点C 在AB ⌒上运动时,在CD ,CG ,DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度;(3)求证:CD 2+3CH 2是定值. (广州市中考试题)解题思路:延长OG 交CD 于N ,利用题中的三等分点、平行四边形和三角形中位线的性质,实现把线段ON 转化成线段CH 的倍分关系,再以Rt △OND 为基础,通过勾股定理,使问题得以解决.BOACE HGD 【例5】 如图1,在平面直角坐标系xOy 中,点M 在x 轴的正半轴上,⊙M 交x 轴于A ,B 两点,交y 轴于C ,D 两点,且C 为弧AE 的中点,AE 交y 轴于G 点. 若点A 的坐标为(-2,0),AE =8. (1)求点C 的坐标;(2)连接MG ,BC ,求证:MG ∥BC ;(3)如图2,过点D 作⊙M 的切线,交x 轴于点P . 动点F 在⊙M 的圆周上运动时,PFOF的比值是否发生变化?若不变,求出比值;若变化,说明变化规律. (深圳市中考试题)解题思路:对于(3)从动点F 达到的特殊位置时入手探求定值.【例6】 如图,已知等边△ABC 内接于半径为1的圆O ,P 是⊙O 上的任意一点. 求证:P A 2+PB 2+PC 2为定值.解题思路:当点P 与C 点重合时,P A 2+PB 2+PC 2=2BC 2为定值,就一般情形证明.A【能力训练】A 级1. 如图,点A ,B 是双曲线xy 3=上的两点,分别经过A ,B 两点向x 轴,y 轴作垂线段. 若S 阴影=1,则=+21S S _______.(牡丹江市中考试题)AABCDEF(第3题图) (第4题图)2. 从等边三角形内一点向三边作垂线段,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的面积是__________.(全国初中数学联赛试题)3. 如图,OA ,OB 是⊙O 任意两条半径,过B 作BE ⊥OA 于E ,又作OP ⊥AB 于P ,则定值OP 2+EP 2为_________.4. 如图,在菱形ABCD 中,∠ABC =120°,F 是DC 的中点,AF 的延长线交BC 的延长线于点E ,则直线BF 与直线DE 所夹的锐角的度数为( )A . 30°B . 40°C . 50°D . 60°(武汉市竞赛试题)5. 如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作A A '⊥AB ,AB B B ⊥',且A A '=AP ,B B '=BP . 连接B A '',当点P 从点A 移动到点B 时,B A ''的中点的位置( )A .在平分AB 的某直线上移动 B . 在垂直AB 的某直线上移动C . 在弧AMB 上移动D . 保持固定不移动AB'B(第5题图) (第6题图)6. 如图,A ,B 是函数xky图象上的两点,点C ,D ,E ,F 分别在坐标轴上,且分别与点A ,B ,O 构成正方形和长方形. 若正方形OCAD 的面积为6,则长方形OEBF 的面积是( ) A . 3 B . 6 C . 9 D . 12(海南省竞赛试题))7. (1)经过⊙O 内或⊙O 外一点P 作两条直线交⊙O 于A ,B 和C ,D 四点,得到如图①~⑥所表示的六种不同情况. 在六种不同情况下,P A ,PB ,PC ,PD 四条线段之间在数量上满足的关系式可以用同一个式子表示出来. 请你首先写出这个式子,然后只就如图②所示的圆内两条弦相交的一般情况给出它的证明.⑥⑤④③②①)P (B )PB(2)已知⊙O 的半径为一定值r ,若点P 是不在⊙O 上的一个定点,请你过点P 任作一直线交⊙O 于不重合的两点E ,F . PE ·PF 的值是否为定值?为什么?由此你发现了什么结论?请你把这一结论用文字叙述出来.(济南市中考试题)8. 在平面直角坐标系中,边长为2的正方形OABC 的两顶点A ,C 分别在y 轴,x 轴的正半轴上,点O 在原点,现将正方形OABC 绕O 点顺时针旋转,当A 点第一次落在直线x y =上时停止旋转. 旋转过程中,AB 边交直线x y =于点M ,BC 边交x 轴于点N .(1)求OA 在旋转过程中所扫过的面积;(2)旋转过程中,当MN 与AC 平行时,求正方形OABC 旋转度数;(3)设△MBN 的周长为P ,在正方形OABC 旋转的过程中,P 值是否有变化?请证明你的结论.(济宁市中考试题)9. 如图,AB 是半圆的直径,AC ⊥AB ,AC =AB . 在半圆上任取一点D ,作DE ⊥CD ,交直线AB 于点E ,BF ⊥AB ,交线段AD 的延长线于点F .(1)设弧AD 是x °的弧,若要点E 在线段BA 的延长线上,则x 的取值范围是_______.(2)不论点D 取在半圆的什么位置,图中除AB =AC 外,还有两条线段一定相等. 指出这两条相等的线段,并予证明.(江苏省竞赛试题)(第9题图) (第10题图) (第11题图)10. 如图,内接于⊙O 的四边形ABCD 的对角线AC 与BD 垂直相交于点K ,设⊙O的半径为R . 求证:(1)2222DK CK BK AK +++是定值;(2)2222DA CD BC AB +++是定值.PD CB A A11. 如图,设P 是正方形ABCD 外接圆劣弧弧AB 上的一点,求证:DPCP BPAP ++的值为定值.(克罗地亚数学奥林匹克试题)B 级1.等腰△ABC 的底边BC 为定长2,H 为△ABC 的垂心. 当顶点A 在保持△ABC 为等腰三角形的情况下 改变位置时,面积S △ABC ·S △HBC 的值保持不变,则S △ABC ·S △HBC =________.2. 已知A ,B ,C ,D ,E 是反比例函数xy 16=(x >0)图象上五个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是__________(用含π的代数式表示).(福州市中考试题) 折叠,使点A ,B 落在六边形ABCDEF 的内部,记∠C +∠D +∠E +∠F =α,则下列结论一定正确的是( )A . ∠1+∠2=900°-2αB . ∠1+∠2=1080°-2αC . ∠1+∠2=720°-αD . ∠1+∠2=360°-21α (武汉市竞赛试题)(第3题图) (第4题图)4. 如图,正△ABO 的高等于⊙O 的半径,⊙O 在AB 上滚动,切点为T ,⊙O 交AO ,BO 于M ,N ,则12GF ED CHBAA . 在0°到30°变化B . 在30°到60°变化C . 保持30°不变D . 保持60°不变5. 如图,AB 是⊙O 的直径,且AB =10,弦MN 的长为8. 若MN 的两端在圆上滑动时,始终与AB 相交,记点A ,B 到MN 的距离分别为h 1,h 2,则∣h 1-h 2∣等于( )A . 5B . 6C . 7D . 8(黄石市中考试题)(第5题图)6. 如图,已知△ABC 为直角三角形,∠ACB =90°,AC =BC ,点A ,C 在x 轴上,点B 坐标为(3,m )(m >0),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B ,D . (1)求点A 的坐标(用m 表示) (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连接PQ 并延长交BC 于点E ,连接BQ 并延长交AC 于点F . 试证明:FC (AC +EC )为定值.(株洲市中考试题)7. 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A ,B 的点M . 设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N . 证明线段AK 和BN 的乘积与M 点的选择无关.(湖北省选拔赛试题)(第7题图) (第8题图)B NKMB AC HCBA距离变小,这时乘积S △ABC ·S △HBC 的值变小、变大,还是不变?证明你的结论.(全国初中数学联赛试题)9. 如图,在平面直角坐标系xOy 中,抛物线10941812--=x x y 与x 轴的交点为点A ,与y 轴的交点为点B . 过点B 作x 轴的平行线BC ,交抛物线于点C ,连接AC . 现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动. 点P 停止运动时,点Q 也同时停止运动. 线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于E ,射线QE 交x 轴于点F . 设动点P ,Q 移动的时间为t (单位:秒). (1)求A ,B ,C 三点的坐标和抛物线的顶点坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程; (3)当290<<t 时,△PQF 的面积是否总是定值?若是,求出此值;若不是,请说明理由; (4)当t 为何值时,△PQF 为等腰三角形,请写出解答过程. (黄冈市中考试题)(第9题图) (第10题图)10. 已知抛物线C 1:12121+-=x x y ,点F (1,1). (1)求抛物线C 1的顶点坐标;(2)若抛物线C 1与y 轴的交点为A ,连接AF ,并延长交抛物线C 1于点B ,求证:211=+BFAF . (3)抛物线C 1上任意一点P (x P ,y P )(0<x P <1),连接PF ,并延长交抛物线C 1于点 Q (x Q ,y Q ),试判断211=+QFPF 是否成立?请说明理由.11. 已知A ,B 是平面上的两个顶点,C 是位于AB 一侧的一个动点,分别以AC ,BC 为边在△ABC 外作正方形ACDE 和正方形BCFG . 求证:不论C 在直线AB 同一侧的任何位置,EG 的中点P 的位置不变.(四川省竞赛试题)平面几何的定值问题例 1 延长PC 至E ,使CE =AP ,连结BE ,则△BCE ≌△BAP ,及△PBE 为等腰直角三角形,故2PA PC CE PC PEPB PB PB++=== 例2 B 提示:连结AC ,BC ,可以证明P 为APB 的中点. 例3 ∵SP ⊥OP ,OM ⊥ST ,∴S ,M ,O ,P 四点共圆,于是∠SPM =∠SOM =12∠SOT 为定角. 例4 (1)连结OC 交DE 于M ,则OM =CM , EM =DM ,而DG = HE ,则HM =GM 故四边形OGCH 是平行四边形. (2)DG 不变.DE =OC =OA =3 . DG =13DE =13×3=1. (3)设CD =x ,延长OG 交CD 于N ,则CN=DN =12 x ,229CE x =- , 2214DN x = . ∴22394ON x =-,而ON =32CH ,∴22143CH x =-.故CD 2+3CH 2=x 2+3(4-13x 2)=x 2+12-x 2为定值. 例5 ⑴C (0,4) ⑵先求得AM=CM =5,连接MC 交AE 于N ,由△AO G ∽△ANM ,得OG AO MN AN =,O G =32,38OG OM OC OB ==,又∠BOC =∠G OM ,∴△G OM ∽△COB ,∠G MO =∠CBO ,得M G ∥BC .⑶连结DM ,则DM ⊥PD ,DO ⊥PM ,DO 2=OM •OP ,OP=163.动点F 在⊙M 的圆周上运动时,从特殊位置探求OF PF的值.当F 与点A 重合时,2316523OF AO PF AP ===-;当点F 与点B 重合时,8316583OF OB PF PB ===+;当点F 不与点A ,B 重合时,连接OF 、PF 、MF ,∴DM 2=MO •MP ,∴FM 2=MO •MP ,即FM MPOM FM=,又∠OMP =∠FMP ,∴△MFO ∽△MPF ,35OF MO PF MF ==,故OF PF 的比值不变,比值为35. 例6 ∠BPC =120°,在△BPC 中,由余弦定理得BC 2=PB 2+PC 2-2PB •PC =BC 2,又由上托勒密定理得BC •PA +PC •AB ,而AB =BC =AC ,∴PA =PB +PC ,从而PA 2+PB 2+PC 2=(PB +PC )2+PB 2+PC 2=2 (PB 2+PC 2+PB •PC )=2BC 2=2×23=6.故PA 2+PB 2+PC 2为定值.A 级 1.4 提示:∵S 1+S 阴= S 2+S 阴=xy =3,∴S 1+S 2=2xy -2S 阴=6-2=4.2.273提示:1+3+5=9是等边三角形的高. 3.r 2 提示:先考查OB 与OA 垂直的情形.4.D 提示:延长BF 交DE 于点M ,连接BD ,则△BCD 为等边三角形,BF 平分∠CBD .∵F 为CD 中点,且AD ∥CE ,∴△ADF 与△ECF 关于点F 中心对称.∴CE =AD =CD ,∴∠CEM=30°,∠DMF=60°,5.D 提示:A ′B′的中点均在⊙O 的上半圆的中点处. 6.B 提示:S 正方形OCAD =OD •OC =A A x y k ==6,∴S OEBF =OE •OF =xB •y B k ==6. 7.⑴略⑵当点P 在⊙O 内时,过P 作直径CD ,则PE •PF =PD •PC =r 2-OP 2为定值;当点P 在⊙O 外时,PE •PF 为定值22OP r -.结论:过不在圆上的一个定点任作一条直线与圆相交,则这点到直线与圆相交点的两条线段长的积为定值. 8.⑴2π⑵22. 5° ⑶P 值无变化.理由如下:如图,延长BA 交y 轴于E 点,可证明△OAE ≌△OCN ,得OE =ON ,AE =CN ,又∠MOE =∠MON =45°,OM =ON ,∴△OME ≌△OMN ,得MN =ME =AM +AE =AM +CN .∴P =MN +BN +BM =AM +CM +CN +BN +BM =AB +AC =4.9.⑴0<x <90 ⑵BE =BF 提示:连接BD ,可证明△BDF ∽△ADB ,△BDE ∽△ADC . 10.⑴作OP ⊥BD 于P ,OQ ⊥AC 于Q ,连接AO ,则AO 2=()()221122BK DK CK AK ⎡⎤⎡⎤-++⎢⎥⎢⎥⎣⎦⎣⎦,又AK •CK =BK •DK ,得AK 2+BK 2+CK 2+DK 2=4R 2为定值. ⑵作直径DE ,连接AE ,BE ,CE ,AB 2+CD 2=4R 2,AD 2+BC 2=4R 2,故AB 2+BC 2+CD 2+DA 2=8K 2为定值. 11.设正方形的边长为a ,根据托勒密定理,对于四边形APBC 和四边形APBD ,有CP •a =AP •a +BP 2a ,DP •a =BP •a +AP 2a ,两式相加并整理得(CP +DP )a =(AP +BP )(a 2a ),从而21AP BPCP DP++为定值.B 级1.1 提示:不妨设∠A 为锐角,AD ,BE ,CF 为△ABC 的三条高,H 为垂心,由AB =AC 知∠HBD =∠HCD =∠HAE ,∠HDC =∠CDA =90°,故R t △CHD ∽R t △ACD .∴AD DC DC HD =,即AD •HD =DC 2=14BC 2=1.∴S △ABC •S △HBC =2111224BC AD BC HD BC ⎛⎫⎛⎫⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭=1.当∠A ≥90°时,结论成立.2.13π-26 提示:∵A ,B ,C ,DE 是反比例函数y =16x(x >0)图象上五个整数点,由图象可知,这些点的横坐标分别为1,2,4,8,16.∴五个正方形的边长分别为1,3,4,2,1.∴这五人橄榄形的面积总和是2221111112211122222444424242πππ⎡⎤⎛⎫⎛⎫⎛⎫⨯-⨯⨯+⨯-⨯⨯+⨯-⨯⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=5π-10+8π-16=13π-26. 3.B 提示:如图,设FA 的延长线与CB 的延长线交于点P ,G A ′的延长线与HB ′的延长线交于点P ′.由对称性可知∠1=2∠APP ′,∠2=2∠BPP ′.∴∠1+∠2=2∠APB .∵∠APB =540°-α,∴∠1+∠2=1080°-2α. 4.D 5.B 提示:如图,设AB 与MN 交于点C ,过点O 作OD ⊥MN 于D ,连接FO 并延长交EB 于G .由垂径定理,得OD 2254-=3.由△AFO ≌△B G O ,得AF =B G ,即h 1=B G .由AF ⊥MN ,BE ⊥MN ,得△FOD ∽△F G E .∴12OD FO GE FG ==.∴E G =2OD=6,∴12h h AF BE -=-=E G =6. 6.⑴A (3-m ,0) ⑵y =x 2-2x +1⑶过点Q 作QM ⊥AC 于M ,过点Q 作QN ⊥BC 于N ,设Q 点的坐标为(x ,x 2-2x +1),则QM =CN =(x -1)2,MC =QN=3-x .∵QM ∥CE ,∴PQM ∽△PEC .∴QM PM EC PC =,即()2112x x EC --=,得EC =2(x -1).∵QN ∥CF ,∴△BQN ∽△BFC .∴QN BN FC BC =,即()24134x x FC ---=,得FC =41x +.又AC =4,∴FC (AC +EC )= ()44211x x +-⎡⎤⎣⎦+=8为定值. 7.提示:易证△ABK ∽△BNA ,故AK •BN =AB 2为定值,即AK 与BN 的乘积与M 点的选择无关. 8.提示:S △ABC •S △HBC =116BC 4,由于BC 是不变的,所以当点A 至BC 的距离变小时,乘积S △ABC •S △HBC 保持不变. 9.⑴A (18,0),B (0,-10),顶点坐标为(4,-989) ⑵若四边形PQCA 为平行四边形,由于QC ∥PA ,故只要QC =PA 即可,而PA =18-4t ,CQ =t ,故18-4t =t ,得t =185. ⑶设点P 运动t s ,则OP =4t ,CQ =t ,0<t <4. 5.说明P 在线段OA 上,且不与点O ,A 重合.由于QC ∥OP 知△QDC ∽△PDO ,故144QD QC t DP OP t ===.同理QC ∥AF ,故14QC CE AF EA ==,即14t AF =,∴AF =4t =OP .∴PF =PA +AF =PA +OP =18.又点Q 到直线PF 的距离d =10,∴S △PQF =12•PF •d =12×18×10=90.于是S △PQF 的面积总为定值90. ⑷由前面知道,P (4t ,0),F (18+4t ,0),Q (8-t ,-10),0≤t ≤4. 5.构造直角三角形后易得PQ 2=(4t -8+t )2+102=,FQ 2=(18+4t -8+t )2+102=(5t +10)2+100.①若FP =FQ ,即182=(5t +10)2+100,故25(t +2)2=224,(t +2)2=24425.∵2≤t +2≤6. 5,∴t +224441425=.∴t = 4142. ②若QP =QF ,即(5t -8)2+100=(5t +10)2+100,即(5t -8)2=(5t +10)2,无0≤t ≤4. 5的t 满足. ③若PQ =PF ,即(5t -8)2+100=182,∴(5t -8)2=22422415,又0≤5t ≤22. 5,∴-8≤5t -8≤14. 5,14. 52=22984124⎛⎫= ⎪⎝⎭<224.故没有t (0≤t ≤4. 5)满足此方程.综上所述,当t =4142时,△PQ R 为等腰三角形. 10.⑴C 1的顶点坐标为(1,12). ⑵略 ⑶作PM ⊥AB 于M ,作QN ⊥AB 交AB 延长线于N ,∴PM =1-y P ,FM =1-x P .在R t △PMF 中,PF 2=(1-y P )2+(1-x P )2=1-2y P +y P 2+1-2x P +x P 2,又∵点P 在抛物线上,∴y P =12x P 2-x P +1,∴PF 2=1-x P 2+2x P -2+y P 2+1-2x P +x P 2=y P 2,∴PF =y P ,同理,QF =y Q ,易证△PMF ∽△QNF ,则PM QN PF QF =,∴11Q P y y PF QF --=,即11PF QF PF QF --=,∴11PF QF+=2. 11.先从特殊情况出发.当△ABC 是等腰直角三角形时,点P 与点C 重合,此时点P 的位置在AB 的中垂线上,且到AB 的距离为12AB ,如图①所示.下面就一般情况来证明上面的结论(结论②所示).过C ,E ,G 分别作直线AB的垂线CH,EM,G N,垂足分别是H,M,N.容易证明△AEM≌△ACH,△B G N≌△BCH.从而有AM=CH=BN,EM=AH,G N=BH.这样,线段AB的中点O也是线段MN的中点,连接OP,则OP是梯形EMN G的中位线,从而OP⊥AB,OP=12(EM+G N)=12(AH+BH)=12AB.∴无论点C在AB同一侧的位置如何,E G中点P的位置不变.。
专题勾股定理培优版(综合)
专题 勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题1.如图,在△ABC 中,AB =AC ,(1)若P 为边BC 上的中点,连结AP ,求证:BP ×CP =AB 2-AP 2;(2)若P 是BC 边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P 是BC 边延长线上一点,线段AB 、AP 、BP 、CP 之间有什么样的关系?请证明你的结论.(二)最值问题2.如图,E 为正方形ABCD 的边AB 上一点,AE =3 ,BE =1,P 为AC 上的动点,则PB +PE 的最小值是ABPCBCPADPED C C将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为13 时,求正方形的边长.D C CD C C长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD 和AB 的长.图① 图②DB C图2图1A'PPA ABCBC5.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ',当点A 落在C A '上时,此题可解(如图2).请你回答:AP 的最大值是 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)6.如图,P 是等边三角形ABC 内一点,AP=3,BP=4,CP=5,求∠APB的度数. BAC图3CABP变式1:∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数变式2:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决. 请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹); (2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3CBAPCA BEF MN图① 7. 已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在∠ACE 的内部旋转时,如图①,求证:222BN AM MN +=;(2)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.变式1:如图,在Rt ABC ∆中, 90,,45BAC AC AB DAE ∠=︒=∠=︒ 且3BD =,4CE =,则DE =变式2:如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕 点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ≌△ACD ; ③BE DC DE +=;④222BE DC DE +=其中正确的是( ) CABE F MN 图②BCDEFA(三)其它应用7. 在ABC △中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为2a 、13a 、17a (0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △中有两边的长分别为2a 、10a (0a >),且ABC △的面积为22a ,试运用构图..法.在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.8.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F.(1)如图1,若AB=32,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=32,设BP=x,以QF为边的等边三角形的面积y,求y关于x的关系式.。
2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)
专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
这是空间向量求解的巨大优点,也是缺点,就这么共存着。
其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。
方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
【九年级数学几何培优竞赛专题】专题1 巧构圆,妙解题【含答案】
第一章 圆专题1巧构圆,妙解题知识解读在处理平面几何中的许多问题时,常常需要借助圆的性质,问题才能解决.而有时候我们需要的圆并不存在,这就需要我们能利用已知的条件,借助图形的特点把实际存在的圆找出来,从而运用圆中的性质来解决问题,往往有事半功倍的效果,使问题获得巧解或简解,这是我们解题必须要掌握的技巧. 作辅助圆的常用依据有以下几种:①圆的定义:若几个点到某个固定点的距离相等,则这几个点在同一个圆上; ②有公共斜边的两个直角三角形的顶点在同一个圆上;③对角互补的四边形四个顶点在同一个圆上,简记为:对角互补,四点共圆;④若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,则这两个三角形有公共的外接圆,简记为:同旁张等角,四点共圆.培优学案典例示范例1将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转(0120)αα<<得到线段AD ,连接CD . (1)连接BD .①如图1-1-1①,若α=80°,则∠BDC 的度数为;②在第二次旋转过程中,请探究∠BDC 的大小是否改变?若不变,求出∠BDC 的度数;若改变,请说明理由;(2)如图1-1-1②,以AB 为斜边作Rt △ABE ,使得∠B =∠ACD ,连接CE ,DE .若∠CED =90°,求α的值.图1-1-1②①EDCBADBA【提示】(1)①∠BDC =∠ADC -∠ADB ,利用“等边对等角及三角形内角和为180°”可求出∠BDC 为30°; ②由题意知,AB =AC =AD ,则点B ,C ,D 在以A 为圆心,AB 为半径的圆上,利用“一条弧所对的圆周角等于它所对的圆心角的一半”可快速求出∠BDC 仍然为30°;(2)过点A 作AM ⊥CD 于点M ,连接EM ,证明“点A ,C ,D 在以M 为圆心,MC 为半径的圆上”.跟踪训练如图1-1-2,菱形ABCD 中,∠B =60°,点E 在边BC 上,点F 在边CD 上.若∠EAF =60°,求证:△AEF 是等边三角形.角相等”获证.图1-1-2BFEDC A例2 (1)如图1-1-3①,正方形ABCD 中,点E 是BC 边上的任意一点,∠AEF =90°,且EF 交正方形外角平分线CF 于点F .求证:AE =EF ;(2)若把(1)中的条件“点E 是BC 边上的任意一点”,改为“点E 是BC 边延长线上的一点”,其余条件不变,如图1-1-3②,那么结论AE =EF 是否还成立?若成立,请证明;若不成立,请说明理由.①②图1-1-3A B E CFDFDCEBA【提示】连接AC ,AF ,显然∠ACF =∠AEF =90°,所以A ,E ,C ,F 四点在以AF 为直径的圆上. (1)如图1-1-4①,当点E 在BC 边上,则∠AFE =∠ACE =45°,于是△AEF 是等腰直角三角形,AE =EF 获证;(2)如图1-1-4②,当点E 在BC 边的延长线上,则∠F AE =∠FCE =45°,于是△AEF 是等腰直角三角形,AE=EF 获证.F图1-1-4②①【拓展】本题将“正方形”改为“正三角形”,“∠AEF =90°”相应改为“∠AEF =60°”,仍然可以运用构造“辅助圆”的思路.还可进一步拓展为“正n 边形”,360180AEF =-∠,仍然可延续这种思路,读者可自己完成.跟踪训练已知,将一副三角板(Rt △ABC 和Rt △DEF )如图1-1-5①摆放,点E ,A ,D ,B 在一条直线上,且D 是AB的中点.将Rt △DEF 绕点D 顺时针方向旋转角(090)αα<<,在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N ,分别过点M ,N 作直线AB 的垂线,垂足为G ,H . (1)如图1-1-5②,当α=30°时,求证:AG =DH ; (2)如图1-1-5③,当α=60°时,(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当090α<<时,(1)中的结论是否成立?请写出你的结论,并根据图1-1-5④说明理由.③④图1-1-5②①HGEAF D C (N )BFE DCBA【提示】本题除了常规解法外,还可考虑构造“辅助圆”.例3 已知,在△ABC 中,AB =AC ,过A 点的直线a 从与边AC 重合的位置开始绕点A 按顺时针方向旋转角θ,直线a 交BC 边于点P (点P 不与点B ,点C 重合),△BMN 的边MN 始终在直线a 上(点M 在点N 的上方),且BM =BN ,连接CN . (1)当∠BAC =∠MBN =90°时.①如图1-1-6①,当θ=45时,∠ANC 的度数为 ; ②如图1-1-6②,当45θ≠时,①中的结论是否发生变化?说明理由;(2)如图1-1-6③,当∠BAC =∠MBN ≠90°时,请直接写出∠ANC 与∠BAC 之间的数量关系,不必证明.③②C【提示】由于在旋转过程中不变的关系是:∠BAC =∠MBN ,AB =AC ,BM =BN ,易知∠ABC =∠ACB =∠BMN =∠BNM .由∠ACB =∠BNM 可知A ,B ,N ,C 四个点在同一个圆上(如图1-1-7),则∠ANC =∠ABC =1902BAC -∠,这样思考,所有问题都会迎刃而解.跟踪训练在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60°且点P 与点M 重合(如图1-1-8①),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图1-1-8②中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.①图1-1-8②DP BACMQQM (P )CB A例4如图1-1-9,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.图1-1-9【提示】(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.跟踪训练已知,如图1-1-10①,,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=43,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图1-1-10②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.若四边形CDEF的周长用t表示,请直接写出t的取值范围.图1-1-10例5已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.、① ②③图1-1-11【提示】本题除了建立方程模型,将问题转化为方程是否有解的判断外,还可以通过构造辅助圆,将问题转化为直线与圆的位置关系来讨论.跟踪训练1.如图1-1-12,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC1m .图1-1-12【提示】(1)①由直线y=-x+3写出OA=3,OB=3;由等腰直角三角形的边长关系,可得AB2;由PC⊥y轴,可得QC=1,BC=2;由对称知A'B=AB2,OA'=0A=3,然后用勾股定理求出A'C的长,也就可以求出△A'BC的周长;(2)②如果选用上一题的思路求∠BMC的正弦值,会陷入计算的麻烦,这里采用转化的思想,找到外接圆的半径,另外还应分类讨论。
【八年级数学几何培优竞赛专题】专题2 全等三角形判定方法的选择【含答案】
专题2 全等三角形判定方法的选择知识解读三角形全等判定方法的选择已知条件可供选择的判定方法一边和这边邻角对应相等选边:只能选角的另一边(SAS )选角:可选另外两对角中任意一对角(AAS ,ASA )一边及它的对角对应相等只能再选一角:可选另外两对角中任意一对角(AAS )两边对应相等选边;只能选剩下的一边(SSS )选角:只能选两边的夹角(SAS )两角对应相等只能选边:可选三条边的任意一对对应边(AAS .ASA )典例示范一、从变换的角度理解“全等”1.轴对称变换例1如图1-2-1,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,且AB =AC ,∠B =∠C ,求证:BD =CE .【提示】从结论“BD =CE ”来看,有两种思路,思路一:通过证明△BOD ≌△COE 得到对应边相等;思路二:通过证明“△ACD ≌△ABE ”得到AD =AE ,然后运用等式性质证得.从题设看,由“AB =AC ,∠B =∠C ”加上公共角∠A ,可得△ACD ≌△ABE ,所以我们考虑使用思路二给出证明过程.图1-2-1B【技巧点评】哪些情况下,可考虑利用全等的性质来证明线段相等和角相等呢?本题中,这个图形很显然是轴对称图形,而BD 和CE 也是轴对称的,这时候就可以考虑把BD 和CE 置于一对轴对称的三角形中,且BD 和CE 恰好是一对对应边.跟踪训练1.如图1-2-2,已知AB =DC ,AE =DF ,CE =F B .求证:AF =DE .图1-2-22.旋转变换例2如图1-2-3,AD 是△ABC 的中线,在AD 及其延长线上截取DE =DF ,连接CE ,BF ,试判断△BDF 与△CDE 全等吗?BF 与CE 有何位置关系?【提示】若△BDF 与△CDE 全等,需要寻找三个相等的要素,题中已知一对对顶角相等,由中线可得到BD =CD ,加上DE =DF ,即可根据“SAS ”得到两个三角形全等.图1-2-3B【技巧点评】本题是一个简单的全等证明题,本题意在说明图中△BDF 与△CDE 是中心对称的图形.,其中一个三角形可以看作另一个三角形绕点D 旋转180°得到.从中心对称的角度寻找相等的线段和相等的角,可以为证明全等提供方便.跟踪训练2.如图1-2-4,AB =AE ,∠1=∠2,∠B =∠E ,求证:BC =E D .图1-2-4二、线段和角度相等,常考虑证全等例3如图1-2-5,AC 交BD 于点O ,AC =BD ,AB =CD ,求证:∠C =∠B .【提示】要证明∠C =∠B ,可考虑将∠C 和∠B 置于一对三角形中,证明两个三角形全等,由于本题图中△AOB 和ACOD 全等不容易证明,可考虑连接AD ,证明△ACD 与△DBA 全等.图1-2-5跟踪训练3.已知,如图1-2-6,AD ⊥DB ,BC ⊥CA ,AC ,BD 相交于点O ,且AC =BD ,求证:AD =B C .图1-2-6B【技巧点评】由于全等三角形的对应角相等,对应边相等,因此证明两个三角形全等是证明两个角相等和两条线段相等常用的方法.利用全等三角形证明线段相等和角相等的思路:对应边(角)相等→两个三角形全等→线段相等或者角相等,可以看出全等三角形类似于一个桥梁,建立起角度相等与线段相等、线段相等与另两条相等的线段、角相等与另一对相等的角之间的联系.跟踪训练4.如图1-2-7,A ,D ,B 三点在同一条直线上,△ADC ,△BDO 均为等腰三角形,AO ,BC 的大小关系和位置关系分别如何?证明你的结论.图1-2-7三、借助“同角的余角相等”寻找相等的角例4如图1-2-8,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,F 是BD 上一点,BF =AC ,G 是CE 延长线一点,CG =AB ,连接AG ,AF .(1)求证:∠ABD =∠ACE ;(2)探求线段AF ,AG 有什么关系,并证明.【提示】(1)∠ABD ,∠ACE 都和∠BAC 互余,根据“同角的余角相等”可证明∠ABD =∠ACE ;(2)由已知条件“BF =AC ”“CG =AB ” “∠ABD =∠ACE ”可证明△ABF ≌△GCA ,AF ,AG 恰好是这对全等三角形的对应边,所以这两条线段的大小关系是相等.又由于∠G =∠BAF ,∠G +∠GAE =90°,因此∠GAF =90°,所以AF 和AG 的位置关系是垂直.图1-2-8B 【技巧点评】(1)当已知两条边相等,要证明两个三角形全等时,“同角的余角相等”是常用的证明夹角相等的手段.(2)要证明两直线垂直,证明夹角等于90°也是常用思路,当夹角是由两个角的和组成的时候,常考虑证明这两个角的和等于90°.跟踪训练5.如图1-2-9,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =F C .图1-2-9A四、从等腰、等边、正方形中获取全等所需的元素例5如图1-2-10,在Rt △ABC 中,∠ACB =90°,AC =BC ,D 为BC 的中点,CE ⊥AD ,垂足为E ,BF ∥AC 交CE 的延长线于点F .求证:DB =BF .【提示】要证明DB =BF ,由于D 为BC 的中点,所以CD =BD ,因此本题可转证CD =BF ,将这两条线段放置到三角形中,可证明△ACD ≌△CBF .图1-2-10A【技巧点评】本题证明△ACD ≌△CBF 需要的三个要素AC =BC ,∠CAD =∠BCF ,∠ACD =∠CBF 都和△ABC 是等腰直角三角形相关.当题目中出现等边三角形、等腰三角形、正方形、菱形等条件时,往往图形中隐含着一对全等三角形,这对全等三角形的一对对应边往往和等边三角形、等腰三角形、正方形、菱形的边长相等有关.跟踪训练6.如图1-2-11,在Rt △ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A ,D 重合,连接BE ,E C .试猜想线段BE 和EC 的数量关系和位置关系,并证明你的猜想.图1-2-11B拓展延伸五、AAS 华丽变全等例6 如图1-2-12,在△ABC 中,∠DBC =∠ECB =∠A ,求证:BE =CD .21ABCD E F【提示】要证明BE =CD ,一般考虑证明两个三角形全等,而△DCF 和△EBF 显然不全等,本题有三种构造全等的方法,如图1-2-13①②③.图1-2-12GFE D CBAHFE D CBAFE D CBAH G 【技巧点评】本题△BEF 和△CDF 虽然不全等,但是∠BFE =∠CFD ,加之可证FB =FC 以及待证的BE =CD ,可见这两个三角形虽然不全等,但也有3对相等的要素.构造全等三角形可将小三角形补上一部分,或者将大三角形截去一部分.跟踪训练7.如图1-2-14,OC 平分∠AOB ,点D 、E 分别在OA 、OB 上,点P 在OC 上,且有PD =PE ,求证:∠PDO =∠PEB .(有三种解法)P OD C BA E竞赛链接图1-2-13图1-2-14②③①例7 (全国初中数学竞赛浙江赛区题)如图1-2-15,在四边形ABCD 中,∠A =∠BCD =90°,BC =CD ,E 是AD 延长线上一点,若DE =AB =3cm ,CE =4cm ,则AD 的长是.2【提示】如图1-2-16,连接CA ,构造△BAC ≌△DEC ,利用勾股定理求出AE 的长.EDCB AAB CDE【技巧点评】勾股定理——如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2.跟踪训练8.(希望杯竞赛题)如图1-2-17,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC 与BD 相交于O ,AE ⊥BD 于E ,CF ⊥BD 于F ,那么图中的全等三角形共有()A .5对B .6对C .7对D .8对F OABCDE 培优训练1.如图1-2-18,AC ,BD 交于点E ,且∠1=∠2,∠3=∠4,求证:AC =BD .4321ABCED2.如图1-2-19,已知AD =AE ,AB =AC .求证:BF =FC .图1-2-17图1-2-15图1-2-16图1-2-18ABCDEF3.如图1-2-20,已知△ABD 、△AEC 都是等边三角形,AF ⊥CD 于F ,AH ⊥BE 于H ,问:(1)BE 与CD 有何数量关系?为什么?(2)AF 、AH 有何数量关系?O HFEDCBA 4.如图1-2-21,△ACD 和△BCE 都是等腰直角三角形,∠ACD =∠BCE =90°,AE 交DC 于点F ,BD分别交CE ,AE 于点G ,H 试猜测线段AE 和BD 的位置关系和数量关系,并说明理由.DBCFH AE G 5.将两个全等的直角三角形ABC 和DBE 按图1-2-22①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF +EF =DE ;(2)若将图1-2-22①中的△DBE 绕点B 按顺时针方向旋转角,且0°<<60°,其他条件不变,请在αα图1-2-22②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.AC BABCE FD①图1-2-19图1-2-20图1-2-21②图1-2-226.如图1-2-23,AD 是△ABC 的高,作∠DCE =∠ACD ,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连接AF .(1)求证:CE =AF(2)在线段AB 上取一点N ,使∠ENA =∠ACE ,EN 交BC 于点M ,连接AM 请你判断∠B 与∠MAF 21的数量关系,并说明理由.DBEAF CN M直击中考7.★★(2017江苏常州)如图1-2-24,在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.ECDBA 8.(凉山州中考题)如图1-2-25,△ABO 与△CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF =CE .求证:FD =BE .FBECDAO9.(内江中考题)如图1-2-26,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为AB 边上一点.求证:AE =BD .图1-2-23图1-2-24图1-2-25CDEBA10.(重庆中考题)如图1-2-27,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D .CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG .求证:(1)AF =CG ;(2)CF =2DE .GCDFEBA挑战竟赛11.(希望杯竞赛题)如图1-2-28,在△ABC 中,∠ACB =60°,∠BAC =75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD =.HBCE ADBGF E ADC12.(希望杯竞赛题)如图1-2-29,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠BCA 的平分线交AD 于F ,交AB 于E ,FG ∥BC 交AB 于G .AE =4,AB =14,则BG =.图1-2-26图1-2-27图1-2-28图1-2-29。
全等三角形经典培优题型(含答案)
全等三角形的提高拓展训练全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.全等三角形证明经典题1已知:AB=4,AC=2,D是BC中点,AD是整数,求AD2已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠23已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC4已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA5已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE6 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E 在AD上。
数学培优专题:解析几何(选填题、简答题)全国各地高考数学模拟题汇编(含解析)一
培优专题:解析几何(选填题、简答题)选填题:1.(5分)设m,θ∈R,则的最小值为()A.3 B.4 C.9 D.162.(5分)边长为8的等边△ABC所在平面内一点O,满足=,若M为△ABC边上的点,点P满足|,则|MP|的最大值为()A.B.C.D.3.(5分)已知点A,B的坐标分别为(﹣1,0),(1,0).直线AM,BM相交于点M,且它们的斜率之和是2,则点M的轨迹方程为.4.(5分)已知椭圆的左焦点为F1,y轴上的点P在椭圆外,且线段PF1与椭圆E交于点M,若,则E椭圆的离心率为()A.B. C.D.5.(5分)已知菱形ABCD的边长为2,∠DAB=60°,P是线段BD上一点,则的最小值是.6.(5分)已知SC是球O的直径,A,B是球O球面上的两点,且,若三棱锥S﹣ABC的体积为1,则球O的表面积为()A.4πB.13πC.16πD.52π7.(5分)在△ABC中,AB=AC=5,BC=6,I是△ABC的内心,若=m(m,n∈R),则=()A.B.C.2 D.8.(5分)设点P为椭圆C:+=1上一点,F1、F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|:|PF2|=3:4,那么△GPF1的面积为()A.24 B.12 C.8 D.69.(5分)如图,O是坐标原点,过E(p,0)的直线分别交抛物线y2=2px(p >0)于A、B两点,直线BO与过点A平行于x轴的直线相交于点M,过点M 与此抛物线相切的直线与直线x=p相交于点N.则|ME|2﹣|NE|2=()A.2p2B.2p C.4p D.p10.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.11.(5分)已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是()A.(2,+∞)B.(,2)C.(,) D.(1,)12.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.3213.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A. B. C.D.14.(5分)已知抛物线和圆,直线y=k(x﹣1)与C1,C2依次相交于A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)四点(其中x1<x2<x3<x4),则|AB|•|CD|的值为()A.1 B.2 C.D.k215.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.16.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A. B.C.D.17.(5分)过点P(﹣1,1)作圆C:(x﹣t)2+(y﹣t+2)2=1(t∈R)的切线,切点分别为A,B,则•的最小值为()A.B.C.D.2﹣318.(5分)已知双曲线C:(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且,则双曲线C的离心率为()A. B. C.D.19.(5分)已知点F1,F2为椭圆C1:+=1(a>b>0)和双曲线C2:﹣=1(a′>0,b′>0)的公共焦点,点P为两曲线的一个交点,且满足∠F1PF2=90°,设椭圆与双曲线的离心率分别为e1,e2,则+= .20.(5分)已知△ABC是直角边为2的等腰直角三角形,且A为直角顶点,P 为平面ABC内一点,则的最小值是.21.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为.22.(5分)已知抛物线C:y2=4x,过其焦点F作一条斜率大于0的直线l,l与抛物线交于M,N两点,且|MF|=3|NF|,则直线l的斜率为.23.(5分)已知F是椭圆C:+=1的右焦点,P是C上一点,A(﹣2,1),当△APF周长最小时,其面积为.简答题:1.(12分)已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB 与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.2.(12分)已知椭圆(a>b>0),其焦距为2,离心率为(1)求椭圆C的方程;(2)设椭圆的右焦点为F,K为x轴上一点,满足,过点K作斜率不为0的直线l交椭圆于P,Q两点,求△FPQ面积s的最大值.3.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.4.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.5.(16分)如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点.当点N运动到点()处时,点Q的坐标为().(1)求椭圆C的标准方程;(2)设直线MN交y轴于点D,当点M,N均在y轴右侧,且=2时,求直线BM的方程.6.(12分)设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.(Ⅰ)求点P的轨迹方程E;(Ⅱ)过F(1,0)的直线l1与点P的轨迹交于A、B两点,过F(1,0)作与l1垂直的直线l2与点P的轨迹交于C、D两点,求证:为定值.7.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.8.(12分)已知曲线C的方程为ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).(1)判断曲线C的形状;(2)设曲线C分别与x轴,y轴交于点A,B(A,B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M,N,且•=﹣,求a的值.9.(12分)已知抛物线E:y2=2px(p>0)的准线与x轴交于点k,过点k做圆C:(x﹣5)2+y2=9的两条切线,切点为.(1)求抛物线E的方程;(2)若直线AB是讲过定点Q(2,0)的一条直线,且与抛物线E交于A,B两点,过定点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.10.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.11.(12分)已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足•=0,=2.(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,直线l与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且≤•≤时,求k的取值范围.12.(12分)已知椭圆的左焦点为F,左顶点为A.(1)若P是椭圆上的任意一点,求的取值范围;(2)已知直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的端点),AH⊥MN,垂足为H且,求证:直线l恒过定点.13.(12分)设椭圆+=1(a>b>0)的离心率e=,左焦点为F,右顶点为A,过点F的直线交椭圆于E,H两点,若直线EH垂直于x轴时,有|EH|=(1)求椭圆的方程;(2)设直线l:x=﹣1上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B 异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.14.(12分)已知椭圆C:的离心率,且过点.(1)求椭圆C的方程;(2)过P作两条直线l1,l2与圆相切且分别交椭圆于M,N两点.①求证:直线MN的斜率为定值;②求△MON面积的最大值(其中O为坐标原点).15.(12分)如图,A,B是椭圆长轴的两个端点,P,Q是椭圆C 上都不与A,B重合的两点,记直线BQ,AQ,AP的斜率分别是k BQ,k AQ,k AP.(1)求证:;(2)若k AP=4k BQ,求证:直线PQ恒过定点,并求出定点坐标.参考答案与解析1.(5分)设m,θ∈R,则的最小值为()A.3 B.4 C.9 D.16【解答】解:令点P(2﹣m,2+m),Q(cosθ,sinθ).点P在直线上,点Q的轨迹为单位圆:x2+y2=1.因此的最小值为:单位圆上的点到直线的距离的平方,故其最小值==(4﹣1)2=9.故选:C.2.(5分)边长为8的等边△ABC所在平面内一点O,满足=,若M为△ABC边上的点,点P满足|,则|MP|的最大值为()A.B.C.D.【解答】解:如图,由=,得,即,取AB中点G,AC中点H,连接GH,则,即,取GH中点K,延长KG到O,使KG=GO,则O为所求点,∵点P满足|,M为△ABC边上的点,∴当M与A重合时,|MP|有最大值为|OA|+|OP|,而|OA|=,∴|MP|的最大值为,故选:D.3.(5分)已知点A,B的坐标分别为(﹣1,0),(1,0).直线AM,BM相交于点M,且它们的斜率之和是2,则点M的轨迹方程为x2﹣xy﹣1=0(x≠±1).【解答】解:设M(x,y),∵AM,BM的斜率存在,∴x≠±1,又∵k AM=,k BM=,∴由k AM+k BM=2得:•=0,整理得:x2﹣xy﹣1=0,∴点M的轨迹方程为:x2﹣xy﹣1=0(x≠±1).故答案为:x2﹣xy﹣1=0(x≠±1)4.(5分)已知椭圆的左焦点为F1,y轴上的点P在椭圆外,且线段PF1与椭圆E交于点M,若,则E椭圆的离心率为()A.B. C.D.【解答】解:如图所示|OM|=|MF1|=|OP|,不妨设|OP|=,则|OM|=|MF1|=1,设∠MF1O=θ,在△MOF1中由余弦定理可得cosθ===,∴sinθ==,∴tanθ===,∵tanθ==,∴=,解得c=1,∴△MOF1为等边三角形,∴M(﹣,),∴+=1,①∵a2﹣b2=c2=1,②,由①②可得4a4﹣8a2+1=0,解得a2=<1(舍去),a2=,∴a2===()2,∴a==,∴e===﹣1,故选:C.5.(5分)已知菱形ABCD的边长为2,∠DAB=60°,P是线段BD上一点,则的最小值是.【解答】解:建立平面直角坐标系,如图所示,菱形ABCD的边长为2,∠DAB=60°,可设P(0,b),且﹣1≤b≤1;∴A(﹣,0),C(,0),D(0,1),∴=(﹣,﹣b),=(,﹣b),=(0,1﹣b),∴+=(,1﹣2b),∴=﹣3﹣b(1﹣2b)=﹣3﹣b+2b2=2﹣,当且仅当b=时,取得最小值﹣.故答案为:﹣.6.(5分)已知SC是球O的直径,A,B是球O球面上的两点,且,若三棱锥S﹣ABC的体积为1,则球O的表面积为()A.4πB.13πC.16πD.52π【解答】解:∵SC是球O的直径,A,B是球O球面上的两点,且,∴∠SAC=∠SBC=90°,cos∠ACB==﹣,∴∠ACB=120°,∴∠CAB=∠CBA=30°,∴∠ASB=60°,∴SA=SB=AB=,∴SC==2,∴球半径R=1,∴球O的表面积S=4πR2=4π.故选:A.7.(5分)在△ABC中,AB=AC=5,BC=6,I是△ABC的内心,若=m(m,n∈R),则=()A.B.C.2 D.【解答】解:设BC中点为D,以BC为x轴,DA为y轴建立平面直角坐标系如图所示:∵AB=5,BD=BC=3,∴AD=4.∵△ABC是等腰三角形,∴内心I在线段AD上,设内切圆的半径为r,则tan∠IBD=,∴tan∠ABC===,又tan∠ABC==,∴=,解得r=或r=﹣6(舍).∴I(0,),又B(﹣3,0),A(0,4),C(3,0),∴=(3,),=(3,4),=(6,0),∵=m,∴,解得,∴=.故选:B.8.(5分)设点P为椭圆C:+=1上一点,F1、F2分别是椭圆C的左、右焦点,且△PF1F2的重心为点G,若|PF1|:|PF2|=3:4,那么△GPF1的面积为()A.24 B.12 C.8 D.6【解答】解:∵点P为椭圆C:+=1上一点,|PF1|:|PF2|=3:4,|PF1|+|PF2|=2a=14∴|PF1|=6,|PF2|=8,又∵F1F2=2c=10,∴△PF 1F2是直角三角形,S=,∵△PF 1F2的重心为点G.∴S=,∴△GPF1的面积为8,故选:C9.(5分)如图,O是坐标原点,过E(p,0)的直线分别交抛物线y2=2px(p >0)于A、B两点,直线BO与过点A平行于x轴的直线相交于点M,过点M 与此抛物线相切的直线与直线x=p相交于点N.则|ME|2﹣|NE|2=()A.2p2B.2p C.4p D.p【解答】解:过E(p,0)的直线分别交抛物线y2=2px(p>0)于A、B两点为任意的,不妨设直线AB为x=p,由,解得y=±2p,则A(﹣p,﹣p),B(p,p),∵直线BM的方程为y=x,直线AM的方程为y=﹣p,解得M(﹣p,﹣p),∴|ME|2=(2p)2+2p2=6p2,设过点M与此抛物线相切的直线为y+p=k(x+p),由,消x整理可得ky2﹣2py﹣2p+2p2k=0,∴△=4p2﹣4k(﹣2p+2p2k)=0,解得k=,∴过点M与此抛物线相切的直线为y+p=(x+p),由,解得N(p,2p),∴|NE|2=4p2,∴|ME|2﹣|NE|2=6p2﹣4p2=2p2,故选:A10.(5分)已知F1,F2是双曲线(a>0,b>0)的左右焦点,以F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N,且M,N均在第一象限,当直线MF1∥ON时,双曲线的离心率为e,若函数f(x)=x2+2x﹣,则f(e)=()A.1 B.C.2 D.【解答】解:双曲线的c2=a2+b2,e=,双曲线的渐近线方程为y=±x,与圆x2+y2=c2联立,解得M(a,b),与双曲线(a>0,b>0)联立,解得,∵直线MF1与直线ON平行时,即有,即(a+c)2(c2﹣a2)=a2(2c2﹣a2),即有c3+2ac2﹣2a2c﹣2a3=0,∴e3+2e2﹣2e﹣2=0,即e2+2e﹣=2,∴f(e)=e2+2e﹣=2,故选:C.11.(5分)已知F1,F2是双曲线﹣=1(a>0,b>0)的左右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是()A.(2,+∞)B.(,2)C.(,) D.(1,)【解答】解:双曲线﹣=1的渐近线方程为y=x,不妨设过点F2与双曲线的一条渐过线平行的直线方程为y=(x﹣c),与y=﹣x联立,可得交点M(,﹣),∵点M在以线段F1F2为直径的圆外,∴|OM|>|OF2|,即有+>c2,∴>3,即b2>3a2,∴c2﹣a2>3a2,即c>2a.则e=>2.∴双曲线离心率的取值范围是(2,+∞).故选A.12.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.32【解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.13.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A. B. C.D.【解答】解:令,,,如图所示:则,又,所以点C在以点D为圆心、半径为1的圆上,易知点C与O、D共线时达到最值,最大值为+1,最小值为﹣1,所以的取值范围为[﹣1,+1].故选A.14.(5分)已知抛物线和圆,直线y=k(x﹣1)与C1,C2依次相交于A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4)四点(其中x1<x2<x3<x4),则|AB|•|CD|的值为()A.1 B.2 C.D.k2【解答】解:∵y2=4x,焦点F(1,0),准线l0:x=﹣1.由定义得:|AF|=x A+1,又∵|AF|=|AB|+1,∴|AB|=x A,同理:|CD|=x D,由题意可知直线l的斜率存在且不等于0,则直线l的方程为:y=k(x﹣1)代入抛物线方程,得:k2x2﹣(2k2+4)x+k2=0,∴x A x D=1,则|AB|•|CD|=1.综上所述,|AB|•|CD|=1,故选:A.15.(5分)抛物线M:y2=4x的准线与x轴交于点A,点F为焦点,若抛物线M 上一点P满足PA⊥PF,则以F为圆心且过点P的圆被y轴所截得的弦长约为(参考数据:≈2.24)()A.B.C.D.【解答】解:由题意,A(﹣1,0),F(1,0),点P在以AF为直径的圆x2+y2=1上.设点P的横坐标为m,联立圆与抛物线的方程得x2+4x﹣1=0,∵m>0,∴m=﹣2+,∴点P的横坐标为﹣2+,∴|PF|=m+1=﹣1+,∴圆F的方程为(x﹣1)2+y2=(﹣1)2,令x=0,可得y=±,∴|EF|=2=2=,故选:D.16.(5分)已知椭圆的左顶点和上顶点分别为A,B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率的平方为()A. B.C.D.【解答】解:方法一:依题意,作图如下:A(﹣a,0),B(0,b),F1(﹣c,0),F2(c,0),∴直线AB的方程为,整理得:bx﹣ay+ab=0,设直线AB上的点P(x,y),则bx=ay﹣ab,x=y﹣a,∵PF1⊥PF2,则•=(﹣c﹣x,﹣y)•(c﹣x,﹣y)=x2+y2﹣c2=()2+y2﹣c2,令f(y)=()2+y2﹣c2,则f′(y)=2(y﹣a)×+2y,∴由f′(y)=0得:y=,于是x=﹣,∴•=(﹣)2+()2﹣c2=0,整理得:=c2,又b2=a2﹣c2,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,∴e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.方法二:由直线AB的方程为,整理得:bx﹣ay+ab=0,由题意可知:直线AB与圆O:x2+y2=c2相切,可得d==c,两边平方,整理得:c4+3c2c2﹣a4=0,两边同时除以a4,由e2=,e4﹣3e2+1=0,∴e2=,又椭圆的离心率e∈(0,1),∴e2=.椭圆的离心率的平方,故选B.17.(5分)过点P(﹣1,1)作圆C:(x﹣t)2+(y﹣t+2)2=1(t∈R)的切线,切点分别为A,B,则•的最小值为()A.B.C.D.2﹣3【解答】解:圆C:(x﹣t)2+(y﹣t+2)2=1的圆心坐标为(t,t﹣2),半径为1,∴|PC|2=(t+1)2+(t﹣3)2=2t2﹣4t+10,∴|PA|2=|PB|2=|PC|2﹣1=(t+1)2+(t﹣3)2﹣1=2t2﹣4t+9,cos∠APC==,∴cos∠PAB=2cos2∠APC﹣1=2×()﹣1==∴•=||•||cos∠PAB=(2t2﹣4t+9)•=[(t2﹣2t+5)+(t2﹣2t+4)]•,设t2﹣2t+4=x,则x≥3,则•=f(x)=(x+x+1)•=,∴f′(x)=>0恒成立,∴f(x)在[3,+∞)单调递增,∴f(x)min=f(3)=,∴•的最小值为故选:C18.(5分)已知双曲线C:(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P,Q,若∠PAQ=60°,且,则双曲线C的离心率为()A. B. C.D.【解答】解:设双曲线的一条渐近线方程为y=x,A(a,0),P(m,),(m>0),由=3,可得Q(3m,),圆的半径为r=|PQ|==2m•,PQ的中点为H(2m,),由AH⊥PQ,可得=﹣,解得m=,r=.A到渐近线的距离为d==,则|PQ|=2=r,即为d=r,即有=•.可得=,e====.故选C.19.(5分)已知点F1,F2为椭圆C1:+=1(a>b>0)和双曲线C2:﹣=1(a′>0,b′>0)的公共焦点,点P为两曲线的一个交点,且满足∠F1PF2=90°,设椭圆与双曲线的离心率分别为e1,e2,则+=2.【解答】解:可设P为第一象限的点,|PF1|=m,|PF2|=n,由椭圆的定义可得m+n=2a,由双曲线的定义可得m﹣n=2a'可得m=a+a',n=a﹣a',由∠F1PF2=90°,可得m2+n2=(2c)2,即为(a+a')2+(a﹣a')2=4c2,化为a2+a'2=2c2,则+=2,即有+=2.故答案为:2.20.(5分)已知△ABC是直角边为2的等腰直角三角形,且A为直角顶点,P 为平面ABC内一点,则的最小值是﹣1.【解答】解:以BC为x轴,以BC边上的高为y轴建立坐标系,△ABC是直角边为2的等腰直角三角形,且A为直角顶点,斜边BC=2,则A(0,),B(﹣,0),C(,0),设P(x,y),则+=2=(﹣2x,﹣2y),=(﹣x,﹣y),∴=2x2+2y2﹣2y=2x2+2(y﹣)2﹣1,∴当x=0,y=时,则取得最小值﹣1.故答案为:﹣1.21.(5分)已知双曲线的右焦点为F,过点F向双曲线的一条渐近线引垂线,垂足为M,交另一条渐近线于N,若,则双曲线的渐近线方程为y=±x .【解答】解:由题意得右焦点F(c,0),设一渐近线OM的方程为y=x,则另一渐近线ON的方程为y=﹣x,由FM的方程为y=﹣(x﹣c),联立方程y=x,可得M的横坐标为,由FM的方程为y=﹣(x﹣c),联立方程y=﹣x,可得N的横坐标为.由2=,可得2(﹣c)=﹣c,即为﹣c=,由e=,可得﹣1=,即有e4﹣5e2+4=0,解得e2=4或1(舍去),即为e=2,即c=2a,b=a,可得渐近线方程为y=±x,故答案为:y=±x.22.(5分)已知抛物线C:y2=4x,过其焦点F作一条斜率大于0的直线l,l与抛物线交于M,N两点,且|MF|=3|NF|,则直线l的斜率为.【解答】解:抛物线C:y2=4x,焦点F(1,0),准线为x=﹣1,分别过M和N作准线的垂线,垂足分别为C和D,过NH⊥CM,垂足为H,设|NF|=x,则|MF|=3x,由抛物线的定义可知:|NF|=|DH|=x,|MF|=|CM|=3x,∴|HM|=2x,由|MN|=4x,∴∠HMF=60°,则直线MN的倾斜角为60°,则直线l的斜率k=tan60°=,故答案为:.方法二:抛物线C:y2=4x,焦点F(1,0),准线为x=﹣1,设直线MN的斜率为k,则直线MN的方程y=k(x﹣1),设M(x1,y1),N(x2,y2),,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|MF|=3|NF|,=3,即(1﹣x1,﹣y1)=3(x2﹣1,y2),x1+3x2=4,整理得:3x2﹣4x2+1=0,解得:x2=,或x2=1(舍去),则x1=3,解得:k=±,由k>0,则k=故答案为:.方法三:抛物线C:y2=4x,焦点F(1,0),准线为x=﹣1,设直线MN的方程x=mx+1,设M(x1,y1),N(x2,y2),,整理得:y2﹣4my﹣4=0,则y1+y2=4m,y1y2=﹣4,由|MF|=3|NF|,=3,即(1﹣x1,﹣y1)=3(x2﹣1,y2),﹣y1=3y2,即y1=﹣3y2,解得:y2=﹣,y1=2,∴4m=,则m=,∴直线l的斜率为,故答案为:.23.(5分)已知F是椭圆C:+=1的右焦点,P是C上一点,A(﹣2,1),当△APF周长最小时,其面积为 4 .【解答】解:椭圆C:+=1的a=2,b=2,c=4,设左焦点为F'(﹣4,0),右焦点为F(4,0).△APF周长为|AF|+|AP|+|PF|=|AF|+|AP|+(2a﹣|PF'|)=|AF|+|AP|﹣|PF'|+2a≥|AF|﹣|AF'|+2a,当且仅当A,P,F'三点共线,即P位于x轴上方时,三角形周长最小.此时直线AF'的方程为y=(x+4),代入x2+5y2=20中,可求得P(0,2),=S△PF'F﹣S△AF'F=×2×8﹣×1×8=4.故S△APF故答案为:4.简答题1.(12分)已知椭圆与直线l:bx﹣ay=0都经过点.直线m与l平行,且与椭圆C交于A,B两点,直线MA,MB 与x轴分别交于E,F两点.(1)求椭圆C的方程;(2)证明:△MEF为等腰三角形.【解答】解:(1)由直线l:bx﹣ay=0都经过点,则a=2b,将代入椭圆方程:,解得:b2=4,a2=16,∴椭圆C的方程为;(2)证明:设直线m为:,A(x1,y1),B(x2,y2)联立:,整理得x2+2tx+2t2﹣8=0,∴x1+x2=﹣2t,x1x2=2t2﹣8,设直线MA,MB的斜率为k MA,k MB,要证△MEF为等腰三角形,只需k MA+k MB=0,由,k MA+k MB=,=0,所以△MEF为等腰三角形.2.(12分)已知椭圆(a>b>0),其焦距为2,离心率为(1)求椭圆C的方程;(2)设椭圆的右焦点为F,K为x轴上一点,满足,过点K作斜率不为0的直线l交椭圆于P,Q两点,求△FPQ面积s的最大值.【解答】解:(1)因为椭圆焦距为2,即2c=2,所以c=1,,所以a=,从而b2=a2﹣c2=1,所以,椭圆的方程为+y2=1.(2)椭圆右焦点F(1,0),由可知K(2,0),直线l过点K(2,0),设直线l的方程为y=k(x﹣2),k≠0,将直线方程与椭圆方程联立得(1+2k2)x2﹣8k2x+8k2﹣2=0.设P(x1,y1),Q(x2,y2),则,,由判别式△=(﹣8k2)2﹣4(2k2+1)(8k2﹣2)>0解得k2<.点F(1,0)到直线l的距离为h,则,,=••,=|k|•,=,令t=1+2k2,则1<t<2,则S=•=,当时,S取得最大值.此时,,S取得最大值.3.(12分)已知圆C:x2+y2+2x﹣2y+1=0和抛物线E:y2=2px(p>0),圆心C到抛物线焦点F的距离为.(1)求抛物线E的方程;(2)不过原点的动直线l交抛物线于A,B两点,且满足OA⊥OB.设点M为圆C上任意一动点,求当动点M到直线l的距离最大时的直线l方程.【解答】解:(1)圆C:x2+y2+2x﹣2y+1=0可化为(x+1)2+(y﹣1)2=1,则圆心为(﹣1,1).抛物线E:y2=2px(p>0),焦点坐标F(),由于:圆心C到抛物线焦点F的距离为.则:,解得:p=6.故抛物线的方程为:y2=12x(2)设直线的方程为x=my+t,A(x1,y1),B(x2,y2),则:,整理得:y2﹣12my﹣12t=0,所以:y1+y2=12m,y1y2=﹣12t.由于:OA⊥OB.则:x1x2+y1y2=0.即:(m2+1)y1y2+mt(y1+y2)+t2=0.整理得:t2﹣12t=0,由于t≠0,解得t=12.故直线的方程为x=my+12,直线经过定点(12,0).当CN⊥l时,即动点M经过圆心C(﹣1,1)时到直线的距离取最大值.当CP⊥l时,即动点M经过圆心C(﹣1,1)时到动直线L的距离取得最大值.k MP=k CP=﹣,则:m=.此时直线的方程为:x=,即:13x﹣y﹣156=0.4.(12分)给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.已知椭圆C的离心率,其“准圆”的方程为x2+y2=4.(I)求椭圆C的方程;(II)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.(1)当点P为“准圆”与y轴正半轴的交点时,求直线l1,l2的方程,并证明l1⊥l2;(2)求证:线段MN的长为定值.【解答】解:(I)由准圆方程为x2+y2=4,则a2+b2=4,椭圆的离心率e===,解得:a=,b=1,∴椭圆的标准方程:;(Ⅱ)证明:(1)∵准圆x2+y2=4与y轴正半轴的交点为P(0,2),设过点P(0,2)且与椭圆相切的直线为y=kx+2,联立,整理得(1+3k2)x2+12kx+9=0.∵直线y=kx+2与椭圆相切,∴△=144k2﹣4×9(1+3k2)=0,解得k=±1,∴l 1,l2方程为y=x+2,y=﹣x+2.∵=1,=﹣1,∴•=﹣1,则l 1⊥l2.(2)①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,则l1:x=±,当l1:x=时,l1与准圆交于点(,1)(,﹣1),此时l2为y=1(或y=﹣1),显然直线l1,l2垂直;同理可证当l1:x=时,直线l1,l2垂直.②当l1,l2斜率存在时,设点P(x0,y0),其中x02+y02=4.设经过点P(x0,y0)与椭圆相切的直线为y=t(x﹣x0)+y0,∴由得(1+3t2)x2+6t(y0﹣tx0)x+3(y0﹣tx0)2﹣3=0.由△=0化简整理得(3﹣x02)t2+2x0y0t+1﹣y02=0,∵x02+y02=4.,∴有(3﹣x02)t2+2x0y0t+(x02﹣3)=0.设l1,l2的斜率分别为t1,t2,∵l1,l2与椭圆相切,∴t1,t2满足上述方程(3﹣x02)t2+2x0y0t+(x02﹣3)=0,∴t1•t2=﹣1,即l1,l2垂直.综合①②知:∵l1,l2经过点P(x0,y0),又分别交其准圆于点M,N,且l1,l2垂直.∴线段MN为准圆x2+y2=4的直径,|MN|=4,∴线段MN的长为定值.5.(16分)如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的下顶点为B,点M,N是椭圆上异于点B的动点,直线BM,BN分别与x轴交于点P,Q,且点Q是线段OP的中点.当点N运动到点()处时,点Q的坐标为().(1)求椭圆C的标准方程;(2)设直线MN交y轴于点D,当点M,N均在y轴右侧,且=2时,求直线BM的方程.【解答】解:(1)由N(),点Q的坐标为(),得直线NQ的方程为y=x﹣,令x=0,得点B的坐标为(0,﹣).所以椭圆的方程为+=1.将点N的坐标(,)代入,得+=1,解得a2=4.所以椭圆C的标准方程为+=1.(2):设直线BM的斜率为k(k>0),则直线BM的方程为y=x﹣.在y=kx﹣中,令y=0,得x P=,而点Q是线段OP的中点,所以x Q=.所以直线BN的斜率k BN=k BQ==2k.联立,消去y,得(3+4k2)x2﹣8kx=0,解得x M=.用2k代k,得x N=.又=2,所以x N=2(x M﹣x N),得2x M=3x N,故2×==3×,又k>0,解得k=.所以直线BM的方程为y=x﹣6.(12分)设O为坐标原点,动点M在椭圆上,过M作x轴的垂线,垂足为N,点P满足.(Ⅰ)求点P的轨迹方程E;(Ⅱ)过F(1,0)的直线l1与点P的轨迹交于A、B两点,过F(1,0)作与l1垂直的直线l2与点P的轨迹交于C、D两点,求证:为定值.【解答】(Ⅰ)解:设P(x,y),则N(x,0),,又∵,∴,由M在椭圆上,得,即;(Ⅱ)证明:当l1与x轴重合时,|AB|=6,,∴.当l1与x轴垂直时,,|CD|=6,∴.当l1与x轴不垂直也不重合时,可设l1的方程为y=k(x﹣1)(k≠0),此时设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),把直线l1与曲线E联立,得(8+9k2)x2﹣18k2x+9k2﹣72=0,可得△=(﹣18k2)2﹣4(8+9k2)(9k2﹣72)>0.,.∴,把直线l2与曲线E联立,同理可得.∴为定值.7.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.【解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.8.(12分)已知曲线C的方程为ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).(1)判断曲线C的形状;(2)设曲线C分别与x轴,y轴交于点A,B(A,B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M,N,且•=﹣,求a的值.【解答】解:(1)将曲线C的方程化为x2+y2﹣2ax﹣y=0,∴(x﹣a)2+(y﹣)2=a2+,可知曲线C是以点(a,)为圆心,以为半径的圆.(2)△AOB的面积S为定值.证明如下:在曲线C的方程中令y=0,得ax(x﹣2a)=0,得点A(2a,0),在曲线C方程中令x=0,得y(ay﹣4)=0,得点B(0,),∴S=|OA||OB|=|2a|||=4(为定值),(3)直线l与曲线C方程联立可得5ax2﹣(2a2+16a﹣8)x+16a﹣16=0,设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,∴•=x1x2+y1y2=5x1x2+8(x1+x2)+16=﹣,即(80a﹣80﹣16a2﹣128a+64+80a)=﹣,即2a2﹣5a+2=0,解得a=2或a=,当a=2或时,都满足△>0,故a=2或9.(12分)已知抛物线E:y2=2px(p>0)的准线与x轴交于点k,过点k做圆C:(x﹣5)2+y2=9的两条切线,切点为.(1)求抛物线E的方程;(2)若直线AB是讲过定点Q(2,0)的一条直线,且与抛物线E交于A,B两点,过定点Q作AB的垂线与抛物线交于G,D两点,求四边形AGBD面积的最小值.【解答】解:(1)根据题意,抛物线的E的方程为y2=2px(p>0),则设MN与x轴交于点R,由圆的对称性可知,.于是,所以∠CMR=30°,∠MCR=60°,所以|CK|=6,所以p=2.故抛物线E的方程为y2=4x.(2)设直线AB的方程为x=my+2,设A=(x1,y1),B=(x2,y2),联立得y2﹣4my﹣8=0,则y1+y2=4m,y1y2=﹣8.∴设G=(x3,y3),D=(x4,y4),同理得,则四边形AGBD的面积=令,则是关于μ的增函数,故S min=48,当且仅当m=±1时取得最小值48.10.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.【解答】解:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,=1,解得a=,当0<a<1时,=a,解得a=,(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,∴x1+x2=﹣,x1x2=,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,∴•=0,∴x1x2+y1y2=0,∴+=0,∴a2m2﹣a2+m2﹣a2=0∴m2(a2+1)=2a2,(3)证明:当a=2时,x2+4y2=4,设A(x1,y1),(x2,y2),∵k OA•k OB=﹣,∴•=﹣,∴x1x2=﹣4y1y2,由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.∴x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=++m2=,∴=﹣4×,∴2m2﹣4k2=1,∴|AB|=•=•=2•=∵O到直线y=kx+m的距离d==,=|AB|d==•==1∴S△OAB11.(12分)已知点C为圆(x+1)2+y2=8的圆心,P是圆上的动点,点Q在圆的半径CP上,且有点A(1,0)和AP上的点M,满足•=0,=2.(Ⅰ)当点P在圆上运动时,求点Q的轨迹方程;(Ⅱ)若斜率为k的直线l与圆x2+y2=1相切,直线l与(Ⅰ)中所求点Q的轨迹交于不同的两点F,H,O是坐标原点,且≤•≤时,求k的取值范围.【解答】解:(I)由题意知MQ中线段AP的垂直平分线,∴,∴点Q的轨迹是以点C,A为焦点,焦距为2,长轴为的椭圆,,故点Q的轨迹方程是.(II)设直线l:y=kx+b,F(x1,y1),H(x2,y2)直线l与圆x2+y2=1相切联立,(1+2k2)x2+4kbx+2b2﹣2=0,△=16k2b2﹣4(1+2k2)2(b2﹣1)=8(2k2﹣b2+1)=8k2>0,可得k≠0,∴,===,∴为所求.12.(12分)已知椭圆的左焦点为F,左顶点为A.(1)若P是椭圆上的任意一点,求的取值范围;(2)已知直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的端点),AH⊥MN,垂足为H且,求证:直线l恒过定点.【解答】解:(1)设P(x0,y0),又A(﹣2,0),F(﹣1,0)所以=,因为P点在椭圆上,所以,即,且﹣2≤x0≤2,所以=,函数在[﹣2,2]单调递增,当x0=﹣2时,f(x0)取最小值为0;当x0=2时,f(x0)取最大值为12.所以的取值范围是[0,12].(2)由题意:联立得,(3+4k2)x2+8kmx+4m2﹣12=0由△=(8km)2﹣4×(3+4k2)(4m2﹣12)>0得4k2+3>m2①设M(x1,y1),N(x2,y2),则.==0,所以(x1+2)(x2+2)+y1y2=0即,4k2﹣16km+7m2=0,所以或均适合①.当时,直线l过点A,舍去,当时,直线过定点.13.(12分)设椭圆+=1(a>b>0)的离心率e=,左焦点为F,右顶点为A,过点F的直线交椭圆于E,H两点,若直线EH垂直于x轴时,有|EH|=(1)求椭圆的方程;(2)设直线l:x=﹣1上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B 异于点A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.【解答】解:(1)设F(﹣c,0)(c>0),∵e=,∴a=2c,又由|EH|=,得,且a2=b2+c2,解得,因此椭圆的方程为:;(2)设直线AP的方程为x=my+1(m≠0),与直线l的方程x=﹣1联立,可得点P(﹣1,﹣),故Q(﹣1,).将x=my+1与联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=.由点B异于点A,可得点B().由Q(﹣1,),可得直线BQ的方程为,令y=0,解得,故D().∴|AD|=.又∵△APD的面积为,故,整理得,解得|m|=,∴m=.∴直线AP的方程为,或3x﹣﹣3=0.14.(12分)已知椭圆C:的离心率,且过点.(1)求椭圆C的方程;(2)过P作两条直线l1,l2与圆相切且分别交椭圆于M,N两点.①求证:直线MN的斜率为定值;②求△MON面积的最大值(其中O为坐标原点).【解答】(12分)解:(1)由,设椭圆的半焦距为c,所以a=2c,因为C过点,所以,又c2+b2=a2,解得,所以椭圆方程为.(4分)(2)①显然两直线l1,l2的斜率存在,设为k1,k2,M(x1,y1),N(x2,y2),由于直线l1,l2与圆相切,则有k1=﹣k2,直线l1的方程为,联立方程组消去y,得,因为P,M为直线与椭圆的交点,所以,同理,当l2与椭圆相交时,,所以,而,所以直线MN的斜率.②设直线MN的方程为,联立方程组,消去y得x2+mx+m2﹣3=0,所以,原点O到直线的距离,△OMN得面积为,当且仅当m2=2时取得等号.经检验,存在r(),使得过点的两条直线与圆(x﹣1)2+y2=r2相切,且与椭圆有两个交点M,N.所以△OMN面积的最大值为.(12分)15.(12分)如图,A,B是椭圆长轴的两个端点,P,Q是椭圆C 上都不与A,B重合的两点,记直线BQ,AQ,AP的斜率分别是k BQ,k AQ,k AP.(1)求证:;(2)若k AP=4k BQ,求证:直线PQ恒过定点,并求出定点坐标.【解答】证明:(1)设Q(x1,y1),由椭圆,得B(﹣2,0),A(2,0),∴;(2)由(1)知:.设P(x2,y2),直线PQ:x=ty+m,代入x2+4y2=4,得(t2+4)y2+2mty+m2﹣4=0,∴,,由k AP•k AQ=﹣1得:(x1﹣2)(x2﹣2)+y1y2=0,∴,∴(t2+1)(m2﹣4)+(m﹣2)t(﹣2mt)+(m﹣2)2(t2+4)=0,∴5m2﹣16m+12=0,解得m=2或m=.∵m≠2,∴,∴直线PQ:,恒过定点.。
全等三角形证明培优题
模块一:基本辅助线1.如图,已知AC=BD,AD⊥AC,BC⊥BD,求证:AD=BC.2.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点,(1)求证:AF⊥CD.(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明)3.如图,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.4.如图,平面上有一边长为2的正方形ABCD,O为对角线的交点,正方形OEFG的顶点与O 重合,OE、OG分别与正方形ABCD的边交于M、N两点.①如图(1),当OE⊥AB时,四边形OMBN的面积为___;②如图(2),当正方形OEFG绕点O旋转时,四边形OMBN的面积会发生变化吗?试证明你的结论.5.如图所示,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。
6.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E 作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG =BF+CG.模块二:母子型1已知:如图,点C为线段AB上一点,△ACM, △CBN都是等边三角形,AN交MC于点E,BM 交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形2.如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF。
求证:(1)AE=BF;(2)AE⊥BF。
3.如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.①求证:AG⊥CH;4.如图,已知△ABD、△AEC都是等边三角形,AF⊥CD于点F,AH⊥BE于点H,问:(1)BE 与CD有何数量关系?为什么?(2)AF、AH有何数量关系?为什么?5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D 在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.(2009•丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为______,线段CF、BD的数量关系为______;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.模块三倍长中线(1)倍长中线(2)倍长类中线1.已知:如图,△ABC中,AD平分∠BAC,且BD=CD,求证:AB=AC.2.已知,如图△ABC 中,AC>AB,AM 是BC 边上的中线,求证:21(AC-AB )<AM <21(AB+AC).3. 如图所示,已知△ABC 中,AD 平分∠BAC,E,F 分别在BD,AD 上,DE=CD,EF=AC,求证:EF//AB.4.如图,AD 是△ABC 的中线,E 、F 分别在AB 、AC 上,且DE ⊥DF 求证:BE+CF >EF .5. 证明:直角三角形斜边上的中线等于斜边上的一半。
中考数学培优(含解析)之直角三角形的边角关系附答案解析
中考数学培优(含解析)之直角三角形的边角关系附答案解析一、直角三角形的边角关系1.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定2.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).【答案】32.4米.【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.试题解析:如图,过点B作BE⊥CD于点E,根据题意,∠DBE=45°,∠CBE=30°.∵AB⊥AC,CD⊥AC,∴四边形ABEC为矩形,∴CE=AB=12m,在Rt△CBE中,cot∠CBE=BE CE,∴BE=CE•cot30°=12×3=123,在Rt△BDE中,由∠DBE=45°,得DE=BE=123.∴CD=CE+DE=12(3+1)≈32.4.答:楼房CD的高度约为32.4m.考点:解直角三角形的应用——仰角俯角问题.3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)若314cos,53BAD BE∠==,求OE的长.【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =356.【解析】试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.试题解析:(1)DE为⊙O的切线,理由如下:连接OD,BD,∵AB为⊙O的直径,∴∠ADB=90°,在Rt△BDC中,E为斜边BC的中点,∴CE=DE=BE=BC,∴∠C=∠CDE,∵OA=OD,∴∠A=∠ADO,∵∠ABC=90°,∴∠C+∠A=90°,∴∠ADO+∠CDE=90°,∴∠ODE=90°,∴DE⊥OD,又OD为圆的半径,∴DE为⊙O的切线;(2)∵E是BC的中点,O点是AB的中点,∴OE是△ABC的中位线,∴AC=2OE,∵∠C=∠C,∠ABC=∠BDC,∴△ABC∽△BDC,∴,即BC 2=AC•CD .∴BC 2=2CD•OE ;(3)解:∵cos ∠BAD=, ∴sin ∠BAC=, 又∵BE=,E 是BC 的中点,即BC=, ∴AC=.又∵AC=2OE ,∴OE=AC=.考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数4.如图,某校数学兴趣小组为测量校园主教学楼AB 的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C ,用测角器测得主教学楼顶端A 的仰角为30°,再向主教学楼的方向前进24米,到达点E 处(C ,E ,B 三点在同一直线上),又测得主教学楼顶端A 的仰角为60°,已知测角器CD 的高度为1.6米,请计算主教学楼AB 的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt △AFG 中,tan ∠AFG 3,∴FG =tan 3AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =AG CG ,∴CG =tan AG ACG ∠=3AG . 又∵CG ﹣FG =24m , 即3AG ﹣3=24m , ∴AG =123m ,∴AB =123+1.6≈22.4m .5.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)【答案】215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米∴115.6tan 60BN DN =≈o米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.6.如图,公路AB 为东西走向,在点A 北偏东36.5︒方向上,距离5千米处是村庄M ,在点A 北偏东53.5︒方向上,距离10千米处是村庄N ;要在公路AB 旁修建一个土特产收购站P (取点P 在AB 上),使得M ,N 两村庄到P 站的距离之和最短,请在图中作出P 的位置(不写作法)并计算:(1)M ,N 两村庄之间的距离;(2)P 到M 、N 距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)【答案】(1) M ,N 两村庄之间的距离为29千米;(2) 村庄M 、N 到P 站的最短距离和是55千米.【解析】【分析】(1)作N 关于AB 的对称点N'与AB 交于E ,连结MN’与AB 交于P ,则P 为土特产收购站的位置.求出DN ,DM ,利用勾股定理即可解决问题.(2)由题意可知,M 、N 到AB 上点P 的距离之和最短长度就是MN′的长.【详解】解:作N 关于AB 的对称点N '与AB 交于E ,连结MN ’与AB 交于P ,则P 为土特产收购站的位置.(1)在Rt△ANE中,AN=10,∠NAB=36.5°∴NE=AN•sin∠NAB=10•sin36.5°=6,AE=AN•cos∠NAB=10•cos36.5°=8,过M作MC⊥AB于点C,在Rt△MAC中,AM=5,∠MAB=53.5°∴AC=MA•sin∠AMB=MA•sin36.5°=3,MC=MA•cos∠AMC=MA•cos36.5°=4,过点M作MD⊥NE于点D,在Rt△MND中,MD=AE-AC=5,ND=NE-MC=2,∴MN=2252+=29,即M,N两村庄之间的距离为29千米.(2)由题意可知,M、N到AB上点P的距离之和最短长度就是MN′的长.DN′=10,MD=5,在Rt△MDN′中,由勾股定理,得MN′=22510+=55(千米)∴村庄M、N到P站的最短距离和是55千米.【点睛】本题考查解直角三角形,轴对称变换等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造直角三角形解决问题.7.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos ∠A 'CB 3'2BC A C ==,即可得到∠A 'CB =30°,∠ACA '=60°; (2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB 3=BC 32=,依据tan ∠Q =tan ∠A 3=,即可得到BQ =BC 3⨯=2,进而得出PQ =PB +BQ 72=; (3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,即可得到S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC 3=PQ ,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=,AC =2,∴BC 3=.∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'2BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=,∴PB 3=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.如图,半圆O 的直径AB =20,弦CD ∥AB ,动点M 在半径OD 上,射线BM 与弦CD 相交于点E (点E 与点C 、D 不重合),设OM =m .(1)求DE 的长(用含m 的代数式表示);(2)令弦CD 所对的圆心角为α,且sin 4=25α. ①若△DEM 的面积为S ,求S 关于m 的函数关系式,并求出m 的取值范围; ②若动点N 在CD 上,且CN =OM ,射线BM 与射线ON 相交于点F ,当∠OMF =90° 时,求DE 的长.【答案】(1)DE =10010m m -;(2)①S =2360300m m m-+,(5013<m <10),②DE =52. 【解析】【分析】 (1)由CD ∥AB 知△DEM ∽△OBM ,可得DE DM OB OM=,据此可得; (2)①连接OC 、作OP ⊥CD 、MQ ⊥CD ,由OC =OD 、OP ⊥CD 知∠DOP =12∠COD ,据此可得sin ∠DOP =sin ∠DMQ =45、sin ∠ODP =35,继而由OM =m 、OD =10得QM =DM sin ∠ODP =35(10﹣m ),根据三角形的面积公式即可得;如图2,先求得PD =8、CD =16,证△CDM ∽△BOM 得CD DM BO OM =,求得OM =5013,据此可得m 的取值范围; ②如图3,由BM =OB sin ∠BOM =10×35=6,可得OM =8,根据(1)所求结果可得答案.【详解】(1)∵CD ∥AB ,∴△DEM ∽△OBM ,∴DE DM OB OM =,即1010DE m m -=,∴DE =10010mm-; (2)①如图1,连接OC 、作OP ⊥CD 于点P ,作MQ ⊥CD 于点Q ,∵OC =OD 、OP ⊥CD , ∴∠DOP =12∠COD , ∵sin2α=45, ∴sin ∠DOP =sin ∠DMQ =45,sin ∠ODP =35, ∵OM =m 、OD =10, ∴DM =10﹣m , ∴QM =DM sin ∠ODP =35(10﹣m ), 则S △DEM =12DE •MQ =12×10010m m -×35(10﹣m )=2360300m m m-+,如图2,∵PD =OD sin ∠DOP =10×45=8, ∴CD =16, ∵CD ∥AB , ∴△CDM ∽△BOM , ∴CD DM BO OM =,即1610=10OMOM-, 解得:OM =5013,∴5013<m <10, ∴S =2360300m m m-+,(5013<m <10).②当∠OMF =90°时,如图3,则∠BMO =90°,在Rt △BOM 中,BM =OB sin ∠BOM =10×35=6, 则OM =8, 由(1)得DE =100108582-⨯=. 【点睛】本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.9.如图,在自动向西的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,检查站一工作人员家住在与观测点B 的距离为7132km ,位于点B 南偏西76°方向的点C 处,求工作人员家到检查站的距离AC .(参考数据:sin76°≈2425,cos76°≈625,tan 76°≈4,sin53°≈35,tan53°≈43)【答案】工作人员家到检查站的距离AC 的长约为92km . 【解析】分析:过点B 作BH ⊥l 交l 于点H ,解Rt △BCH ,得出CH=BC•sin ∠CBH=274,BH=BC•cos∠CBH=2716.再解Rt△BAH中,求出AH=BH•tan∠ABH=94,那么根据AC=CH-AH计算即可.详解:如图,过点B作BH⊥l交l于点H,∵在Rt△BCH中,∠BHC=90°,∠CBH=76°,BC=7132km,∴CH=BC•sin∠CBH≈225242732254⨯=,BH=BC•cos∠CBH≈225627 322516⨯=.∵在Rt△BAH中,∠BHA=90°,∠ABH=53°,BH=2716,∴AH=BH•tan∠ABH≈27491634⨯=,∴AC=CH﹣AH=2799442-=(km).答:工作人员家到检查站的距离AC的长约为92 km.点睛:本题考查的是解直角三角形的应用-方向角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及ABBG的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).【答案】(Ⅰ)12(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为22+2,此时α=315°,F′(12+2,12﹣2)【解析】【分析】(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=12ABBG,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.11.如图所示,小华在湖边看到湖中有一棵树AB,AB与水面AC垂直.此时,小华的眼睛所在位置D到湖面的距离DC为4米.她测得树梢B点的仰角为30°,测得树梢B点在水中的倒影B′点的俯角45°.求树高AB(结果保留根号)【答案】AB=(8+43)m . 【解析】 【分析】设BE=x ,则BA=x+4,B′E=x+8,根据∠ADB′=45°,可知DE=B′E=x+8,再由tan30°=BEDE即可得出x 的值,进而得到答案, 【详解】如图:过点D 作DE ⊥AB 于点E , 设BE=x ,则BA=x+4,B′E=x+8, ∵∠ADB′=45°, ∴DE=B′E=x+8, ∵∠BDE=30°, ∴tan30°=38BE x DE x ==+ ,解得x=4+43 , ∴AB=BE+4=(8+43 )m .【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答此题的关键12.如图,由一段斜坡AB 的高AD 长为0.6米,ABD 30∠=o ,为了达到无障碍通道的坡道标准,现准备把斜坡改长,使ACD 5.71∠=o .()1求斜坡AB 的长;()2求斜坡新起点C 与原起点B 的距离.(精确到0.01米)(参考数据:3 1.732≈,tan5.710.100)≈o【答案】()1?AB 1.2=米;()2斜坡新起点C 与原起点B 的距离为4.96米. 【解析】 【分析】()1在Rt ABD V 中,根据AB AD sin30=÷o 计算即可;()2分别求出CD 、BD 即可解决问题;【详解】()1在Rt ABD V 中,1AB AD sin300.6 1.2(2=÷=÷=o 米),()2在Rt ABD V 中,3BD AD tan300.6 1.039(=÷=≈o 米), 在Rt ACD V 中,CD AD tan5.716(=÷≈o米),BC CD BD 6 1.039 4.96(∴=-=-=米).答:求斜坡AB 的长为1.2米,斜坡新起点C 与原起点B 的距离为4.96米. 【点睛】本题考查解直角三角形的应用,锐角三角函数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
三角形全等培优证明题100题(有答案)
全等三角形证明题专项练习(100题)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所增加的条件证明:△ABC≌△FDE.12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.45.如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.46.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM交DA的延长线上于E.交BC于N,试说明:AE=CN.47.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证:CT=BE.48.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.49.D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.50.如图,M是△ABC的边BC上一点,BE∥CF,且BE=CF,求证:AM是△ABC的中线.51.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.52.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.53.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.54.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.55.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.56.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.57.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.58.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.59.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.60.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.61.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.62.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.63.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.64.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.65.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.66.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.67.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.68.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.69.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.70.如图,AB=AC,AD=AE.求证:∠B=∠C.71.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.72.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.73.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:74.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)75.如图,已知AB=DC,AC=DB.求证:∠1=∠2.76.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.77.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.78.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.79.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.80.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.81.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:EF=CF﹣AF.82.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,EC⊥MN于E.(1)求证:BD=AE;(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?83.已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.84.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.85.如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm,求线段BC的长.86.如图:已知∠B=∠C,AD=AE,则AB=AC,请说明理由.87.如图△ABC中,点D在AC上,E在AB上,且AB=AC,BC=CD,AD=DE=BE.(1)求证△BCE≌△DCE;(2)求∠EDC的度数.88.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.89.如图,已知:AB=CD,AD=BC,过BD上一点O的直线分别交DA、BC的延长线于E、F.(1)求证:∠E=∠F;(2)OE与OF相等吗?若相等请证明,若不相等,需添加什么条件就能证得它们相等?请写出并证明你的想法.90.如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.91.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B 落在点F处,连接FC,(1)求CF的长。
培优专题03 几何最值类问题综合(原卷版)
培优冲刺03 几何最值类问题综合本考点是中考五星高频考点,难度中等偏上,在全国很多地市的中考试卷中多有考查。
(2022年柳州中考试卷第18题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF 长的最小值为 .【分析】连接DG,将DG绕点D逆时针旋转90°得DM,连接MG,CM,MF,作MH⊥CD于H,利用SAS证明△EDG≌△DFM,得MF=EG=2,再说明△DGC≌△DMH(AAS),得CG=DH=2,MH=CD=4,求出CM的长,再利用三角形三边关系可得答案.【解答】解:方法一:连接DG,将DG绕点D逆时针旋转90°得DM,连接MG,CM,MF,作MH⊥CD于H,∵∠EDF=∠GDM,∴∠EDG=∠FDM,∵DE=DF,DG=DM,∴△EDG≌△MDF(SAS),∴MF=EG=2,∵∠GDC=∠DMH,∠DCG=∠DHM,DG=DM,∴△DGC≌△MDH(AAS),∴CG=DH=2,MH=CD=4,∴CM==2,∵CF≥CM﹣MF,∴CF的最小值为2﹣2,方法二:连接AG、AE,由方法一同理得,AE=CF,AG=2,∵AE≥AG﹣EG=2﹣2,∴AE的最小值为2﹣2,∴CF的最小值为2﹣2,故答案为:2﹣2.点评:本题主要考查了正方形的性质、旋转的性质、全等三角形的判定和性质,勾股定理,三角形三边关系等知识,做辅助线构造全等三角形是解题的关键。
初中数学中,几何最值问题属于难度较大的一类题,问题环境可以是三角形、四边形、圆或者反比例函数、二次函数。
而常用到的最值原理则有:两点之间线段最短(三点共线)、点到直线的距离垂线段最短、圆和圆外定点的最值原理等。
这类题的原理虽然较为固定,但对学生的逻辑思维能力要求较高,综合型较强。
本考点是中考五星高频考点,难度较大,个别还会以压轴题出现,在全国多地市的中考试卷中多有考查。
培优专题01 与三角形模型有关的角度计算-解析版
培优专题01 与三角形模型有关的角度计算◎模型一A字模型【条件】△ADE与△ABC.【结论】∠AED+∠ADE=∠B+C.【证明】根据三角形内角和可得,∠AED+∠ADE=180°-∠A,∠B+C=180°-∠A,∠∠AED+∠ADE=∠B+C,得证.1.(2022·湖北咸宁·七年级期中)如图,已知l1∥l2,∠A=45°,∠2=100°,则∠1的度数为()A.50°B.55°C.45°D.60°【答案】B【分析】根据平角的定义得出∠ACB=80°,根据三角形内角和得到∠ABC=55°,再根据平行线的性质即可得解.【详解】解:∠∠2=100°,∠∠ACB =180°−100°=80°, ∠∠A =45°,∠∠ABC =180°−45°−80°=55°, ∠l 1∥l 2,∠∠1=∠ABC =55°, 故选:B .【点睛】此题考查了平行线的性质,熟记“两直线平行,内错角相等”是解题的关键.2.(2022·全国·八年级课时练习)如图,ABC 中,65A ∠=︒,直线DE 交AB 于点D ,交AC 于点E ,则BDE CED ∠+∠=( ).A .180︒B .215︒C .235︒D .245︒【答案】D【分析】根据三角形内角和定理求出ADE AED ∠+∠,根据平角的概念计算即可. 【详解】解:65A ∠=︒,18065115ADE AED ∴∠+∠=︒-︒=︒, 360115245BDE CED ∴∠+∠=︒-︒=︒,故选:D .【点睛】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180︒是解题的关键. 3.(2022·全国·八年级课时练习)如图是某建筑工地上的人字架,若1120∠=︒,那么32∠-∠的度数为_________.【答案】60︒【分析】根据平角的定义求出4,再利用三角形的外角的性质即可解决问题.【详解】解:如图14180∠+∠=︒,1120∠=︒, 460∴∠=︒,324,32460∴∠-∠=∠=︒,故答案为:60︒.【点睛】本题考查三角形外角的性质、平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(2020·湖南·常德市第二中学九年级期中)如图,在ABC ∆中,90C ∠=︒,6BC =,D ,E 分别在AB 、AC 上,将ADE ∆沿DE 折叠,使点A 落在点A '处,若A '为CE 的中点,则折痕DE 的长为__.DE BC ,故∆BC .【详解】解:ABC ∆沿90DEA =∠'=︒,AED ∆∽,的中点,AE =∴=.ED2故答案为:2.【点睛】本题考查相似三角形的判定和性质,掌握“A ”字形三角形相似的判定和性质为解题关键. 5.(2022·全国·八年级课时练习)如图所示,DAE ∠的两边上各有一点,B C ,连接BC ,求证180DBC ECB A +∠=︒∠+∠.【答案】见解析【分析】根据三角形的外角等于与它不相邻的两个内角的和证明即可. 【详解】解:DBC ∠和ECB ∠是ABC 的外角, ,DBC A ACB ECB A ABC ∴∠=∠+∠∠=∠+∠.又180A ABC ACB ∠+∠+∠=︒,180DBC ECB A ACB ABC A A ∴∠+∠=∠+∠+∠+∠︒=+∠.【点睛】本题主要考查三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.◎模型二 8字模型【条件】AD 、BC 相交于点O.【结论】∠A +∠B =∠C +∠D.(上面两角之和等于下面两角之和)【证明】在∠ABO 中,由内角和定理:∠A +∠B +∠BOA =180°,在∠CDO 中,∠C +∠D +∠COD =180°, ∠∠A +∠B +∠BOA =180°=∠C +∠D +∠COD ,由对顶角相等:∠BOA =∠COD ∠∠A +∠B =∠C +∠D ,得证.6.(2022·全国·八年级课时练习)如图,AB 和CD 相交于点O ,∠A =∠C,则下列结论中不能完全确定正确的是()A.∠B=∠D B.∠1=∠A+∠D C.∠2>∠D D.∠C=∠D【答案】D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∠∠A+∠AOD+∠D=180°,∠C+∠COB+∠B=180°,∠A=∠C,∠AOD=∠BOC,∠∠B=∠D,∠∠1=∠2=∠A+∠D,∠∠2>∠D,故选项A,B,C正确,故选D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.7.(2022·全国·八年级课时练习)如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=()A.240°B.280°C.360°D.540°【答案】A【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【详解】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∠∠1+∠2+∠3=180°,∠1=60°,∠∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∠∠B+∠C=120°,∠∠A+∠B+∠C+∠D+∠E+∠F=240°.故选A.【点睛】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后再加在一起.8.(2022·全国·八年级课时练习)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=__.【答案】900°【分析】根据多边形的内角和,可得答案.【详解】解:连EF,GI,如图,∠6边形ABCDEFK的内角和=(6-2)×180°=720°,∠∠A+∠B+∠C+∠D+∠E+∠F=720°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+(∠1+∠2)=720°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∠∠A+∠B+∠C+∠D+∠E+∠F∠H+(∠3+∠4)=900°,∠∠A+∠B+∠C+∠D+∠E+∠F(∠3+∠4)+∠5+∠6+∠H=720°+180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=900°,故答案为:900°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).9.(2022·全国·八年级课时练习)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为__.【答案】1080°【分析】连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7-2)×180°=900°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.【详解】解:连KF,GI,如图,∠7边形ABCDEFK的内角和=(7-2)×180°=900°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K=900°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)=900°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K=1080°.故∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为1080°.故答案为:1080°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).10.(2022·全国·八年级课时练习)如图,OAB和OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD 的度数为 °; (2)如图2,当α=60°时,求∠AMD 的度数;(3)如图3,当OCD 绕O 点任意旋转时,∠AMD 与α是否存在着确定的数量关系?如果存在,请你用α表示∠AMD ,并用图3进行证明;若不确定,说明理由. 【答案】(1)90;(2)120︒;(3)180α︒-【分析】(1)如图1,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得90AMK BOK ∠=∠=︒;(2)如图2,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得60AMK BOK ∠=∠=︒;(3)如图3,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKM AKO ∠=∠,可得BMK AOK α∠=∠=,可得180AMD α∠=︒-; 【详解】解:(1)如图1中,设OA 交BD 于K∠OA OB OC OD ==,,90AOB COD ∠=∠=︒ ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠BKO AKM ∠=∠ ∠90AMK BOK ∠=∠=︒ ∠90AMD ∠=︒ 故答案为90︒(2)如图2,设OA 交BD 于K ,∠OA OB OC OD ==,,60AOB COD ∠=∠=︒ ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠BKO AKM ∠=∠ ∠60AMK BOK ∠=∠=︒ ∠180120AMD AMK ∠=︒-∠=︒ 故答案为120︒(3)如图3,设OA 交BD 于K ,∠OA OB OC OD ==,,AOB COD α∠=∠= ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠AKO BKM ∠=∠ ∠BMK AOK α∠=∠=∠180180AMD BMK α∠=︒-∠=︒- 故答案为180α︒-【点睛】本题考查了几何变换综合题,全等三角形的判定,三角形内角和性质,解题的关键是灵活运用所学知识解决问题,学会利用“8字型”证明角相等.◎模型三 飞镖模型【条件】四边形ABDC 如上左图所示.【结论】∠D =∠A +∠B +∠C.(凹四边形凹外角等于三个内角和) 【证明】如上右图,连接AD 并延长到E ,则:∠BDC =∠BDE +∠CDE =(∠B +∠1)+(∠2+∠C )=∠B +∠BAC +∠C.本质为两个三角形外角和定理证明. 11.(2022·全国·八年级课时练习)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果52,25A B ︒︒∠=∠=,30,35,72C D E ︒︒︒∠=∠=∠=,那么F ∠的度数是( ).A .72︒B .70︒C .65︒D .60︒【答案】A【分析】延长BE 交CF 的延长线于O ,连接AO ,根据三角形内角和定理求出,BOC ∠再利用邻补角的性质求出DEO ∠,再根据四边形的内角和求出DFO ∠,根据邻补角的性质即可求出DFC ∠的度数. 【详解】延长BE 交CF 的延长线于O ,连接AO ,如图,∠180,OAB B AOB ∠+∠+∠=︒∠180,AOB B OAB ∠=︒-∠-∠ 同理得180,AOC OAC C ∠=︒-∠-∠ ∠360,AOB AOC BOC ∠+∠+∠=︒ ∠360BOC AOB AOC ∠=︒-∠-∠360(180)(180)B OAB OAC C =︒-︒-∠-∠-︒-∠-∠ 107,B C BAC =∠+∠+∠=︒ ∠72,BED ∠=︒∠180108,DEO BED ∠=︒-∠=︒ ∠360DFO D DEO EOF ∠=︒-∠-∠-∠36035108107110,=︒-︒-︒-︒=︒∠180********DFC DFO ∠=︒-∠=︒-︒=︒, 故选:A .【点睛】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补;多边形内角和:180(2)n ︒-.12.(2022·全国·八年级课时练习)如图,已知BE ,CF 分别为△ABC 的两条高,BE 和CF 相交于点H ,若△BAC=50°,则△BHC 为( )A .115°B .120°C .125°D .130°【答案】D【详解】∠BE 为∠ABC 的高,∠BAC=50°, ∠∠ABE=90°-50°=40°, ∠CF 为∠ABC 的高, ∠∠BFC=90°,∠∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.13.(2022·全国·八年级课时练习)如图,若115∠+∠+∠+∠+∠+∠=EOC∠=︒,则A B C D E F____________.【答案】230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.【详解】解:如图∠∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠∠E+∠D+∠C=115°,∠∠EOC=∠1+∠F=115°,∠1=∠A+∠B,∠∠A+∠B+∠F=115°,∠∠A+∠B+∠C+∠D+∠E+∠F=230°,故答案为:230°.【点睛】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.14.(2022·山东德州·七年级期末)如图,则∠A+∠B+∠C+∠D+∠E的度数是__.【答案】180°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.【详解】解:如图可知:∠∠4是三角形的外角,∠∠4=∠A+∠2,同理∠2也是三角形的外角,∠∠2=∠D+∠C,在∠BEG中,∠∠B+∠E+∠4=180°,∠∠B+∠E+∠A+∠D+∠C=180°.故答案为:180°.【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.15.(2022·全国·八年级课时练习)模型规律:如图1,延长CO交AB于点D,则∠=∠+∠=∠+∠+∠.因为凹四边形ABOC形似箭头,其四角具有“BOC A B C 1BOC B A C B∠=∠+∠+∠”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:∠如图2,60,20,30A B C∠=︒∠=︒∠=︒,则BOC∠=__________︒;∠如图3,A B C D E F∠+∠+∠+∠+∠+∠=__________︒;(2)拓展应用:∠如图4,ABO∠、ACO∠的2等分线(即角平分线)1BO、1CO交于点1O,已知120BOC∠=︒,50BAC∠=︒,则1BO C∠=__________︒;∠如图5,BO、CO分别为ABO∠、ACO∠的10等分线1,2,3,,(,)89i=⋯.它们的交点从上到下依次为1O、2O、3O、…、9O.已知120BOC∠=︒,50BAC∠=︒,则7BO C∠=__________︒;∠如图6,ABO∠、BAC∠的角平分线BD、AD交于点D,已知120,44BOC C∠=︒∠=︒,则ADB=∠__________︒;∠如图7,BAC∠、BOC∠的角平分线AD、OD交于点D,则B、C∠、D∠之同的数量关系为__________.【详解】解:(1)∠∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;◎模型四双垂直模型【条件】∠B=∠D=∠ACE=90°.【结论】∠BAC=∠DCE,∠ACB=∠CED.【证明】∠∠B=∠D=∠ACE=90°;∠∠BAC+∠ACB=90°;又∠ECD+∠ACB=90°;∠∠BAC=∠DCE同理,∠ACB+∠DCE=90°,且∠CED+∠DCE=90°;∠∠ACB=∠CED,得证.16.(2021·青海海东·八年级期中)如图,已知∠ABC∠∠CDE,∠B=90°,点C为线段BD上一点,则∠ACE的度数为()A.94°B.92°C.90°D.88°【答案】C【分析】由全等三角形的性质得出∠ACB=∠CED,则可得出答案.【详解】解:∠∠ABC∠∠CDE,∠∠ACB=∠CED,∠B=∠D=90°,∠∠CED+∠ECD=90°,∠∠ACB+∠ECD=90°,∠∠ACB+∠ECD+∠ACE=180°,∠∠ACE=90°.故选:C.【点睛】本题考查了全等三角形的性质;熟练掌握三角形全等的性质定理是解题的关键.17.(2020·河南·郑州市第八中学模拟预测)如图所示,一副三角尺摆放置在矩形纸片的内部,三角形的三个顶点恰好在矩形的边上,若16FGC ∠=︒,则AEF ∠等于( )A .106︒B .114︒C .126︒D .134︒【答案】D【分析】根据矩形的性质可得∠C=90°,AD∠BC ,利用直角三角形的两个锐角互余求出∠GFC ,从而求出∠EFB ,然后根据平行线的性质可得∠AEF +∠EFB=180°,从而求出结论. 【详解】解:∠四边形ABCD 为矩形 ∠∠C=90°,AD∠BC ∠16FGC ∠=︒∠∠GFC=90°-∠FGC=74° 由三角尺可知:∠EFG=60° ∠∠EFB=180°-∠GFC -∠EFG=46° ∠AD∠BC∠∠AEF +∠EFB=180° ∠∠AEF=180°-∠EFB=134° 故选D .【点睛】此题考查的是矩形的性质、直角三角形的性质和平行线的性质,掌握矩形的性质、直角三角形的两个锐角互余和平行线的性质是解决此题的关键.18.(2022·山东青岛·七年级期末)如图,小虎用10块高度都是4cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为______.【答案】40 cm【分析】根据题意可得AC=BC,∠ACB=90°,AD∠DE,BE∠DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明∠ADC ∠∠CEB 即可,利用全等三角形的性质进行解答.【详解】解:由题意得:AC =BC ,∠ACB =90°,AD ∠DE ,BE ∠DE , ∠∠ADC =∠CEB =90°,∠∠ACD +∠BCE =90°,∠ACD +∠DAC =90°, ∠∠BCE =∠DAC , 在∠ADC 和∠CEB 中,ADC CEB DAC BCE AC BC ∠∠⎧⎪∠∠⎨⎪⎩=== , ∠∠ADC ∠∠CEB (AAS );由题意得:AD =EC =12cm ,DC =BE =28cm , ∠DE =DC +CE =40(cm ), 答:两堵木墙之间的距离为40cm , 故答案为:40 cm .【点睛】此题主要考查了全等三角形的应用,涉及到垂直的定义、直角三角形的性质和连个三角形全等的判定与性质等知识点,解题的关键是正确找出证明三角形全等的条件.19.(2021·江苏盐城·七年级期中)将含有30角的直角三角板(30A ∠=︒)和直尺按如图方式摆放,已知136∠=︒,则2∠=______︒.【答案】24【分析】过点B 作BC //MN ,由平行线传递性,可得BC //KL ,再由平行线的性质可得1=LBC ∠∠ ,2=ABC ∠∠ ,最后由在直角三角形中两锐角互余的关系,求出2=24∠︒ .【详解】解:过点B 作BC //MN ,如图所示:MN //KH∴ BC //KL1LBC ∴∠=∠又1=36∠︒=36LBC ∴∠︒又 BC //MN2=ABC ∴∠∠又=30A ∠︒=60ABL ∴∠︒又=ABL LBC ABC ∠∠+∠603624ABC ∴∠=︒-︒=︒224∴∠=︒故答案为:24【点睛】本题考查了平行线的判定与性质(两直线平行,内错角相等),平行线传递性(如果两条直线都与第三条直线平行,那么这两条直线也互相平行),直角三角形中两锐角互余,角的和差计算等综合知识点.难点是作已知直线的平行线.20.(2022·全国·八年级专题练习)如图1,已知ABC ∆中,90ACB ∠=︒,AC BC =,BE 、AD 分别与过点C 的直线垂直,且垂足分别为E ,D .(1)猜想线段AD 、DE 、BE 三者之间的数量关系,并给予证明.(2)如图2,当过点C 的直线绕点C 旋转到ABC ∆的内部,其他条件不变,如图2所示,∠线段AD 、DE 、BE 三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;∠若 2.8AD =, 1.5DE =时,求BE 的长. 【答案】(1)DE AD BE =+,证明见解析 (2)∠发生改变,DE AD BE =-;∠1.3【分析】(1)证明ACD CBE ∆≅∆,可得AD CE =,CD =BE , 即可求解;(2)∠证明ACD CBE ∆≅∆,可得AD CE =,CD =BE , 即可求解;∠由∠可得DE AD BE =-,从而得到BE AD DE =-,即可求解.(1)解:DE AD BE =+, 理由如下: ∠BE 、AD 分别与过点C 的直线垂直, ∠90BEC ADC ∠∠=︒=, ∠90ACD CAD ∠∠+︒=, ∠90ACB ∠=︒, ∠90ACD BCE ∠+∠=︒, ∠CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BECCAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴∆≅∆,AD CE ∴=,CD =BE ,∠ DE =EC +CD ,DE AD BE ∴=+;(2)解:∠发生改变.∠BE 、AD 分别与过点C 的直线垂直,∠90BEC ADC ∠∠=︒=,∠90ACD CAD ∠∠+︒=, ∠90ACB ∠=︒, ∠90ACD BCE ∠+∠=︒, ∠CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BEC CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴∆≅∆,AD CE ∴=,CD =BE ,∠ DE =CE -CD , ∠DE AD BE=-; ∠由∠知:DE AD BE =-, ∠ 2.8 1.5 1.3BE AD DE =-=-=, ∠BE 的长为1.3.【点睛】本题主要考查了全等三角形的判定和性质、等角的余角相等,熟练掌握全等三角形的判定和性质是解题的关键.◎模型五 风筝模型【条件】四边形ABPC ,分别延长AB 、AC 于点D 、E ,如上左图所示. 【结论】∠PBD+∠PCE =∠A +∠P .【证明】如上右图,连接AP ,则:∠PBD =∠PAB +∠APB ,∠PCE =∠PAC +∠APC ,∴∠PBD+∠PCE=∠PAB +∠APB+∠PAC +∠APC=∠BAC +∠BPC ,得证.21.(2022·内蒙古赤峰·八年级期末)如图,将ABC 的一角折叠,若12130∠+∠=︒,则B C ∠+∠=()A.50°B.65°C.115°D.130°【答案】C【分析】根据折叠性质证得∠3=∠4,∠5=∠6,再根据平角定义求得∠4+∠5=115°,然后根据三角形的内角和定理求解即可.【详解】解:如图,由折叠性质得:∠3=∠4,∠5=∠6,∠∠1+∠3+∠4=180°,∠5+∠6+∠2=180°,∠∠1+∠2+2∠4+2∠5=360°,∠∠1+∠2=130°,∠2∠4+2∠5=360°-130°=230°,∠∠4+∠5=115°,∠∠4+∠5+∠A=180°,∠A+∠B+∠C=180°,∠∠B+∠C=∠4+∠5=115°,故选:C.【点睛】本题考查三角形折叠中的角度问题,熟练掌握折叠性质是解答的关键.22.(2022·海南海口·七年级期末)如图,把∠ABC纸片沿MN折叠,使点C落在∠ABC内部点C′处,若∠C=36°,则∠1+∠2等于()A .54°B .62°C .72°D .76°【答案】C【分析】根据折叠可知∠C =∠'C ,四边形内角和为360°,即可求出'CMC ∠+'CNC ∠,用平角的定义即可求出∠1+∠2【详解】∠∠CMN 折叠得到'C MN ∠∠C =∠'C∠∠1=180°-'CMC ∠,∠2=180°-'CNC ∠∠∠1+∠2=180°-'CMC ∠+180°-'CNC ∠=360°-('CMC ∠+'CNC ∠) ∠'CMC ∠+'CNC ∠=360°-∠C -'C ∠=360°-36°-36°=288° ∠∠1+∠2=360°-288°=72° 故选:C【点睛】本题主要考查了折叠问题,掌握三角形的内角和定理,四边形的内角和以及平角的定义是解题的关键.23.(2022·山东烟台·七年级期中)如图,在三角形纸片ABC 中65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在∠ABC 内,若150∠=︒,则∠2的度数为_________.【答案】30°##30度【分析】根据题意,已知∠A =65°,∠B =75°,可结合三角形内角和定理和四边形内角和求解. 【详解】解:如图,设折痕为DE ;∠65A ∠=︒,75B ∠=︒,∠180180657540C A B ∠=︒-∠+∠=︒-︒+︒=︒()(), ∠180140CDE CED C ∠+∠=︒-∠=︒, 又∠150∠=︒,∠2360(1)36030030A B CED CDE ∠=︒-∠+∠+∠+∠+∠=︒-︒=︒, 故答案为:30°.【点睛】本题主要是考查了三角形、四边形内角和,即三角形的内角和为180°,四边形的内角和为360°;熟练掌握三角形的内角和定理是解题的关键.24.(2022·湖北恩施·一模)图,把等边ABC 沿直线DE 折叠,点A 落在'A 处,若150∠=︒,则2∠=______.【答案】40︒【分析】先求出AED ∠的度数,再根据折叠得到AED A ED '∠=∠,即可求出2∠的度数. 【详解】∠等边ABC 沿直线DE 折叠 ∠60A ∠=︒,AED A ED '∠=∠ ∠150∠=︒∠180170AED A ∠=︒-∠-∠=︒ ∠70AED A ED '∠=∠=︒∠420180AED A ED ∠=︒-'∠-∠=︒ 故答案为:40︒【点睛】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.25.(2022·江苏·扬州市竹西中学七年级期末)如图∠,把∠ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠1+∠2.请你继续探索:(1)如果把∠ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图∠,此时∠A与∠1、∠2之间存在什么样的关系?为什么?请说明理由.(2)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图∠,你能求出∠A、∠D、∠1与∠2之间的关系吗?(直接写出关系式即可)(1)解:如图所示,连接AA',◎模型六 两内角角平分线模型【条件】△ABC 中,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I. 【结论】A I ∠+︒=∠2190 【证明】∵BI 是∠ABC 平分线,∴ABC ∠=∠212∵CI 是∠ACB 平分线,∴ACB ∠=∠213 由A →B →I →C →A 的飞镖模型可知: ∠I =∠A +∠2+∠3=∠A +ABC ∠21+ACB ∠21=∠A +)180(21A ∠-︒=A ∠+︒2190. 26.(2022·山东东营·七年级期末)如图,在△ABC 中,BF 平分△ABC ,CF 平分△ACB ,△BFC =125°,则△A 的度数为( )A .60°B .80°C .70°D .45°【答案】C【分析】先根据三角形内角和定理得出CBF BCF ∠+∠的度数,再由角平分线的性质得出ABC ACB ∠+∠的度数,根据三角形内角和定理即可得出结论. 【详解】解:∠125BFC ∠=︒, ∠18012555BCF CBF ∠+∠=︒︒=︒﹣. ∠BF 平分ABC ∠,CF 平分ACB ∠,∠()2110ABC ACB BCF CBF ∠+∠=∠+∠=︒, ∠180A ABC ACB ∠+∠+∠=︒,∠18011070﹣.A∠=︒︒=︒故选:C .【点睛】本题考查的是三角形内角和定理,以及三角形角平分线的定义,熟知三角形内角和是180°是解答此题的关键.27.(2022·福建·泉州五中七年级期末)如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A .90°﹣12α B .12αC .90°+12α D .360°﹣α28.(2022·河南鹤壁·七年级期末)已知ABC 中,A α∠=.在图1中B 、C ∠的平分线交于点1O ,则可计算得11902BO C α∠=︒+;在图2中,设B 、C ∠的两条三等分角线分别对应交于2O 、3O ,则3BO C ∠=_______________.【详解】解:Aα∠=,180ACB=︒-B∠、C∠的两条三等分角线分别对应交于332 ( 3CBO BCO ABC ∴∠+=∠3(BO C CBO∴∠=-∠+故答案为:【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三等分角线求解.29.(2022·江苏常州·七年级期中)如图,在∠MBC中,∠ABC、∠ACB的角平分线OB、OC交于点O,若∠O=m°,则∠A的度数是______________________________°(用含m的代数式表示).【答案】(2m-180)【分析】先由角平分线的定义得到∠ABC=2∠OBC,∠ACB=2∠OCB,再利用三角形内角和定理求解即可.【详解】解:∠OB,OC分别是∠ABC和∠ACB的角平分线,∠∠ABC=2∠OBC,∠ACB=2∠OCB,∠∠O+∠OBC+∠OCB=180°,∠∠OBC+∠OCB=180°-∠O=180°-m°,∠∠ABC+∠ACB=2∠OBC+2∠OCB=360°-2m°,∠∠A=180°-∠ABC-∠ACB=2m°-180°,故答案为:(2m-180).【点睛】本题主要考查了三角形内角和定理,角平分线的定义,熟知相关知识是解题的关键.30.(2021·重庆·垫江第八中学校七年级阶段练习)在∠ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN∠BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2= °,∠3-∠1= °;(2)如图2,猜想∠3-∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3-∠1的度数.(直接写出结果即可)∠BD平分∠ABD,【点睛】本题主要考查了三角形内角和定理,三角形外角的像这种,角平分线的定义,垂直的定义,熟知三角形内角和为180度是解题的关键.◎模型七 两外角角平分线模型【条件】△ABC 中,BI 、CI 分别是△ABC 的外角的角平分线,且相交于点O. 【结论】A O ∠-︒=∠2190. 【证明】∵BO 是∠EBC 平分线,∴EBC ∠=∠212,∵CO 是∠FCB 平分线,∴FCB ∠=∠215 由△BCO 中内角和定理可知:∠O =180°-∠2 -∠5 =180°-EBC ∠21 -FCB ∠21 =180°-)180(21ABC ∠-︒ -)180(21ACB ∠-︒=)(21ACB ABC ∠+∠=)180(21A ∠-︒=A O ∠-︒=∠2190. 31.(2022·江苏·江阴市祝塘第二中学七年级阶段练习)如图,在△ABC 中,设∠A =x °,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A 2021BC 与∠A 2021CD 的平分线相交于点A 2022,得∠A 2022,则∠A 2022是( )度.A .202012x B .202112x C .202212x D .202312x∠∠A=∠ACD−∠ABC,∠A1=∠A1CD−∠A1BC,∠BA1和CA1分别是∠ABC和∠ACD的角平分线,32.(2022·浙江·八年级专题练习)如图,ABC 中,56A ∠=︒,BD 平分ABC ∠,CD 平分ABC 的外角ACE ∠,BD 、CD 交于点D ,则D ∠的度数( )A .28︒B .56︒C .30D .26︒BD 平分平分ABC 的外角DBC ∴∠=12DCE ACE =∠根据外角性质:DBC D +∠28D DCE α∴∠=∠-=︒.故选:A .33.(2022·陕西·西安博爱国际学校八年级期末)如图,在∠ABC中,∠ABC=75°,∠A=40°,∠ACD是∠ABC的外角,若∠ABC与∠ACD的平分线交于点P,则∠BPC的大小为_____.∠34.(2022·陕西·西安市曲江第一中学八年级期末)如图,在ABC中,ABC的内角CAB∠和外角CBD 的角平分线交于点P,已知42∠=︒,则CAPB∠的度数为____________.【答案】84︒##84度为ABC外角CBD=∠C+∠以求出答案.【详解】解:如下图,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。
求证:DE =DFCF BA ED图1例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。
求证:∠E =∠ FDBCF E A图22、证明直线平行或垂直:在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。
例3. 如图3所示,设BP 、CQ 是∆ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。
求证:KH ∥BCABC MNQ PKH 图3例4. 已知:如图4所示,AB =AC ,∠,,A AE BF BD DC =︒==90。
求证:FD ⊥EDBCAFED 321图43、证明一线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。
(截长法) 例5. 已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。
求证:AC =AE +CD图6BCAEDF O142356(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。
(补短法) 例6. 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=︒EAF 45。
求证:EF =BE +DFGB ECAFD123图74、中考题: 例7、 如图8所示,已知∆ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。
求证:EC =EDE BDF AC 图8题型展示:证明几何不等式: 例8、 例题:已知:如图9所示,∠=∠>12,AB AC 。
求证:BD DC >D BA1C 2E图9【实战模拟】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE ⊥CD 于D ,交BC 于E ,且有AC AD CE ==。
求证:DE CD =12C图11ABD E2. 已知:如图12所示,在∆ABC 中,∠=∠A B 2,CD 是∠C 的平分线。
求证:BC =AC +ADA CBD图123. 已知:如图13所示,过∆ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。
设M 为BC 的中点。
求证:MP =MQBP MQCA 图134. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <++14参考答案例1、分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。
从而不难发现∆∆DCF DAE ≅证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆A D E CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。
本题亦可延长ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰直角三角形。
有兴趣的同学不妨一试。
例2、证明:连结AC 在∆ABC 和∆CDA 中,AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CFBE DF===∴≅∴∠=∠==∴=,,,∆∆()在∆BCE 和∆DAF 中,BE DF B D BC DA BCE DAF SAS E F=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∆∆()说明:利用三角形全等证明线段求角相等。
常须添辅助线,制造全等三角形,这时应注意: (1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。
例3、分析:由已知,BH 平分∠ABC ,又BH ⊥AH ,延长AH 交BC 于N ,则BA =BN ,AH =HN 。
同理,延长AK 交BC 于M ,则CA =CM ,AK =KM 。
从而由三角形的中位线定理,知KH ∥BC 。
证明:延长AH 交BC 于N ,延长AK 交BC 于M ∵BH 平分∠ABC ∴=∠∠ABH NBH又BH ⊥AH∴==︒∠∠A H B N H B 90 BH =BH∴≅∴==∆∆ABH NBH ASA BA BN AH HN(),同理,CA =CM ,AK =KM ∴KH 是∆AMN 的中位线 ∴KH MN // 即KH//BC说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。
我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。
例4、证明一:连结ADAB AC BD DCDAE DABBAC BD DCBD ADB DAB DAE==∴+=︒==︒=∴=∴==,∠∠,∠∠∠,∠∠∠129090在∆ADE 和∆BDF 中,AE BF B DAE AD BD ADE BDFFD ED===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆313290说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。
证明二:如图5所示,延长ED 到M ,使DM =ED ,连结FE ,FM ,BM例5、 分析:在AC 上截取AF =AE 。
易知∆∆AEO AFO ≅,∴∠=∠12。
由∠=︒B 60,知∠+∠=︒∠=︒∠+∠=︒566016023120,,。
∴∠=∠=∠=∠=︒123460,得:∆∆FOC DOC FC DC ≅∴=,证明:在AC 上截取AF =AE()∠=∠=∴≅∴∠=∠BAD CAD AO AOAEO AFO SAS ,∆∆42又∠=︒B 60∴∠+∠=︒∴∠=︒∴∠+∠=︒∴∠=∠=∠=∠=︒∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC()即AC AE CD =+例6、 分析:此题若仿照例1,将会遇到困难,不易利用正方形这一条件。
不妨延长CB 至G ,使BG =DF 。
证明:延长CB 至G ,使BG =DF在正方形ABCD 中,∠=∠=︒=ABG D AB AD 90,∴≅∴=∠=∠∆∆ABG ADF SAS AG AF (),13又∠=︒EAF 45∴∠+∠=︒∴∠+∠=︒23452145即∠GAE =∠FAE∴=∴=+GE EFEF BE DF例7、 证明:作DF//AC 交BE 于F ∆ABC 是正三角形 ∴∆BFD 是正三角形 又AE =BD∴==∴==AE FD BFBA AF EF即EF =ACAC FDEAC EFD EAC DFE SAS EC ED//()∴∠=∠∴≅∴=∆∆证明一:延长AC 到E ,使AE =AB ,连结DE 在∆ADE 和∆ADB 中,AE AB AD AD ADE ADBBD DE E B DCE B DCE EDE DC BD DC=∠=∠=∴≅∴=∠=∠∠>∠∴∠>∠∴>∴>,,,,21∆∆【试题答案】1. 证明:取CD 的中点F ,连结AF3EAD41CBFAC AD AF CD AFC CDE =∴⊥∴∠=∠=︒90 又∠+∠=︒∠+∠=︒14901390,∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF EDDE CD∆∆()2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。
“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。
B DCA E证明:延长CA 至E ,使CE =CB ,连结ED在∆CBD 和∆CED 中,CB CE BCD ECD CD CD CBD CEDB EBAC B BAC E=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22又∠=∠+∠BAC ADE E∴∠=∠∴=∴==+=+A D E E AD AEBC CE AC AE AC AD,3. 证明:延长PM 交CQ 于RQPBM CA RCQ AP BP AP BP CQ PBM RCM⊥⊥∴∴∠=∠,//又BM CM BMP CMR =∠=∠,∴≅∴=∆∆BPM CRMPM RM∴QM 是Rt QPR ∆斜边上的中线 ∴=MP MQ4. 取BC 中点E ,连结AEAB CD E∠=︒∴=BAC AE BC902AD BC AD AEBC AE AD⊥∴<∴=>,22() AB AC BC BC AB AC BCAD AB AC BCAD AB AC BC +>∴<++∴<++∴<++2414。