余角、补角、对顶角教案
初中初一数学上册《余角补角对顶角》教案、教学设计
(一)教学重点
1.使学生掌握余角、补角、对顶角的概念及其性质。
2.培养学生运用余角、补角、对顶角知识解决实际问题的能力。
3.提高学生的几何直观和空间想象能力。
(二)教学难点
1.学生对余角、补角、对顶角概念的混淆,难以区分。
2.在角度计算方面,部分学生对运算规则不够熟练。
3.将理论知识与实际问题相结合,运用到实际情境中。
(二)讲授新知
1.概念讲解:
-余角:两个角的和为180度的两个角称为余角。
-补角:两个角的和为90度的两个角称为补角。
-对顶角:两条直线相交,形成的四个角中,位于直线对面的两个角称为对顶角。
2.性质说明:
-余角的性质:同角的余角相等,等角的余角相等。
-补角的性质:同角的补角相等,等角的补角相等。
-对顶角的性质:对顶角相等。
(五)总结归纳
1.让学生回顾本节课所学的内容,总结余角、补角、对顶角的性质和计算方法。
2.强调数学在实际生活中的重要性,激发学生学习数学的兴趣。
3.鼓励学生勇于提问、积极思考,培养他们的探究精神。
五、作业布置
为了巩固本节课所学知识,培养学生的几何思维能力和实际问题解决能力,特布置以下作业:
1.基础巩固题:
-基础练习:设计角度计算的基础题,让学生熟练掌握运算规则。
-提高练习:设置一些综合性的几何问题,让学生运用余角、补角、对顶角知识解决。
3.采用小组合作和讨论的方式,培养学生的合作意识和解决问题的能力。
-将学生分成小组,让他们共同探讨解决几何问题的方法,互相学习,共同进步。
-鼓励学生发表自己的观点,倾听他人的意见,培养他们的沟通能力和团队协作精神。
-根据课堂所学,计算以下给定角的补角和余角:
苏科版数学七年级上册6.3 余角、补角、对顶角教教学设计
苏科版数学七年级上册6.3 余角、补角、对顶角教教学设计一. 教材分析苏科版数学七年级上册6.3节主要介绍了余角、补角和对顶角的概念及其性质。
本节内容是学生学习初中数学的基础知识,对于培养学生的空间想象力、逻辑思维能力具有重要意义。
教材通过生动的实例和图示,引导学生探究和发现余角、补角和对顶角的性质,从而激发学生的学习兴趣,培养学生独立思考和合作交流的能力。
二. 学情分析七年级的学生已经掌握了实数、代数式的基本知识,具备了一定的逻辑思维能力和空间想象力。
但部分学生对于角度的概念可能还不够清晰,因此在教学过程中,需要教师耐心引导,让学生充分理解和掌握余角、补角和对顶角的性质。
三. 教学目标1.理解余角、补角和对顶角的定义;2.掌握余角、补角和对顶角的性质;3.能运用余角、补角和对顶角的知识解决实际问题;4.培养学生的空间想象力、逻辑思维能力以及合作交流能力。
四. 教学重难点1.重点:余角、补角和对顶角的定义及其性质;2.难点:对顶角的性质及其在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和图示,引导学生发现余角、补角和对顶角的性质;2.合作学习法:分组讨论,培养学生团队合作精神和交流能力;3.实践操作法:让学生动手操作,加深对知识的理解和运用。
六. 教学准备1.教学PPT:制作包含余角、补角和对顶角概念及性质的PPT;2.教学素材:准备一些关于角度的图片和生活实例;3.练习题:挑选一些有关余角、补角和对顶角的练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些关于角度的图片,如剪刀、眼镜等,引导学生思考:这些物品中的角度有什么特点?从而引出本节课的主题——余角、补角和对顶角。
2.呈现(10分钟)教师通过PPT呈现余角、补角和对顶角的定义及性质,并用图示进行解释。
让学生分组讨论,总结出余角、补角和对顶角的性质。
3.操练(10分钟)让学生分组进行实践操作,运用余角、补角和对顶角的知识解决实际问题。
苏科版数学七年级上册6.3 余角、补角、对顶角 教案
余角、补角、对顶角(2)一、教学目标1、了解对顶角的定义2、3、能应用余角、补角、对顶角的性质进行简单推理说明二、教学重点、难点1、重点:对顶角的概念及其性质2、难点:运用性质推理说明三、教学过程1、复习余角、补角的定义及其性质余角:两角之和为90,则这两个角互余;其性质为同角的余角相等;补角:两角之和等于180,则这两个角互补;其性质为同角的补角相等。
2、新课引入:问题:直线AB和直线CD相交于点O,图中有哪些角?OBACD其中有互补的关系的角,那么∠AOD与∠BOC是什么关系呢?(1)定义:一个角的两边分别是另一个角的两边的反向延长线,则这两个角是对顶角。
如上图中的∠AOD与∠BOC,∠BOD与∠AOC是对顶角。
观察总结:两直线相交所成角,一种关系是互补,一种关系是对顶角(有公共边)。
例1 下图中,∠1与∠2是对顶角的有()对例2 三条直线AB、CD、EF相交于点O,图中共有()对对顶角。
EACFBDO(2)性质:对顶角相等OBDCA因为∠AOC+∠COB=∠BOD+∠COB=180,所以∠AOC=∠BOD(同角的补角相等)例3 如图,直线a和直线b相交,(1)已知∠1=40,则∠2=___,∠3=___,∠4=___;(2)已知∠2+∠4=280,则∠1=___,∠2=___,∠3=___,∠4=___;(3)已知∠1 :∠2 =2 :7,则∠3=___,∠4=___。
4231例4 如图,直线AB,CD 相交于点O ,∠DOE=90°,∠AOC=72°,求∠BOE 的度数。
BECODA解:∵直线AB 、CD 相交于点O ,∠AOC=72° ∴∠BOD=∠AOC=72°(对顶角相等) 又∵∠DOE=90°∴∠BOE=∠DOE-∠BOD=90°- 72°=18°例5 如图,直线AB 和直线CD 相交于点O ,∠DOE=∠BOD ,OF 平分∠AOE ,∠AOC=30,试求∠EOF 的度数。
苏科版数学七年级上册6.3《余角、补角、对顶角》教学设计1
苏科版数学七年级上册6.3《余角、补角、对顶角》教学设计1一. 教材分析《余角、补角、对顶角》是苏科版数学七年级上册第六章第三节的内容。
本节内容是在学生已经掌握了角的分类、对顶角的性质等知识的基础上进行学习的,是对角的进一步分类和理解。
本节内容主要介绍余角和补角的定义,以及如何求一个角的余角和补角。
同时,通过探究对顶角的性质,使学生更好地理解对顶角的概念。
二. 学情分析学生在学习本节内容之前,已经掌握了角的分类知识,对顶角的性质,具备了一定的观察、操作、推理能力。
但部分学生对于抽象概念的理解还有一定的困难,对于如何求一个角的余角和补角的方法还需要通过实例进行巩固。
三. 教学目标1.知识与技能目标:理解余角、补角的定义,掌握求一个角的余角和补角的方法,能够运用余角和补角的概念解决实际问题。
2.过程与方法目标:通过观察、操作、推理等方法,探索对顶角的性质,提高学生的逻辑思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,培养学生的团队协作能力。
四. 教学重难点1.教学重点:余角、补角的定义,求一个角的余角和补角的方法。
2.教学难点:对顶角的性质的理解和应用。
五. 教学方法采用问题驱动法、实例教学法、小组合作法等教学方法,引导学生通过观察、操作、推理等方法,探索对顶角的性质,提高学生的逻辑思维能力。
六. 教学准备1.教学PPT:制作包含余角、补角、对顶角概念及求解方法的PPT。
2.教学素材:准备一些关于余角、补角的实际问题,以及对顶角的实例。
3.学生活动材料:学生分组合作的材料。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾角的分类知识,对顶角的性质。
为新课的学习做好铺垫。
2.呈现(10分钟)(1)介绍余角的定义,通过实例演示如何求一个角的余角。
(2)介绍补角的定义,通过实例演示如何求一个角的补角。
(3)引导学生观察对顶角的性质,通过实例验证对顶角的性质。
余角、补角、对顶角优秀教案
余角、补角、对顶角【教课目的】1.在详细情境中认识余角、补角,知道等角(同角 )的余角相等、等角 (同角 )的补角相等。
2.会运用互为余角、互为补角的性质来解题。
3.经历察看、操作、说理、沟通等过程,进一步说明发展空间观点,学习有条理的表述。
【教课重难点】灵巧运用等角 (同角 )的余角相等、等角 (同角 )的补角相等。
【教课过程】一、情境创建、探究活动把一副三角尺搁置如图( 1)、(2)地点,分别探究发现,∠与∠ 的度数之间有什么特别关系?二、讲解新课(一)互为余角、互为补角的观点。
1.假如两个角的和是一个直角,这两个角叫做互为余角,简称互余,此中的一个角叫做另一个角的余角。
符号语言:由于900,因此与互为余角。
反过来,由于与互为余角,因此900,(或900 )。
2.假如两个角的和是一个平角,这两个角叫做互为补角,简称互补,此中的一个角叫做另一个角的补角。
符号语言:由于1800,因此与互为补角。
反过来,由于与互为补角,因此1800,(或1800 )。
(1)填一填:的度数40o 60o12’no(0 <n<90o)的余角60o的补角45o 120o(2)想想,1)一个锐角有余角和补角吗?如有,它们分别如何表示。
一个钝角 和直角 呢?2)同一个锐角的补角与它的余角之间有如何的数目关系?(3)算一算例题 1.已知一个角的补角是这个角的余角的 3 倍,求这个角的度数。
(4)找一找CD例题 2.如图, O 是直线 AB 上一点, OE 均分∠ AOC ,OD 均分∠ BOC ,那么图中共有: E234 ①几对互余的角;②几对互补的角。
1AOB2.互为余角、互为补角的性质(1)例题 3.假如∠ 1 与∠ 2 互余,∠ 1 与∠ 3 互余,那么∠ 2 与∠ 3 相等吗?为何?解:∠ 2 与∠ 3 相等。
由于∠ 1 与∠ 2 互余,∠ 1 与∠ 3 互余,2 31 因此∠ 2=90°-∠ 1,∠ 3=90°-∠ 1.因此∠ 2=∠ 3.思虑:若∠ 1 与∠ 2 互为余角,∠ 1 与∠ 3 互为余角,则∠ 2=∠。
七年级数学上册《余角补角对顶角》教案、教学设计
(3)利用合作学习法,组织学生进行小组讨论,互相交流解题思路,提高问题解决能力。
2.教学过程:
(1)导入:以生活中的实例,如剪刀、三角板等,引导学生观察余角、补角以及对顶角的实例,为新课的学习做好铺垫。
(三)情感态度与价值观
1.激发学生对几何图形的兴趣,培养良好的学习习惯和探究精神。
2.通过对余角、补角以及对顶角的学习,让学生体会几何图形中的对称美、和谐美,提高审美能力。
3.培养学生严谨、踏实的科学态度,学会用数学的眼光观察世界,用数学的思维分析问题,增强解决问题的自信心。
教学设计:
一、导入:
1.利用生活实例,如剪刀、三角板等,引导学生观察余角、补角以及对顶角的实例,激发学生学习兴趣。
2.教师引导学生回顾之前学习的角的分类、度量等知识,为新课的学习做好铺垫。
3.教师提出问题:“除了剪刀,生活中还有哪些地方存在余角、补角以及对顶角?”让学生举例说明,激发学生学习兴趣。
(二)讲授新知,500字
1.教师通过直观演示,让学生观察并发现余角、补角以及对顶角的性质。如:出示一个等腰直角三角形,让学生观察其中两锐角的关系,引导学生得出余角的性质。
3.尝试运用余角、补角以及对顶角的性质,解决以下问题:
(1)已知一个角的补角,求这个角的度数。
(2)已知一个角的余角,求这个角的度数。
(3)证明:如果一个三角形的两个角相等,那么这两个角的对边也相等。
4.阅读拓展资料,了解余角、补角以及对顶角在建筑、艺术等领域的应用,拓宽知识视野。
5.结合本节课所学,思考以下问题并撰写学习心得:
4.教学策略:
(1)针对学生的个体差异,实施分层教学,让每个学生都能在原有基础上得到提高。
2.1第1课时对顶角、补角和余角(教案)
一、教学内容
本节课选自教材第二章第一节,主要教学内容包括:
1.对顶角的定义及性质;
2.补角的定义及性质;
3.余角的定义及性质;
4.判断和证明对顶角、补角、余角;
5.运用对顶角、补角、余角解决实际问题。
二、核心素养目标
1.培养学生几何直观和空间想象能力,通过对顶角、补角和余角的识别与运用,深化对几何图形的认识;
3.重点难点解析:在讲授过程中,我会特别强调对顶角的识别和补角、余角的计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与对顶角、补角和余角相关的实际问题。
2.实验操张或使用量角器来演示对顶角相等和补角、余角的计算。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“对顶角、补角和余角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了对顶角、补角和余角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些概念的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2024秋七年级数学上册第6章平面图形的认识(一)6.3余角补角对顶角1余角和补角教案(新版)苏科版
结合余角、补角、对顶角内容,引导学生思考数学与生活的联系,培养学生的社会责任感。鼓励学生分享学习心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的余角、补角、对顶角内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
-及时反馈:教师应及时将作业的批改结果反馈给学生,让学生了解自己的学习效果。对于表现优秀的学生,教师可以给予表扬和奖励,以激发他们的学习动力。对于表现一般或较差的学生,教师应给予鼓励和指导,帮助他们提高学习成绩。
-鼓励学生继续努力:在作业评价中,教师应鼓励学生继续努力,不断提高自己的学习能力。教师可以提供一些学习方法和技巧,帮助学生提高学习效果。同时,教师还可以鼓励学生之间的合作和互助,让他们相互学习,共同进步。
-材料三:《生活中的几何图形》
本材料通过生活中的实例,如建筑设计、艺术作品等,展示了余角、补角、对顶角在实际生活中的应用,增强学生对几何知识实用性的认识。
2.课后自主学习和探究
-探究一:余角和补角在实际图形中的应用
鼓励学生在家中或学校周围寻找含有余角和补角的图形,如窗户的角、墙角等,并进行测量和计算,观察余角和补角的实际效果。
-难点四:解决含有多个余角、补角的复合问题。在复杂问题中,学生需要能够理清角度之间的关系,正确求解。
举例:设计一些综合性的问题,如一个多边形内多个角的余角和补角的计算,训练学生综合运用所学知识。
教学方法与手段
1.教学方法
-方法一:讲授法。对于余角、补角、对顶角的基本概念和性质,采用讲授法进行教学。通过生动的语言、具体的例子,引导学生理解和掌握这些基本知识。
对顶角、余角和补角-北师大版七年级数学下册教案
对顶角、余角和补角-北师大版七年级数学下册教案一、教学目标1.掌握对顶角、余角和补角的定义及性质。
2.能够灵活运用对顶角、余角和补角的性质进行简单的计算。
二、教学内容1.对顶角、余角和补角的概念2.对顶角、余角和补角的性质3.对顶角、余角和补角的应用三、教学重点和难点1.教学重点:掌握对顶角、余角和补角的概念及性质。
2.教学难点:灵活运用对顶角、余角和补角的性质进行计算。
四、教学方法1.归纳法2.探究法3.演示法4.讨论法五、教学过程1. 导入新知识通过展示两条平行线及其上的两个等角的情形,引出对顶角的概念,引导学生进行探究活动,通过师生互动来总结出对顶角的定义及性质。
2. 讲解对顶角的概念和性质通过对对顶角的定义及性质进行讲解,加深学生对对顶角的认识。
3. 练习对顶角现场出示几个图形,让学生手绘出其中的对顶角,并说明理由。
通过练习,提高学生对对顶角的掌握。
4. 讲解余角和补角的概念和性质讲解余角和补角的定义及性质,并通过实际例子说明,加深学生对余角和补角的理解。
5. 练习余角和补角让学生手绘出具有余角和补角的图形,并通过练习,提高学生对余角和补角的掌握,进而灵活运用其性质进行计算。
6. 总结和归纳通过回顾概念及性质,总结并归纳对顶角、余角和补角的定义及性质,并对其应用进行总结。
六、教学评价1.课堂笔记和作业评分。
2.能否熟练运用对顶角、余角和补角的性质进行计算。
3.课堂参与度评分。
七、教学反思1.应注意让学生自主探究知识,培养其探究能力,学生才能更好地掌握知识点。
2.教师应注重教学过程中的实际案例及练习,让学生通过练习巩固所学内容,进而提高其理解和运用能力。
七年级数学下册《对顶角余角和补角》教案、教学设计
四、教学内容与过程
(一)导入新课,500字
1.利用生活实例导入:教师展示一些生活中常见的物品,如剪刀、窗户、围棋等,引导学生观察这些物品中的角的特点,提出问题:“这些角有什么共同之处?”让学生思考并回答。
2.通过学生回答,教师总结出对顶角的概念:在两条交叉的直线上,有一对相互对立的角,它们的度数相等,这样的角称为对顶角。
3.进一步提问:“除了对顶角,我们在之前的几何学习中还学过哪些特殊的角?”引导学生回顾余角和补角的概念,为新课的学习做好铺垫。
(二)讲授新知,500字
1.教师通过PPT或黑板,呈现对顶角、余角和补角的定义,让学生明确它们的含义。作业 Nhomakorabea置要求:
1.作业要求学生独立完成,遇到问题时可以与同学讨论,但不能直接抄袭他人答案。
2.作业完成后,要认真检查,确保解答过程和答案的正确性。
3.家长要关注孩子的作业完成情况,适时给予指导和鼓励,培养孩子良好的学习习惯。
4.教师将及时批改作业,给予反馈,针对共性问题进行讲解,帮助学生查漏补缺。
5.总结反馈,查漏补缺:在教学过程中,教师应及时总结学生的掌握情况,针对学生的薄弱环节进行有针对性的辅导,帮助学生查漏补缺。
6.课后作业,巩固提高:布置适量的课后作业,旨在巩固所学知识,提高学生的应用能力。同时,鼓励学生在生活中发现对顶角、余角和补角的实例,将数学知识融入生活。
7.关注个体差异,实施分层教学:针对学生的不同层次,制定合适的教学计划,使每个学生都能在原有基础上得到提高。
5.小组合作题:以小组为单位,共同完成一道综合性的几何题目,要求学生运用对顶角、余角和补角的性质进行解答。此题旨在培养学生的团队协作能力和沟通能力。
余角补角和对顶角
余角补角对顶角教学设计教案6.3余角、补角、对顶角(1)教学目标1.在具体的图形情境中了解余角、补角的概念;2.掌握角、补角、对顶角的性质,并在解决问题时加以运用;3.经历观察、探索、推理、归纳等过程,培养探究学习的方法,感受学习知识的乐趣.教学重点1.余角、补角的认识及应用;2.培养对平面图形的观察和认识.教学难点对知识的探求过程.教学过程(教师)学生活动设计思路情境引入:用一副三角板摆出图6-25,提问:图中∠α与∠β的度数之间有怎样的关系?引出余角、补角的概念.如果两个角的和是一个直角,那么这两个角互为余角.如果两个角的和是一个平角,那么这两个角互为补角.观察图形,积极回答问题.从简单的教具入手,得到直观的图形,引出概念.做一做1.填写表格,并思考问题,根据填写的内容归纳出一般规律:同一个角的补角与它的余角相差900.2.已知3组角:(1)对A组中的每一个角,在B组中找出它的补角,并用线连接;(2)B组中有哪些角的余角在C组中?分别找出这些角,并用线连接.思考:怎样的角有余角、怎样的角有补角.练一练:∠α的度数500n0(0<n<90)∠α的余角450∠α的补角1200想一想:同一个角的补角与它的余角之间有怎样的数量关系?让学生学会思考知识间的联系,寻找规律时可以培养从特殊到一般,由具体到抽象的思维方式.学生能熟练地找到正确的答案,思考提出的问题,并用自己的语言归纳结论,从而培养学生的语言表达能力.练一练注意:1.互余、互补是指两个角之间的一种关系.2.互余、互补是指数量关系,与两个角的位置没有关系.判断:1.⑴90°的角叫余角,180°的角叫补角()2.2如果∠1+ ∠ 2 +∠3=180 °,那么∠1、∠ 2与∠3互补。
.()通过这个小练习,让学生体会互余、互补,揭示了两个角之间的数量关系,与位置无关.在学习概念时要注意其实质.例1 如图,如果∠1与∠2互为余角,∠1与∠3互为余角,那么∠2与∠3相等吗?为什么?思考:如图,如果∠α与∠β互为补角,∠α与∠γ互补,那么∠β与∠γ相等吗?为什么?1.如图,如果∠1与∠ 2互余,∠3 与∠4互余,∠1 =∠ 3,那么∠2与∠4相等吗?为什么?2.如图,如果∠1与∠ 2互补,∠3与∠4互补,∠1 =∠ 3,那么∠2与∠4相等吗?为什么?思考:你得到什么结论解:∠2与∠3相等.因为∠1与∠2互为余角,∠1与∠3互为余角,所以∠2=90°-∠1,∠3=90°-∠1,所以∠2=∠3.同角(或等角)的余角相等;解:∠β与∠γ相等.因为∠α与∠β互为补角,∠α与∠γ互为补角,所以∠β=180°-∠α,∠γ=180°-∠α.所以∠β=∠γ.同角(或等角)的补角相等.通过问题,进一步思考,发现知识中存在的规律.让学生经历观察、猜想、推理论证的过程,熟悉推理证明的步骤和要求.学生小组讨论得到的结论:质疑拓展:已知∠α与∠β互为补角,且∠β比∠α大30°,求∠α、∠β的度数.解:根据题意,可得∠β=∠α+30°,因为∠α与∠β互为补角,所以∠α+∠β=180°,即∠α+(∠α+30°)=180°,所以∠α=75°,∠β=75°+30°=105°.在简单的图形中进一步认识补角,并对角度进行计算.j4321j4321余角性质:同角(或等角)的余角相等。
对顶角、余角和补角
2.1两条直线的位置关系(第1课时)学习目标:1.理解对顶角、补角、余角的概念;2.掌握对顶角、补角、余角的性质,并能运用它们的性质进行角的运算及解决一些实际问题. 学习重点:掌握对顶角、补角、余角的性质,并能运用它们的性质进行角的运算及解决一些实际问题.学习难点:学生对相交线形成的4对角在位置上的分类标准的确定,学生主动发现、归纳出余角的性质,并用几何语言严格证明对顶角、补角、余角的性质. 学习过程:一、两条直线的位置关系1.若两条直线只有一个公共点,我们称着两条直线为 线;在同一平面内, 的两条直线叫做平行线.2.一般地,在同一平面内内,两条直线的位置关系有两种,即 和 . 二、对顶角及其性质1.问题:将“剪刀模型”的直线标上字母,直线AB 、CD 相交于点O ,图中有几个小于平角的角?若将它们两两组合,可组成几对角?观察这些角的顶点及两边的位置关系,可以怎样分类?并说明分类的依据.归纳:对顶角的概念,像∠1与∠2,∠3与∠4这样,由两条直线 而成,有公共 ,两边互为 的两个角叫做对顶角.活动1:任意画两条相交直线,用量角器量出其中一对对顶角的度数.你发现了什么?与同伴交流你的结论,猜想对顶角的数量关系.能说明猜想的正确性吗?试一试! 归纳:对顶角的性质: .例1 下列各图中,∠1与∠2是对顶角的是( )1. 活动1:任意画两条相交直线,用量角器量出其中一对对顶角的度数。
你发现了什么?与同伴交流你的结论,猜想对顶角的数量关系。
能说明猜想的正确性吗?试一试!结论:对顶角的性质: . 二.补角和余角思考:∠1与∠4的和是多少?∠1与∠3的和是多少?∠2与∠3的和又是多少?∠2与∠4呢? 我们规定:如果两个角的和是180°,那么称这两个角 。
如果两个角的和是 ,那么称这两个角互为余角。
做一做结论,发现同一个锐角的补角比它的余角大 .小组合作交流,解决下列问题: 在图1中,∠CON=∠DON=90°,∠1=∠2 问题1:哪些角互为补角?哪些角互为余角? 问题2:∠3与∠4有什么关系?为什么?问题3:∠BOC 与∠AOD 有什么关系?为什么? 结论: .结论: .图1DCNBAO4321三.随堂练习 当堂练习21. 下列说法中,正确的有( ) ①对顶角相等; ②相等的角是对顶角③不是对顶角的两个角就不相等; ④不相等的角不是对顶角A .1个B .2个C .3个D .0个 2. 图中给出的各角,哪些互为补角?3. 图中给出的各角,哪些互为余角?4.如图2,已知∠AOB=90°, ∠AOC= ∠BOD ,则与 ∠AOC 互余的角有_________.5.如图3,已知:直线AB 与CD 交于点O, ∠EOD=90°,回答下列问题: (1)∠AOE 的余角是 ;补角是 ;(2)∠AOC 的余角是 ;补角是 ;对顶角是 ;作业必作:教材P40习题2.1第1,2,3,4题.思考:如图4,直线AB 、CD 相交于点O ,OE 平分∠BOD. (1)若∠AOC=70°,∠DOF=90°,求∠EOF 的度数; (2)若OF 平分∠COE,∠BOF=15°,求∠AOC 的度数.图4OFBEDCAEDCBOA。
《对顶角、余角和补角》教案 (公开课)2022年北师大版数学
2.1两条直线的位置关系第1课时对顶角、补角和余角1.理解并掌握对顶角的概念及性质,会用对顶角的性质解决一些实际问题;2.理解并掌握补角和余角的概念及性质,会运用其解决一些实际问题.(重点,难点)一、情境导入如图,假设把剪刀看成是两条相交的直线构成的,那么形成的角中小于平角的角有几个,你能发现它们之间的联系吗?二、合作探究探究点一:对顶角及其性质【类型一】对顶角的概念以下列图形中,∠1与∠2是对顶角的是()解析:选项A中的两个角的顶点没有公共;选项B、D中的两个角的两边没有在互为反向延长线的两条直线上,只有选项C中的两个角符合对顶角的定义.应选C.方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.【类型二】直接运用对顶角的性质求角度如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数.解析:结合图形,由∠1和∠BOC求得∠BOF的度数,根据“对顶角相等〞可得∠2的度数.解:因为∠1=40°,∠BOC=110°(),所以∠BOF=∠BOC-∠1=110°-40°=70°.因为∠BOF=∠2(对顶角相等),所以∠2=70°(等量代换).方法总结:两条相交直线构成对顶角,这时应注意“对顶角相等〞这一隐含的结论.在图形中正确找到对顶角,利用角的和差及对顶角的性质找到角的等量关系,然后结合条件进行转化.探究点二:补角和余角【类型一】 利用补角和余角计算求值 ∠A 与∠B 互余,且∠A 的度数比∠B 度数的3倍还多30°,求∠B 的度数.解析:根据∠A 与∠B 互余,得出∠A +∠B =90°,再由∠A 的度数比∠B 度数的3倍还多30°,从而得到∠A =3∠B +30°,再把两个算式联立即可求出∠2的值.解:∵∠A 与∠B 互余,∴∠A +∠B =90°.又∵∠A 的度数比∠B 度数的3倍还多30°,∴设∠B =x ,∴∠A =3∠B +30°=3x +30°,∴3x +30°+x =90°,解得x =15°,故∠B 的度数为15°.方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程来解决.【类型二】 补角、余角和角平分线的综合计算如图,∠AOB 在∠AOC 内部,∠BOC =90°,OM 、ON 分别是∠AOB ,∠AOC 的平分线,∠AOB 与∠COM 互补,求∠BON 的度数.解析:根据补角的性质,可得∠AOB +∠COM =180°.根据角的和差,可得∠AOB +∠BOM =90°.根据角平分线的性质,可得∠BOM =12∠AOB .根据解方程,可得∠AOB 的度数.根据角的和差,可得答案.解:∵∠AOB 与∠COM 互补,∴∠AOB +∠COM =180°,即∠AOB +∠BOM +∠COB =180°.∵∠COB =90°,∴∠AOB +∠BOM =90°.∵OM 是∠AOB 的平分线,∴∠BOM =12∠AOB ,即∠AOB +12∠AOB =90°,解得∠AOB =60°,∴∠AOC =∠BOC +∠AOB =90°+60°=150°.∵ON 平分∠AOC 得∠AON =12∠AOC =12×150°=75°.由角的和差,∴∠BON =∠AON -∠AOB =75°-60°=15°.方法总结:此题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.【类型三】 补角和余角的性质如图,将一副直角三角尺的直角顶点C 叠放在一起.(1)如图①,假设CE 是∠ACD 的角平分线,那么CD 是∠ECB 的角平分线吗?并简述理由;(2)如图②,假设∠ECD =α,CD 在∠BCE 的内部,请你猜想∠ACE 与∠DCB 是否相等?并简述理由;(3)在(2)的条件下,请问∠ECD 与∠ACB 的和是多少?并简述理由.解析:(1)首先根据直角三角板的特点得到∠ACD =90°,∠ECB =90°.再根据角平分线的定义计算出∠ECD 和∠DCB 的度数即可;(2)∠ACE 与∠DCB 相等,根据“等角的余角相等〞即可得到答案;(3)根据角的和差关系进行等量代换即可.解:(1)CD是∠ECB的角平分线.理由如下:∵∠ACD=90°,CE是∠ACD的角平分线,∴∠ECD=45°.∵∠ECB=90°,∴∠DCB=90°-45°=45°,∴∠ECD=∠DCB,∴CD是∠ECB的角平分线;(2)∠ACE=∠DCB.理由如下:∵∠ACD=90°,∠BCE=90°,∠ECD=α,∴∠ACE =90°-α,∠DCB=90°-α,∴∠ACE=∠DCB;(3)∠ECD+∠ACB=180°.理由如下:∠ECD+∠ACB=∠ECD+∠ACE+∠ECB=∠ACD+∠ECB=90°+90°=180°.方法总结:此题主要查考了角的计算,关键是根据图形分清角之间的和差关系.三、板书设计1.对顶角相等;2.同角或等角的补角相等,同角或等角的余角相等.本节课学习了对顶角及其性质.教学中可让学生自己画这些角,结合图形说出对顶角的特征.对顶角的识别是易错点,可以结合例题进行练习,让学生在学习中不断纠错,不断进步第二课时用坐标表示平移1.掌握用坐标表示点的平移的规律;(重点)2.了解并掌握用坐标表示图形平移的规律与方法.(难点)一、情境导入如图是小丽利用平移设计的一幅作品,说一说平移的特点.你能在坐标系中快速画出这一组图案吗?二、合作探究探究点一:点在坐标系中的平移平面直角坐标系中,将点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为()A.(1,-8) B.(1,-2)C.(-6,-1) D.(0,-1)解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解.点A 的坐标为(-3,-5),将点A 向上平移4个单位,再向左平移3个单位到点B ,点B 的横坐标是-3-3=-6,纵坐标为-5+4=-1,即(-6,-1).应选C.方法总结:此题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.探究点二:图形在坐标系中的平移 【类型一】 根据平移求对应点的坐标如图,把△ABC 经过一定的平移变换得到△A ′B ′C ′,如果△ABC 边上点P 的坐标为(a ,b ),那么这个点在△A ′B ′C ′中的对应点P ′的坐标为( )A .(a +6,b -2)B .(a +6,b +2)C .(-a +6,-b )D .(-a +6,b +2)解析:根据三对对应点的坐标,得出变换规律,再让点P 的坐标也做相应变化.∵A (-3,-2),B (-2,0),C (-1,-3),A ′(3,0),B ′(4,2),C ′(5,-1),∴△ABC 向右平移6个单位,向上平移2个单位得到△A ′B ′C ′.∵△ABC 边上点P 的坐标为(a ,b ),∴点P 变换后的对应点P ′的坐标为(a +6,b +2).应选B.方法总结:坐标系中图形上所有点的平移变化规律是一致的,解决此类问题的关键是根据对应点找到各对应点之间的平移变化规律.【类型二】 平移作图如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标;(2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.解析:(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.解:(1)△A 1B 1C 1如下列图,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1.S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,故S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.方法总结:坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.求四边形的面积通常转化为求几个三角形的面积的和.探究点三:平面坐标系中点及图形平移的规律探究如图,一个动点在第一象限及x轴、y轴上运动,在第1秒钟,它从原点运动到(1,0),然后接着按图中箭头所示方向运动,即(0,0)→(1,0)→(1,1)→(0,1)→…,且每秒移动一个单位,那么第2021秒时动点所在位置的坐标是________.解析:方法一:动点运动的规律:(0,0),动点运动了0秒;(1,1),动点运动了1×2=2(秒),接着向左运动;(2,2),动点运动了2×3=6(秒),接着向下运动;(3,3),动点运动了3×4=12(秒),接着向左运动;(4,4),动点运动了4×5=20(秒),接着向下运动;…于是会出现:(44,44),动点运动了44×45=1980(秒),接着动点向下运动,而2021-1980=31,故动点的位置为(44,44-31),即(44,13).方法二:由题目可以知道,动点运动的速度是每秒钟运动一个单位长度,(0,0)→(1,0)→(1,1)→(0,1)用的秒数分别是1秒钟,2秒钟,3秒钟,到(0,2)用4秒,到(2,2)用6秒,到(2,0)用8秒,到(3,0)用9秒,到(3,3)用12秒,到(0,4)用16秒,依次类推,到(5,5)用30秒.由上面的结论,我们可以得到的第一象限角平分线上的点从(0,0)到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,那么由(n,n)到(n+1,n+1)所用时间增加(2n +2)秒,这样可以先确定第2021秒时动点所在的正方形,然后就可以进一步推得点的坐标是(44,13).方法三:该动点每一次从一个轴走到另一个轴所走的步数要比上一次多走一横步,多走一竖步,共多走两步.从(0,0)点走到(0,1)点共要3步,从(0,1)点走到(2,0)点共5步……当n为偶数时,从(0,n-1)点到(n,0)点共走(2n+1)步;当n为奇数时,从(n-1,0)点到(0,n)点共走(2n +1)步,这里n=1,2,3,4,….∵3+5+7+…+(2n+1)=n(n+2)=(n+1)2-1,∴当n=44时,n(n+2)=(n+1)2-1=452-1=2024,离2021最近,此时n为偶数,即该过程是从(0,43)到(44,0-2021=13,即从(44,0)向上“退〞13步即可.当到2021秒时动点所在的位置为(44,13).故答案为(44,13).方法总结:此类归纳探索猜想型问题的解题关键是总结规律,由特殊到一般的归纳思想来确定点所在的大致位置,进而确定该点的坐标.三、板书设计用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.通过本课时的学习,学生经历图形坐标变化与图形平移之间的关系的探索过程,掌握空间与图形的根底知识和根本作图技巧,丰富对现实空间及图形的认识,建立初步的空间观念,培养形象思维能力,激发数学学习的好奇心与求知欲.教学过程中让学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣。
2.1 对顶角、余角和补角 北师版七年级数学下册教案
第二章 相交线与平行线课题 对顶角、余角和补角【学习目标】1.经历观察、操作、推理、交流等过程,进一步发展空间观念,推理能力和有条理的表达能力. 2.在具体情景中了解余角、补角、对顶角及其性质,并能运用这些性质解决一些生活中的实际问题. 【学习重点】余角、补角、对顶角的性质及应用. 【学习难点】补角、余角的性质.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:认真阅读课本,独立完成“自学互研”中的题目,并在练习中发现规律,从猜测到探索到理解知识.方法指导:在图形中正确找到对顶角,利用对顶角的和差及对顶角的性质找到角的等量关系,然后结合已知条件进行转化.一、情景导入 生成问题旧知回顾:1.同一平面内,两条直线的位置关系是怎样的? 答:相交或平行.2.如图,两条直线AB ,CD 相交于O ,图中小于平角的角有几个?它们之间有何联系?答:图中小于平角的角有四个:∠AOC 、∠BOC 、∠BOD 、∠AOD ,每相邻两角互补.二、自学互研 生成能力知识模块一 对顶角的定义及性质阅读教材P 38-39,完成下列问题: 1.什么是相交线?什么是平行线?答:若两条直线只有一个公共点,我们称这两条直线为相交线,在同一平面内,不相交的两条直线叫做平行线.2.如图,直线AB ,CD 相交于点O ,∠1与∠2的位置有什么关系?它们的大小有什么关系?解:∠1的两边与∠2的两边互为反向延长线,∠1=∠2,理由:∵∠1+∠BOC =180°,∠2+∠BOC =180°,∴∠1=∠2.【归纳】在两条直线相交所成的四个角中,有公共顶点并且两边互为反向延长线的两个角叫对顶角.范例1.如下图所示的各图中,∠1和∠2是对顶角的图形是( D )A B C D 仿例1.如图,三条直线相交于点O ,则∠1+∠2+∠3=( C )A.90° B .120° C .180° D .360°学习笔记:同角或等角的补(余)角相等时用等式基本性质可证明.仿例2中设出这个角并表示余角或补角是常用解题方法.行为提示:在群学后期,教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.有展示、有补充、有质疑、有评价穿插其中.学习笔记:检测可当堂完成.仿例2.如图,直线AB ,CD ,EF 相交于点O ,∠1=40°,∠BOC =110°,求∠2的度数.解:∠2=70°.知识模块二 余角和补角什么是互为补角?什么是互为余角?答:如果两个角的和是180°,那么称这两个角互为补角.类似地,如果两个角的和是90°,那么称这两个角互为余角.范例2.如图,∠DON =∠90°,且∠1=∠2. (1)有哪些角互为补角?有哪些角互为余角? (2)∠3与∠4有什么关系?为什么?(3)∠AOC 与∠BOD 有什么关系?为什么?解:(1)互为补角:∠1与∠AOC ,∠2与∠BOD ;互为余角:∠1与∠3,∠2与∠3,∠2与∠4,∠1与∠4;(2)∠3=∠4.理由:∵∠1+∠3=90°,∠2+∠4=90°,且∠1=∠2,∴∠3=∠4;(3)∠AOC =∠BOD .理由: ∵∠AOC +∠1=180°,∠BOD +∠2=180°,且∠1=∠2,∴∠AOC =∠BOD .【归纳】同角或等角的余角相等,同角或等角的补角相等. 仿例1.(重庆中考)已知∠A =65°,则∠A 的补角等于( C ) A .125° B .105° C .115° D .95° 仿例2.一个角的余角与这个角的补角之和为180°,则这个角的度数为__45°__.三、交流展示 生成新知1.将阅读教材时“生成的新问题”和通过“自主探究、合作探究”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 对顶角的定义及性质 知识模块二 余角和补角四、检测反馈 达成目标 见《名师测控》学生用书.五、课后反思 查漏补缺 1.收获:________________________________________ 2.存在困惑:______________________________________。
6.3余角、补角、对顶角教学设计
(二)讲授新知
在这一环节,教师将系统地讲授余角、补角、对顶角的定义、性质和应用。
1.余角:讲解余角的定义,即两个角的和为90度时,这两个角互为余角。通过具体例子,让学生理解余角的概念。
2.补角:介绍补角的定义,即两个角的和为180度时,这两个角互为补角。结合生活实例,解释补角的意义。
-针对学生空间想象力、逻辑推理能力的差异,设计不同难度的教学任务,使每个学生都能在原有基础上得到提高。
-对基础薄弱的学生,进行个别辅导,的学生,提供拓展性学习资源,引导他们进行更深入的探讨和研究。
3.突破重难点,强化训练
-针对重难点内容,设计具有针对性的例题和练习,帮助学生巩固所学知识。
1.学生在空间想象力方面的发展水平不一,部分学生对图形的认识和角度的把握可能不够准确。教师应针对这一情况,设计丰富的教学活动,帮助学生建立清晰的空间概念。
2.学生在逻辑推理能力方面存在差异,对几何证明的掌握程度不同。教师应关注学生的个体差异,提供适当的引导和提示,帮助学生逐步掌握证明方法。
3.学生在解决实际问题时,可能难以将所学知识灵活运用。教师应结合生活实例,引导学生发现生活中的几何问题,培养学生学以致用的能力。
6.3余角、补角、对顶角教学设计
一、教学目标
(一)知识与技能
1.理解余角、补角、对顶角的定义,能够识别并正确标记图形中的余角、补角和对顶角。
2.学会运用余角、补角和对顶角的性质进行相关角度的计算,解决实际问题。
3.能够运用余角、补角和对顶角的性质,推导和证明几何图形中的相关结论。
4.能够运用所学的角度知识,解决生活中的实际问题,提高解决问题的能力。
(五)总结归纳
北师大版数学七年级下册2.1两条直线的位置关系(第1课时)对顶角、余角和补角优秀教学案例
一、案例背景
北师大版数学七年级下册2.1节“两条直线的位置关系(第1课时)”是学生学习几何初步知识的重要内容。本节课主要介绍对顶角、余角和补角的概念及它们之间的位置关系。对顶角、余角和补角是初中数学的基础知识,对于学生理解后续的几何知识具有重要意义。然而,对于七年级的学生来说,这些概念较为抽象,需要通过具体的教学案例来帮助学生理解和掌握。
本案例旨在通过实际教学情境,引导学生观察、思考和探究,使学生能够理解和掌握对顶角、余角和补角的概念,并能够运用这些知识解决实际问题。同时,通过本案例的实施,培养学生的观察能力、思考能力和解决问题的能力,.理解对顶角、余角和补角的概念,掌握它们的定义和性质;
2.分配具有挑战性和实际意义的任务,让学生通过合作解决问题;
3.鼓励学生发挥各自的特长和优势,培养学生的团队合作能力和沟通能力;
4.引导学生进行小组反思和评价,鼓励学生提出建设性的意见和建议。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结学习经验和教训;
2.鼓励学生互相评价和反馈,培养学生的评价能力和批判性思维;
3.引导学生进行交流和分享,培养学生的沟通能力和团队合作能力;
4.教师对学生的讨论和成果进行评价和指导,帮助学生提高解决问题的能力。
(四)总结归纳
1.引导学生对所学内容进行总结和归纳,帮助学生梳理知识体系;
2.强调对顶角、余角和补角的概念和性质,让学生掌握解题的关键和方法;
3.通过总结归纳,提高学生的思维能力和逻辑推理能力;
3.小组合作:教师组织了学生进行小组讨论和合作,鼓励学生相互交流和分享。通过合作解决问题,学生能够发挥各自的特长和优势,培养团队合作能力和沟通能力。同时,小组合作也能够促进学生的思考和探究,提高学习效果。
6.3余角、补角、对顶角优秀教学案例
3.利用多媒体手段:通过PPT展示生动形象的余角、补角和对顶角的图形,帮助学生直观理解概念,增强记忆。
(二)问题导向
1.设计层次化问题:提出由浅入深、循序渐进的问题,引导学生逐步深入学习,如先问“什么是余角?”再问“余角和补角之间有何关系?”;
2.强调重点难点:教师强调本节课的重点和难点,提醒学生注意;
3.总结数学与生活的联系:强调数学知识在实际生活中的应用,激发学生学习兴趣。
(五)作业小结
1.布置具有针对性的作业:布置一些有关余角、补角和对顶角的练习题,帮助学生巩固所学知识;
2.鼓励学生自主学习:鼓励学生自主完成作业,培养学生的自主学习能力;
四、教学内容与过程
(一)导入新课
1.生活实例导入:以一个简单的日常生活中的情景为例,如判断两个角的余角和补角关系,提出问题:“你们知道这两个角有什么特殊关系吗?”引发学生的思考和兴趣;
2.利用多媒体手段:通过PPT展示生动形象的余角、补角和对顶角的图形,帮助学生直观理解概念,为学习新知识做好铺垫。
(二)讲授新知
3.设置具有针对性的练习题,巩固所学知识,提高学生的解题能力;
4.鼓励学生自主学习,培养学生的探究精神和合作能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,树立自信心,激发学习动力;
2.培养学生勇于探究、积极思考的科学精神,以及面对困难时不轻言放弃的意志品质;
3.使学生认识到数学与生活的紧密联系,提高学生运用数学知识解决实际问题的能力;
2.自己的观点,培养学生的团队协作能力;
3.小组代表展示:各小组代表上台展示讨论成果,其他小组成员可进行补充和评价,提高学生的表达能力和批判性思维。
《余角、补角、对顶角 》 教学案
《余角、补角、对顶角》教学案
D
C
B
A
O 【活动1】
设置情境,引出新知:
如果将斜塔看成一条OA ,在正午太阳直射地面时标记塔顶的影子B ,画出直线OB ,测出了∠AOB =85°
(1)斜塔OA 倾斜了多少度? (2)斜塔OA 与OB 所成的另外一个角是多少度?
引出概念,并指出学生易犯的错误,并指出余角和补角是相互的。
【活动2】
1、 下列各角哪些互为余角,哪些
互为补角?
2判断题:(1)若, ∠1+∠2+∠3=180°则,∠1,∠2,∠3互为补角,( )
(2)互为余角、互为补角的两个角一定有公共顶点.( )
3、30°20′的余角和补角分别是多少?
【欣赏图片——意大利
风景、建筑、比萨斜塔】
【观察、思考、自主解决问题】
【学生思考、讨论后举手发言】
【动笔计算】
30°20′余角
=90°-30°20′=59°40′. 30°20′补角=180°-30°20′=149°40′.
若一个角为x 度,则它的余角为
比萨斜塔是学生熟悉的建筑,而且有许多科学渊源,容易激发学生的学习兴趣,自然引入概念。
此组题就概念进行简单训练. . .
会识别互余与互补关系.强调互余和互补是一对角的数量关系,与位置无关
会求一个角的余角和补角
170︒
150︒120︒
100︒80︒
60︒30︒10︒。
七年级数学对顶角、补角和余角优秀教案
教学难点
重点:让学生理解对顶角、补角、余角的概念,掌握对顶角、补角、余角的性质,并能运用它们解决一些实际问题。
难点:推理过程的标准书写。
学习目标
1.通过自学,我能了解两条直线的相交和平行关系;
2.通过观察、推理、交流,我能理解对顶角、补角、余角的概念;
3.通过观察、推理、交流,我能掌握对顶角、补角、余角的性质,并能运用它们解决一些实际问题。
5.什么关系的角互为余角?
自学并完成问题
培养学生的自学能力
合作
探究
让学生小组合作完成教材39页的做一做,并全班交流。
小组合作完成教材39页的做一做,并全班交流。
培养学生的交流合作能力。
教师
导学
给学生讲解例1和例2
听教师讲解
强调重点,
突破难点。
反应
提升
让学生完成课件上的变式练习1题—5题,并全班交流,教师进行点拨。
第二单元相交线与平行线
课题第一节两条直线的位置关系
子课题
对顶角、补角和余角
主讲
杨以琼
时间
20xx年3月28日
教学目标
1.通过自学,让学生了解两条直线的相交和平行关系;
2.通过观察、推理、交流,让学生理解对顶角、补角、余角的概念;
3.通过观察、推理、交流,让学生掌握对顶角、补角、余角的性质,并能运用它们解决一些实际问题。
完成练习后全班交流,再听教师点拨。
让学生反应知识,提升能力。
目
标
延
续
1.让学生进行课堂小结:通过这节课的学习,你有什么收获?
2.布置作业〔分层布置〕:
优生〔A、B、C组〕
中等生〔A、B组〕
差生〔A组〕
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
余角、补角(1)
学习目标
1. 在具体情境中了解余角、补角,知道余角、补角之间的数量关系;
2. 经历观察、操作、说理、交流的过程,进一步发展空间观念,学习有条理的表达数学问题;
3. 会运用互为余角、互为补角的性质来解决问题.
学习难点
正确区分余角和补角,并运用余角、补角的性质解决问题
/
教学过程
一、情景导入
图中∠α和∠β的度数之间有什么特殊关系
/
请你用一副三角板操作一下!
二、数学化认识
1、互为余角的概念:
如果两个角的和是一个直角,
这两个角叫做互为余角.简称互余.
其中一个角叫做另一个角的余角.
…
2、互为补角的概念:
如果两个角的和是一个平角,
这两个角叫做互为补角.简称互补.其中一个角叫做另一个角的补角.
三、基础训练
1.填表
…
想一想:同一个角的补角与它的余角之间有怎样的数量关系
2.已知3组角:
—
A 组 B组 C组
(1)对A组中的每一个角,在B组中找出它的补角,并用线连接;
(2)B组中有哪些角的余角在C组中分别找出这些角,并用线连接。
3.判断:
(1)90°的角叫余角,180°的角叫补角。
()
(2)如果∠1+ ∠ 2 +∠3=180 °,那么∠1、∠ 2与∠3互补。
()
四、例题讲解
"
例⒈如图,如果∠1与∠ 2互余,∠1与∠3互余,那么∠2与∠3相等吗为什么
想一想
1.如图,如果∠1与∠ 2互余,∠ 3 与∠4互余,
∠1 =∠ 3,那么∠2与∠4相等吗为什么
】
2.如图,如果∠1与∠ 2互补,∠ 3与∠4互补,
∠1 =∠ 3,那么∠2与∠4相等吗为什么
结论:
余角性质:同角(或等角)的余角相等。
补角性质:同角(或等角)的补角相等。
例2.如图,直线AB与CD相交于点O,∠2与∠3有怎样的大小关系为什么。
五、当堂反馈
一、判断:
(1)如果两个角相等,则它们的补角相等。
()
(2)如果∠1 =40 °,∠2=60 °,∠3 =80 °, 那么∠1、∠2、∠3互为补角。
()
二、填空:
【
(1)一个角是36 °,则它的余角是_______,它的补角是_____。
(2)∵∠1和∠2互余,∴∠2=_____- ∠1;
∵∠1和∠2互补,∴∠1=_____- ∠2 。
三、如图,∠AOB= ∠COD=90 °,
则∠BOC 与∠AOD 有怎样的大小关系为什么
【课后作业】
— 班级 姓名 学号
P162习题的第1、2、3题
余角、补角、对顶角(2)
班级 姓名 学号
(
学习目标
1. 在具体情境中了解对顶角,知道对顶角相等;
2. 经历观察、操作、说理、交流的过程,进一步发展空间观念,学习有条理的
表达数学问题;
3. 会运用互为余角、互为补角、对顶角的性质来解决问题.
学习难点
运用互为余角、互为补角、对顶角的性质来解决问题.
教学过程
看谁记的牢
、
1、如图,O 为直线AB 上一点,∠AOD=900,则图中哪些角互为余角哪些角互为补角
,
2、如图,∠AOC=900,∠BOD=900,则∠1与∠3的关系是_____,其理由是__________________________.
3、如图,∠1+∠2=180°, ∠3+∠4=180°,若∠1=∠3,则∠2与∠4的关系是_______,其理由是_________________.
} B O
A D C 1 2
3 A B C D 《 o 》 2 1 3
4
一、情景导入
通过小孔O,两条光线AA’、BB’形成了哪些角
定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
二、数学化认识
1、两条直线相交可以得到两对对顶角,那么三条直线AB 、CD 、EF 相 交于点O 。
有多少对对顶角请分别表示出来,并与同学交流。
…
2、两根木条中间用铁钉固定起来,但可转动。
试着转不同的角度,比较两木条所成的角的度数。
你能发现什么并说明理由.
结论:对顶角相等
三、例题讲解
例1 如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,∠AOE=250。
你能说出图中哪些角的度数
:
例2 如图,AB 、CD 相交于点O,∠DOE=900,∠AOC=720.
求∠BOE 的度数.
<
四、基础训练
1.如图,直线AC 、DE 相交于点O ,OE 是∠AOB 的平分线,∠COD=500,试求∠AOB 的度数. O A B
; B /
A / O A E C % D
B O A B D
C ;
E O
A B ~ E
2.如图,直线AB 、EF 相交于点D ,∠ADC=900。
(1)∠1的对顶角是______;∠2的余 角有___________。
\
(2)若∠1与∠2的度数之比为1︰4,求∠BDF 的度数。
4. 如图,直线AB 、CD 相交于点O ,且∠AOD +∠BOC=2200,
5. 则∠AOC 为多少度为什么
【课后作业】
班级 姓名 学号
P162习题的第4、5、6题
A B C E D 1 2 O A
D
C B。