化工原理-气体吸收共43页文档
化工原理课件-气体吸收
101.3
当温度、气相中溶质组成一定,
若总压增加,则在同一溶剂中,溶质的
202.6
溶解度随之增加,有利于吸收。
℃下在水中的溶解度曲线
5.2 吸收过程的汽液相平衡关系
结论3:
当相同的总压及摩尔分数,温度
一定时,不同种的气体在水中的溶解度
的差别为:
2 < 2 < 2 < 3
(2)吸收溶质:(气相)
相对于液相浓度AB 而言,气相浓度AB
∗
为未饱和状态(AB < AB
),此时气相有吸
收溶质A的能力。
(3)释放溶质:(液相)
相对于气相浓度AB 而言,液相浓度AB
∗
为过饱和状态(AB
< AB ),故液相有释放
溶质A的能力
(4)若气液相浓度(A ,A )在平衡线的下
混合物中组分A的质量,kg
=
组分A的质量比
混合物中组分B的质量,kg
质量分数和质量比之间的关系:
组分A的质量分数
=
+
3.摩尔比
摩尔比是指混合物中组分A的物质的量与惰性组分B(不参加传质的组分)的物质
的量之比。
组分A在液相
组分A在气相
=
=
中的摩尔比
中的摩尔比
(3)过程平衡条件不同
低温
流体
传热:两侧流体的温度相等。
吸收:溶质在气液两相达到平衡
5.2 吸收过程的汽液相平衡关系
5.2.2
气液相平衡关系
1.基本概念
(1)平衡状态
在一定压力和温度下,一定量的液体吸收剂与混合气体 + 充分接触,气相
化工原理第7章气体吸收
再看积分号内
y1
y2
dy : 分子、分母具有相同的单位。 y ye
∴ 积分值为一个无因次量,把它认为相当于气相总传质
单元高度HOG的一个倍数,称它为 “气相总传质单元 数”
用“NOG”表示 即: NOG=
y1
y2
dy y ye
则,总传质总元高度H=单元高度×倍数(单元数)
H=HOGNOG
则
Kya dy dh y ye G
Kxa dx dh xe x L
稳定操作时:L、G、a、A为常数 稀溶液: K x 、K y
y1
也视为常数
∴可对上式进行在全塔范围内积分:
Kya H dy dh y2 y ye G 0 x1 Kxa H dx x2 xe x L 0 dh
取最小吸收剂用量Lmin的1.1~2倍。 L L 即 ≈(1.1~2)( )min G G 即 L =(1.1~2)Lmin
Lmin的求取: (1)平衡线如上图所示,则只要从T点连接y=y1 与平衡线的交点B*点即TB*,则TB*线所对应的斜率
L/G即为最小吸收剂用量下的斜率( L )min G y y 而( L )min= tgα= y1 y2 Lmin G 1 2 x1e x2 x1e x2 G
K x a ——液相总体积吸收系数,kmol/(m3.s)
二、传质单元高度与传质单元数
G y1 dy 分析式: Z K y a y2 y ye
其中:
G ∴ K ya
G K ya
单位为m,即高度的单位。
称为单元高度,全称“气相总传质单元
高度”。以“HOG”表示 G 即: HOG= K ya
吸收液(即出塔吸收液)中浓度加大(x1加大),则吸
化工原理 第五章 气体吸收
第五章气体吸收第一节概述§5.1.1概述一、传质过程从本章起,讨论化工生产中的传质过程及其典型设备。
传质过程是指物质通过相界面从一相迁移至另一相的过程,以下图示意:>,则A物质就会从相迁移至相。
迁移的结果使得相的A、B据热力学知识,两物质得以一定程度或完全分离,而相形成了A、B两物质的混合物。
因此相内进行的是A、B的分离过程,相内进行的是A、C的混合过程。
研究传质过程就是研究物质通过相界面的迁移过程的基本规律以及主要受这些基本规律支配的若干单元操作。
混合物系的分离对我们来说并不陌生,在上册中我们已经学习掌握了非均相物系的分离方法,相应单元操作如沉降、过滤等,从这一章起要来讨论均相物系的分离。
用下表来比较说明非均相、均相物系的分离情况:本学期的任务就是要掌握气体、液体蒸馏、液液萃取和固体干燥这四个单元操作的基本原理及其典型设备的设计。
二、气体吸收吸收操作是分离气体混合物的方法之一。
吸收操作的分离依据是混合物各组分在某种溶剂(吸收剂)中溶解度的差异,从而达到的目的。
例如:将含的空气通入水中,因、空气在水中溶解度差异很大,NH3很容易溶解于水中,形成氨水溶液,而空气几乎不溶于水中。
所以用水吸收混合气体中的能使、空气加以分离,并回收。
一般地,混合气体中能溶解的组份称为溶质或吸收质,用A表示();混合气体中不能溶解的组份称为惰性成分或载体,用B表示(空气);吸收操作中所用的溶剂称为吸收剂或溶剂,用S表示(水);吸收操作中所得的溶液称为吸收液,用S+A表示;吸收操作中排除的气体称为吸收尾气,用(A)+B表示;吸收的目的有三个:1.分离混合气体以获得一定的组分。
(例子:硫酸吸收焦炉气中的,洗油吸收焦炉气中的苯、甲苯蒸汽。
)2.除去有害组分以净化气体。
(例子:用水或钾碱液吸收合成氨原料气中的二氧化碳。
)3.制备某种气体的溶液。
(例子:用水吸收氯化氢、三氧化硫、二氧化氮制得酸。
)实际过程往往同时兼有净化和回收双重目的。
化工原理气体吸收共39页文档
化工原理气体吸收
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
化工原理-3-第八章-气体吸收精品PPT课件
解:求H
PA*
CA H
C A 0.582 kmol m3 ,PA 800Pa
故:H
CA PA*
0.582 0.8
0.7275 kmol m3.kPa
求E E PA* xA
xA
CA CA CS
E
0.8 0.01048
0.582
0.582
1000 0.582 17 18.02
76.33 kPa
0.01048求mFra bibliotekm y x
y PA 0.8 7.897 103 P 101.3
m 0.761
8.3 吸收过程模型及传质速率方程 8.3.1双膜模型
一、吸收过程 吸收过程物理模型:
图(b)中y、x分别表示气相、液相主体浓度;yi、xi分别 表示在相界面处气、液两相的浓度。
以气、液相界面为准,A在相际间的传质过程由以下三步串联而成:
E的含义:
①其数值大小由物系特性和温度决定; ②当物系(溶质、溶剂)一定时,其值随温度的上升而增大; ③由实验测定。
二、不同表达形式
由于气、液两相组分浓度可有不同的表示方法,因而亨利定律也有 不同的形式。
1、溶解度系数H
如溶质在液相中的浓度用物质的量浓度CA表示,则亨利定律:
PA*
CA H
式中:CA为单位体积溶液中的溶质的物质量,kmol/m3; H称为溶解度系数,kmol/m3.Pa。
①一般易溶气体,如NH3、HCl等气体,平衡线斜率m 较小,吸收过程通常呈现气相阻力控制;
②难溶气体,如CO2、O2等,由于其溶解度小,平衡 线斜率m大,吸收过程多呈现液相阻力控制
4、改变阻力大小的方法
实际吸收过程的阻力通常多是气相和液相各占一定的比例,且受 气、液两相流动状态影响甚大。通常:
化工原理-第8章 气体吸收
8.3 扩散和单相传质
① 溶质由气相主体传递到两相界面,即气相内的物质传递;
② 溶质在相界面上的溶解,由气相转入液相,即界面上发生 的溶解过程
③ 溶质自界面被传递至液相主体,即液相内的物质传递。 通常,第②步即界面上发生的溶解过程很容易进行,其阻力很小
( 传质速率 小,
=
传质推动力 传质阻力
)故认为相界面上的溶解推动力亦很
8.1概述
①溶剂应对被分离组分(溶质)有较大的溶解度,或者说在 一定的温度与浓度下,溶质的平衡分压要低。这样,从平衡角度 来说,处理一定量混合气体所需溶剂量较少,气体中溶质的极限 残余浓度亦可降低;就过程数率而言,溶质平衡分压↓,过程推 动力大,传质数率快,所需设备尺寸小。
②溶剂对混合气体中其他组分的溶解度要小,即溶剂应具备 较高的选择性。若溶剂的选择性不高,将同时吸收混合物中的其 他组分,只能实现组分间某种程度的增浓而不能实现较为完全的 分离。
⑷工业吸收流程(见旧讲稿) 由流程图可见,采用吸收操作实现气体混合物的分离必须解决下 列问题: ①选择合适的溶剂,使能选择性比溶解某个(或某些)被分离组 分; ②提供适当的传质设备(多位填料塔,也有板式塔)以实现气液 两相的接触,使被分离组分得以从气相转移到液相(吸收)或气相 (解吸);
8.1概述
注意:此时并非没有溶质分子继续进入液相,只是任何瞬间 进入液相的溶质分子数与从液相逸出的溶质分子数恰好相等,在 宏观上过程就象是停止了。这种状态称为相际动平衡,简称相平 衡。
8.2.1平衡溶解度
⑴溶解度曲线
对 单 组 分 物 理 吸 收 的 物 系 , 根 据相律 ,自 由度数F 为F=CΦ+2=3-2+2=3(C=3,溶质A,惰性组分B,溶剂S,Φ=2,气、液两 相),即在温度 t ,总压 p ,气、液相组成共4个变量中,由3个自 变量(独立变量),另1个是它们的函数,故可将平衡时溶质在气
化工原理 第九章 气体吸收
第一节概述一、什么是吸收?吸收是利用气体混合物中各组分在某种溶剂中溶解度的差异,而将气体混合物中组分加以分离的单元操作。
溶质: 气体混合物中能溶解的组分称为溶质,以A表示;惰性组分: 不溶或微溶组分称为惰性组分或载体,以B表示;溶剂: 吸收过程所用的溶剂称为吸收剂,以S表示;吸收液: 所得的溶液称为吸收液。
二、吸收在石油化工中的应用(1)回收有用组分(2)制取液态产品(3)净化气体(废气治理)三、吸收的工艺流程四、吸收分类按溶质和溶剂之间是否发生明显的化学反应吸收按溶于溶剂的组分数吸收按吸收过程是否发生明显的温度变化吸收五、吸收剂的选择1.溶解度大;2.选择性好;3.挥发度低;4.粘度低;5.无毒、无腐蚀;6.吸收剂应尽可能不易燃、不易发泡、价廉易得、稳定。
第二节吸收过程的相平衡关系一、气体在液体中的溶解度在一定的温度与压力下、使气体混合物与一定量的溶剂接触,气相中的溶质便向液相中的溶质转移,直至液相中溶质达到饱和为止,这时,我们称之为达到了相平衡状态。
达到了相平衡状态时气相中溶质的分压,成平衡分压;液相中溶质的浓度称为平衡浓度(或溶解度)。
大量实验表明,溶解度和气相中溶质的分压有关。
从图上可以看出:分压高,溶解度大温度高,溶解度小吸收操作应在低温高压下进行,脱吸应在高温、低压下进行二、亨利定律1.亨利定律在一定的温度下,当总压不很高(<500kpa)时,稀溶液上方溶质的平衡分压与该溶质在液相中的摩尔分率成正比,其表达式如下式中------溶质在气相中的平衡分压,KN/m2;------溶质在液相中的摩尔分率;E------亨利系数,。
式(9-1)称为亨利(Henry)定律。
亨利系数E值由实验测定,常见物系的E值可由有关手册查出。
当物系一定时,亨利系数随温度而变化。
一般说来,值随温度升高而增大,这说明气体的溶解度随温度升高而减小,易溶气体值小,难溶气体的值大。
2.用溶解度系数表示的亨利定律若将亨利定律表示成溶质在液相中的摩尔浓度与其在气相中的平衡分压之间的关系,则可写成如下形式(9-2)式中C──液相中溶质的摩尔浓度,kmol/m3H──溶解度系数,溶液中溶质的摩尔浓度和摩尔分率及溶液的总摩尔浓度之间的关系为(9-3)把上式代入式(9-2)可得将上式与式(9-1)比较,可得(9-4)溶液的总摩尔浓度可用1m3溶液为基准来计算,即(9-5)式中──溶液的密度(kg/m3)──溶液的摩尔质量。
化工原理第五章气体吸收
(二)不同气体在同一吸收剂中的溶解度 (1)
几x*N种H3气体x在S*O水2 中的x溶C*O解2 度曲xO*线2
13
• (2)不同气体用同一吸收剂吸收,所得溶液浓度相 同时,易溶气体在溶液上方的平衡分压低,而难溶 气体在溶液上方的平衡分压大。
14
(三)总压对溶解度的影响
y
A
P
pA
x*A
20℃下SO2在水中的溶解度
cA H
H——溶解度系数, kmol/(m3·kPa) cA——摩尔浓度,kmol/m3;
E与H的关系: H c E
19
H的讨论:1)H大,溶解度大,易溶气体 2)P对H影响小,
T H
20
2) y * mx
m——相平衡常数,无因次。
m的讨论:1)m大,溶解度小,难溶气体 2)T m
p m
气相
液相
41
讨论
1) N A p A1 p A2
2)组分的浓度与扩散距离z成直线关系。
pA1 pB1
0
p 扩散距离z
pB2 pA2 z
3)等摩尔逆向扩散发生在蒸馏过程中。
42
• 传动——第一章 流体流动
• 传热——第四章 传热
• 传质——
第五章 吸收 (组分A通过静止
组分B的扩散)
第六章 蒸馏 (等摩尔逆向扩散)
处的扩散速率与该处A的浓度梯度成正比。
理想气体,有:
JA
DAB
dcA dz
或
JA
DAB RT
dpA dz
JA——组分A扩散速率(扩散通量), kmol/(m2·s);
dcA / dz —组分A在扩散方向z上的浓度梯度(kmol/m3)/m;
化工原理-气体吸收
18
传质过程的方向
气、液相浓度(y,x)在平
衡线下方(Q点):
2019/9/9
projects of Dr.Hao
10
气体的溶解度
• 在温度和压力一定的条件下,平衡时的气、液相组成具有 一一对应关系。
• 平衡状态下气相中溶质的分压称为平衡分压或饱和分压, 与之对应的液相浓度称为平衡浓度或气体在液体中的溶解 度。这时溶液已经饱和,即达到了它在一定条件下的溶解 度,也就是指气体在液相中的饱和浓度,习惯上以单位质 量(或体积)的液体中所含溶质的质量来表示,也表明一 定条件下吸收过程可能达到的极限程度。
溶解度/[g(NH3)/1000g(H2O)] 溶解度/[g(SO2)/1000g(H2O)]
1000 500
0 oC
10 oC 20 oC 30 oC 40 oC 50 oC
0
20 40 60 80 100 120
pNH3/kPa
250
200 150
0 oC 10 oC
100 50
20 oC
30 oC 40 oC
吸收传质速率方程的几种形式吸收传质速率方程的几种形式相平衡方程吸收传质速率方程总传质系数相内或同基准的传质系数换算相际或不同基准传质系数换算总传质速率方程总传质速率方程相平衡关系为曲线设平衡曲线段pqqr的割线的斜率分别为总传质速率方程总传质速率方程以气相为基准时由图可知根据总传质速率方程式以及气液相内传质速率方程式由上式可得同理以液相为基准时有代入相关传质速率方程可得平衡线为曲线时总传质阻力仍等于气液相内传质阻力之和所不同的是气液两相传质阻力的换算系数不再是相平衡常数m而是与平衡曲线段有关的m吸收塔的计算吸收塔的计算化工单元设备的计算按给定条件任务和要求的不同一般可分为设计型计算和操作型校核型计算两大类
化工原理下册气体吸收
已知: ,相平衡关系,求解:解吸气用量G,解吸塔填料层高度H。
(1)解吸气用量的计算
最小气液比
式中 是与 相平衡的气相浓度。若相平衡关系可以用亨利定律来表示 ,则
。
实际气液比 ,n=1.2~2倍。L和G的单位同时为 或 。
出塔气体实际浓度
(2)解吸塔填料层高度的计算
传质单元高度: , 。计算时一定要注意各物理量的单位,G和L的单位为 , 和 的单位为 。
吸收问题计算
一、吸收塔设计型计算
已知: ,相平衡关系,求解:吸收剂用量L和填料层高度H。
1、的计算
最小液气比: , 是与 呈平衡的浓度,此时填料层高度为无限高。
操作液气比: ,n=1.2~2倍。L和G的单位同时为 或 。
实际塔底流出液体的组成:
2、填料层高度的计算
根据填料塔单位横截面积微元填料高度dh范围内的物料衡算
自塔顶端到塔底端积分,得到填料层高度H的表达式为
和
传质单元高度: , 。计算时一定要注意各物理量的单位,G和L的单位为 , 和 的单位为 。
与 的关系:
传质单元数: ,
传质单元数的主要求解方法:
(1)对数平均推动力法
气相传质单元数:
该方法适用于在所涉及到的浓度范围内,相平衡关系为线性关系。若相平衡关系可以用亨利定律 表示出来,对数平均推动力法的另一表达形式为
2、如果吸收操作的液气比大于平衡线的斜率, ,塔内传质在塔顶达到平衡,操作线与平衡线在塔顶出现交点,此时 。
四、吸收剂再循环问题的分析
有吸收剂再循环与无吸收剂循环时比较,有以下两点不同:(1)吸收剂入塔时的实际浓度增加了;(2)因为实际入塔吸收剂量的增加,塔内操作线的斜率稍有增加。因此,如果平衡关系不变,即平衡线不变,则吸收传质推动力一般要减小。
化工原理第九章气体吸收的基本概述
1 11
K x mk y kx
1 1 m Ky ky kx
mK y K x
吸收传质理论与传质速率方程
吸收传质理论与传质速率方程
相平衡关系为曲线
设平衡曲线段 PQ 与 QR 的割线的斜率分别为 mL 和 mG
y
斜率
=-kx/ky y*=f(x)
y A
R
mG
yi
mL
Q
y*
P
o
x
xi x* x
[例题]
气相传质阻力占总阻力的比例
1
1
ky 5.31104 89.3%
1
1
K y 4.74104
液相传质阻力占总阻力的比例
m
1.2
kx 5.33103 10.7%
1
1
K y 4.74104
作业
第56页: 9.4
和比摩尔分数。
吸收传质理论与传质速率方程
注意:气相传质系数虽然单位不同,数值也不同,但可根 据组成表示法的相互关系进行换算。 例:根据 p=Py,有
N A kg ( p pi ) kg P( y yi ) k y ( y yi )
k y Pk g
kY
ky (1 Y )(1 Yi )
X)
Xi 1
X kX
吸收传质理论与传质速率方程
同样,根据各种表示法的相互关系可推得
kX cmkc
kX
(1
kx X )(1 X i )
式中 cm 为液相的总摩尔浓度。 液相浓度很低时:
kX kx kx cmkc
对流传质系数
Sh f (Re,Sc )
化工原理第八章 气体吸收
平衡关系与上式联立可求解界面浓度 xi 与 yi 。在用作图
3
三、工业吸收过程
工业的吸收过程常在吸收塔中进行。生产中除少部分直 接获得液体产品的吸收操作外,一般的吸收过程都要求 对吸收后的溶剂进行再生,即在另一称之为解析他的设 备中进行于吸收相反的操作-解吸。因此,一个完整地 吸收分离过程一般包括吸收和解吸两部分。
2024/3/25
4
8.2 吸收过程相平衡基础
对于单组分物理吸收,组分数c=3(溶质A、惰性 气体B、溶剂S),相数(气、液),自由度数F应为
F c23223
即在温度、总压和气、液组成共四个变量中,有三个是 自变量,另一个是它们的函数。
2024/3/25
6
在一定的操作温度和压力下,溶质在液相中的溶解 度由其相中的组成决定。在总压不很高的情况下,可以 认为气体在液体中的溶解度只取决于该气体的分压pA , 而与总压无关。于是,cA*与 pA 得函数关系可写成
ky P kG
Ky m Kx KG HKL
13
二、界面浓度的求取
当m随浓度变化时,用分传质速率方程式计算更加方 便,界面浓度 xi 与 yi 存在关系有:
(1)有双膜模型理论,yi 与 xi 在平衡线上。如果平衡线以
y f (x) 表示,则 yi 。 f (xi )
(2)可导出
y yi kx x xi ky
2024/3/25
12
不同的推动力所对应的不同传质系数和速率方程。
浓度组成表示法
表8—1 传质速率方程的各种形式
摩尔分率
物质得量浓度或分压
传质速率方程 总传质系数
2024/3/25
N A ky ( y yi ) kx (xi x) ky (y y*) kx (x* x)
化工原理第五章-气体吸收第节(PPT 精品)
积分数为9%,要求SO2的回收率为90%。若吸收剂用量
为理论最小用量的1.2倍,试计算:(1)吸收剂用量及塔 底吸收液的组成X1;(2)当用含SO2 0.0003(摩尔比)
的水溶液作吸收剂时,保持SO2回收率不变,吸收剂用量
为多少?塔底吸收液的组成? 解: y1 0.09 进塔气体中 SO2的组成为 Y1 0.099 1 - y1 1 - 0.09 出塔气体中 SO2的组成为 Y2 Y ( 1 1 - ) 0.099(1 - 0.9) 0.0099
第5章 气体吸收
5.5.1 物料衡算与操作线方程 5.5.2 吸收剂用量的确定 5.5.3 塔径的计算 5.5.4 填料层高度的计算 5.5.5 高浓度气体的吸收 5.5.6 解吸过程及其计算
5.5 吸收塔的计算
2019/1/25
吸收塔的设计计算,一般的已知条件是: 1 ) 气 体 混合 物 中 溶质 A 的 组 成( mol 分率)以及流量 kmol/(m2.s) 2)吸收剂的种类及T、P下的相平衡关系; 3)出塔的气体组成 需要计算: 1)吸收剂的用量kmol/(m2.s); 2)塔的工艺尺寸,塔径和填料层高度
2019/1/25
L L Y X (Y1 X 1 ) V V
——逆流吸收塔操作线方程
在m—n截面与塔顶截面之间作组分A的衡算
VY LX 2 VY2 LX
L L Y X (Y2 X 2 ) V V
——逆流吸收塔操作线方程
2019/1/25
说明:
(1)定态连续操作时,若L、V一
单位时间内由气相转入液相的
A的物质量为:
dGA VdY LdX
dGA N AdA N A (adZ )
化工原理第八章气体吸收
实验结果讨论与误差分析
03
分析实验过程中可能出现的误差来源,如测量误差、操作误差、环境误差等,并提出相应的改进措施。
误差分析
根据实验数据和分析结果,讨论气体吸收过程中的传质机理、影响因素以及优化措施。
实验结果讨论
总结实验结果和误差分析,得出关于气体吸收实验的结论,为后续研究和应用提供参考。
实验结论
过程模拟软件介绍
2
1
3
过程模拟软件是一种基于计算机技术的数值模拟工具,可以对化工过程进行建模和模拟,预测过程的性能和行为。
过程模拟软件可以用于气体吸收过程的建模和模拟,包括吸收塔的设计、操作条件的优化、过程性能的预测等。
在气体吸收中的应用
在使用过程模拟软件时,需要注意模型的准确性、数据的可靠性以及计算结果的合理性等方面。
第二小节
气体吸收设备类型及特点
填料塔结构与工作原理
填料塔结构
主要包括塔体、填料、液体分布器、气体进出口管等部分。塔内装有一定高度的填料,以增加气液接触面积,促进吸收过程。
工作原理
气体从塔底进入,通过填料层时与从塔顶喷淋下来的吸收液充分接触,完成吸收过程。填料的存在使得气液两相在较小的空间内得到充分混合,提高了吸收效率。
制定详细的实验步骤和操作规范,包括装置启动、气体和液体流量调节、温度控制、数据记录等。
实验操作规范
实验装置搭建
数据采集、处理和分析方法
使用流量计、压力表、温度计等测量仪器,实时记录气体和液体的流量、压力、温度等参数。
对实验数据进行整理、筛选和计算,得到气体吸收量、吸收速率、传质系数等关键指标。
采用图表、曲线等形式对实验数据进行可视化分析,探讨气体吸收过程中的影响因素和规律。
软件使用注意事项
化工原理讲稿气体吸收课件
ye
y
M
o
对解吸而言:
xe
xx
若保持液相浓度x不变,气相浓度y最高只能升到与之相平
衡的浓度ye,即 ymax=ye; 若保持气相浓度y不变,则液相浓度x最低也只能降到与气
相浓度y相平衡的浓度xe,即 xmin=xe。
第二节 吸收过程的相平衡关系
3.传质过程的推动力
未达平衡的两相接触会发生相际间传质(吸收或解吸),离平衡浓度越远,
气, p2
液, x2
吸收塔
混合气体, p1
液, x1
例题3
含溶质A 且摩尔分率为x=0.2的溶液与压力为 2atm, y=0.15的气体等温接触,平衡关系为:pe=1.2x(atm), 则此时将发生 过程。用气相组成和液相组成表示 的总传质推动力分别为Δy= ,Δx= (摩尔分 率)。如系统温度略有增高,则Δy将 。如系统总 压略有增高,则Δx将 。
大量实验表明,溶解度与平衡分压有关。
第二节 吸收过程的相平衡关系
2.溶解度曲线
第二节 吸收过程的相平衡关系
结论:
➢气体的气相分压(组成)越高,溶解度越大
➢气体的温度越高,溶解度越小
启示:吸收操作应在低温、高压下进行; 脱吸操作应在高温、低压下进行。
第二节 吸收过程的相平衡关系
二、亨利定律(Henry’s law)
第二节 吸收过程的相平衡关系
2.传质过程的限度
对吸收而言: 若保持液相浓度x不变,气相 y 浓度y最低只能降到与之相平
y
衡的浓度ye,即ymin=ye; 若保持气相浓度y不变,则液 相浓度x最高也只能升高到与 ye 气相浓度y相平衡的浓度xe,
o
即xmax=xe。
化工原理第八章气体吸收
LS Yb − Ya = X ∗− X G b a B min
费 用
t c o
理论上应综合设备大小、能量消耗等因素, 以生产利润(或费用)为 目标函数确定最适宜液气比 Lopt。实际设计时 , 根据生产经验 , 实际液 气比取:
LS =(1.1~1.5) GB
三. 低浓度吸收计算
y+dy x+dx G L yb xb
π
4
DT2G(y+dy) DT2Gy
(输出量)=
π
4
图8-8:填料塔微分物料衡算
(消失量)=NAdA' = (积累量)=0
π
4
DT2 NAadh~在 dh 内,由气相进入液相
代入物料衡算方程,整理得: Gdy= NAadh 若取速率方程为: NA= Ky(y-y*) 则:Kya(y-y*)dh=Gdy B.C.: h~ 0→h0
工艺条件:T、P、G、yb 工艺要求:ya 工程决策:xa、L 计算目标:h0(或 N)、DT
G L y x
二. 物料衡算
⒈ 填料塔吸收过程分析(如图)
假设连续稳态流动, G~气体摩尔通量
GB LS yb xb Yb X b
图8-5 : 填料塔流程图
kmol m2 ⋅ s
化学工程与工艺专业本科教学用
y A*=mxA →m=E/P~相平衡常数,无因次 ⑶ 非线性相平衡 对于高浓度或非理想溶液,用相平衡曲线或经验式来描述相平衡关系 二. 传质速率方程
⒈ 传质机理与双膜理论
⑴ 吸收传质机理 溶质 A :气相对流传质→相界面传质→液相对流传质 ⑵ 有效膜理论~双膜理论 双膜理论假设: Ⅰ:在相界面两侧存在着稳 定 的 气 膜 和 液 膜(即浓度边界层),形成传质的主要阻力; Ⅱ:相界面传质阻力为零,即相界面始终处 于相平衡。 pAi= f(CAi) 那么: 气膜传质速率:NA=kG(pA-pAi) 相界面传质: pAi= f(CAi) (1) (2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•气体吸收是混合气 体中某些组分在气液 相界面上溶解、在气 相和液相内由浓度差 推动的传质过程。
吸收剂
气相主体 相界面 液相主体
y 界面
x
xi yi
2020/6/6
气体
projects of Dr.Hao
气相扩散 液相扩散
2
概述(Introduction)
• 吸收质或溶质(solute):混合气体中的溶 解组分,以A表示。
2020/6/6
projects of Dr.Hao
8
第一节 气—液相平衡 2––1––1 气体的溶解度
• 气体吸收的平衡关系指气体在液体中的溶解度。 • 如果把氨气和水共同封存在容器中,令体系的压
力和温度维持一定,由于氨易溶于水,氨的分子 便穿越两相界面进入水中,但进到水中的氨分子 也会有一部分返回气相,只不过刚开始的时候进 多出少。水中溶解的氨量越多,浓度越大,氨分 子从溶液逸出的速率也就越大,直到最后,氨分 子从气相进入液相的速率便等于它从液相返回气 相的速率,氨实际上便不再溶解进水里,溶液的 浓度也就不再变化,这种状态称为相际动平衡, 简称相平衡或平衡。
• 惰性气体(inert gas)或载体:不溶或难溶 组分,以B表示。
• 吸收剂(absorbent):吸收操作中所用的 溶剂,以S表示。
• 吸收液(strong liquor):吸收操作后得到 的溶液,主要成分为溶剂S和溶质A。 混合尾气
• 吸收尾气(dilute gas):吸收后排出的气 (A+B) 体,主要成分为惰性气体B和少量的溶质 A。
2020/6/6
projects of Dr.Hao
5
本章以分析单组分的等温物理吸收为重点,以便掌握最基本 的原理。
• 气体吸收是物质自气相到液相的转移,这是一种传质过程。 • 混合气体中某一组分能否进入溶液里,既取决于该组分的分压,
也取决于溶液里该组分的平衡蒸汽压。如果混合气体中该气体的 分压大于溶液的平衡蒸汽压,这个组分便可自气相转移至液相, 即被吸收。由于转移的结果,溶液里这个组分的浓度便增高,它 的平衡蒸汽压也随着增高,到最后,可以增高到等于它在气相中 的分压,传质过程于是停止,这时称为气液两相达到平衡。 • 反之,如果溶液中的某一组分的平衡蒸汽压大于混合气体中该组 分的分压,这个组分便要从溶液中释放出来,即从液相转移到气 相,这种情况称为解吸(或脱吸)。 • 所以根据两相的平衡关系可以判断传质过程的方向与极限,而且, 两相的浓度距离平衡愈远,则传质的推动力愈大,传质速率也愈 大。 • 吸收操作的分析,应该从气液两相的平衡关系与传质速率关系着 手,本章各节即如此展开讨论。
2020/6/6
projects of Dr.Hao
4
概述(Introduction)
二、吸收操作的分类 • 物理吸收(physical absorption):吸收过程溶质与溶剂不发
生显著的化学反应,可视为单纯的气体溶解于液相的过程。 如用水吸收二氧化碳、用水吸收乙醇或丙醇蒸汽、用洗油 吸收芳烃等。 • 化学吸收(chemical absorption):溶质与溶剂有显著的化学 反应发生。如用氢氧化钠或碳酸钠溶液吸收二氧化碳、用 稀硫酸吸收氨等过程。化学反应能大大提高单位体积液体 所能吸收的气体量并加快吸收速率。但溶液解吸再生较难。 • 单组分吸收:混合气体中只有单一组分被液相吸收,其余 组分因溶解度甚小其吸收量可忽略不计。 • 多组分吸收:有两个或两个以上组分被吸收。 • 溶解热:气体溶解于液体时所释放的热量。化学吸收时, 还会有反应热。 • 非等温吸收:体系温度发生明显变化的吸收过程。 • 等温吸收:体系温度变化不显著的吸收过程。
图 9-2 填 料 塔 和 板 式 塔
2020/6/6
projects of Dr.Hao
7
蒸馏与吸收操作对比
• 蒸馏改变状态参数产生第二相,吸收从外界引入 另一相形成两相系统;
• 蒸馏直接获得轻、重组分,吸收混合液经脱吸才 能得到较纯组分;
• 蒸馏中气相中重组分向液相传递,液相中轻组分 向气相传递,是双相传递;吸收中溶质分子由气 相向液相单相传递,惰性组分及溶剂组分处于 “停滞”状态。
2020/6/6
projects of Dr.Hao
9
气体的溶解度
• 在温度和压力一定的条件下,平衡时的气、液相组成具有 一一对应关系。
• 平衡状态下气相中溶质的分压称为平衡分压或饱和分压, 与之对应的液相浓度称为平衡浓度或气体在液体中的溶解 度。这时溶液已经饱和,即达到了它在一定条件下的溶解 度,也就是指气体在液相中的饱和浓度,习惯上以单位质 量(或体积)的液体中所含溶质的质量来表示,也表明一 定条件下吸收过程可能达到的极限程度。
第二章 气体吸收
Gas Absorption
2020/6/6
projects of Dr.Hao
1
概述(Introduction)
• 利用混合气体中各组分(component)在液体中溶解度(solubility) 的差异而分离气体混合物的单元操作称为吸收。吸收操作时 某些易溶组分进入液相形成溶液(solution),不溶或难溶组分 仍留在气相(gas phase),从而实现混合气体的分离。
• (2) 分离混合气体 吸收剂选择性地吸收气体中某些组分 以达到分离目的。例如石油馏分裂解生产出来的乙烯、 丙烯,还与氢、甲烷等混在一起,可用分子量较大的液 态烃把乙烯、丙烯吸收,使与甲烷、氢分离开来 。
• (3) 气体净化 一类是原料气的净化,即除去混合气体中 的杂质,如合成氨原料气脱H2S、脱CO2等;另一类是尾 气处理和废气净化以保护环境,如燃煤锅炉烟气,冶炼 废气等脱除SO2,硝酸尾气脱除NO2等。
2020/6/6
projects of Dr.Hao
6
气液两相的接触方式
连续接触(也称微分接触):气、 液两相的浓度呈连续变化。如填 料塔。
溶剂 溶剂规整填料散装料塑料丝网波纹填料 塑料鲍尔环填料
级式接触:气、液两相逐级接 触传质,两相的组成呈阶跃变 化。 如板式塔。
气体
气体
a 微分接触
b 级式接触
• 吸收过程在吸收塔中进行,逆流操作吸
收塔示意图如右所示。
吸收剂(S)
吸收尾气
吸
(A+B)
收
塔
吸收液(A+S)
2020/6/6
projects of Dr.Hao
3
概述(Introduction)
一、吸收操作的用途:
• (1) 制取产品 用吸收剂吸收气体中某些组分而获得产品。 如硫酸吸收SO3制浓硫酸,水吸收甲醛制福尔马林液,用 水吸收氯化氢制盐酸等 。