二次函数的应用练习题及答案
二次函数的应用测试题(含答案)
二次函数的应用测试题(含答案)一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米B.3米C.5米D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2 +10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x 轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y= (x+3)2B.y= (x+3)2C.y= (x﹣3)2D.y= (x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2sB.4sC.6sD.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米B.5米C.6米D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3sB.4sC.5sD.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/sB.20 m/sC.10 m/sD.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx ﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26.3.3二次函数的应用参考答案与试题解析一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A. 1米B.3米C.5米D. 6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A. 30万元B.40万元C.45万元D. 46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售(15﹣x)量,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:= =46(万元),故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x 轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A. y= (x+3)2B.y= (x+3)2C.y= (x﹣3)2D. y= (x﹣3)2考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(﹣3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(﹣3,0),∴右边抛物线的顶点C的坐标为(3,0),设右边抛物线的解析式为y=a(x﹣3)2,把D(1,1)代入得1=a×(1﹣3)2,解得a= ,故右边抛物线的解析式为y= (x﹣3)2.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A. 2sB.4sC.6sD. 8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度h(m)与飞行时间t(s)的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A. 2米B.5米C.6米D. 14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5(t2﹣4t)﹣14=﹣5(t2﹣4t+4)+20﹣14=﹣5(t﹣2)2+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A. 3sB.4sC.5sD. 6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A. 40 m/sB.20 m/sC.10 m/sD. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.解答:解:当刹车距离为5m时,即可得y=5,代入二次函数解析式得:5= x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.点评:本题考查了二次函数的应用,明确x、y代表的实际意义,刹车距离为5m,即是y=5,难度一般.二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x= ,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是(,5).考点:二次函数的应用.专题:压轴题.分析:分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.解答:解:线段AB的解析式是y= x+1(0≤x≤4),此时w=x(x+1)= +x,则x=4时,w最大=8;线段AC的解析式是y= x+1(0≤x≤2),此时w=x(x+1)= +x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10 )=﹣2x2+10x,此时x= 时,w最大=12.5 .综上所述,当w=xy取得最大值时,点P的坐标是(,5).点评:此题综合考查了二次函数的一次函数,能够熟练分析二次函数的最值.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为2米.考点:二次函数的应用.分析:直接利用公式法求出函数的最值即可得出最高点离地面的距离.解答:解:∵函数解析式为:,∴y最值= = =2.故答案为:2.点评:此题主要考查了二次函数的应用,正确记忆最值公式是解题关键.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为(60+x)件(用含x的代数式表示).考点:二次函数的应用.分析:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,设销售量为a,代入函数的解析式,即可得到a和x的关系.解答:解:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,∴,解得:,∴w=﹣x2+3600,设销售量为a,则a(60﹣x)=w,即a(60﹣x)=﹣x2+3600,解得:a=(60+x ),故答案为:(60+x).点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题,用的知识点为:因式分解,题目设计比较新颖,同时也考查了学生的逆向思维思考问题.三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?考点:二次函数的应用.分析:(1)由原来的销量﹣每天减少的销量就可以得出现在每天的销量而得出结论; (2)由每件的利润×数量=总利润建立方程求出其解即可.解答:解:(1)由题意,得32﹣×4=80﹣2x.答:每天的现售价为x元时则每天销售量为(80﹣2x)件;(2)由题意,得(x﹣20)(80﹣2x)=150,解得:x1=25,x2=35.∵x≤28,∴x=25.答:想要每天获得150元的销售利润,销售价应当为25元.点评:本题考查了销售问题的数量关系每件的利润×数量=总利润的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据销售问题的等量关系建立方程是关键.16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用.专题:销售问题.分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是19 2元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B 两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?考点:二次函数的应用.专题:应用题;数形结合.分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA﹣yB的函数关系式,进而求出最值即可.解答:解:(1)由题意可得出:yB= (x﹣60)2+m经过(0,1000),则1000= (0﹣60)2+m,解得:m=100,∴yB= (x﹣60)2+100,当x=40时,yB= ×(40﹣60)2+100,解得:yB=200,yA=kx+b,经过(0,1000),(40,200),则,解得:,∴yA=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,yB= (44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20) 2+100,∴当x=20时,两组材料温差最大为100℃.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得方程求解即可;(2)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得函数关系式,进而求出最值.解答:解:(1)设每箱应涨价x元,则每天可售出(50﹣2x)箱,每箱盈利(10+x)元,依题意得方程:(50﹣2x)(10+x)=600,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10,∵要使顾客得到实惠,∴应取x=5,答:每箱产品应涨价5元.(2)设利润为y元,则y=(50﹣2x)(10+x),整理得:y=﹣2x2+30x+500,配方得:y=﹣2(x﹣7.5)2+612.5,当x=7.5元,y可以取得最大值,∴每箱产品应涨价7.5元才能获利最高.点评:此题考查了一元二次方程的应用以及二次函数应用,解答此题的关键是熟知等量关系是:盈利额=每箱盈利×日销售量.20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.专题:销售问题.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;。
(完整版)二次函数应用题(含答案)整理版
(完整版)二次函数应用题(含答案)整理版题目1:某公司的销售额可以用二次函数$y=-2x^2+20x$来表示,其中$x$表示月份(从1开始),$y$表示对应月份的销售额。
求解下列问题:问题1:请计算公司第6个月的销售额。
解答:将$x=6$代入二次函数中,可得:$y=-2\times6^2+20\times6=-72+120=48$所以公司第6个月的销售额为48。
问题2:请问公司销售额最高的月份是哪个月?解答:二次函数$y=-2x^2+20x$是一个开口朝下的抛物线,最高点即为销售额最高的月份。
通过求导数,我们可以找到函数的最高点。
首先,求导得到一次函数$y'=-4x+20$,令$y'=0$,解方程可得$x=5$。
因此,公司销售额最高的月份是第5个月。
题目2:一架火箭从地面起飞后,高度$h$(以米为单位)随时间$t$(以秒为单位)变化的规律可以用二次函数$h=-5t^2+100t$表示。
求解下列问题:问题1:请问火箭多少秒后达到最大高度?解答:同样地,通过求导数,我们可以找到火箭高度的最高点。
将二次函数$h=-5t^2+100t$求导得到一次函数$h'=-10t+100$,令$h'=0$,解方程可得$t=10$。
因此,火箭在10秒后达到最大高度。
问题2:请计算火箭达到最大高度时的高度。
解答:将$t=10$代入二次函数中,可得:$h=-5\times10^2+100\times10=-500+1000=500$所以火箭达到最大高度时的高度为500米。
以上是对二次函数应用题的解答,希望能帮助到您。
二次函数应用题(一)(含答案)
学生做题前请先回答以下问题问题1:二次函数应用题的解题思路是什么?问题2:应用题结果的验证需要考虑哪些方面?问题3:题中出现哪些关键字时,考虑用函数求解?二次函数应用题(一)一、单选题(共4道,每道25分)1.有一座抛物线型拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米,建立如图所示的平面直角坐标系,若正常水位时,桥下水深6米.为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过( )米时,就会影响过往船只的顺利航行.A.2.76米B.6.76米C.6米D.7米答案:B解题思路:1.解题要点①理解题意,建立数学模型将题目中的数据转化为图中对应的线段长,确定关键点坐标,求出抛物线解析式.观察图形,抛物线的顶点为(0,0),由题意,抛物线过点(10,-4),故可求出抛物线的解析式.②明确目标及判断标准,利用二次函数图象性质求解要求影响过往船只顺利航行的水深,可先分析临界状态,分析当水面宽度为18米时的水深.由二次函数的对称性,可转化为分析当x=9时的水深.首先可得对应的y值,结合拱顶到水底的总的距离为6+4=10,可求出保证过往船只顺利航行临界水深.③回归目标,判断验证,结果总结2.解题过程设该抛物线的解析式为,由题意得,抛物线过点(10,-4),代入解析式得,∴,∴该抛物线的解析式为.令x=9,可得y=-3.24,此时水深为6+4-3.24=6.76米,即桥下水深6.76米时正好可以保证过往船只顺利航行,所以当水深超过6.76米时就会影响过往船只的顺利航行.故选B.试题难度:三颗星知识点:二次函数的应用2.如图,隧道的截面是抛物线,可以表示为,该隧道内设双行道,限高为3m,那么每条行道宽是( )A.不大于4mB.恰好4mC.不小于4mD.大于4m,小于8m答案:A解题思路:由题意,把代入中得:(舍去).由于设计的是双行道,所以每条行道宽应不大于4m.故选A.试题难度:三颗星知识点:二次函数的应用3.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图,正在甩绳的甲,乙两名学生拿绳的手间距为4m,距地面均为1m,学生丙,丁分别站在距甲拿绳的手水平距离1m,2.5m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5m,则学生丁的身高为(建立的平面直角坐标系如图所示)( )A.1.5mB.1.625mC.1.66mD.1.67m答案:B解题思路:设抛物线的解析式为,由题意,抛物线过点(-1,1),(3,1),(0,1.5),代入解得,,,∴.当时,.即学生丁的身高是1.625m.故选B.试题难度:三颗星知识点:二次函数的应用4.如图,排球运动员甲站在点O处练习发球,将球从O点正上方的A处发出,把球看成点,其运行路线是抛物线的一部分,点D为球运动的最高点.球网BC 离O点的水平距离为9m,以O为坐标原点建立如图所示的坐标系,乙站立地点M的坐标为(m,0).乙原地起跳可接球的最大高度为2.4米,若乙因为接球高度不够而失球,则m的取值范围为( )A. B.C. D.答案:B解题思路:由题意,将y=2.4代入中得:,解得,若乙因为接球高度不够而失球,则结合图象有.∵,∴.故选B.试题难度:三颗星知识点:函数类应用题。
二次函数的应用(解决实际问题)带答案)
二次函数的应用1.如图,假设篱笆(虚线部分)的长度16m ,则所围成矩形ABCD 的最大面积是( ) A .60m 2 B .63m 2 C .64m 2 D .66m 2【答案】C .考点:1.二次函数的应用;2.应用题;3.二次函数的最值;4.二次函数的最值.2.厂为扬州三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度(m)h 与飞行时间(s)t 的关系式是252012h t t =-++,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .6s【答案】B .考点:二次函数的应用. 3.如图,正三角形ABC 的边长为,在三角形中放入正方形DEMN 和正方形EFPH ,使得D 、E 、F在边CB 上,点P 、N 分别在边CA 、AB 上,设两个正方形的边长分别为m ,n ,则这两个正方形的面积和的最小值为A.B.C.3 D.【答案】D【解析】【分析】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,根据等边三角形的性质得∠A=∠B=60°,AB=3+,利用含30°的直角三角形三边的关系得BD=DN=m,CF=PF=n,则m+m+n+n=3+,所以n=3-m,S=m2+n2=m2+(3-m)2=2(m-)2+,接着确定m的取值范围,然后根据二次函数的性质求出S的最小值.【详解】设正方形DEMN、正方形EFPH的边长分别为m、n,它们的面积和为S,∵△ABC为等边三角形,∴∠A =∠B=60°,AB=3+,在Rt△ADN中,BD=DN=m,在Rt△BPF中,CF=PF=n,∵AD+DE+EF+BF=AB,∴m+m+n+n=3+,∴m+n=3,∴n=3-m,∴S=m2+n2=m2+(3-m)2=2(m-)2+,当点M落在AC上,则正方形PHEC的边长最小,正方形DNME的边长最大,如图,在Rt△ADN中,BD=DN,CM=DN,∴DN+DN=3+,解得DN=3-3,在Rt△CPF中,CF=PF,∴(3-3)+3-3+EF+PF=3+,解得PF=6-9,∴6-9≤m≤3-3,∴当m=时,S最小,S的最小值为,故答案选D.4.把一个物体以初速度v0(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=v0t- gt2(其中g是常数,取10米/秒2).某时,小明在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是( ) A.1.05米B.-1.05米C.0.95米D.-0.95米【答案】C【解析】【分析】把t=2.1代入h=v0t-gt2,求出h的值,然后加2即可.【详解】把t=2.1代入h=v0t-gt2得,h=10×2.1-×10×2.12=-1.05(米),-1.05+2=0.95(米).故选C.5.点为线段上的一个动点,,分别以和为一边作等边三角形,用表示这两个等边三角形的面积之和,下列判断正确的是()A.当为的三等分点时,最小B.当是的中点时,最大C.当为的三等分点时,最大D.当是的中点时,最小【答案】D【解析】【分析】根据四个选择项,可知要判断的问题是C在AB的什么位置时,S有最大或最小值.由于点C是线段AB上的一个动点,可设AC=x,然后用含x的代数式表示S,得到S与x的函数关系式,最后根据函数的性质进行判断.【详解】设AC=x,则CB=1-x,S=x2+(1-x)2,即S=x2-x+=(x-)2+,∵a=>0,∴当x=时,S最小,此时,C是AB的中点,故选D.【点睛】本题考查了二次函数的最值,根据题意建立二次函数的关系式,然后根据二次根式的性质进行解答是关键.6.抛物线p :y=ax 2+bx+c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________. 【答案】223y x x =--. 【解析】试题分析:由题意可得,抛物线y =x 2+2x +1和直线y =2x +2的交点坐标就是点A 、C′的坐标,把y =x 2+2x +1和y =2x +2联立组成方程组,解得方程组的解即可的得A (—1,0)、C′(1,4).又因y=ax 2+bx+c 的顶点为C 与C′关于x 轴对称,所以C (1,-4). y=ax 2+bx+c 的顶点为C (1, —4)且过点A (—1,0).可设抛物线的解析式为y=a (x —1)2 —4,把点A (—1,0)代入即可求得a=1,所以y=(x —1)2 —4,即223y x x =--.考点:阅读理解题;求函数的交点坐标;求函数的解析式.学科网7. 某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x 棵橙子树.(1)直接写出平均每棵树结的橙子个数y (个)与x 之间的关系; (2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【答案】(1)6005y x =-;(2)果园多种10棵橙子树时,可以使橙子的总产量最大,最大为60500个. 【分析】(1)根据每多种一棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,利用配方法把二次函数化为顶点式,根据二次函数的性质进行解答即可. 【解析】(1)平均每棵树结的橙子个数y (个)与x 之间的关系为:y =600﹣5x (0≤x <120);(2)设果园多种x 棵橙子树时,可使橙子的总产量为w ,则w =(600﹣5x )(100+x )=25(10)60500x --+ 则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个. 考点:二次函数的应用.8.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m (30<m ≤100)人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元.(1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.【答案】(1)y =120 (030)[120(30)] (30)[120(30)] (100)x x x x x m m x m x <≤⎧⎪--<≤⎨⎪--<≤⎩;(2)30<m ≤75.【分析】(1)根据收费标准,分0<x ≤30,30<x ≤m ,m <x ≤100分别求出y 与x 的关系即可.(2)由(1)可知当0<x ≤30或m <x <100,函数值y 都是随着x 是增加而增加,30<x ≤m 时,2150y x x =-+,根据二次函数的性质即可解决问题.【解析】(1)y =120 (030)[120(30)] (30)[120(30)] (100)x x x x x m m x m x <≤⎧⎪--<≤⎨⎪--<≤⎩.(2)由(1)可知当0<x ≤30或m <x <100,函数值y 都是随着x 是增加而增加,当30<x ≤m 时,22150(75)5625y x x x =-+=--+,∵a =﹣1<0,∴x ≤75时,y 随着x 增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m ≤75.考点:二次函数的应用;分段函数;最值问题;二次函数的最值9. 某宾馆拥有客房100间,经营中发现:每天入住的客房数y (间)与其价格x (元)(180≤x ≤300)满足一次函数关系,部分对应值如表:x (元) 180 260 280 300 y (间) 100 60 50 40(1)求y 与x 之间的函数表达式;(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房需支出各种费用60元,当房价为多少元时,宾馆当日利润最大?求出最大值.(宾馆当日利润=当日房费收入﹣当日支出) 【答案】(1)11902y x =-+(180≤x ≤300);(2)当房价为210元时,宾馆当日利润最大,最大利润为8450元.【分析】(1)设一次函数表达式为y =kx +b (k ≠0),由点的坐标(180,100)、(260,60)利用待定系数法即可求出该一次函数表达式;(2)设房价为x 元(180≤x ≤300)时,宾馆当日利润为w 元,依据“宾馆当日利润=当日房费收入﹣当日支出”即可得出w 关于x 的二次函数关式,根据二次函数的性质即可解决最值问题.【解析】(1)设一次函数表达式为y=kx+b(k≠0),依题意得:18010016060k bk b+=⎧⎨+=⎩,解得:12190kb⎧=-⎪⎨⎪=⎩,∴y与x之间的函数表达式为11902y x=-+(180≤x≤300).(2)设房价为x元(180≤x≤300)时,宾馆当日利润为w元,依题意得:w=(12-x+190)(x﹣100)﹣60×[100﹣(12-x+190)]=21210136002x x-+-=21(210)84502x--+,∴当x=210时,w取最大值,最大值为8450.答:当房价为210元时,宾馆当日利润最大,最大利润为8450元.考点:二次函数的应用;二次函数的最值;最值问题.10.小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:售价(元/件)100 110 120 130 …月销量(件)200 180 160 140 …已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是元;②月销量是件;(直接填写结果)(2)设销量该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?【答案】(1)①(x-60);②(-2x + 400)(2)售价为每件130元时,当月的利润最大为9800元试题解析:(1)①(x-60);②(-2x + 400)(2)依题意可得:y=(x-60)×(-2x + 400= -2x2 + 520x – 24000= -2(x-130)2 + 9800当x=130时,y有最大值9800所以售价为每件130元时,当月的利润最大为9800元考点:二次函数的应用.11.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)设每天盈利w元,求出w关于x的函数关系式,并说明每天盈利是否可以达到8000元?(6分)(2)若该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(6分) 【答案】(1)(10)(50020)y x x =+-,不能;(2)5.试题解析:(1)设每千克涨价x 元,利润为y 元,由题意,得:215(10)(50020)20()61252y x x x =+-=--+ ∴a =﹣20<0,∴抛物线开口向下,当x =7.5时,y 最大值=6125,∴每天盈利不能达到8000元. (2)当y =6000时,6000(10)(50020)x x =+-,解得:110x =,25x =, ∵要使顾客得到实惠,∴x =5. 答:每千克应涨价为5元. 考点:二次函数的应用.12.技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线,已知起跳点A 距地面的高度为1米,弹跳的最大高度距地面4.75米,距起跳点A 的水平距离为2.5米,建立如图所示的平面直角坐标系, (1)求演员身体运行路线的抛物线的解析式?(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.【答案】(1)23315y x x =-++;(2)能,理由见试题解析. 【解析】试题分析:(1)由题意可知二次函数过A (0,1),顶点(31924,),用顶点式即可求出二次函数的解析式; (2)当4x =时代入二次函数可得点B 的坐标在抛物线上.试题解析:(1)由题意可知二次函数过A (0,1),顶点(31924,),设二次函数解析式为:2519()24y a x =-+, 把A (0,1)代入得:2519144a =+,解得:35a =-,∴23519()524y x =--+,即23315y x x =-++;(2)能成功表演.理由是:当4x =时,234341 3.45y =-⨯+⨯+=.即点B (4,3.4)在抛物线23315y x x =-++上,因此,能表演成功.考点:二次函数的应用.13.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y (单位:元)与售价x (单位:元/件)之间的函数解析式. (2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少? (4)当销售价定为多少元时会获得最大利润?求出最大利润.【答案】(1)2105006000y x x =-++;(2)550件,8250元;(3)50元;(4)65元,12250元. 【解析】试题分析:(1)根据设每个书包涨价x 元,由这种书包的售价每上涨1元,其销售量就减少10个,列出函数关系式;(2)销售价为45元,即上涨了5元,所以5x =,代入即可月销售量和销售利润; (3)令10000y =,解方程即可;(4)用配方法求出二次函数的最大值即可. 试题解析:(1)∵每个书包涨价x 元,∴2(4030)(60010)105006000y x x x x =-+-=-++, 答:y 与x 的函数关系式为:2105006000y x x =-++;(2)销售价为45元,即上涨了5元,所以月销量=600-10×5=550(件),销售利润=2105500560008250y =-⨯+⨯+=(元);考点:二次函数的应用.14.为满足市场需求,某超市在五月初五“端午节”来领前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式; (2)当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【答案】(1)201600y x =-+;(2)售价定为60元时,每天销售的利润P (元)最大,最大利润是8000元;(3)440. 【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P 与x 的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x 的取值范围,再根据(1)中所求得的销售量y (盒)与每盒售价x (元)之间的函数关系式即可求解.考点:二次函数的应用.15.已知某隧道截面积拱形为抛物线形,拱顶离地面10米,底部款20米.(1)建立如图1所示的平面直角坐标系,使y 轴为抛物线的对称轴,x 轴在地面上.求这条抛物线的解析式;(2)维修队对隧道进行维修时,为了安全,需要在隧道口搭建一个如图2所示的矩形支架AB -BC -CD (其中B 、C 两点在抛物线上,A .D 两点在地面上),现有总长为30米的材料,那么材料是否够用? (3)在(2)的基础上,若要求矩形支架的高度AB 不低于5米,已知隧道是双向行车道,正中间用护栏隔开,则同一方向行驶的两辆宽度分别为4米,高度不超过5米的车能否并排通过隧道口?(护栏宽度和两车间距忽略不计)【答案】(1)211010y x =-+;(2)够用;(3)不能.试题解析:(1)设2y ax c =+,由题意抛物线经过点(10,0),(0,10),则100010a c c +=⎧⎨=⎩,解得:11010a c ⎧=-⎪⎨⎪=⎩, 故抛物线的解析式为211010y x =-+; (2)设点C 的坐标为(m ,n ),则所需材料长度=2221112222()210210(5)251055m n m m m m m +=+⨯-+⨯=-++=--+, ∵105-<,∴当m =5时,所需材料最多,为25米,∴总长为30米的材料够用;(3)当5n =时,2110510m -+=,解得52m =, ∵5224<⨯,∴高度不超过5米的车不能并排通过隧道口. 考点:1.二次函数综合题;2.二次函数的应用.学科网。
二次函数的应用大题专练(七大类型)-2023年中考数学压轴题(解析版)
二次函数的应用大题专练(七大类型)题型一:考向分析1类型一、销售问题1(2023·浙江湖州·统考一模)为鼓励大学毕业生自主创业,某市政府出台相关政策,本市企业提供产品给大学毕业生自主销售,政府还给予大学毕业生一定补贴.已知某种品牌服装的成本价为每件100元,每件政府补贴20元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-3x+900.(1)若第一个月将销售单价定为160元,政府这个月补贴多少元?(2)设获得的销售利润(不含政府补贴)为w(元),当销售单价为多少元时,每月可获得最大销售利润?(3)若每月获得的总收益(每月总收益=每月销售利润+每月政府补贴)不低于28800元,求该月销售单价的最小值.【答案】(1)8400元(2)200元(3)140元【解析】(1)解:在y=-3x+900中,令x=160,则y=420,∴政府这个月补贴420×20=8400元;(2)由题意可得:w=-3x+9002+30000,x-100=-3x-200∵a=-3<0,∴当x=200时,w有最大值30000.即当销售单价定为200元时,每月可获得最大利润30000元.(3)设每月获得的总收益为w ,由题意可得:w =-3x+9002+36300,=-3x-190x-100+20-3x+900令w =28800,则-3x-1902+36300=28800,解得:x=140或x=240,∵a=-3<0,则抛物线开口向下,对称轴为直线x=190,∴当140≤x≤240时,w≥28800,∴该月销售单价的最小值为140元.2类型二、图形面积问题2(2023春·湖北武汉·九年级校联考期中)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是_____m2,花卉B的种植面积是______m2,花卉C的种植面积是_______m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.【答案】(1)(x2-60x+800);(-x2+30x);(-x2+20x),(2)32m或10m,(3)168000元【解析】(1)解:∵育苗区的边长为x m,活动区的边长为10m,∴花卉A的面积为:40-x20-x=(x2-60x+800)m2,花卉B的面积为:x40-x-10=(-x2+30x)m2,花卉C的面积为:x20-x=(-x2+20x)m2,故答案为:(x2-60x+800);(-x2+30x);(-x2+20x);(2)解:∵A,B花卉每平方米的产值分别是2百元、3百元,∴A,B两种花卉的总产值分别为2×x2-60x+800百元和3×-x2+30x百元,∵A,B两种花卉的总产值相等,∴200×x2-60x+800=300×-x2+30x,∴x2-42x+320=0,解方程得x=32或x=10,∴当育苗区的边长为32m或10m时,A,B两种花卉的总产值相等;(3)解:∵花卉A与B的种植面积之和为:x2-60x+800+-x2+30x=(-30x+800)m2,∴-30x+800≤560,∴x≥8,∵设A,B,C三种花卉的总产值之和y百元,∴y=2x2-60x+800+3-x2+30x,+4-x2+20x∴y=-5x2+50x+1600,∴y=-5(x-5)2+1725,∴当x≥8时,y随x的增加而减小,∴当x=8时,y最大,且y=-5(8-5)2+1725=1680(百元),故A,B,C三种花卉的总产值之和的最大值168000元.3类型三、拱桥问题3(2023·安徽黄山·统考一模)如图,国家会展中心大门的截面图是由抛物线ADB 和矩形OABC 构成.矩形OABC 的边OA =34米,OC =9米,以OC 所在的直线为x 轴,以OA 所在的直线为y 轴建立平面直角坐标系,抛物线顶点D 的坐标为92,245.(1)求此抛物线对应的函数表达式;(2)近期需对大门进行粉刷,工人师傅搭建一木板OM ,点M 正好在抛物线上,支撑MN ⊥x 轴,ON =7.5米,点E 是OM 上方抛物线上一动点,且点E 的横坐标为m ,过点E 作x 轴的垂线,交OM 于点F .①求EF 的最大值.②某工人师傅站在木板OM 上,他能刷到的最大垂直高度是125米,求他不能刷到大门顶部的对应点的横坐标的范围.【答案】(1)y =-15x -92 2+245;(2)①当m =72时,EF 有最大值165;②32<m <112.【解析】(1)解:由题意知,抛物线顶点D 的坐标为92,245,设抛物线的表达式为y =a x -92 2+245,将点A 0,34 代入抛物线解析式得34=a 0-92 2+245,解得a =-15,∴抛物线对应的函数的表达式为y =-15x -92 2+245;(2)解:①将x =7.5代入y =-15x -92 2+245中,得y =3,∴点M 152,3 ,∴设直线OM 的解析式为y =kx k ≠0 ,将点M 152,3 代入得152k =3,∴k =25,∴直线OM 的解析式为y =25x ,∴EF =-15m -92 2+245-25m =-15m 2+75m +34=-15m -72 2+165,∵-15<0,∴当m =72时,EF 有最大值,为165;②∵师傅能刷到的最大垂直高度是125米,∴当EF >125时,他就不能刷到大门顶部,令EF =125,即-15m -72 2+165=125,解得m 1=32,m 2=112,又∵EF 是关于m 的二次函数,且图象开口向下,∴他不能刷到大门顶部的对应点的横坐标m 的范围是32<m <112.4类型四、投球问题4(2023·浙江丽水·统考一模)某天,小明在足球场上练习“落叶球”(如图1),足球运动轨迹是抛物线的一部分,如图2,足球起点在A 处,正对一门柱CD ,距离AC =12m ,足球运动到B 的正上方,到达最高点2.5m ,此时AB =10m .球门宽DE =5m ,高CD =2m .(1)以水平方向为x 轴,A 为原点建立坐标系,求足球运动轨迹抛物线的函数表达式.(2)请判断足球能否进球网?并说明理由.(3)小明改变踢球方向,踢球时,保持足球运动轨迹抛物线形状不变的前提下,足球恰好在点E 处进入球网.若离A 点8m 处有人墙GH ,且GH ∥CF ,人起跳后最大高度为2.2m ,请探求此时足球能否越过人墙,并说明理由.【答案】(1)足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5(2)足球不能进球网,理由见解析(3)足球能越过人墙,理由见解析【解析】(1)解:由题意得抛物线的顶点坐标为-10,2.5 ,设抛物线的函数表达式为y =a x +10 2+2.5,将0,0 代入得,0=100a +2.5,解得a =-140,∴足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5;(2)解:足球不能进球网,理由如下:当x =-12时,y =-140-12+10 2+2.5=2.4,∵2.4>2,∴足球不能进球网.(3)解:足球能越过人墙,理由如下:∵足球运动轨迹抛物线形状不变,并经过点0,0 ,∴设抛物线的函数表达式为y =-140x 2+bx .如图,由题意知,四边形CDEF 是矩形,则CF =DE =5,在Rt △ACF 中,由勾股定理得AF =AC 2+CF 2=13,∵足球恰好在点E 处进入球网,∴抛物线经过点-13,2 ,将-13,2 代入得,2=-140×-13 2-13b ,解得b =-249520,∴y =-140x 2-249520x ,∵GH ∥CF ,∴△AGH ∽△ACF ,∴AH AF =AG AC ,即AH 13=812,解得AH =263,把x =-263代入得,y =-140×-263 2-249520×-263 =409180,∵409180>2.2,∴足球能越过人墙.5类型五、喷水问题5(2023·山东潍坊·统考一模)如图①,灌溉车沿着平行于绿化带底部边线l 的方向行驶,为绿化带浇水.喷水口H 离地竖直高度OH =1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG ,其水平宽度DE =2米,竖直高度EF =1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l 的距离OD 为d 米.(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴的正半轴交点B 的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC 位于上边缘抛物线和下边缘抛物线所夹区域内),求d 的取值范围.【答案】(1)6米(2)y=-18x+22+2,2,0(3)2≤d≤22【解析】(1)解:如图,由题意得A2,2是上边缘抛物线的顶点,则设y=a x-22+2.又∵抛物线经过点0,1.5,∴4a+2=1.5,∴a=-18.∴上边缘抛物线的函数解析式为y=-18x-22+2.当y=0时,-18x-22+2=0,∴x1=6,x2=-2(舍去).∴喷出水的最大射程OC为6m.(2)法一:∵上边缘抛物线对称轴为直线x=2,∴点0,1.5的对称点为4,1.5,∴下边缘抛物线是由上边缘抛物线向左平移4m得到的,∴将点C向左平移4m得到点B的坐标为2,0法二:∵下边缘抛物线可以看做是上边缘抛物线向左平移t个单位长度得到的,∴可设y=-18x+t-22+2,将点0,1.5代入得t1=4,t2=0(舍去)∴下边缘抛物线的关系式为y=-18x+22+2,∴当y=0时,0=-18x+22+2,解得x1=2,x2=-6(舍去),∴点B的坐标为2,0;(3)解:如图,先看上边缘抛物线,∵EF=1,∴点F的纵坐标为1.当抛物线恰好经过点F时,-18x-22+2=1.解得x=2±22,∵x>0,∴x=2+22.当x>0时,y随着x的增大而减小,∴当2≤x≤6时,要使y≥1,则x≤2+22.∵当0≤x<2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+22.∵DE=2,灌溉车喷出的水要浇灌到整个绿化带,∴d的最大值为2+22-2=22.再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB ≤d ,∴d 的最小值为2.综上所述,d 的取值范围是2≤d ≤22.6类型六、几何动点问题1例6.(2023·山东青岛·统考一模)如图,在四边形ABCD 中,AB ∥CD ,∠ABC =90°,AB =8cm ,BC =6cm ,AD =10cm ,点P 、Q 分别是线段CD 和AD 上的动点.点P 以2cm/s 的速度从点D 向点C 运动,同时点Q 以1cm s 的速度从点A 向点D 运动,当其中一点到达终点时,两点停止运动,将PQ 沿AD 翻折得到QP ,连接PP 交直线AD 于点E ,连接AC 、BQ .设运动时间为t s ,回答下列问题:(1)当t 为何值时,PQ ∥AC ?(2)求四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式;(3)是否存在某时刻t ,使点Q 在∠PP D 平分线上?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)t =409(2)S =35t 2-425t +72(3)存在,t =5【解析】(1)解:过点A 作AK ⊥CD 于点K ,∵∠ABC =90°,AB =8,BC =6,∴由勾股定理得AC =AB 2+BC 2=10,∵AD =10cm ,∴AC =AD ,∴△ACD 是等腰三角形,∴CD =2CK ,又∵AB ∥CD ,∴∠ABC =∠BCD =∠AKC =90°,∴四边形ABCK 是矩形,∴CK =AB =8,∴CD =16,若PQ ∥AC ,∴DP DC =DQ DA,由题意得,DP =2t ,AQ =t 则DQ =10-t ,∴2t 16=10-t 10,解得t =409,所以,t =409时,PQ ∥AC ;(2)过点Q 作QT ⊥CD ,交CD 于点T ,交AB 于点H ,∴AK =HT =BC =6,由(1)知CK =DK =8,AD =10,∴cos ∠D =DK AD =45,∴sin ∠D =AK AD=35=QT DQ =QT 10-t ,∴QT =6-35t ,∴QH =6-6-35t =35t ,∵四边形BCPQ 的面积=S ΔABC +S ΔACD -S ΔPQD -S ΔABQ =12⋅AB ⋅BC +12⋅CD ⋅AK -12⋅DP ⋅QT -12⋅AB ⋅QH ∴S =12×8×6+12×16×6-12⋅2t ⋅6-35t -12×8⋅35t ,整理得S =35t 2-425t +72,即四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式为S =35t 2-425t +72;(3)如图,设PP 交AD 于点E ,过点Q 作QF ⊥DP 于点F ,由折叠的性质得∠ADP =∠ADP ,PP ⊥AD ,∵AD 平分∠PDP ,QT ⊥PD ,QF ⊥P D ,∴QT =QF =6-35t ,∵点Q 在∠PP D 平分线上,PP ⊥AD ,QF ⊥P D ,∴QF =QE =6-35t ,∴DE =DQ +EQ =10-t +6-35t =16-85t ,∵cos ∠EDP =DE DP=45,即16-85t 2t =45,解得t =5,经检验t =5是分式方程的解且符合题意,所以t =5时,点Q 在∠PP D 平分线上.7类型七、图形运动问题7(2023·天津·校联考一模)在平面直角坐标系中,O 为原点,四边形AOBC 是正方形,顶点A -4,0 ,点B 在y 轴正半轴上,点C 在第二象限,△MON 的顶点M 0,5 ,点N 5,0 .(1)如图①,求点B ,C 的坐标;(2)将正方形AOBC 沿x 轴向右平移,得到正方形A O B C ,点A ,O ,B ,C 的对应点分别为A ,O ,B ,C .设OO =t ,正方形A O B C 与△MON 重合部分的面积为S .①如图②,当1<t ≤4时,正方形A O B C 与△MON 重合部分为五边形,直线B C 分别与y 轴,MN 交于点E ,F ,O B 与MN 交于点H ,试用含t 的式子表示S ;②若平移后重合部分的面积为92,则t 的值是_______(请直接写出结果即可).【答案】【答案】(1)B 0,4 ,C -4,4(2)①S =-12t 2+5t -12;②5-15或6【解析】(1)解:由A -4,0 ,得AO =4,∵四边形AOBC 正方形,∴OB =BC =4.∴B 0,4 ,C -4,4 ;(2)解:①∵M 0,5 ,N 5,0 ,∠MON =90°,∴OM =ON =5,∠OMN =∠ONM =45°.由平移知,四边形A O B C 是正方形,得B C =4,∠B =∠B O O =90°.∴四边形OO B E 是矩形.∴B E =OO =t ,OE =B O =4,∠B EM =90°.∴∠EFM =45°,∴EF =ME =1,B F =t -1.∵∠B FH =∠EFM =45°,∴∠B HF =45°.∴B H =B F =t -1.当1<t ≤4时,S =OO ⋅OE -12B H ⋅B F =4t -12(t -1)2=-12t 2+5t -12.②当1<t ≤4时,由题意得S =-12t 2+5t -12=92,解得t=5-15或5+15(舍去);当t=5时,点O 与点N重合,此时S=12×4×4=8>92,∴5<t<9,∴A N=A F=9-t,由题意得129-t2=92,解得t=6或t=12(舍去);综上,t的值是5-15或6.故答案为:5-15或6.题型二:压轴题速练1一.解答题(共24小题)1(2023•宁波一模)抗击疫情期间,某商店购进了一种消毒用品,进价为每件8元,销售过程中发现,该商品每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数),部分对应值如下表:每件售价(元)91113每天的销售量(件)1059585(1)求y与x的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元.(3)设该商店销售这种消毒用品每天获利w(元),问:当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)y=-5x+150(8≤x≤15);(2)13元;(3)当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【解析】解:(1)设y与x的函数关系式为y=kx+b,(8≤x≤15),将(9,105),(11,95)代入得105=9k+b95=11k+b,解得k=-5b=150,∴y=-5x+150,∴y与x的函数关系式为y=-5x+150(8≤x≤15);(2)由题意知,利润w=(x-8)(-5x+150)=-5(x-19)2+605,令w=425,则-5(x-19)2+605=425,解得x=13或x=25(不合题意,舍去),∴每件消毒用品的售价为13元;(3)由(2)知w=-5(x-19)2+605(8≤x≤15),∵-5<0,∴当8≤x≤15时,w随着x的增大而增大,∴当x=15时,w=525,此时利润最大,∴当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.2(2023•莱西市一模)某公司电商平台经销一种益智玩具,先用3000元购进一批.售完后,第二次购进时,每件的进价提高了20%,同样用3000元购进益智玩具的数量比第一次少了25件.销售时经市场调查发现,该种益智玩具的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x(元/件),周销售量y(件)的三组对应值数据.x407090y1809030(1)求第一次每件玩具的进价;(2)求y关于x的函数解析式;(3)售价x为多少时,第一周的销售利润W最大?并求出此时的最大利润.【答案】(1)第一次每件玩具的进价为20元(2)y=-3x+300(3)当x=60时,第一周的销售利润W最大,此时的最大利润为4800元【解析】解:(1)设第一次每件玩具的进价为m元,则第二次每件玩具的进价为(1+20%)m元,由题意得,3000 m -3000(1+20%)m=25,解得m=20,经检验m=20是原方程的解且符合题意,答:第一次每件玩具的进价为20元;(2)设y=kx+b,把x=40,y=180;x=70,y=9分别代入得,40k+b=180 70k+b=90,解得k=-3b=300,∴y=-3x+300,即y关于x的函数解析式是y=-3x+300;(3)W=y(x-20)=(-3x+300)(x-20)=-3x2+360x-6000=-3(x-60)2+4800,∵a=-3<0,抛物线开口向下,∴当x=60时,第一周的销售利润W最大,此时的最大利润为4800.3(2023•天山区一模)一名高校毕业生响应国家创业号召,回乡承包了一个果园,并引进先进技术种植一种优质水果,经核算这批水果的种植成本为16元/千克、设销售时间为x(天),通过一个月(30天)的试销,该种水果的售价P(元/千克)与销售时间x(天)满足如图所示的函数关系(其中0≤x≤30,且x为整数).已知该种水果第一天销量为60千克,以后每天比前一天多售出4千克.(1)直接写出售价P(元/千克)与销售时间x(天)的函数关系式;(2)求试销第几天时,当天所获利润最大,最大利润是多少?【答案】(1)P=-12x+3424(20<x≤30) ;(2)试销第30天时,当天所获利润最大,最大利润是1408元.【解析】解:(1)当0≤x≤20时,设售价P(元/千克)与销售时间x(天)的函数关系式为P=kx+b,把(0,34),(20,24)代入得20k+b=24b=34,j解得k=-12b=34,∴P=-12x+34;由函数图象可知当20<x≤30时,P=24;综上所述,P=-12x+3424(20<x≤30) ;(2)设第x天的利润为W,∵该种水果第一天销量为60千克,以后每天比前一天多售出4千克,∴第x天的销售量为60+4(x-1)=(4x+56)千克,当0≤x≤20时,∴W=-12x+34-16(4x+56)=-2x2+72x-28x+1008=-2x2+44x+1008=-2(x-11)2+1250∵-2<0,∴当x=11时,W最大,最大为1250;当20<x≤30时,W=(24-16)(4x+56)=32x+448,∵32>0,∴当x=30时,W最大,最大为32×30+448=1408;∵1408>1250,∴试销第30天时,当天所获利润最大,最大利润是1408元.4(2023•武汉模拟)某市新建了一座室内滑雪场,该滑雪场地面积雪厚达40cm,整个赛道长150m,全天共可容纳约3300人滑雪嬉戏.小明和小华相约去体验滑雪,小明从赛道顶端A处下滑,测得小明离A处的距离s(单位:m)随运动时间x(单位:s)变化的数据,整理得下表.滑行时间x/s01234滑行距离s/m06142436经验证小明离A 处的距离s 与运动时间x 之间是二次函数关系.小明出发的同时,小华在距赛道终点30m 的B 处操控一个无人机沿着赛道方向以2m/s 的速度飞向小明,无人机离A 处的距离y (单位:m )与运动时间x (单位:s )之间是一次函数关系.(1)直接写出s 关于x 的函数解析式和y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)小明滑完整个赛道需要耗时多久?(3)小明出发多久后与无人机相遇?【答案】(1)s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)小明滑完整个赛道需要耗时10s ;(3)小明出发8s 与无人机相遇.【解析】解:(1)设s 关于x 的函数解析式为s =ax 2+bx +c ,将(0,0),(1,6),(2,14)代入得:c =0a +b +c =64a +2b +c =14 ,解得a =1b =5c =0,∴s =x 2+5x ;根据题意得y =150-30-2x =-2x +120,∴s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)在s =x 2+5x 中,令s =150得:150=x 2+5x ,解得x =10或x =-15(舍去),∴小明滑完整个赛道需要耗时10s ;(3)由x 2+5x =-2x +120得:x =8或x =-15,∴小明出发8s 与无人机相遇.5(2023•邯郸模拟)将小球(看作一点)以速度v 1竖直上抛,上升速度随时间推移逐渐减少直至为0,此时小球达到最大高度,小球相对于抛出点的高度y (m )与时间t (s )的函数解析式为两部分之和,其中一部分为速度v 1(m/s )与时间t (s )的积,另一部分与时间t (s )的平方成正比.若上升的初始速度v 1=10m/s ,且当t =1s 时,小球达到最大高度.(1)求小球上升的高度y 与时间t 的函数关系式(不必写范围),并写出小球上升的最大高度;(2)如图,平面直角坐标系中,y 轴表示小球相对于抛出点的高度,x 轴表示小球距抛出点的水平距离,向上抛出小球时再给小球一个水平向前的均匀速度v 2(m/s ),发现小球运动的路线为一抛物线,其相对于抛出点的高度y (m )与时间t (s )的函数解析式与(1)中的解析式相同.①若v 2=5m/s ,当t =32s 时,小球的坐标为 152,154 ,小球上升的最高点坐标为(5,5);求小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式;②在小球的正前方的墙上有一高3536m 的小窗户PQ ,其上沿P 的坐标为6,154,若小球恰好能从窗户中穿过(不包括恰好去中点P ,Q ,墙厚度不计),请直接写出小球的水平速度v 2的取值范围.【答案】(1)y =-5t 2+10t ,小球上升的最大高度是5m ;(2)①152,154 ;(5,5);y =-15x 2+2x ;②185<v 2<4.【解析】解:(1)根据题意可设y =at 2+10t ,∵当t =1s 时,小球达到最大高度,∴抛物线y =at 2+10t 的对称轴为直线t =1,即-102a=1,解得a =-5,∴上升的高度y 与时间t 的函数关系式为y =-5t 2+10t ,在y =-5t 2+10t 中,令t =1得y =5,∴小球上升的最大高度是5m ;(2)①当t =32s 时,y =-5×32 2+10×32=154,x =v 2t =5×32=152,∴小球的坐标为152,154;由(1)可知,t =1s 时,取得最大高度,x =v 2t =5×1=5,∴小球上升的最高点坐标为(5,5);由题意可知,x =v 2t ,∴t =x v 2=x 5,∴y =-5×x 5 2+10×x 5=-15x 2+2x ;∴小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式是y =-15x 2+2x ;故答案为:152,154 ;(5,5);②∵PQ =3536m ,P 的坐标为6,154 ,∴Q 6,259;当小球刚好击中P 点时,-5t 2+10t =154,解得t =1.5或t =0.5,∵t >1,∴t =1.5,此时v 2=6t=4m/s ,当小球刚好击中Q 点时,-5t 2+10t =259,解得t =53或t =13,∵t >1,∴t =53,此时v 2=6t =185m/s ,∴v 2的取值范围为:185<v 2<4.6(2023•崂山区一模)跳台滑雪简称“跳雪”,选手不借助任何外力、从起滑台P 处起滑,在助滑道PE 上加速,从跳台E 处起跳,最后落在山坡MN 或者水平地面上.运动员从P 点起滑,沿滑道加速,到达高度OE =42m 的E 点后起跳,运动员在空中的运动轨迹是一条抛物线.建立如图所示平面直角坐标系,OM =38m ,ON =114m ,设MN 所在直线关系式为y =kx +b .甲运动员起跳后,与跳台OE 水平距离xm 、竖直高度ym 之间的几组对应数据如下:水平距离x /m 010203040竖直高度y /m4248504842(1)求甲运动员空中运动轨迹抛物线的关系式;(2)运动员得分由距离得分+动作分+风速得分组成距离得分:运动员着陆点到跳台OE 水平距离为50m ,即得到60分,每比50m 远1米多得2分;反之,当运动员着陆点每比50m 近1米扣2分.距离分计算采取“2舍3入法”,如60.2米计为60米,60.3米则计为60.5米.动作得分:由裁判根据运动员空中动作的优美程度打分.风速得分:由逆风或者顺风决定.甲运动员动作分、风速加分如下表:距离分动作分风速加分50-2.5请你计算甲运动员本次比赛得分.【答案】(1)y =-150x 2+45x +42;(2)甲运动员本次比赛得分为147.5分.【解析】解:(1)∵抛物线经过点(10,48),(30,48),∴对称轴是:直线x =10+302=20,∴顶点坐标为(20,50),设甲运动员空中运动轨迹抛物线的关系式为:y =a (x -20)2+50,将(0,42)代入得:a (0-20)2+50=42,∴a =-150,∴甲运动员空中运动轨迹抛物线的关系式为:y =-150(x -20)2+50=-150x 2+45x +42;(2)根据题意可得,当y =0时,即-150(x -20)2+50=0,解得:x 1=70,x 2=-30(舍),则60+2×(70-50)+50+(-2.5)=147.5,所以甲运动员本次比赛得分为147.5分.7(2023•镇平县模拟)为培养学生劳动实践能力,某学校在校西南角开辟出一块劳动实践基地.如图①是其中蔬菜大棚的横截面,它由抛物线AED 和矩形ABCD 构成.已知矩形的长BC =12米,宽AB =3米,抛物线最高点E 到地面BC 的距离为6米.(1)按图①所示建立平面直角坐标系,求抛物线AED 的解析式;(2)冬季到来,为防止大雪对大棚造成损坏,学校决定在大棚两侧安装两根垂直于地面且关于y 轴对称的支撑柱PQ 和NM ,如图②所示.①若两根支撑柱的高度均为5.25米,求两根支撑柱之间的水平距离;②为了进一步固定大棚,准备在两根支撑柱上架横梁PN ,搭建成一个矩形“脚手架”PQMN ,为了筹备材料,需求出“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值,请你帮管理处计算一下.【答案】(1)抛物线AED 的解析式为:y =-112x 2+6;(2)①两根支撑柱之间的水平距离为6米;②“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值为18米.【解析】解:(1)∵四边形ABCD 是矩形,∴AD =BC =12(米),∴点A (-6,3),点D (6,3),根据题意和图象可得,顶点E 的坐标为(0,6),∴可设抛物线AED 的解析式为:y =ax 2+6,把点A (-6,3)代入解析式可得:36a +6=3,解得:a =-112,∴抛物线AED 的解析式为:y =-112x 2+6;(2)①当y =5.25时,-112x 2+6=5.25,解得x =±3,3-(-3)=3+3=6(米),∴两根支撑柱之间的水平距离为6米;②设N点坐标为m,-112m2+6,则MQ=2m,MN=-112m2+6,∴w=2m+2-112m2+6=-16m2+2m+12=-16(m-6)2+18,∵-16<0,∴当m=6时,w有最大值,最大值为18,∴“脚手架”三根支杆PQ,PN,MN的长度之和w的最大值为18米.8(2023•宝应县一模)科学研究表明:一般情况下,在一节45分钟的课堂中,学生的注意力随教师讲课的时间变化而变化.经过实验分析,在0≤x≤8时,学生的注意力呈直线上升,学生的注意力指数y与时间x(分钟)满足关系y=2x+68,8分钟以后,学生的注意力指数y与时间x(分钟)的图象呈抛物线形,到第16分钟时学生的注意力指数y达到最大值92,而后学生的注意力开始分散,直至下课结束.(1)当x=8时,注意力指数y为84,8分钟以后,学生的注意力指数y与时间x(分钟)的函数关系式是y=-18x2+4x+60;(2)若学生的注意力指数不低于80,称为“理想听课状态”,则在一节45分钟的课中学生处于“理想听课状态”所持续的时间有多长?(精确到1分钟)(3)现有一道数学压轴题,教师必须持续讲解24分钟,为了使效果更好,要求学生的注意力指数在这24分钟内的最低值达到最大,则该教师上课后从第几分钟开始讲解这道题?(精确到1分钟)(参考数据:6≈2.449)【答案】(1)84,y=-18x2+4x+60;(2)在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.【解析】解:(1)根据题意,把x=8代入y=2x+68可得:y=84,由题意可知,抛物线的顶点坐标为(16,92),∴可设抛物线的解析式为:y=a(x-16)2+92,把(8,84)代入可得:64a+92=84,解得:a=-1 8,∴y=-18(x-16)2+92=-18x2+4x+60,故答案为:84,y=-18x2+4x+60;(2)由学生的注意力指数不低于80,即y≥80,当0≤x≤8时,由2x+68≥80可得:6≤x≤8;当8<x≤45是,则-18x2+4x+60≥80,即-18(x-16)2+92≥80,整理得:(x-16)2≤96,解得:8<x≤16+46,∴16+46-6=10+46≈20(分钟),答:在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)设教师上课后从第t分钟开始讲解这道题,∵10+46<24,∴0≤t<6,要使学生的注意力指数在这24分钟内的最低值达到最大,则当x=t和当x=t+24时对应的函数值相同,即2t+68=-18(t+24-16)2+92,整理得:(t+16)2=384,解得:t1=86-16,t2=-86-16(舍),∴t≈4,答:教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.9(2023•昭阳区一模)新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?【答案】(1)y=-2x2+20x+400;(2)若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.【解析】解:(1)由题意可得:销售量=(20+2x)套,则y=(20+2x)(140-x-100)=(2x+20)(40-x)=-2x2+60x+800,∴y与x的函数关系式为:y=-2x2+60x+800;(2)由题意可得:当y=1200时,即-2x2+60x+800=1200,解得:x1=10,x2=20,∴140-10=130(元),140-20=120(元),答:若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)由(1)可知:y=-2x2+60x+800=-2(x-15)2+1250,∵-2<0,∴当x=15时,y有最大值,最大值为1250,此时,售价=140-15=125(元),答:当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.10(2023•大丰区一模)比萨斜塔是意大利的一座著名斜塔,据说物理学家伽利略曾在塔顶上做过著名的自由落体试验:在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.已知:某建筑OA的高度为44.1m,将一个小铁球P(看成一个点)从A处向右水平抛出,在水平方向小铁球移动的距离d(m)与运动时间t(s)之间的函数表达式是:d=7t,在竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2.以点O为坐标原点,水平向右为x轴,OA所在直线为y轴,取1m为单位长度,建立如图所示平面直角坐标系,已知小铁球运动形成的轨迹为抛物线.(1)求小铁球从抛出到落地所需的时间;(2)当t=1时,求小铁球P此时的坐标;(3)求抛物线的函数表达式,并写出自变量x的取值范围.【答案】(1)小铁球从抛出到落地所需的时间为3秒;(2)(7,39.2);(3)y=-110x2+44.1(0≤x≤21).【解析】解:(1)根据题意可得,OA的高度为44.1m,且竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2,∴当h=44.1时,小铁球落到地面,∴4.9t2=44.1,解得:t1=3,t2=-3(舍),答:小铁球从抛出到落地所需的时间为3秒;(2)当t=1时,则d=7×1=7,h=4.9×12=4.9,∴y p=44.1-4.9=39.2,∴小铁球P此时的坐标为(7,39.2);(3)由(1)可知小铁球从抛出到落地所需的时间为3秒,∴d=7×3=21,∴OB=21(m),即B(21,0),根据题意可得,顶点坐标为A(0,44.1),∴可设抛物线解析式为:y=ax2+44.1,将点B(21,0)代入得:441a+44.1=0,解得:a=-1 10,∴抛物线的函数表达式为:y=-110x2+44.1(0≤x≤21).11(2023•南昌模拟)一个运动员跳起投篮,球的运行路线可以看做是一条抛物线,如图1所示,图2是它的示意图,球的出手点D到地面EB的距离为2.25m(即DE=2.25m,当球运行至F处时,水平距离为2.5m(即F到DE的距离为2.5m),达到最大高度为3.5m,已知篮圈中心A到地面EB的距离为3.05m,篮球架AB可以在直线EB上水平移动.(1)请建立恰当的平面直角坐标系,求该抛物线的解析式;(2)若篮球架离人的水平距离EB为4.5m,问该运动员能否将篮球投入篮圈?若能,说明理由;若不能,算一算将篮球架往哪个方向移动,移动多少距离,该运动员此次所投的篮球才能投入篮圈.。
二次函数综合应用题(有答案)中考23题必练经典
二次函数综合应用题一、求利润的最值1.(2010·武汉)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。
当每个房间每天的房价每增加10元时,就会有一个房间空闲。
宾馆需对游客居住的每个房间每天支出20元的各种费用。
根据规定,每个房间每天的房价不得高于340元。
设每个房间的房价每天增加x 元(x 为10的正整数倍)。
(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围; (2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?解:(1) y=50-101x (0≤x ≤160,且x 是10的整数倍)。
(2) W=(50-101x)(180+x -20)= -101x 2+34x +8000;(3) W= -101x 2+34x +8000= -101(x -170)2+10890,当x<170时,W 随x 增大而增大,但0≤x ≤160,∴当x=160时,W 最大=10880,当x=160时,y=50-101x=34。
答:一天订住34个房间时,宾馆每天利润最大,最大利润是10880元。
2.(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?解:(1)(且为整数); (2).,当时,有最大值2402.5. ,且为整数,当时,,(元),当时,,(元)当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当时,,解得:. 当时,,当时,.当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).3.(2008·武汉)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件。
二次函数的应用测试题(含答案)
二次函数的应用测试题(含答案)一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米 B.3米 C.5米 D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2 +10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元 B.40万元 C.45万元 D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒 B.第10秒 C.第10.5秒 D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y= (x+3)2 B.y= (x+3)2 C.y= (x﹣3)2 D.y= (x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2s B.4s C.6s D.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米 B.5米 C.6米 D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/s B.20 m/s C.10 m/s D.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是_________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26.3.3二次函数的应用参考答案与试题解析一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A. 1米 B.3米 C.5米 D. 6米考点:二次函数的应用.分析:直接利用配方法求出二次函数最值进而求出答案.解答:解:h=﹣5t2+10t+1=﹣5(t2﹣2t)+1=﹣5(t﹣1)2+6,故小球到达最高点时距离地面的高度是:6m.故选:D.点评:此题主要考查了二次函数的应用,正确利用配方法求出是解题关键.2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A. 30万元 B.40万元 C.45万元 D. 46万元考点:二次函数的应用.分析:首先根据题意得出总利润与x之间的函数关系式,进而求出最值即可.解答:解:设在甲地销售x辆,则在乙地销售(15﹣x)量,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:= =46(万元),故选:D.点评:此题主要考查了二次函数的应用,得出函数关系式进而利用最值公式求出是解题关键.3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒 B.第10秒 C.第10.5秒 D.第11秒考点:二次函数的应用.分析:根据题意,x=7时和x=14时y值相等,因此得到关于a,b的关系式,代入到x=﹣中求x的值.解答:解:当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=﹣21a,根据二次函数的对称性及抛物线的开口向下,当x=﹣=10.5时,y最大即高度最高.因为10最接近10.5.故选:C.点评:此题主要考查了二次函数的应用,根据对称性看备选项中哪个与之最近得出结论是解题关键.4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A. y= (x+3)2 B.y= (x+3)2 C.y= (x﹣3)2 D. y= (x﹣3)2考点:二次函数的应用.专题:应用题.分析:利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(﹣3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.解答:解:∵高CH=1cm,BD=2cm,而B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(﹣3,0),∴右边抛物线的顶点C的坐标为(3,0),设右边抛物线的解析式为y=a(x﹣3)2,把D(1,1)代入得1=a×(1﹣3)2,解得a= ,故右边抛物线的解析式为y= (x﹣3)2.故选C.点评:本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.5.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A. 2s B.4s C.6s D. 8s考点:二次函数的应用.分析:礼炮在点火升空到最高点处引爆,故求h的最大值.解答:解:由题意知礼炮的升空高度h(m)与飞行时间t(s)的关系式是:,∵<0∴当t=4s时,h最大为40m,故选B.点评:本题考查二次函数的实际应用,借助二次函数解决实际问题.6.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A. 2米 B.5米 C.6米 D. 14米考点:二次函数的应用.分析:把二次函数的解析式化成顶点式,即可得出小球距离地面的最大高度.解答:解:h=﹣5t2+20t﹣14=﹣5(t2﹣4t)﹣14=﹣5(t2﹣4t+4)+20﹣14=﹣5(t﹣2)2+6,﹣5<0,则抛物线的开口向下,有最大值,当t=2时,h有最大值是6米.故选:C.点评:本题考查了二次函数的应用以及配方法求二次函数最值,把函数式化成顶点式是解题关键.7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A. 3s B.4s C.5s D. 6s考点:二次函数的应用.专题:计算题;应用题.分析:到最高点爆炸,那么所需时间为﹣.解答:解:∵礼炮在点火升空到最高点引爆,∴t=﹣=﹣=4s.故选B.点评:考查二次函数的应用;判断出所求时间为二次函数的顶点坐标的横坐标的值是解决本题的关键.8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y= (x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A. 40 m/s B.20 m/s C.10 m/s D. 5 m/s考点:二次函数的应用.专题:应用题.分析:本题实际是告知函数值求自变量的值,代入求解即可,另外实际问题中,负值舍去.解答:解:当刹车距离为5m时,即可得y=5,代入二次函数解析式得:5= x2.解得x=±10,(x=﹣10舍),故开始刹车时的速度为10m/s.故选C.点评:本题考查了二次函数的应用,明确x、y代表的实际意义,刹车距离为5m,即是y=5,难度一般.二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.考点:二次函数的应用.专题:函数思想.分析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣1代入抛物线解析式得出水面宽度,即可得出答案.解答:解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x= ,所以水面宽度增加到米,故答案为:米.点评:此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是y=﹣(x+6)2+4.考点:二次函数的应用.专题:数形结合.分析:根据题意得出A点坐标,进而利用顶点式求出函数解析式即可.解答:解:由题意可得出:y=a(x+6)2+4,将(﹣12,0)代入得出,0=a(﹣12+6)2+4,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)2+4.故答案为:y=﹣(x+6)2+4.点评:此题主要考查了二次函数的应用,利用顶点式求出函数解析式是解题关键.11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为25元.考点:二次函数的应用.专题:销售问题.分析:本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.解答:解:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.点评:本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P(x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P 的坐标是(,5).考点:二次函数的应用.专题:压轴题.分析:分别求得线段AB、线段AC、线段BC的解析式,分析每一条线段上横、纵坐标的乘积的最大值,再进一步比较.解答:解:线段AB的解析式是y= x+1(0≤x≤4),此时w=x(x+1)= +x,则x=4时,w最大=8;线段AC的解析式是y= x+1(0≤x≤2),此时w=x(x+1)= +x,此时x=2时,w最大=12;线段BC的解析式是y=﹣2x+10(2≤x≤4),此时w=x(﹣2x+10 )=﹣2x2+10x,此时x= 时,w最大=12.5 .综上所述,当w=xy取得最大值时,点P的坐标是(,5).点评:此题综合考查了二次函数的一次函数,能够熟练分析二次函数的最值.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为2米.考点:二次函数的应用.分析:直接利用公式法求出函数的最值即可得出最高点离地面的距离.解答:解:∵函数解析式为:,∴y最值= = =2.故答案为:2.点评:此题主要考查了二次函数的应用,正确记忆最值公式是解题关键.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为(60+x)件(用含x的代数式表示).考点:二次函数的应用.分析:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,设销售量为a,代入函数的解析式,即可得到a和x的关系.解答:解:由函数的图象可知点(30,2700)和点(60,0)满足解析式w=mx2+n,∴,解得:,∴w=﹣x2+3600,设销售量为a,则a(60﹣x)=w,即a(60﹣x)=﹣x2+3600,解得:a=(60+x ),故答案为:(60+x).点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题,用的知识点为:因式分解,题目设计比较新颖,同时也考查了学生的逆向思维思考问题.三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?考点:二次函数的应用.分析:(1)由原来的销量﹣每天减少的销量就可以得出现在每天的销量而得出结论;(2)由每件的利润×数量=总利润建立方程求出其解即可.解答:解:(1)由题意,得32﹣×4=80﹣2x.答:每天的现售价为x元时则每天销售量为(80﹣2x)件;(2)由题意,得(x﹣20)(80﹣2x)=150,解得:x1=25,x2=35.∵x≤28,∴x=25.答:想要每天获得150元的销售利润,销售价应当为25元.点评:本题考查了销售问题的数量关系每件的利润×数量=总利润的运用,列一元二次方程解实际问题的运用,一元二次方程的解法的运用,解答时根据销售问题的等量关系建立方程是关键.16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)根据销售量=240﹣(销售单价每提高5元,销售量相应减少20套)列函数关系即可;(2)根据月销售额=月销售量×销售单价=14000,列方程即可求出销售单价;(3)设一个月内获得的利润为w元,根据利润=1套球服所获得的利润×销售量列式整理,再根据二次函数的最值问题解答.解答:解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.点评:本题考查了二次函数的应用以及一元二次方程的应用,并涉及到了根据二次函数的最值公式,熟练记忆公式是解题关键.17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?考点:二次函数的应用.专题:销售问题.分析:(1)设函数关系式y=kx+b,把(10,40),(18,24)代入求出k和b即可,由成本价为10元/千克,销售价不高于18元/千克,得出自变量x的取值范围;(2)根据销售利润=销售量×每一件的销售利润得到w和x的关系,利用二次函数的性质得最值即可;(3)先把y=150代入(2)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.解答:解:(1)设y与x之间的函数关系式y=kx+b,把(10,40),(18,24)代入得,解得,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)W=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,对称轴x=20,在对称轴的左侧y随着x的增大而增大,∵10≤x≤18,∴当x=18时,W最大,最大为192.即当销售价为18元时,每天的销售利润最大,最大利润是19 2元.(3)由150=﹣2x2+80x﹣600,解得x1=15,x2=25(不合题意,舍去)答:该经销商想要每天获得150元的销售利润,销售价应定为15元.点评:本题考查了二次函数的应用,得到每天的销售利润的关系式是解决本题的关键,结合实际情况利用二次函数的性质解决问题.18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB= (x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求yA、yB关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?考点:二次函数的应用.专题:应用题;数形结合.分析:(1)首先求出yB函数关系式,进而得出交点坐标,即可得出yA函数关系式;(2)首先将y=120代入求出x的值,进而代入yB求出答案;(3)得出yA﹣yB的函数关系式,进而求出最值即可.解答:解:(1)由题意可得出:yB= (x﹣60)2+m经过(0,1000),则1000= (0﹣60)2+m,解得:m=100,∴yB= (x﹣60)2+100,当x=40时,yB= ×(40﹣60)2+100,解得:yB=200,yA=kx+b,经过(0,1000),(40,200),则,解得:,∴yA=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,yB= (44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,yA﹣yB=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20)2+100,∴当x=20时,两组材料温差最大为100℃.点评:此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.19.“丹棱冻粑”是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?考点:二次函数的应用;一元二次方程的应用.专题:销售问题.分析:(1)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得方程求解即可;(2)设每箱应涨价x元,得出日销售量将减少2x箱,再由盈利额=每箱盈利×日销售量,依题意得函数关系式,进而求出最值.解答:解:(1)设每箱应涨价x元,则每天可售出(50﹣2x)箱,每箱盈利(10+x)元,依题意得方程:(50﹣2x)(10+x)=600,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10,∵要使顾客得到实惠,∴应取x=5,答:每箱产品应涨价5元.(2)设利润为y元,则y=(50﹣2x)(10+x),整理得:y=﹣2x2+30x+500,配方得:y=﹣2(x﹣7.5)2+612.5,当x=7.5元,y可以取得最大值,∴每箱产品应涨价7.5元才能获利最高.点评:此题考查了一元二次方程的应用以及二次函数应用,解答此题的关键是熟知等量关系是:盈利额=每箱盈利×日销售量.20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.专题:销售问题.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.。
二次函数的应用含答案
专练:二次函数的应用(一)[利润问题]时间:30分钟分数:50分1.某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件;当售价定为70元/件时,每周销售10件.(1)求k,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.2.某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大?最大利润为多少元?3.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大?最大利润是多少元?4.某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)直接写出y与x的关系式;(2)求该公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.5.某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为,x的取值范围为;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?。
二次函数的应用题(含答案)
二次函数的应用题(含答案)1.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.2.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.3.如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C.(1)写出A、B两点的坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.4.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.5.如图,抛物线y=﹣x 2+bx+c 经过坐标原点,并与x 轴交于点A (2,0). (1)求此抛物线的解析式; (2)写出顶点坐标及对称轴;(3)若抛物线上有一点B ,且S △OAB =8,求点B 的坐标.6.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出四边形PB ′A ′B 的两条性质.7.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出) (1)公司每日租出x 辆车时,每辆车的日租金为 _________ 元(用含x 的代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?8.某工厂生产一种合金薄板(其厚度忽略不计),这写薄板的形状均为正方向,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?9.牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?答案得×,解得±;x得,﹣,﹣+解得,y=﹣时,×+1=,故,5.(2012•黑龙江)解:(1)把(0,0),(2,0)代入y=﹣x2+bx+c,得,解得b=2,c=0,所以解析式为y=﹣x2+2x;(2)∵a=﹣1,b=2,c=0,∴﹣=﹣=1,==1,∴顶点为(1,1),对称轴为直线x=1;(3)设点B的坐标为(a,b),则×2|b|=8,∴b=8或b=﹣8,∵顶点纵坐标为1,8>1(或﹣x2+2x=8中,x无解),∴b=﹣8,∴﹣x2+2x=﹣8,解得x解:(1)△A′B′O是由△ABO绕原点O逆时针旋转90°得到的,又A(0,1),B(2,0),O(0,0),∴A′(﹣1,0),B′(0,2).设抛物线的解析式为:y=ax2+bx+c(a≠0),∵抛物线经过点A′、B′、B,∴,解得:,∴满足条件的抛物线的解析式为y=﹣x2+x+2.(2)∵P为第一象限内抛物线上的一动点,设P(x,y),则x>0,y>0,P点坐标满足y=﹣x2+x+2.连接PB,PO,PB′,∴S四边形PB′A′B=S△B′OA′+S△PB′O+S△POB,=×1×2+×2×x+×2×y,=x+(﹣x2+x+2)+1,=﹣x2+2x+3.假设四边形PB′A′B的面积是△A′B′O面积的4倍,则4=﹣x2+2x+3,即x2﹣2x+1=0,解得:x1=x2=1,此时y=﹣12+1+2=2,即P(1,2).∴存在点P(1,2),使四边形PB′A′B的面积是△A′B′O面积的4倍.(3)四边形PB′A′B为等腰梯形,答案不唯一.①等腰梯形同一底上的两个内角相等;②等腰梯形对角线相等;③等腰梯形上底与下底平行;④等腰梯形两腰相等.或用符号表示:①∠B′A′B=∠PBA′或∠A′B′P=∠BPB′;②PA′=B′B;③B′P∥A′B;④B′A′=PB.由表格中的数据,得,解得﹣<==35解:(1)画图如图:由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0),∵这个一次函数的图象经过(20,500)、(30,400)这两点,∴,解得:,∴函数关系式是y=﹣10x+700.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得:W=(x﹣10)(﹣10x+700),=﹣10x2+800x﹣7000,=﹣10((x﹣40)2+9000,∴当x=40时,W有最大值9000.(3)对于函数W=﹣10((x﹣40)2+9000,当x≤35时,W的值随着x值的增大而增大,故销售单价定为35元∕件时,工艺厂试销该工艺品每天获得的利润最大.。
(完整版)二次函数综合应用---含答案
二次函数应用(能力提高)一、选择题:1.如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于( C )(A)8 (B)14 (C)8或14 (D)-8或-142.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过(B)(A)一、二、三象限(B)一、二、四象限(C)一、三、四象限(D)一、二、三、四象限3.当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是( A )(C)(D)第7题4.抛物线y=ax2+bx+c的图象如图,OA=OC,则( A )(A)ac+1=b (B)ab+1=c (C)bc+1=a (D)以上都不是5.若二次函数y=ax2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是(C )(A)0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<16.将抛物线y=-2x2-1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( A )(A)个单位 (B)1个单位 (C)个单位 (D)个单位232127.如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴上,B(4,2),一次函数y=kx-1的图象平分它的面积,关于x的函数y=mx2-(3m+k)x+2m+k的图象与坐标轴只有两个交点,则m的值为( D )(A)0(B)(C)-1(D)0或或-121-21-8.(2015浙江)设二次函数11212())0(()y a x x x x a x x=--≠≠,的图象与一次函数()2y dx e d=+≠的图象交于点1(0)x,,若函数21y y y=+的图象与x轴仅有一个交点,则( B )(A)12()a x x d-=(B)21()a x x d-=(C)212()a x x d-=(D)()212a x x d+=二、填空题:1.已知二次函数y=-4x2-2mx+m2与反比例函数y=的图像在第二象限内的一个交点的横坐标是xm42+-2,则m的值是 -7t h 2.已知抛物线的顶点坐标为(2,9),且它在x 轴上截得的线段长为6,则该抛物线的解析式为 _ y = −(x +1)(x −5)___3.已知二次函数y =ax 2(a≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 42+254.老师给出一个函数,甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。
二次函数的应用(含答案)
二次函数的应用练习题1、在一幅长60cm ,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是y cm 2,设金色纸边的宽度为x cm 2,那么y 关于x 的函数是( )A .y =(60+2x )(40+2x )B .y =(60+x )(40+x )C .y =(60+2x )(40+x )D .y =(60+x )(40+2x )2、把一根长为50cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为( ) A .y = -x 2+50xB .y =x 2-50xC .y = -x 2+25xD .y = -2x 2+253、某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是()A .y =x 2+a B .y =a (x -1)2C .y =a (1-x )2D .y =a (1+x )2 4、如图所示是二次函数y=2122x -+的图象在x 轴上方的一部分,对于这段图象与x轴所围成的阴影部分的面积,你认为可能的值是( )A .4B .163C .2πD .85、周长8m 的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m 2A .45 B . 83 C .4 D . 566、如图,从地面竖直向上抛出一个小球,小球的高度h (单位:m )与小球运动时间t(单位:s )之间的关系式为h =30t -5t 2,那么小球从抛出至回落到地面所需要的时间是( ) A .6sB .4sC .3sD .2s7、如图,二次函数y = -x 2-2x 的图象与x 轴交于点A 、O ,在抛物线 上有一点P ,满足S △AOP =3,则点P 的坐标是( )A .(-3,-3)B .(1,-3)C .(-3,-3)或(-3,1)D .(-3,-3)或(1,-3)8、向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y =ax 2+bx +c (a ≠0)、若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒9、将进货单价为70元的商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价()A.5元B.10元C.15元D.20元(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m= -10x+120,那么当销售单价定为多少时,每天获得的利润w最大?24、某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?参考答案1.答案:A解析:解答:长是:60+2x,宽是:40+2x,由矩形的面积公式得则y=(60+2x)(40+2x).故选A.分析:挂图的面积=长×宽,本题需注意长和宽的求法.2.答案:C解析:解答:设这个长方形的一边长为x cm,则另一边长为(25-x)cm,所以面积y=x(25-x)= -x2+25x.故选C.分析:由长方形的面积=长×宽可求解.3.答案:D解析:解答:依题意,得y=a(1+x)2.故选D.分析:本题是增长率的问题,基数是a元,增长次数2次,结果为y,根据增长率的公式表示函数关系式.4.答案:B解析:解答:函数与y 轴交于(0,2)点,与x 轴交于(-2,0)和(2,0)两点,则三点构成的三角形面积S 1=4,则以半径为2的半圆的面积为S 2=π×12×22=2π,则阴影部分的面积S 有:4<S <2π.因为选项A 、C 、D 均不在S 取值范围内.故选 B分析:本题不能硬求面积,要观察找一个范围,然后选一个合适的答案.由图形可知阴影部分的面积介于一个三角形和一个半圆之间,问题就好解决了. 5. 答案:B解析:解答:设窗户的宽是x ,根据题意得S =()832x x -=2348()(04)233x x --+<< ∴当窗户宽是43m 时,面积最大是83m 2 分析:根据窗户框的形状可设宽为x ,其高就是8-32x,所以窗户面积S =()832x x -,再求出二次函数解析式—顶点式即可求出最大面积。
二次函数的应用练习题及答案
二次函数的应用1.如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.(1)建立平面直角坐标系,并求该抛物线的函数表达式.(2)若水面上升1m,水面宽度将减少多少?2.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为多少米?3.现计划用一块长30cm,宽12cm的矩形铁皮,制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为边长为y cm的正方形.(1)求该盒子的底面积S与y的函数关系式;(2)求当y=2时,该盒子的容积.4.欢欢家想利用房屋侧面的一面墙,再砌三面墙,围成一个矩形猪圈(如图),一面墙的中间留出1米宽的进出门(门使用另外的材料).现备有足够砌11米长的围墙的材料,设猪圈与已有墙面垂直的墙的长度为x米,猪圈面积为y平方米.(1)写出y与x之间的函数关系式.(2)要使猪圈面积为16平方米,如何设计三面围墙的长度.(3)能否使猪圈面积为20平方米?说明理由.(4)你能求出猪圈面积的最大值吗?5.如图所示,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始,以2mm/s的速度沿边AB向B移动(不与点B重合),动点Q从点B开始,以4mm/s的速度沿边BC向C移动(不与C重合),如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm2.(1)写出y与x之间的函数表达式;(2)当x=2时,求四边形APQC的面积.6.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为x (单位:km),乘坐地铁的时间y1(单位:min)是关于x的一次函数,其关系如下表:地铁站A B C D Ex/km7 9 11 12 13y/min16 20 24 26 281(1)求y1关于x的函数解析式;(2)李华骑单车的时间y2(单位:min)也受x的影响,其关系可以用y2=x2﹣11x+78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最短时间.7.某商店将进货价为每个10元的商品,按每个16元售出时,每天卖出60个.商店经理到市场做了一番调查后发现,若将这种商品售价(在每个16元的基础上)每提高1元,则日销售量就减少5个;若将这种商品售价(在每个16元的基础上)每降低1元,则日销售量就增加10个.为获得每日最大利润,此种商品售价应定为每个多少元?8.某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第x天的成本y(元/件)与x(天)之间的关系如图所示,并连续60天均以80元/件的价格出售,第x天该产品的销售量z(件)与x(天)满足关系式z=x+15.(1)第25天,该商家的成本是元,获得的利润是元;(2)设第x天该商家出售该产品的利润为w元.①求w与x之间的函数关系式;②求出第几天的利润最大,最大利润是多少?基础提升专练题库:一元二次方程的应用参考答案1.解:(1)以C为坐标原点建立坐标系,水平方向为x轴,竖直方向为y轴,则A(﹣6,﹣4),B(6,﹣4),C(0,0).设y=ax2,把B(6,﹣4)代入上式,36a=-4,解得:a=﹣,∴y=﹣x2.(2)令y=﹣3,得﹣x2=﹣3,解得:x=±3,∴若水面上升1m,水面宽度将减少12﹣6.2.解:以A为原点,AC所在直线为x轴,AB所在直线为y轴,建立如图所示的直角坐标系.设抛物线的函数关系式为:y=ax2+bx+c.将(0,2.5)、(2,2.5)、(0.5,1)代入y=ax2+bx+c得:,解得:.∴抛物线的表达式为:y=2x2﹣4x+2.5;∵y=2x2﹣4x+2.5=2(x﹣1)2+0.5∴抛物线的顶点坐标为(1,0.5),∴绳子的最低点距地面的距离为0.5m.3.解:已知切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,依题意,得:S=(﹣y)(12﹣2y),整理,得:S=2y2﹣42y+180,(2)S=2y2﹣42y+180=104,104×2=208.答:盒子的体积为208 c m3.4.解:(1)根据题意得出:y=x(12﹣2x)=﹣2x 2+12x.(2)设垂直于墙的边长为xm,则x(12﹣2x)=16,解得x1=2,x2=4,当x=2时,12﹣2x=8,当x=4时,12﹣2x=4,所以垂直于墙的边长为2米或4米.(3)设垂直于墙的边长为ym,则y(12﹣2y)=20,整理得,﹣2y2+12y﹣20=0,△=144﹣4×(﹣2)×(﹣20)=﹣16<0,∴此方程无解,所以不能够围成.(4)函数可化为:y=x(12﹣2x)=﹣2x 2+12x=﹣2(x﹣3) 2+18,因此当x=3时,最大面积为18(米2).5.解:(1)∵运动时间为x,点P的速度为2mm/s,点Q的速度为4mm/s,∴PB=12﹣2x,BQ=4x,∴y=×12×24﹣×(12﹣2x)×4x=4x2﹣24x+144.(2)当x=2时,y=4×22﹣24×2+144=112,即当x=2时,四边形APQC的面积为112mm2.6.解:(1)设y1关于x的函数解析式为y1=kx+b.将(7,16),(9,20)代入,得,解得∴y1关于x的函数解析式为y1=2x+2;(2)设李华从文化宫站回到家所需的时间为y min,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80=(x﹣9)2+39.5,∴当x=9时,y取得最小值,最小值为39.5,∴李华应选择在B站出地铁,才能使他从文化宫站回到家所需的时间最短,最短时间为39.5 min.7.解:设每个商品的售价定为x元时,每天所获得的利润为w,当10≤x≤16时,w=(x﹣10)•[60+(16﹣x)×10]=﹣10x 2+320x﹣2200,=﹣10(x﹣16)2+360,则x=16时最大利润w=360.当x>16时,w=(x﹣10)•[60﹣(x﹣16)×5]=﹣5(x﹣19)2+405,则x=19时最大利润w=405,综上可得当售价定为每个19元时,获得的最大利润为405元.8.解:(1)由图象可知,此时的产量为z=25+15=40(件),设直线BC的关系为y=kx+b,∴,∴,∴y=x+10,故第25天,该商家的成本是:25+10=35(元)则第25天的利润为:(80﹣35)×40=1800(元);故答案为:35,1800;(2)①当0≤x≤20时,w=(80﹣30)(x+15)=50x+750,当20<x≤60时,w=[80﹣(x+10)](x+15)=﹣x2+55x+1050. ∴w=.②当0≤x≤20时w=50x+750,当x=20时,w最大=1750元;当20<x≤60时,w=﹣x2+55x+1050.∵﹣1<0,抛物线开口向下,对称轴为x=∴当x=27或x=28时,w=﹣272+55×27+1050=1806(元). ∵1806>1750.∴第27天或28天的利润最大,最大为1806元.。
二次函数应用题(含答案)
二次函数应用题练习1.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为,绿化带的面积为.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,满足条件的绿化带的面积最大?2.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?3.我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量(万件)与时间(为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量(万件)与时间(为整数,单位:天)的关系如右图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示与的变化规律,写出与的函数关系式及自变量的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量与时间所符合的函数关系式,并写出自变量的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.4.如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系.①求此桥拱线所在抛物线的解析式.②桥边有一浮在水面部分高4m,最宽处的河鱼餐船,试探索此船能否开到桥下?说明理由.5.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C距守门员多少米?(取)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取)6.在平面直角坐标系中,已知二次函数的图象与轴相交于点A,B,顶点为C,点D在这个二次函数图象的对称轴上.若四边形ABCD是一个边长为2且有一个内角为60°的菱形.求此二次函数的表达式.三、解答题1.自变量的取值范围是(2)∵,所以当时,有最大值200.即当时,满足条件的绿化带的面积最大.13.(1)化简得:(2)(3)∵,∴抛物线开口向下.当时,有最大值又,随的增大而增大∴当元时,的最大值为1125元∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.2.解:(1)(0≤≤30,为整数)(2)从图中可知,当0≤20时,是的正比例函数,且图象过点(20,40),设,把点(20,40)代入,得.∴当0≤20时,. 当20≤≤30时,是的一次函数,且它的图象过点(20,40),(30,0),设,把(20,40),(30,0)代入,得解得∴.∴(3)由,得当时,∵为整数,∴当时,最大值为79.8万件.当时,∵随的增大而减小,∴当时,最大值为80万件.综上所述,上市后第20天国内外市场日销售总量值最大,最大值为80万件.3.解:(1)A(-12,0),B(12,0),C(0,8).设抛物线为C点坐标代入得:c=8A,B点坐标代入得:解得,所求抛物线为(2)当时得,∴高出水面4m处,拱宽(船宽),所以此船在正常水位时不可以开到桥下.4.解:(1)如图,设第一次落地时,抛物线的表达式为由已知:当时即,∴∴表达式为(或);(2)令,∴,(舍去).∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD=EF(即相当于抛物线AEMFC向下平移了2个单位)∴解得,.∴∴ BD=13-6+10=17(米).解法二:令解得(舍),∴点C坐标为(13,0).设抛物线CND为.将C点坐标代入得:解得:(舍去),.令(舍去),∴ BD=23-6=17(米).解法三:由解法二知,,所以CD=2(18-13)=10,所以BD=(13-6)+10=17.答:他应再向前跑17米.5.解:本题共4种情况.设二次函数的图象的对称轴与轴相交于点E.(1)如图①,当∠CAD=60°时,因为ACBD是菱形,一边长为2,所以DE=1,BE=,所以点B的坐标为,点C的坐标为(1,-1),解得.所以(2)如图②,当∠ACB=60°时,由菱形性质知点A的坐标为(0,0),点C的坐标为(1,).解得,,所以.同理可得:(3),(4),所以符合条件的二次函数的表达式有:,,,。
二次函数应用题(含答案)
二次函数应用题一、选择题1.烟花厂为扬州烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A.3s B.4s C.5s D.6s2.一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.3600元3.一个运动员打高尔夫球,若球的飞行高度y(m)与水平距离x(m)之间的函数表达式为,则高尔夫球在飞行过程中的最大高度为( )A.10m B.20m C.30m D.60m5.一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S(米)与时间t(秒)间的关系式为,若滑到坡底的时间为2秒,则此人下滑的高度为( )A.24米B.12米C.米D.6米6.小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离是( )A.3.5m B.4m C.4.5mD.4.6m7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间函数关系式为,则该企业一年中应停产的月份是( )A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月8.如图,点C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是( )(A).当C是AB的中点时,S最小(B).当C是AB的中点时,S最大(C).当C为AB的三等分点时,S最小(D).当C为AB的三等分点时,S最大9.如图,已知等腰直角△ABC的直角边长与正方形MNPQ的边长均为20厘米,AC与MN在同一直线上,开始时点A与点N重合,让△ABC以每秒2厘米的速度向左运动,最终点A与点M重合,则重叠部分面积y(厘米2)与时间t(秒)之间的函数关系式为_______.10.军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度.y(m)与飞行时间x(s)的关系满足.经过________秒时间炮弹到达它的最高点,最高点的高度是________米,经过________秒时间,炮弹落到地上爆炸了.11.2006年,某市的国民生产总值是3000亿元,预计2007年比2006年、2008年比2007年每年增长率为x,则2007年这个市的国民生产总值为________亿元;设2008年该市的国民生产总值为y亿元,则y与x之间的函数关系为________,y是x的________次函数.三、解答题12.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为,绿化带的面积为.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,满足条件的绿化带的面积最大?13.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?14.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)足球第一次落地点C距守门员多少米?(取)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取)一、选择题1.B 2.A 3.A 4.A 5.B 6.B 7.C 8.A二、填空题9.10.25;125;5011.3000(1+x);y=3000(1+x)2,二三、解答题12.自变量的取值范围是(2)∵,所以当时,有最大值200.即当时,满足条件的绿化带的面积最大.13.(1)化简得:(2)(3)∵,∴抛物线开口向下.当时,有最大值又,随的增大而增大∴当元时,的最大值为1125元∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.16.解:(1)如图,设第一次落地时,抛物线的表达式为由已知:当时即,∴∴表达式为(或);(2)令,∴,(舍去).∴足球第一次落地距守门员约13米.(3)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD=EF(即相当于抛物线AEMFC向下平移了2个单位) ∴解得,.∴∴ BD=13-6+10=17(米).解法二:令解得(舍),∴点C坐标为(13,0).设抛物线CND为.将C点坐标代入得:解得:(舍去),.令(舍去),∴ BD=23-6=17(米).解法三:由解法二知,,所以CD=2(18-13)=10,所以BD=(13-6)+10=17. 答:他应再向前跑17米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的应用练习题及答案一:知识点利润问题:总利润=总售价–总成本总利润=每件商品的利润×销售数量二:例题1、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个形,则这两个形面积之和的最小值是cm2.2、某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程正确的是________________3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门,问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?4、某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取降价措施,经调查发现,若每件衬衫每降价1元,商场平均每天可以多售出2件.若每件降价x 元,每天盈利y 元,求y 与x 的关系式.若商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场每天盈利最多?盈利多少元?5、某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:房间每天的入住量y关于x的函数关系式.该宾馆每天的房间收费z关于x的函数关系式.该宾馆客房部每天的利润w关于x的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?6、某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x,日销售量为y.写出日销售量y与销售单价x之间的函数关系式;设日销售的毛利润为P,求出毛利润P与销售单价x之间的函数关系式;在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少?7、我州有一种可食用的野生菌,上市时,外商经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160元,同时,平均每天有3千克的野生菌损坏不能出售.设x到后每千克该野生菌的市场价格为y元,试写出y 与x之间的函数关系式.O若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.经理将这批野生茵存放多少天后出售可获得最大利润W元?8、为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y与销售单价x之间的函数关系如图所示.求月销售量y与销售单价x之间的函数关系式;当销售单价定为50元时,为保证公司月利润达到5万元,该公司可安排员工多少人?若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?9、大学毕业生响应“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P与销售时间x之间有如下关系:P=-2x+80;又知前20天的销售价格Q1 与销售时间x之间有如下关系:Q1?1x?30 ,后10天的销售价格Q与2销售时间x之间有如下关系:Q2=45.试写出该商店前20天的日销售利润R1和后l0天的日销售利润R2分别与销售时间x之间的函数关系式;请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入一购进成本.10、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天的日销售量m与时间t的关系如下表:未来40天,前20天每天的价格y1与时间t的函数关系式为y1?t?25,后20天每天的价格y2与时间t的函数关系式为y2??1t?40。
下面我们就来研究销售这种商品的有关问题:认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m与t之间的关系式;请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润给希望工程。
公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值围。
11、今年我国多个省市遭受严重干旱.受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,进入52.元/千克下降至第2周的2.元/千克,且y与周数x 的变化情况满足二次函数y??12x?bx?c.01x?1.2,5月份的进4请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x所满足的函数关系式,并求出5月份y与x所满足的二次函数关系式;若4月份此种蔬菜的进价m与周数x所满足的函数关系为m?价m与周数x所满足的函数关系为m??1x?2.试问4月份与5月份分别在哪一周销售此种5蔬菜一千克的利润最大?且最大利润分别是多少?若5月的第2周共销售100吨此种蔬菜.从5月的第3周起,由于受暴雨的影响,此种蔬菜的可销售量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值..解:4月份y与x满足的函数关系式为y?0.2x?1.8. 把x?1,y?2.8和x?2,y?2.4分别代入y??12x?bx?c,得0?1??20?b?c?2.8,?b??0.25,解得??1?c?3.1.4?2b?c?2.4?202∴五月份y与x满足的函数关系式为y??0.05x?0.25x?3.1.设4月份第x周销售此种蔬菜一千克的利润为W1元,5月份第x周销售此种蔬菜一千克的利润为W2元.1W10.05x?0.6.4∵-0.05<0,∴W1随x的增大而减小. ∴当x?1时,W1最大=-0.05+0.6=0.55.1W2=0.05x2?0.05x?1.1.5∵对称轴为x??0.05??0.5,且-0.05<0,2?∴x>-0.5时,y随x的增大而减小. ∴当x=1时,W2最大=1.所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元.由题意知:?100?1?a%??2??2.4?1?0.8a%??2.4?100.整理,得a2?23a?250?0.解得a??23?.2∵392?1521,402?1600,而1529更接近1521,∴?39. ∴a??31或a?8. 答:a的整数值为8.12、春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售。
九班数学建模兴趣小组根据调查,整理出第x天的捕捞与销售的相关信息如下:⑴在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?⑵假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y与x之间的函数关系式?试说明⑵中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?二次函数综合练习题一、选择题1.已知二次函数y=x2-3x+m的图象与x轴的一个交点为,则关于x的一元二次方程x2-3x+m=0的两实数根是.A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=B.∵二次函数y=x2-3x+m的图象与x轴的一个交点为,∴0=12-3+m,解得m=2,∴二次函数为y=x2-3x +2.设y=0,则x2-3x+2=0.解得x2=1,x2=2,这就是一元二次方程x2-3x+m=0的两实数根.所以应选B.考查一元二次方程的根、二次函数图象与x轴交点的关系.当b2-4ac≥0时,二次函数y=ax2+bx+c的图象与x 轴的两个交点的横坐标是一元二次方程ax2+bx+c=0的两个根.因审题不严,容易错选;或因解方程出错而错选.2.方程x?3x?1?0的根可视为函数y?x?3的图象与函数213的图象交点的横坐标,则方程x?2x?1?0的实根x0所在的围是.x111111A.0?x0? B.?x0? C.?x0? D.?x0?1443322y?要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.不会得出函数解析式,不会观察图象而出错.. 一次函数y=ax+b、二次函数y=ax2+bx和反比例函数y=k在同一直角坐标系中的图象如图所示,A点的坐标为.则下列结x论中,正确的是A.b=2a+k B.a=b+k C.a>b>0D.a>k>0 D.∵一次函数与二次函数的图象交点A的坐标为,∴-2a+b=0,∴b=2a.又∵抛物线开口向上,∴a>0,则b>0.而反比例函数图象经过第一、三象限,∴k>0.∴2a+k>2a,即b<2a+k.故A选项错误.假设B选项正确,则将b=2a代入a=b+k,得a=2a +k,a=-k.又∵a>0,∴-k>0,即k<0,这与k>0相矛盾,∴a=b+k不成立.故B选项错误.再由a>0,b=2a,知a,b两数均是正数,且a<b,∴b>a>0.故C选项错误.这样,就只有D选项正确.本题考查一次函数、反比例函数、二次函数的图象,属于图象共存型问题.解决这类问题的关键是熟练掌握这三类函数的图象及性质,能根据图象所在象限的位置准确判断出各系数的符号.上面解法运用的是排除法,至于D为何正确,可由二次函数y=ax2+b2kb2abx与反比例函数y=的图象,知当x=-=-=-1时,y=-k>-=-4ax2a2a4a2=-a,即k<a.又因为a>0,k>0,所以a>k>0.a二次函数a、b、c的符号的确定与函数图象的关系混淆不清.4. 抛物线y?22?1的顶点坐标是A.:AB.2C.D.抛物线y?a?k的顶点是求一个抛物线的顶点可以先把二次函数配方,再得到顶点坐标;也可以利用顶b4ac?b2点公式求顶点坐标。
2a4a4.如图,二次函数y=x+bx-的图象与x轴交于点A和点B,以AB为边在x轴上方作形ABCD,点P是x 轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.请直接写出点D的坐标:;当点P在线段AO上运动至何处时,线段OE的长有最大值,求出这个最大值;是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与形ABCD重叠部分的面积;若不存在,请说明理由.2考点:二次函数综合题.分析:将点A的坐标代入二次函数的解析式求得其解析式,然后求得点B的坐标即可求得形ABCD的边长,从而求得点D的纵坐标;PA=t,OE=l,利用△DAP∽△POE得到比例式,从而得到有关两个变量的二次函数,求最值即可;分点P位于y轴左侧和右侧两种情况讨论即可得到重叠部分的面积.解答:解:;设PA=t,OE=l,由∠DAP=∠POE=∠DPE=90°得△DAP∽△POE,∴,∴l=-+=-+2∴当t=时,l有最大值,;即P为AO中点时,OE的最大值为存在.①点P点在y轴左侧时,P点的坐标为由△PAD∽△OEG得OE=PA=1,∴OP=OA+PA=4。