步进电机及驱动器原理知识知识讲解
步进电机及驱动器原理知识【知识讲解】课件
应用案例二:机器人
机器人是另一个重要的应用领域。步进电机驱动器通 常用于控制机器人的关节运动,如机械臂、腿部等部位。
在机器人中,步进电机驱动器通过控制脉冲信号的频率 和数量,可以精确控制机器人的运动速度和位置。同时, 步进电机驱动器还具有体积小、重量轻、可靠性高等优 点,因此在机器人领域得到了广泛应用。
合适的驱动器。
驱动器的应用实例
要点一
驱动器的应用实例
步进电机驱动器广泛应用于各种自动化设备中,如数控机 床、机器人、打印机等。
要点二
应用实例解析
以数控机床为例,通过使用步进电机驱动器,可以实现高 精度的加工和准确的定位控制,从而提高加工效率和产品 质量。
03
步进电机驱动器的应用领域与案例分析
应用领域
工作原理
步进电机内部通常由一组带有线圈的转子组成。当线圈接收到一个脉冲信号时,会旋转一个角度,从而带动转子 旋转相应的角度。
步进电机的特点与分类
特点
步进电机具有高精度、高分辨率、高可靠性、低噪声等优点,同时也可以适应高频率的脉冲控制。
分类
根据结构和工作原理的不同,步进电机可分为永磁式、反应式和混合式等多种类型。
设计实例与注意事项
实例1
01 某款步进电机驱动器的设计,采用ULN2003芯片,
实现电机正反转和调速功能。
注意事项1
02 在设计过程中,需要考虑输入电源的稳定性以及过流、
过压等保护措施。
注意事项2
03
在调试过程中,需要观察驱动器的输出波形和电机运
行状态,确保正常运行。
谢谢您的聆听
THANKS
步进电机及驱动器原理知识课 件
CONTENTS
• 步进电机原理及特点 • 步进电机驱动器 • 步进电机驱动器的应用领域与
一文搞懂步进电机特性原理及驱动器设计
一文搞懂步进电机特性原理及驱动器设计1、步进电机的概念步进电机是将电脉冲信号,转变为角位移或线位移的开环控制电机,又称为脉冲电机。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。
当步进驱动器接收到一个脉冲信号时,它就可以驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”。
步进电机的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率,来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机多用于数字式计算机的外部设备,以及打印机、绘图机和磁盘等装置。
2、步进电机的特点步进电机工作时的位置和速度信号不反馈给控制系统,如果电机工作时的位置和速度信号反馈给控制系统,那么它就属于伺服电机。
相对于伺服电机,步进电机的控制相对简单,但不适用于精度要求较高的场合。
步进电机的优点和缺点都非常的突出,优点集中于控制简单、精度高,缺点是噪声、震动和效率,它没有累积误差,结构简单,使用维修方便,制造成本低。
步进电机带动负载惯量的能力大,适用于中小型机床和速度精度要求不高的地方,缺点是效率较低、发热大,有时会“失步”。
优缺点如下所示。
优点:1. 电机操作易于通过脉冲信号输入到电机进行控制;2. 不需要反馈电路以返回旋转轴的位置和速度信息(开环控制);3. 由于没有接触电刷而实现了更大的可靠性。
缺点:1. 需要脉冲信号输出电路;2. 当控制不适当的时候,可能会出现同步丢失;3. 由于在旋转轴停止后仍然存在电流而产生热量。
3、步进电机的分类在相同电流且相同转矩输出的条件下,单极型步进电机比双极型步进电机多一倍的线圈,成本更高,控制电路的结构也不一样,目前市场上流行的大多是双极型步进电机。
步进电机在构造上通常主要按照转子特点和定子绕组进行分类,下面将详细介绍这两种类型的分类。
按照转子分类,有三种主要类型:反应式(VR型)、永磁式(PM型)、混合式(HB型)。
步进电机及驱动器原理知识【知识讲解】课件
步进电机在医疗设备领域的应用逐渐增多,如手 术机器人、诊断设备和康复设备等。
智能家居
步进电机在智能家居领域的应用也日益广泛,如 智能门锁、智能窗帘和智能照明等。
无人机和机器人
步进电机在无人机和机器人领域的应用也取得了 重要进展,如飞行控制系统和机械臂等。
对未来发展的展望
1 2 3
创新驱动 未来步进电机的技术发展将更加依赖于创新驱动, 包括新材料、新工艺和新技术的应用。
在机器人领域的应用
关节驱动
步进电机常用于机器人的 关节驱动,实现机器人的 各种复杂动作和姿态。
移动机构
步进电机可以驱动机器人 的移动机构,实现机器人 在各种地形和环境中的稳 定行走。
操控手部
步进电机可以用于机器人 的手部操作,实现抓取、 搬运和操作等动作的精确 控制。
在其他领域的应用
医疗器械
航空航天
查并紧固相关部件。
过热或冒烟
可能是由于电机过载、电源电 压过高或驱动器故障,需要检 查电机负载、电源电压和驱动 器状态。
噪声或异响
可能是由于轴承磨损、齿轮损 坏或其他机械故障,需要检查 并更换相关部件。
不通电或无响应
可能是由于电源故障、接线不 良或驱动器故障,需要检查电
源、接线和驱动器状态。
05
步进电机发展趋势
驱动器的选择
根据电机类型选择
不同类型的步进电机需要选择相 应的驱动器,例如直流步进电机 需要选择直流步进电机驱动器, 交流步进电机需要选择交流步进
电机驱动器。
根据控制系统选择
不同的控制系统需要选择相应的 驱动器,例如PLC控制系统需要 选择与PLC控制系统兼容的驱动
器。
根据性能要求选择
步进电机的驱动器工作原理
步进电机的驱动器工作原理步进电机的驱动器是控制步进电机运动的关键部件,它能够将电子信号转换为机械运动。
步进电机驱动器主要由两部分组成:控制器和功率放大器。
控制器负责接收输入的指令信号并进行解码,将其转换为电机驱动信号;功率放大器则将驱动信号放大并输出给步进电机的驱动电路。
下面将详细介绍步进电机驱动器的工作原理。
步进电机驱动器的工作原理主要包括三个关键步骤:接收指令信号、解码指令信号和输出驱动信号。
下面分别对这三个步骤进行了解。
一、接收指令信号步进电机驱动器首先需要接收输入的指令信号,这些指令信号可以通过输入装置、计算机或者其他设备传输给驱动器。
指令信号可以是数字信号、模拟信号或者脉冲信号,这取决于具体的应用场景。
接收到指令信号后,驱动器会将其传递给解码器进行解码。
二、解码指令信号解码器是步进电机驱动器中的关键部件,它负责将接收到的指令信号进行解码,并将其转换为电机驱动信号。
解码器一般采用数字电路来实现,可以根据不同的输入信号解读指令,然后将其转换为与步进电机匹配的驱动信号。
解码器根据输入信号的不同来确定步进电机的运动方式,包括正转、反转、加速、减速等。
解码器还可以根据指令信号的要求进行细微的微调,以确保步进电机的运动精度和稳定性。
解码器还可以根据工作环境的要求进行保护,如过载保护、过热保护等。
三、输出驱动信号解码器将解码后的指令信号传递给功率放大器进行处理。
功率放大器主要负责放大电机驱动信号的电压和电流,并将其输出给步进电机的驱动电路。
功率放大器一般由晶体管、晶闸管或者MOSFET等组成,通过调节其工作状态和电流大小来控制步进电机的旋转方式和速度。
步进电机驱动器的输出信号可以是两相驱动信号,也可以是三相或四相驱动信号,具体取决于步进电机的结构和要求。
步进电机的驱动电路主要是通过不同相位的电流驱动定子的绕组,进而产生转子的旋转。
控制器会根据解码器输出的驱动信号来控制步进电机的运动,包括转向、转速和步距等。
步进电机驱动器及细分控制原理
步进电机驱动器及细分控制原理引言:步进电机是一种将电脉冲信号转化为机械转动的电动机。
步进电机驱动器是一种用于控制步进电机旋转的设备。
步进电机可以通过控制驱动器提供的电流和脉冲信号来精确地控制旋转角度和速度。
本文将介绍步进电机驱动器的工作原理以及细分控制的原理。
一、步进电机驱动器的工作原理:1.输入电流转换:驱动器将输入的电流信号转换为电压信号。
电流信号通常由控制器产生,通过选择合适的电阻来控制输入电流的大小。
2.逻辑控制:驱动器还会接收来自控制器的脉冲信号。
这些脉冲信号会相互间隔地改变驱动器输出的电压,从而驱动步进电机旋转。
脉冲信号的频率和脉冲数量会影响步进电机的转速和旋转角度。
3.输出电压控制:驱动器会根据输入的电流和脉冲信号控制输出的电压,使其适应步进电机的工作要求。
输出电压的频率和脉冲数有助于控制步进电机旋转的速度和角度。
二、细分控制原理:细分控制是指通过控制驱动器输出的电压脉冲信号来实现更精确的步进电机控制。
细分控制可以将步进电机的每个脉冲细分成更小的步进角度,从而提高步进电机的转动分辨率。
1.脉冲信号细分:通过改变驱动器的输出脉冲信号频率和脉冲数来实现脉冲信号的细分。
例如,如果驱动器输入100个脉冲,但只输出50个脉冲给步进电机,那么每个输入的脉冲就会分为两个输出脉冲,步进电机的旋转角度将更精确。
2.电流细分:通过改变驱动器输出的电流大小来实现电流的细分。
通常情况下,驱动器的输出电流会根据步进电机的转动需要进行控制。
细分控制可以使驱动器能够实现更精确的电流控制,进而控制步进电机的转动精度。
3.微步细分:微步细分是一种更高级的细分控制方法,通过改变驱动器输出的电压波形进行微步细分。
微步细分将步进电机的每个步进角度再次细分为更小的角度,进一步提高了步进电机的转动分辨率和平滑性。
总结:步进电机驱动器是通过将控制器产生的电流和脉冲信号转换为驱动步进电机的电压信号的设备。
细分控制是通过改变驱动器输出的电流和脉冲信号来实现更精确的步进电机控制。
步进电机驱动器的工作原理
步进电机驱动器的工作原理步进电机在控制系统中具有广泛的应用。
它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。
有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。
本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。
本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。
1. 步进电机的工作原理该步进电机为一四相步进电机,采用单极性直流电源供电。
只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。
图1是该四相反应式步进电机工作原理示意图。
图1 四相步进电机步进示意图开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。
当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。
而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。
依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。
四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。
单四拍与双四拍的步距角相等,但单四拍的转动力矩小。
八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。
单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:图2.步进电机工作时序波形图2.基于AT89C2051的步进电机驱动器系统电路原理图3 步进电机驱动器系统电路原理图AT89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。
步进电机及驱动器工作原理
1、步进电机是一种作为控制用的特种电机, 它的旋转是以固定的角度(称为"步距角")一步一步运行的, 其特点是没有积累误差(精度为100%), 所以广泛应用于各种开环控制。
步进电机的运行要有一电子装置进行驱动, 这种装置就是步进电机驱动器, 它是把控制系统发出的脉冲信号转化为步进电机的角位移, 或者说: 控制系统每发一个脉冲信号, 通过驱动器就使步进电机旋转一步距角。
所以步进电机的转速与脉冲信号的频率成正比。
所以,控制步进脉冲信号的频率,可以对电机精确调速;控制步进脉冲的个数,可以对电机精确定位目的;2、步进电机通过细分驱动器的驱动,其步距角变小了,如驱动器工作在10细分状态时,其步距角只为‘电机固有步距角‘的十分之一,也就是说:‘当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,电机转动1.8°;而用细分驱动器工作在10细分状态时,电机只转动了0.18° ‘,这就是细分的基本概念。
细分功能完全是由驱动器靠精确控制电机的相电流所产生,与电机无关。
3、驱动器细分有什么优点,为什么一定建议使用细分功能?驱动器细分后的主要优点为:完全消除了电机的低频振荡。
低频振荡是步进电机(尤其是反应式电机)的固有特性,而细分是消除它的唯一途径,如果您的步进电机有时要在共振区工作(如走圆弧),选择细分驱动器是唯一的选择。
提高了电机的输出转矩。
尤其是对三相反应式电机,其力矩比不细分时提高约30-40% 。
提高了电机的分辨率。
由于减小了步距角、提高了步距的均匀度,‘提高电机的分辨率‘是不言而喻的。
细分的基木概念为:步进电机通过细分驱动器的驱动,其步距角变小了。
如驱动器工作在10细分状态时,其步距角只为‘电机固有步距角’的十分之一,也就是:当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,电机转动1.80;而用细分驱动器工作在10细分状态时,电机只转动了0.180。
海顿步进电机及驱动器知识讲座-cust
2. 电机定位精度的选择
机械传动比确定后,可根据控制系统的定位精度选择步进电机 的步距角及驱动器的细分等级。一般选电机的一个步距角对应 于系统定位精度的1/2 或更小。 注意:当细分等级大于1/4后,步距角的精度不能保证。 伺服电机编码器的分辨率选择:分辨率要比定位精度高一个数量 级。
3. 电机力矩选择
7. 步进电机的特点 ① 一般步进电机的精度为步距角的正负3-5%,且不累积; ② 步进电机外表允许的最高温度取决于不同电机磁性材料的退磁点; ③ 步进电机的力矩会随转速的升高而下降(U=E+L(di/dt)+I*R)
矩频特性曲线
④ 空载启动频率:即步进电机在空载情况下能够正常启动的脉
冲频率,如果脉冲频率高于该值,电机不能正常启动,可能 发生丢步或堵转。 步进电机的起步速度一般在10~100RPM,伺服电机的起步 速度一般在100~300RPM。根据电机大小和负载情况而定, 大电机一般对应较低的起步速度。 ⑤ 低频振动特性:步进电动机以连续的步距状态边移动边重复
二、步进驱动器简介
步进驱动器:是一种能使步进电机运转的功率放大器,能把控制器
发来的脉冲信号转化为步进电机的角位移,电机的转速与脉冲频率
成正比,所以控制脉冲频率可以精确调速,控制脉冲数就可以精确 定位。
电机控制原理图
1. 恒流驱动
恒流控制的基本思想是通过控制主 电路中MOSFET的导通时间,即调节 MOSFET触发信号的脉冲宽度,来达 到控制输出驱动电压进而控制电机 绕组电流的目的。
显然,细分数太大,最大转速太低。
但是,同步带直径也不可能小2倍,所以只能增加一级减速
第2级主动轮直径仍取:Φ 3= 30 mm;
第1级主动轮直径取:Φ 1= 25 mm; 减速比取:i = 1 :3;
步进电机步进驱动器原理详细讲解
则第1级从动轮直径为取:Φ2=75 mm; 电机最大转速为:nmax 3Vmax / C 6.72(r / s)
驱动器细分数:m C /(200 0.05/ i) 3.14
故,取4细分就很合适了。
实际脉冲当量: C /(200 m / i) 0.04mm
4. 计算电机力矩,选择电机型号 第2级主动轮上的力矩:T2=FΦ3 / 2 第1级主动轮上,即电机轴上的力矩:T1=T2 i =F Φ3 / 2 i = 0.155 Nm 由于没有考虑同步带的效率、导轨和滑块装配误差造成的摩擦、同步带 轮的摩擦和转动惯量等因素,同时,步进电机在高速时扭矩要大幅度下 降;所以,取安全系数为3比较保险。 故,电机力矩To=0.155 3 = 0.465 Nm
0.9°/1.8° 驱动器工作在40细分状态
电机运行时的真正步距角 0.9° 0.36° 0.18° 0.09°
0.045°
实用公式:转速(r/s)=脉冲频率 /(电机每转整步数*细分数)
V (r / s) Pe
360 m
V:电机转速(R/S);P:脉冲频率(Hz);θe:电机固有步距角;
m:细分数(整步为1,半步为2)
级。
3. 电机力矩选择
步进电机的动态力矩一下子很难确定,我们往往先确定电机的静
力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯 性负载和摩擦负载二种。直接起动时(一般由低速)时二种负 载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要 考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好, 静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)
3. 选择同步带直径Φ和步进电机细分数m 设同步带直径Φ=30 mm 周长为C=3.14 Φ = 3.14 30 = 94.2 mm 核算定位精度:脉冲当量δ = C / (200 m) < 0.05;
步进驱动器与电机之间的工作原理
步进驱动器与电机之间的工作原理在现代工业中,步进驱动器与电机之间的工作原理是非常关键的一环,这种电机的特点是在不接触中断这种方式下进行运动控制,由于其精度高、稳定性好、保护机器设备等优点,步进驱动器与电机在各种电子制品中得到了广泛应用。
1、什么是步进驱动器?步进驱动器是一种用于控制步进电机运动的电子装置,它可以将储存的电能转化为电动机所需的电能,控制电机以期望的方式工作。
根据步进电机类型不同,其驱动方式也有所区别。
2、步进电机的原理步进电机是一种电机,其运转方式类似于转盘,走了一步后会再次停止,直到接收到新的指令时继续走下一步。
3、步进电机的驱动方式步进电机的驱动方式有四种:全步进模式、半步进模式、微步进模式和分压模式。
其中,全步进模式是最常用的一种方式,也是最常见的驱动方式。
4、步进电机与步进驱动器的关系步进驱动器的作用是提供步进电机所需的电能,它负责将输入的电流转化为电机所需要的电量,并将其通过电机转化为机械能。
因此,步进驱动器与步进电机之间的关系是相辅相成的,二者共同协同工作才能最终实现质量稳定、运转顺畅的效果。
5、步进驱动器工作原理步进驱动器通过接收微控制器的指令以改变电机的运动状态,其工作原理是将微控制器发送的脉冲电信号转换成电机所需的电力信号,以控制电机的旋转角度。
6、步进驱动器的应用领域目前,步进驱动器已经广泛应用于各种电子制品中,例如电脑打印机、数码相机、家用电器等。
由于步进驱动器所具备的高精度、稳定性好、控制电机运动效果明显等优点,因此在工业自动化控制、医疗器械、科学研究中也得到了应用。
总体来说,步进驱动器与电机之间的工作原理是一个非常关键的技术问题,其应用范围广泛,将为各种领域中的自动化生产和机器控制带来前所未有的发展机遇。
【米思米机械设备知识分享】- 步进电机驱动器原理知识
【米思米机械设备知识分享】- 步进电机驱动器原理知识步进电机是一种将电脉冲转化为角位移的执行机构。
通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。
您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电控制电机转动,步进电机控制系统,其四个状态周而复始进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为,电机就逆时针转动。
步进电机驱动器原理是步进电机的运行要有一电子装置进行驱动, 这种装置就是步进电机驱动器, 它是把控制系统发出的脉冲信号转化为步进电机的角位移, 或者说: 控制系统每发一个脉冲信号, 通过驱动器就使步进电机旋转距角。
所以步进电机的转速与脉冲信号的频率成正比。
驱动器的电流:电流是判断驱动器驱动能力大小的依据,通常驱动器最大额定电流不能大于电机的额定电流。
驱动器输出电流设定决定电机的力矩,电流设定值越大时,电机输出力矩越大,但电流设定过大时电机和驱动器的发热也比较严重。
步进电机知识问答:1.什么是保持转矩(HOLDING TORQUE)?保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。
它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。
由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。
2.什么是DETENT TORQUE?DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。
DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。
步进电机步进驱动器原理详细讲解剖析
步进电机步进驱动器原理详细讲解剖析步进电机是一种可以按照指令精确旋转的电机,其精确性和可控性较高,广泛应用于各种自动化设备和机械设备中。
步进电机步进驱动器是控制步进电机旋转的主要组成部分,通过控制步进电机的电流、脉冲信号和驱动方式,实现电机的转动。
步进驱动器的作用步进驱动器的主要作用是将输入的脉冲信号转换成相应的电流,通过改变电流的方向和大小,控制步进电机的转动。
步进驱动器根据输入的脉冲信号来驱动步进电机旋转,脉冲信号的频率和脉冲数决定了步进电机的转速和旋转方向。
步进驱动器的工作原理步进驱动器的工作原理可以简单概括为:接收控制信号,根据信号的脉冲数和脉冲频率,输出相应的电流给步进电机,驱动步进电机的转动。
步进驱动器内部主要包含以下核心组件:1.逻辑控制模块:接收控制信号,根据信号的脉冲数和频率,产生相应的控制信号,用于驱动电流模块和方向模块。
2.电流模块:将逻辑控制模块输出的控制信号转换成相应的电流,通过电流控制步进电机的运行状态。
3.方向模块:根据逻辑控制模块的输出信号,控制步进电机的转动方向。
4.保护模块:用于检测电流和温度等参数,防止步进电机因过流或过热而损坏。
5.脉冲生成器:根据输入的脉冲信号,产生相应的脉冲,用于驱动步进电机。
步进驱动器的工作流程:1.接收输入的脉冲信号:步进驱动器通过接口接收输入的脉冲信号,这些信号经过编码器或控制器生成。
2.根据脉冲信号产生控制信号:逻辑控制模块根据输入的脉冲信号产生相应的控制信号,控制驱动电流和方向。
3.控制电流:电流模块将逻辑控制模块输出的控制信号转换成相应的电流,控制步进电机的运行状态。
4.控制方向:方向模块根据逻辑控制模块的输出信号控制步进电机的转动方向。
5.保护功能:保护模块可以监测电流和温度等参数,当电流过大或温度过高时,及时发出警报或停止电机运行,避免损坏电机。
步进驱动器的特点:1.精度高:步进驱动器可以精确控制步进电机的旋转角度,通常精度可达到0.9°或更低,适用于需要高精度控制的应用场合。
步进电机基础知识:类型、 用途和工作原理
步进电机基础知识:类型、用途和工作原理本文将为您介绍步进电机的基础知识,包括其工作原理、构造、控制方法、用途、类型及其优缺点。
1)步进电机:步进电机是一种通过步进(即以固定的角度移动)方式使轴旋转的电机。
其内部构造使它无需传感器,通过简单的步数计算即可获知轴的确切角位置。
这种特性使它适用于多种应用。
2)步进电机工作原理:与所有电机一样,步进电机也包括固定部分(定子)和活动部分(转子)。
定子上有缠绕了线圈的齿轮状突起,而转子为永磁体或可变磁阻铁芯。
稍后我们将更深入地介绍不同的转子结构。
图1显示的电机截面图,其转子为可变磁阻铁芯。
图1:步进电机截面图步进电机的基本工作原理为:给一个或多个定子相位通电,线圈中通过的电流会产生磁场,而转子会与该磁场对齐;依次给不同的相位施加电压,转子将旋转特定的角度并最终到达需要的位置。
图2显示了其工作原理。
首先,线圈A通电并产生磁场,转子与该磁场对齐;线圈B通电后,转子顺时针旋转60°以与新的磁场对齐;线圈C通电后也会出现同样的情况。
下图中定子小齿的颜色指示出定子绕组产生的磁场方向。
图2:步进电机的步进3)步进电机的类型与构造步进电机的性能(无论是分辨率/步距、速度还是扭矩)都受构造细节的影响,同时,这些细节也可能会影响电机的控制方式。
实际上,并非所有步进电机都具有相同的内部结构(或构造),因为不同电机的转子和定子配置都不同。
3.1转子步进电机基本上有三种类型的转子:永磁转子:转子为永磁体,与定子电路产生的磁场对齐。
这种转子可以保证良好的扭矩,并具有制动扭矩。
这意味着,无论线圈是否通电,电机都能抵抗(即使不是很强烈)位置的变化。
但与其他转子类型相比,其缺点是速度和分辨率都较低。
图3显示了永磁步进电机的截面图。
图3:永磁步进电机可变磁阻转子:转子由铁芯制成,其形状特殊,可以与磁场对齐(请参见图1和图2)。
这种转子更容易实现高速度和高分辨率,但它产生的扭矩通常较低,并且没有制动扭矩。
步进电机驱动器原理
步进电机驱动器原理步进电机驱动器是指控制步进电机运行的设备,它通过控制步进电机的相序和相电流来实现步进电机的准确定位和精确控制。
步进电机驱动器的原理是基于步进电机的工作原理和控制方式,下面将详细介绍步进电机驱动器的原理。
首先,步进电机驱动器的工作原理是基于步进电机的步进角和相序控制。
步进电机是一种将电脉冲信号转换为机械位移的电机,它的旋转是以一定的步进角来进行的。
而步进电机驱动器的作用就是根据控制信号来控制步进电机的相序,从而实现步进电机的精确控制和定位。
其次,步进电机驱动器的原理是通过控制步进电机的相电流来实现步进电机的运行。
步进电机的相电流是通过驱动器来控制的,驱动器会根据控制信号来调节相电流的大小和方向,从而控制步进电机的转动。
这种控制方式使得步进电机能够精确地旋转到指定的位置,并且可以实现高速运动和高精度定位。
另外,步进电机驱动器的原理还包括了步进电机的微步控制。
微步控制是指通过改变步进电机的相电流波形来实现步进电机的微小步进,从而提高步进电机的分辨率和平滑度。
驱动器会根据控制信号来生成相应的微步控制信号,从而实现步进电机的微步运动,这种控制方式可以提高步进电机的精度和稳定性。
最后,步进电机驱动器的原理还涉及到步进电机的保护和监控。
驱动器会对步进电机的工作状态进行监测和保护,当步进电机出现异常情况时,驱动器会及时停止输出电流,从而保护步进电机不受损坏。
同时,驱动器还可以通过监控步进电机的运行状态来实现闭环控制,从而提高步进电机的控制精度和稳定性。
综上所述,步进电机驱动器的原理是基于步进电机的工作原理和控制方式,通过控制步进电机的相序和相电流来实现步进电机的精确控制和定位。
步进电机驱动器的原理还包括了微步控制和保护监控,这些原理共同作用下,实现了步进电机的高精度运动和稳定性控制。
步进驱动器与电机之间的工作原理
步进驱动器与电机之间的工作原理
步进驱动器与电机之间的工作原理非常重要。
步进驱动器是一种电子设备,用来控制电机的旋转角度和速度。
当电机被连接到步进驱动器上时,控制器发送信号给驱动器,驱动器会根据这些信号来控制电机的旋转角度和速度。
步进驱动器的工作原理类似于数字控制器,它将控制信号转换成电机的驱动信号。
当电机被驱动起来时,它会按照步进驱动器发出的信号按照设定的角度和速度旋转。
步进驱动器可以在许多应用中使用,例如在机器人、打印机、数控机床、照相机及电视摄像机等中。
需要注意的是,步进驱动器的选择应该基于电机的尺寸、电流、电压及所需的旋转速度和角度。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七、电机接线方法
同步带上需要拉力: F = M a + f 摩擦力:f = M g
设导轨摩擦系数 = 0.1
则摩擦力:f = 0.1 10 9.8 = 9.8 N
惯性力: F1 = M a = 10 2.11 = 21.1 N
故:同步带上要有拉力 F = F1+ f = 21.1+9.8= 30.9 N
则第1级从动轮直径为取:Φ2=75 mm; 电机最大转速为:nmax 3Vmax / C 6.72(r / s)
驱动器细分数:m C /(200 0.05/ i) 3.14
故,取4细分就很合适了。
实际脉冲当量: C /(200 m / i) 0.04mm
4. 计算电机力矩,选择电机型号
步进电机的动态力矩一下子很难确定,我们往往先确定电机的静
力矩。静力矩选择的依据是电机工作的负载,而负载可分为惯 性负载和摩擦负载二种。直接起动时(一般由低速)时二种负 载均要考虑,加速起动时主要考虑惯性负载,恒速运行进只要 考虑摩擦负载。一般情况下,静力矩应为摩擦负载的2-3倍内好, 静力矩一旦选定,电机的机座及长度便能确定下来(几何尺寸)
• 转动惯量计算
物体的转动惯量为:
J r 2 dV
式中:dV为体积元,为
物体密度,r为体积元与转轴的距离。单位:kgm2
将负载质量换算到电机输出轴上转动惯量,常见传动机构与公式如下:
② 加速度计算 控制系统要定位准
确,物体运动必须
有加减速过程,如
右图所示。
已知加速时间 t 、最大速度Vmax,可得电机的角加速度:
3. 选择同步带直径Φ和步进电机细分数m 设同步带直径Φ =30 mm 周长为C=3.14 Φ = 3.14 30 = 94.2 mm 核算定位精度:脉冲当量δ = C / (200 m) < 0.05;
m > C / (200 0.05)= 94.2 / (200 0.05) = 9.42
H桥恒频斩波恒相流驱动电路原理框图
电流PWM细分驱动电路示意图
2. 单极性驱动
单极性驱动原理图
3. 双极性驱动
双极性驱动原理图
4. 微步驱动
微步驱动技术是一种电流波形控制技术。其基本思想是控制每相绕 组电流的波形,使其阶梯上升或下降,即在0和最大值之间给出多 个稳定的中间状态,定子磁场的旋转过程中也就有了多个稳定的中 间状态,对应于电机转子旋转的步数增多、步距角减小。采用细分 驱动技术可以大大提高步进电机的步矩分辨率,减小转矩波动,避 免低频共振及降低运行噪声
t
0.1
加速距离:S1
S0
V0
1 2
at 2
1 2
2.11 0.12
0.0106 m
匀速距离:S2 Vmax t 0.211 1.8 0.380 m
减速距离和加速距离相同,S3 S1 0.0106 m
S S1 S2 S3 0.401 m 2. 动力学计算
四、计算例题(直线运动)
已知:直线平台水平往复运动,最大行程L=400 mm,同步带 传动;往复运动周期为T = 4s;重复定位误差 0.05 mm; 平台运动质量M = 10 kg,无外力。 求:电机型号、同步带轮直径、最大细分数。
1. 运动学计算
平台结构简图
平均速度为: V 0.4/ 2 0.2 m/ s 设加速时间为0.1 S;(步进电机一般取加速时间为:0.1~1秒)
② 一个可供参考的经验值:步进电机驱动器的输入电压一般设定在步进 电机额定电压的3~25倍。建议:57机座电机采用直流24V-48V,86机座 电机采用直流36-70V,110机座电机采用高于直流80V。
③ 对变压器降压,然后整流、滤波得到的直流电源,其滤波电 容的容量可按以下工程经验公式选取:C=(8000 X I)/ V(uF) I为绕组电流(A);V为直流电源电压(V)
(伺服电机一般取加速时间为:0.05~0.5秒) 则加减速时间共为0.2 S,且加减速过程的平均速度为最大速度的一 半。
故有:L = 0.2 Vmax / 2 + 1.8 Vmax = 0.4 m
得: Vmax = 0.4 / ( 0.2 / 2 + 1.8 )= 0.211 m/s
所以,加速度为:a V 0.211 0 2.11m/s2
0.9°/1.8° 驱动器工作在40细分状态
电机运行时的真正步距角 0.9° 0.36° 0.18° 0.09°
0.045°
实用公式:转速(r/s)=脉冲频率 /(电机每转整步数*细分数)
V (r / s) Pe
360 m
V:电机转速(R/S);P:脉冲频率(Hz);θe:电机固有步距角;
m:细分数(整步为1,半步为2)
全方位讲解步进电机 步进驱动器原理
单位:深圳市威山自动化 2012年3月
主要内容
步进电动机简介 驱动器简介 电机选型计算方法 计算例题 电机接线 评判步进系统好坏的依据 使用过程中常见问题及原因分析 步进驱动系统的常见问题 (FAQ) 步进电动机与交流伺服电动机的性能比较 驱动器产品测试对比
一、步进电动机简介
二、步进驱动器简介பைடு நூலகம்
步进驱动器:是一种能使步进电机运转的功率放大器,能把控制器 发来的脉冲信号转化为步进电机的角位移,电机的转速与脉冲频率 成正比,所以控制脉冲频率可以精确调速,控制脉冲数就可以精确 定位。
电机控制原理图
1. 恒流驱动
恒流控制的基本思想是通过控制主 电路中MOSFET的导通时间,即调节 MOSFET触发信号的脉冲宽度,来达 到控制输出驱动电压进而控制电机 绕组电流的目的。
的力矩。 ④ 步距角:对应一个脉冲信号,电机转子转过的角位移。 ⑤ 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩。 ⑥ 失步:电机运转时运转的步数,不等于理论上的步数。 ⑦ 失调角:转子齿轴线偏移定子齿轴线的角度,电机运转必存在
失调角,由失调角产生的误差,采用细分驱动是不能解决的。 ⑧ 运行矩频特性:电机在某种测试条件下测得运行中输出力矩与
max (rad / s2)
③ 电机力矩计算
t
力矩计算公式为:
T (J TL ) /
式中:TL为系统外力折算到电机上的力矩;
为传动系统的效率。
四、计算例题(直线运动)
1. 运动学计算 2. 动力学计算 3. 选择同步带直径Φ 和步进电机细分数m 4. 计算电机力矩,选择电机型号
三、电机选型计算方法
1. 电机最大速度选择 2. 电机定位精度的选择 3. 电机力矩选择
三、电机选型计算方法
选择电机一般应遵循以下步骤:
1. 电机最大速度选择 步进电机最大速度一般在600~1200 rpm。 交流伺服电机额定速度一般在3000 rpm,最大转速为5000rpm。 机械传动系统要根据此参数设计。
频率关系的曲线 。
7. 步进电机的特点 ① 一般步进电机的精度为步距角的3-5%,且不累积; ② 步进电机外表允许的最高温度取决于不同电机磁性材料的退磁点; ③ 步进电机的力矩会随转速的升高而下降(U=E+L(di/dt)+I*R)
矩频特性曲线
④ 空载启动频率:即步进电机在空载情况下能够正常启动的脉 冲频率,如果脉冲频率高于该值,电机不能正常启动,可能 发生丢步或堵转。 步进电机的起步速度一般在10~100RPM,伺服电机的起步 速度一般在100~300RPM。根据电机大小和负载情况而定, 大电机一般对应较低的起步速度。
步进电动机微步驱动电路基本结构框图
步距角:控制系统每发一个步进脉冲信号,电机所转动的角度。
电机固有步距角 所用驱动器类型及工作状态
0.9°/1.8° 驱动器工作在半步状态
0.9°/1.8° 0.9°/1.8°
驱动器工作在5细分状态 驱动器工作在10细分状态
0.9°/1.8° 驱动器工作在20细分状态
1. 步进电动机的历史 2. 步进电动机的定义 3. 步进电动机的工作原理 4. 步进电动机的机座号 5. 步进电动机构造 6. 步进电动机主要参数 7. 步进电动机的特点
一、步进电动机简介
1. 步进电动机的历史:德国百格拉公司于1973年发明了五相混 合式步进电机及其驱动器;1993年又推出了性能更加优越的三相 混合式步进电机。我国在80年代以前,一直是反应式步进电机占 统治地位,混合式步进电机是80年代后期才开始发展。 2. 步进电动机的定义:是一种专门用于速度和位置精确控制的 特种电机,它旋转是以固定的角度(称为步距角)一步一步运行 的,故称步进电机。 3. 步进电动机的工作原理
以单极性电机为例来解释 工作原理
4. 步进电动机的机座号:主要有35、39、42、57、86、110等 5. 步进电动机构造:由转子(转子铁芯、永磁体、转轴、滚珠 轴承),定子(绕组、定子铁芯),前后端盖等组成。最典型两相 混合式步进电机的定子有8个大齿,40个小齿,转子有50个小齿; 三相电机的定子有9个大齿,45个小齿,转子有50个小齿。
电机绕组电流波形分析
5. 步进电动机的闭环伺服控制
步进电动机矢量控制位置伺服系统框图 系统硬件结构原理图
6、导通和截止时的电机绕组电流和电压的关系
当T导通时有:
U
Ri1
L
di1 dt
E
当T截止时有:
0
i2
L
di2 dt
E
7. 电压和电流与转速、转矩的关系
① 步进电机一定时,供给驱动器的电压值对电机性能影响大, 电压越高,步进电机能产生的力矩越大,越有利于需要高速应 用的场合,但电机的发热随着电压、电流的增加而加大,所以 要注意电机的温度不能超过最大限值。