现代控制理论基础知识

合集下载

《现代控制理论基础》课件

《现代控制理论基础》课件

预测控制
预测控制是一种基于模型预测 未来系统行为的控制方法。
控制器
控制器是控制系统中的核心 组件,负责计算并施加控制 信号。
操作对象
控制系统的操作对象可以是 各种各样的设备或系统,了 解操作对象的特性是设计有 效控制策略的基础。
模型化
系统状态方程
通过建立系统状态方程,我们 可以描述控制系统的动态行为。
传递函数
传递函数是描述输入和输出之 间关系的数学表达式,常用于 分析系统的频率响应。
通过绘制根轨迹来分析系统的稳定性和性能。
2 Nyquist法
利用Nyquist图来评估系统的稳定性和抗干扰能力。
鲁棒性设计
扰动抑制
了解如何设计鲁棒控制器来抑制 系统中的扰动。
鲁棒控制
鲁棒控制是一种能够保持系统稳 定性和性能的控制策略。
H∞控制
H∞控制是一种能够优化系统鲁 棒性和性能的控制策略。
非线性控制
《现代控制理论基础》PPT课件
现代控制理论基础是一门关于控制系统的基本概念、模型化、控制器设计、 稳定性分析、鲁棒性设计、非线性控制和优化控制的课程。通过本课程的学 习,您将掌握现代控制理论的基础知识和思想,并能够运用所学知识解决实 际控制问题。
控制系统基本概念
控制过程
了解控制过程是理解控制系 统工作原理的重要一步。
1 反馈线性化
通过反馈线性化技术,我们可以设计控制器来稳定非线性系统。
2 滑模控制
滑模控制是一种鲁棒而有效的非线性控制方法。
3 非线性规划
非线性规划方法可以用来优化非线性系统的控制策略。
优化控制
最优化法
最优化法是一种通过优化目标 函数来设计最优控制策略的方 法。
非线性规划

《现代控制理论基础》PPT课件

《现代控制理论基础》PPT课件
1875 年 , 英 国 的 劳 斯 ( E.J.Routh,1831-1907 ) , 1995年,德国的赫尔维茨(A.Hurwitz,1859-1919),先 后分别提出根据代数方程系数判别系统稳定性的一般准 则。
11
20世纪20年代,电子技术得到了迅速发展,促进 了信息处理和自动控制及其理论的发展。
这 个 时 期 的 主 要 代 表 人 物 有 美 国 的 贝 尔 曼 ( R. Bellman)、原苏联的庞特里亚金和美籍匈牙利人卡尔曼 (R.E.Kalman)等人。
23
1965年,贝尔曼发表了“动态规划理论在控制过程中 的应用“一文,提出了寻求最优控制的动态规划法。
1958年,Kalman提出递推估计的自动化控制原理,奠 定了自校正控制器的基础。
5
二 控制理论的产生及其发展
6
自动控制思想及其实践可以说历史悠久。它是人类 在认识世界和改造世界的过程中产生的,并随着社会的 发展和科学水平的进步而不断发展。
人类发明具有“自动”功能的装置的历史可以追溯到 公元前14-11世纪的中国、埃及和巴比伦出现的铜壶滴 漏计时器。
公元前4世纪,希腊柏拉图(Platon,公元前47-公元 前347)首先使用了“控制论”一词。
27
例如,在20世纪70年代以来形成的大系统理论主要 是解决大型工程和社会经济中信号处理、可靠性控制等 综合最优的设计问题。
由于应用范围涉及越来越复杂的工程系统和社会、 经济、管理等非工程的人类活动系统,原有的理论方法 遇到了本质困难,大系统和社会发展逐渐转向“复杂系 统”的概念。
28
智能控制的发展始于20世纪60年代,它是一种能更好地 模仿人类智能的、非传统的控制方法。它突破了传统控制中 对象有明确的数学描述和控制目标是可以数量化的限制。它 所采用的理念方法主要是来自自动控制理论、人工智能、模 糊集和神经网络以及运筹学等学科分支。

现代控制理论知识点汇总

现代控制理论知识点汇总

现代控制理论知识点汇总Revised at 2 pm on December 25, 2020.第一章 控制系统的状态空间表达式1. 状态空间表达式 n 阶DuCx y Bu Ax x+=+= 1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。

2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x;c 由模拟图写出状态方程和输出方程。

② 由系统的机理出发建立状态空间表达式:如电路系统。

通常选电容上的电压和电感上的电流作为状态变量。

利用KVL 和KCL 列微分方程,整理。

现代控制理论基础知识共61页

现代控制理论基础知识共61页
对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

考研现代控制理论知识点剖析

考研现代控制理论知识点剖析

考研现代控制理论知识点剖析现代控制理论作为控制工程的重要分支,是在传统控制理论的基础上发展起来的。

它以数学模型为基础,利用系统分析和设计方法,实现对各类复杂系统的控制与优化。

本文将从控制系统的基本概念、控制器设计、状态空间分析等方面,对考研现代控制理论的核心知识点进行剖析。

一、控制系统的基本概念控制系统是指通过对被控对象进行操作,使其输出符合预期要求的系统。

它由被控对象、传感器、执行器和控制器四个基本部分构成。

被控对象是指需要进行控制的物理系统,如机械系统、电气系统等。

传感器用于对被控对象的各种状态或性能进行测量与检测,并将其转化为电信号。

执行器则根据控制器输出的信号,将其转化为能够直接或间接影响被控对象的物理量或信号。

控制器是整个控制系统的核心部分,它接收传感器的反馈信号,并根据预先设定的控制策略产生相应的控制信号。

二、控制器设计控制器设计是指通过对控制器参数的选择和调节,使得控制系统能够达到预期的控制目标。

常见的控制器设计方法主要有比例控制、积分控制、微分控制以及PID控制等。

比例控制是根据被控对象输出与期望输出之间的差异,按比例调节控制器输出信号。

积分控制在比例控制的基础上,增加对积分项的调节,使系统具有更好的稳定性和鲁棒性。

微分控制则通过对被控对象输出的变化率进行反馈调节,进一步提高系统响应速度和抗扰性。

PID控制则是综合了比例、积分和微分控制的优点,具有更广泛的应用范围和更好的控制性能。

三、状态空间分析状态空间分析是现代控制理论中的重要内容,它基于被控对象的状态变量,利用状态方程和输出方程描述系统的动态行为和输出特性。

状态方程是由被控对象的状态变量和外部输入所构成的一组常微分方程。

输出方程则将被控对象的状态变量与输出变量之间的关系表示出来。

通过状态空间分析,可以对系统的稳定性、可控性和可观测性等性质进行评估,并为控制器设计提供依据。

四、鲁棒控制鲁棒控制是现代控制理论中的另一个重要概念,它是指在系统参数变化或外部扰动存在的情况下,保持控制系统性能的一种控制策略。

现代控制理论完整版

现代控制理论完整版

现代控制理论HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。

答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数。

互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。

2、什么是状态观测器?简述构造状态观测器的原则。

答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。

原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。

3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。

答:基本思想:从能量观点分析平衡状态的稳定性。

(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定。

方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。

局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧。

4、举例说明系统状态稳定和输出稳定的关系。

答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。

举例:A的特征值 =-1 =1 所以状态不是渐进稳点的,W(s)的极点S=-1,所以输出稳点。

5、什么是实现问题什么是最小实现说明实现存在的条件。

(完整版)现代控制理论

(完整版)现代控制理论

第一章线性离散系统第一节概述随着微电子技术,计算机技术和网络技术的发展,采样系统和数字控制系统得到广泛的应用。

通常把采样系统,数字控制系统统称为离散系统。

一、举例自动测温,控温系统图;加热气体图解:1. 当炉温h变化时,测温电阻R变化→R∆,电桥失去平衡状态,检流计指针发生偏转,其偏转角度为)e;(t2. 检流计是个高灵敏度的元件,为防磨损不允许有摩擦力。

当凸轮转动使指针),接触时间为τ秒;与电位器相接触(凸轮每转的时间为T3. 当炉温h 连续变化时,电位器的输出是一串宽度为τ的脉冲信号e *τ(t);4.e *τ(t)为常值。

加热气体控制阀门角度调速器电动机放大器h →→→→→→ϕ 二、相关定义说明(通过上例来说明) 1. 信号采样偏差)(t e 是连续信号,电位器的输出的e *τ(t)是脉冲信号。

连续信号转变为脉冲信号的过程,成为采样或采样过程。

实现采样的装置成为采样器。

To —采样周期,f s =--To1采样频率,W s =2πf s —采样角频率 2.信号复现因接触时间很小,τo T 〈〈τ,故可把采样器的输出信号)(t e *近似看成是一串强度等于矩形脉冲面积的理想脉冲,为了去除采样本身带来的高额分量,需要把离散信号)(t e *恢复到原信号)(t e 。

实现方法:是在采样器之后串联一个保持器,及信号复现滤波器。

作用:是把)(t e *脉冲信号变成阶梯信号e h (t)3.采样系统结构图r(t),e(t),c(t),y(t)为连续信号,)(t e *为离散信号)(s G h ,)(s G p ,)(s H 分别为保持器,被控对象和反馈环节的传递函数。

(t)r4.采样系统工作过程⇒由保持器5. 采样控制方式采样周期To ⎪⎩⎪⎨⎧=≠=⇒相位不同步采样常数常数6. 采样系统的研究方法(或称使用的数字工具)因运算过程中出现s 的超越函数,故不用拉式变换法,二采用z 变换方法,状态空间法。

现代控制知识点总结

现代控制知识点总结

现代控制知识点总结在现代化的工业生产和自动化系统中,控制技术扮演着至关重要的角色。

控制技术的发展不断推动着生产系统的智能化、高效化和自动化。

本文将从控制理论、控制系统的组成、控制器的类型、现代控制技术等方面对现代控制知识点进行总结。

一、控制理论控制理论是现代控制的基础,它主要研究控制系统的设计、分析和优化。

在控制理论中,最经典的理论是PID控制器(比例、积分、微分控制器)。

PID控制器基于误差信号的比例、积分和微分来调节控制变量,它的简单结构和良好的稳定性使得它在工业控制中得到广泛应用。

除了PID控制器,控制理论中还有模糊控制、神经网络控制、模型预测控制等现代控制技术。

这些技术通过不同的控制策略和算法来实现对复杂、非线性的系统控制,提高了控制系统的性能和效率。

二、控制系统的组成控制系统是由传感器、执行器、控制器和执行对象组成的。

传感器用于采集控制对象的状态信息,将其转换为电信号送入控制器;执行器根据控制器的指令控制执行对象的动作;控制器是整个系统的核心部件,它根据传感器反馈的信息计算出控制信号,并将其送至执行器。

控制系统的组成非常复杂,不同的控制系统需要不同的传感器、执行器和控制器来实现。

在现代工业生产中,控制系统的组成将更加多样化和复杂化,需要运用各种现代控制技术来实现对各种复杂对象的控制。

三、控制器的类型控制器是控制系统的核心部件,它按照控制对象的状态信息,计算出控制信号来实现对执行对象的控制。

根据其控制策略和算法的不同,控制器主要有以下几种类型:1. 开环控制器:开环控制器没有反馈环节,它根据固定的控制规律来生成控制信号。

开环控制器简单、成本低,但不能对外界的干扰进行修正,容易受到外界因素的影响。

2. 闭环控制器:闭环控制器有反馈环节,它根据传感器反馈的信息进行计算和修正,实现对控制对象的精确控制。

闭环控制器有PID控制器、模糊控制器、神经网络控制器等。

3. 数字控制器:数字控制器是一种基于数字信号处理的控制器,它使用数字信号进行控制计算和处理,能够实现对非线性、复杂系统的控制,并且具有较强的抗干扰能力和精确性。

现代控制理论-第1章 基础知识

现代控制理论-第1章  基础知识

L[xt ] s2 X s sx0 x0
L[x(n) (t)] sn X (s) sn1x(0) sn2x' (0) sx(n2) (0) x(n1) (0)
(2)积分性质
设:L[x(t)] X (s) ,xi (0)
tr2
r2 !

k1r

e
p1t

n
k jepjt

j r 1
对象)
热电偶
恒温箱自动控制系统功能框图
反馈
反馈是指将输出信号部分或全部返回到输入端
反馈是控制系统的灵魂、思想和立足点
内在反馈、外部反馈、开环与闭环
反馈作用:减少给定环节与被控对象之间的偏差
组成:给定环节、比较环节、放大环节、执行环节、
被控对象、测量反馈环节
扰动
温度t
给定 信号
u1 u
函数X(s)可以展成如下形式:
X (s)
B(s) A(s)

(s
k11 p1)

(s
k 12 p1)
1
k1 k2 (s p1) s p2

kj s pi
kn s pn
k11

lim
s p1
s

p1 r
X
s
绪论
一、工程控制论的研究对象
工程控制论研究的是工程技术中的广义系统,在 一定的外界条件作用下,从系统的初态出发,所 经历的由其内部固有属性所决定的整个动态过程, 研究该过程中输入、输出与系统的关系。
1.广义系统:由相互联系、相互作用的若干部分 构成,达到一定目的或实现一定运动规律的一个 整体。可繁可简、可虚可实。

现代控制理论基础知识

现代控制理论基础知识

2. 20世纪末,控制理论向着“大系统理论”、 “智能控制理论”和“复杂系统理论”的方向发 展:
大系统理论:用控制和信息的观点,研究各种大系统的结
构方案、总体设计中的分解方法和协调等 问题的技术基础理论。
复杂大系统控制
智能控制理论:研究与模拟人类智能活动及其控制与信
息传递过程的规律,研制具有某些拟人 智能 的工程控制与信息处理系统的理论。
奈奎斯特
奈奎斯特,美国物理学家,1889年出生在瑞典。1976年在德 克萨斯逝世。奈奎斯特对信息论做出了重大的贡献。奈奎斯特 1907年移民到美国并于1912年进入北达克塔大学学习。1917年 在耶鲁大学获得物理学博士学位。1917年~1934年在AT&T公司 工作,后转入贝尔电话实验室工作。
为贝尔电话实验室的工程师,在热噪声(Johnson-Nyquist noise)和反馈放大器稳 定性方面做出了很大的贡献他早期的理论性工作关于确定传输信息的需满足的带 宽要求,在《贝尔系统技术》期刊上发表了《影响电报速度传输速度的因素》文 章,为后来香农的信息论奠定了基础。 1927年,奈奎斯特确定了如果对某一带宽的有限时间连续信号(模拟信号) 进行抽样,且在抽样率达到一定数值时,根据这些抽样值可以在接收端准确地恢 复原信号。为不使原波形产生“半波损失”,采样率至少应为信号最高频率的两 倍,这就是著名的奈奎斯特采样定理。奈奎斯特1928年发表了《电报传输理论的 一定论题》。 1954年,他从贝尔实验室退休。
最优估计理论
自适应控制理论
系统辨识理论
智能控制理论
线性系统理论的内容
状态空间实现: 线性系统的数学模型问题 线性系统的内部特性:稳定性、可控性与可观测性 线性系统的设计方法:极点配置
最优控制理论的内容

现代控制理论期末总结

现代控制理论期末总结

现代控制理论期末总结一、引言现代控制理论是控制科学领域的重要学科之一,它涉及到多学科的知识和技术,包括数学、物理、电子工程等。

随着科学技术的进步和社会需求的变化,现代控制理论也在不断发展和完善。

本文对现代控制理论的基本概念、主要方法和应用进行总结和归纳。

二、基本概念1. 控制系统:控制系统是由若干个组成部分组合起来,形成的一个整体。

主要包括被控对象、控制器、传感器和执行机构等。

2. 系统模型:系统模型是对控制对象的数学描述,主要有状态方程和传输函数两种形式。

3. 控制器:控制器是根据系统的输入和输出来生成控制信号,将控制对象的输出调整到期望值或稳定状态。

4. 闭环控制与开环控制:闭环控制是指根据反馈信号来调整控制信号的方法,开环控制是指不考虑反馈信号而直接调整控制信号的方法。

三、主要方法1. PID控制:PID控制是一种常用的控制方法,它基于比例、积分和微分三个部分来调整控制信号,使得系统输出能够快速稳定地达到期望值。

2. 状态空间法:状态空间法是一种描述系统动态行为的方法,通过状态变量和状态方程来描述系统的状态演化过程,实现对系统的控制。

3. 最优控制:最优控制是寻找使系统性能达到最佳的控制方法,主要有最小时间、最小能量、最小轨迹等不同的优化目标。

4. 自适应控制:自适应控制是指根据系统的动态特性来调整控制器的参数,以适应不断变化的控制对象。

5. 非线性控制:非线性控制是处理非线性系统的方法,包括滑模控制、反馈线性化、自适应模糊控制等。

四、应用领域1. 工业控制:现代控制理论在工业控制中得到广泛应用,包括自动化生产线、机器人控制、工艺流程控制等。

2. 航空航天:现代控制理论在飞行器的姿态控制、飞行轨迹规划、自动驾驶等方面有着重要的应用。

3. 医疗器械:现代控制理论在医疗器械中的应用包括影像诊断、手术机器人、生命支持系统等。

4. 交通运输:现代控制理论在交通运输中的应用包括车辆控制、交通网优化、智能交通系统等。

现代控制理论基础试题

现代控制理论基础试题

现代控制理论基础试题一、选择题:1. 什么是现代控制理论的核心概念?A. 反馈原理B. 开环控制C. 传感器D. 控制算法2. 当系统的输出信号与期望的参考信号之间存在差异时,现代控制理论会采取以下哪种策略进行调节?A. 开环控制B. 闭环控制C. 反馈控制D. 前馈控制3. 现代控制系统通常包括哪些基本组成部分?A. 传感器、执行器、控制器B. 输入信号、输出信号、执行器C. 控制器、执行器、参考信号D. 反馈信号、执行器、控制器4. 现代控制理论的主要目标是什么?A. 降低系统效应B. 提高系统稳定性C. 增加系统响应速度D. 最小化系统误差5. 在现代控制系统中,传感器的作用是什么?A. 通过收集系统的反馈信息B. 将输入信号转化为输出信号C. 控制执行器的动作D. 校准控制器的参数二、填空题:6. 现代控制理论中,PID控制器中的比例、积分和微分项分别代表什么?比例项:_______积分项:_______微分项:_______7. 现代控制理论中,系统的稳定性通常通过计算系统的_________来判断。

8. 现代控制理论中,增益裕度是衡量系统稳定性的一个指标,它表示系统输出响应对增益变化的___________。

三、简答题:9. 请简述开环控制和闭环控制的区别。

10. 现代控制系统常用的传感器有哪些?请简要介绍一个传感器的工作原理。

四、分析题:11. 现代控制系统中的反馈环节起到了重要的作用,请你用一个简单的图示来说明反馈控制系统的基本结构。

12. 现代控制理论中,经典PID控制器在某些系统中可能存在不足之处。

请你简要分析当系统存在非线性或时变特性时,经典PID控制器可能出现的问题,并提出解决方案。

结束语:通过本试题,我们回顾了现代控制理论的核心概念、基本组成部分以及控制策略。

掌握现代控制理论对于工程实践具有重要的意义,它可以帮助我们设计和优化各种控制系统,提高系统的性能和稳定性。

希望通过这些试题的训练,您能够对现代控制理论有更深入的理解,并能够在实际应用中灵活运用。

现代控制理论pdf

现代控制理论pdf

现代控制理论pdf
1 现代控制理论
现代控制理论是一种控制策略,主要针对复杂系统而设计。

它将
传统的算法和最新的技术结合在一起,旨在实现平衡及对系统即时控制、自行调节。

简而言之,现代控制理论是一种使复杂系统更稳定更
健壮的以自适应为主的控制理论系统,该理论以创新的参数估计和变
化条件的识别而着称。

现代控制理论的基本原理是系统的全局预测,通过分析所有可能
的变化,对系统作出及时的反应和控制,以达到系统的最佳性能。

此外,现代控制理论更注重对系统的实时调节和迭代,以达到更高精度
的控制。

在系统变更和失效时,可以使用现代控制理论进行快速调节,以快速恢复系统性能。

数字控制系统是现代控制理论大部分应用于实践中的主要形式。

这种系统使用算法来跟踪系统状态,并使系统按照计划行动;同时,
它也允许实时调节以保持系统的预期性能。

实践中,该系统被广泛应
用于汽车、机器人和工业控制系统中。

另外,现代控制理论还使用多种优化算法,如模拟退火、遗传算
法等,以确定系统参数,使系统更自动化和准确。

现代控制理论也会
联合智能控制方法,有利于实现更复杂的控制效果,尽可能减少失常,从而实现系统的智能化运行。

综上所述,现代控制理论充分利用最新技术和自适应元素,为系统提供更可靠的稳定性,可以有效解决复杂系统的稳定性和可靠性等问题,是当前国际上先进的控制理论之一。

现代控制理论总结

现代控制理论总结

现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。

以状态变量X1,,X2,X3,……X n为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。

随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。

2、状态空间表达式:状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。

3、实现问题:由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题单入单出系统传函:W(s)=,实现存在的条件是系统必须满足m<=n,否则是物理不可实现系统最小实现是在所有的实现形式中,其维数最低的实现。

即无零,极点对消的传函的实现。

三种常用最小实现:能控标准型实现,能观标准型实现,并联型实现(约旦型)4、能控标准型实现,能观标准型实现,并联型实现(约旦型)传函无零点系统矩阵A的主对角线上方元素为1,最后一行元素是传函特征多项式系数的负值,其余元素为0,A为友矩阵。

控制矩阵b除最后一个元素是1,其他为0,矩阵A,b具有上述特点的状态空间表达式称为能控标准型。

将b与c矩阵元素互换,另输出矩阵c除第一个元素为1外其他为0,矩阵A,c具有上述特点的状态空间表达式称为能观标准型。

传函有零点见书p17页……..5、建立空间状态表达式的方法:①由结构图建立②有系统分析基里建立③由系统外部描述建立(传函)6、子系统在各种连接时的传函矩阵:设子系统1为子系统2为1)并联:另u1=u2=u,y=y1+y2的系统的状态空间表达式所以系统的传递函数矩阵为:2)串联:由u1=u,u2=y1,y=y2得系统的状态空间表达式为:W(S)=W2(S)W1(S)注意不能写反,应为矩阵乘法不满足交换律3)反馈:系统状态空间表达式:第二章:状态空间表达式的解:1、状态方程解的结构特征:线性系统的一个基本属性是满足叠加原理,把系统同时在初始状态和输入u作用下的状态运动x(t)分解为由初始状态和输入u分别单独作用所产生的运动和的叠加。

现代控制理论的主要内容

现代控制理论的主要内容

现代控制理论的主要内容介绍现代控制理论是控制工程领域的一门重要学科,它主要研究利用数学模型和计算机技术进行系统控制的方法和理论。

现代控制理论从20世纪50年代开始快速发展,并且在工业生产、航空航天、交通运输等领域有着广泛的应用。

本文将介绍现代控制理论的主要内容,包括控制理论的基本概念、常用的控制方法和现代控制系统的设计原则。

控制理论的基本概念系统在控制理论中,系统指的是需要被控制或调节的对象,可以是一个物理系统、一个工艺流程或是一个经济系统等。

系统可以被描述为由输入和输出组成的黑箱模型,通过对输入信号的调节,可以实现对输出信号的控制。

控制系统控制系统是由传感器、执行器、控制器和控制算法组成的一系列组件的集合。

控制系统的作用是通过对输入信号的调节,使得系统的输出达到预期的目标。

控制器根据传感器的反馈信息,通过控制算法计算出相应的控制信号,然后通过执行器对系统进行控制。

反馈控制反馈控制是控制系统中常用的一种控制方法。

它通过对系统输出的实时反馈信息进行测量和分析,然后根据反馈误差调节输入信号,使得输出信号逼近预期目标。

反馈控制能够提高系统的稳定性和鲁棒性,并且对系统参数变化有一定的适应性。

常用的控制方法比例积分微分控制(PID控制)PID控制是一种经典的控制方法,它根据误差的比例、积分和微分部分来计算控制信号。

比例部分根据当前误差与目标值之间的差异来计算控制信号,积分部分根据误差的累积值来计算控制信号,微分部分根据误差变化的速率来计算控制信号。

PID控制具有简单易实现、鲁棒性好的特点,在工业自动化控制中得到了广泛的应用。

线性二次调节(LQR)LQR是一种优化控制方法,它通过最小化系统状态变量和控制输入之间的二次代价函数来设计控制器。

LQR控制器的设计需要事先确定系统的数学模型,然后通过计算系统的状态反馈增益矩阵,将负反馈控制信号与系统状态进行线性组合。

LQR控制具有精确、快速、稳定的特点,在许多复杂系统中都有着广泛的应用。

现代控制理论知识点归纳

现代控制理论知识点归纳

现代控制理论知识点归纳现代控制理论是指20世纪后半叶发展起来的控制理论,其主要特点是运用数学、电子和计算机等高科技手段解决实际控制问题,在控制理论研究和应用方面取得了巨大成就。

本文将对现代控制理论的知识点进行归纳,以便更好地理解和掌握该学科。

1. 控制系统的基本概念。

控制系统指通过对被控对象施加控制以达到预期目的的系统,由输入信号、控制器、被控对象和输出信号组成。

其中输入信号指控制器对被控对象的输入,包括指令信号、干扰信号和噪声信号;控制器是控制系统的核心,通常使用反馈控制器、前馈控制器和组合控制器等;被控对象是控制系统中被控制的对象,包括机械系统、电力系统、化学系统等;输出信号是被控对象的响应信号,可分析其稳定性、动态性能和鲁棒性等。

2. 系统建模和分析。

将实际控制系统抽象为数学模型是现代控制理论的基础。

系统建模的方法包括基于物理原理的建模、基于经验的建模和基于统计学的建模等。

针对特定的控制问题可采用不同的建模方法。

系统的分析包括稳定性分析、动态性能分析和鲁棒性分析等。

稳定性是控制系统的基本要求,通过判断系统是否稳定可以避免系统崩溃或振荡。

动态性能是指控制系统对输入信号的响应能力,包括动态误差、响应时间、超调量等性能指标。

鲁棒性是指控制系统对参数变化或外界干扰的鲁棒性,越强的控制系统对各种不确定因素的适应能力越强。

3. 控制器设计。

现代控制理论的目的是设计出满足控制要求的控制器,设计控制器的方法包括传统方法和现代方法。

传统方法是指使用PID控制器、状态反馈控制器、最优控制器等传统方法设计控制器。

现代方法是指使用神经网络、模糊控制、滑动模式控制等现代方法设计控制器。

设计控制器需要综合考虑系统的稳定性、动态性能和鲁棒性等因素。

4. 联合控制系统。

现代控制理论还涉及联合控制系统的研究,即将机械、电气、电子、计算机等多方面因素融合在一起,实现更加复杂的控制任务。

联合控制系统的研究需要考虑各种子系统之间的协同和交互作用,同时要保证系统的稳定性和鲁棒性。

《现代控制理论》PPT课件

《现代控制理论》PPT课件

精选ppt
8
4、控制理论发展趋势
❖ 企业:资源共享、因特网、信息集成、 信息技术+控制技术 (集成控制技术)
❖ 网络控制技术
❖ 计算机集成制造CIMS:(工厂自动化)
பைடு நூலகம்
精选ppt
9
三、现代控制理论与古典控制理论的对比
❖ 共同 对象-系统 主要内容 分析:研究系统的原理和性能 设计:改变系统的可能性(综合性能)
❖ 现代控制理论 哈工大 机械专业硕研
精选ppt
12
精选ppt
7
3.智能控制理论 (60年代末至今)
❖ 1970——1980 大系统理论 控制管理综合 ❖ 1980——1990 智能控制理论 智能自动化 ❖ 1990——21c 集成控制理论 网络控制自动化
(1) 专家系统;(2)模糊控制,人工智能 (3) 神经网络,人脑模型;(4)遗传算法 控制理论与计算机技术相结合→计算机控制技术
现代控制理论
Modern Control Theory
精选ppt
1
绪论
❖ 学习现代控制理论的意义: 1.是所学专业的理论基础 2.是研究生阶段提高理论水平的重要环节。 3. 是许多专业考博士的必考课。
精选ppt
2
一、控制的基本问题
❖ 控制问题:对于受控系统(广义系统)S,
寻求控制规律μ(t),使得闭环系统满足给
现代控制理论发展的主要标志 (1)卡尔曼:状态空间法; (2)卡尔曼:能控性与能观性; (3)庞特里雅金:极大值原理;
精选ppt
6
现代控制理论的主要特点
❖ 研究对象: 线性系统、非线性系统、时变系统、多 变量系统、连续与离散系统
❖ 数学上:状态空间法

现代控制理论知识点总结

现代控制理论知识点总结

现代控制理论知识点总结————————————————————————————————作者:————————————————————————————————日期:第一章控制系统的状态空间表达式1. 状态空间表达式n 阶DuCx y Bu Ax x+=+=&1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。

2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3.模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4. 状态空间表达式的建立①由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x &;c 由模拟图写出状态方程和输出方程。

②由系统的机理出发建立状态空间表达式:如电路系统。

现代控制理论知识点归纳

现代控制理论知识点归纳

第一章1、输入-输出描述:通过建立系统输入输出间的数学关系来描述系统特性。

含:传递函数、微分方程(外部描述)2、状态空间描述通过建立状态(能够完善描述系统行为的内部变量)和系统输入输出间的数学关系来描述系统行为。

3、limg ij (s)=c,真有理分式c ≠0的常数,严格真有理分式c=0,非真有理分式c=∞4、输入输出描述局限性:a 、非零初始条件无法使用,b 、不能揭示全部内部行为。

5、状态变量的选取:a 、n 个线性无关的量,b 、不唯一,c 、输出量可作状态变量,d 、输入量不允许做状态变量,e 、有时不可测量,f 、必须是时间域的。

6、求状态空间描述的传递函数矩阵:G(s)=C(sI-A)-1B+D7、输入-输出描述——>状态空间描述(中间变量法)8、化对角规范形的条件:系统矩阵A 的n 个特征值λ1,λ2,…, λn 两两互异,或当系统矩阵A 的n 个特征向量线性无关。

9、*x =Ax+Bu *x =A x +B u A =P -1AP B =P -1B *x =P -1*x x =P -1x u =u 10、代数重数σi :同为λi 的特征值的个数,也为所有属于 λi 的约当小块的阶数之和。

几何重数αi :λi 对应的约当小块个数,也是λi 对应线性相关特征向量个数。

11、组合系统状态空间描述:a 、并联:]*1111*222211212200[]x x B A u A x B x x y C C D D u x ⎧⎡⎤⎡⎤⎡⎤⎡⎤⎪⎢⎥=+⎢⎥⎢⎥⎢⎥⎪⎢⎥⎣⎦⎪⎣⎦⎣⎦⎣⎦⎨⎪⎡⎤⎪⎡=++⎢⎥⎣⎪⎣⎦⎩,1()()N i i G s G s ==∑b 、串联:]()*1111*221221212122120x A x B u A B C x B D x x y D C C D D u x ⎧⎡⎤⎡⎡⎤⎡⎤⎤⎪⎢⎥=+⎢⎢⎥⎢⎥⎥⎪⎢⎥⎦⎪⎣⎣⎦⎣⎦⎣⎦⎨⎪⎡⎤⎪⎡=+⎢⎥⎣⎪⎣⎦⎩,11()()()...()N N G s G s G s G s -=c 、反馈:1121()()[()()]G s G s I G s G s -=+第二章1、求e At :a 、化对角线线规范形法,b 、拉普拉斯法2、由*x =Ax+Bu y=Cx+Du 求 x(t)=e At x 0+∫e A(t-τ)Bu(τ) d τ,(t ≥0) 第三章1、能控性:如果存在一个不受约束的控制作用u(t)在有限时间间隔t0-tf 内,能使系统从任意初始状态x(t0)转移到任意预期的终端状态x(tf),则称状态x(t0)是能控的,若系统的所有状态x(t0)都是能控的,则称系统是状态完全能控的。

(完整版)现代控制理论

(完整版)现代控制理论

第一章线性离散系统第一节概述随着微电子技术,计算机技术和网络技术的发展,采样系统和数字控制系统得到广泛的应用。

通常把采样系统,数字控制系统统称为离散系统。

一、举例自动测温,控温系统图;加热气体图解:1. 当炉温h变化时,测温电阻R变化→R∆,电桥失去平衡状态,检流计指针发生偏转,其偏转角度为)e;(t2. 检流计是个高灵敏度的元件,为防磨损不允许有摩擦力。

当凸轮转动使指针),接触时间为τ秒;与电位器相接触(凸轮每转的时间为T3. 当炉温h 连续变化时,电位器的输出是一串宽度为τ的脉冲信号e *τ(t);4.e *τ(t)为常值。

加热气体控制阀门角度调速器电动机放大器h →→→→→→ϕ 二、相关定义说明(通过上例来说明) 1. 信号采样偏差)(t e 是连续信号,电位器的输出的e *τ(t)是脉冲信号。

连续信号转变为脉冲信号的过程,成为采样或采样过程。

实现采样的装置成为采样器。

To —采样周期,f s =--To1采样频率,W s =2πf s —采样角频率 2.信号复现因接触时间很小,τo T 〈〈τ,故可把采样器的输出信号)(t e *近似看成是一串强度等于矩形脉冲面积的理想脉冲,为了去除采样本身带来的高额分量,需要把离散信号)(t e *恢复到原信号)(t e 。

实现方法:是在采样器之后串联一个保持器,及信号复现滤波器。

作用:是把)(t e *脉冲信号变成阶梯信号e h (t)3.采样系统结构图r(t),e(t),c(t),y(t)为连续信号,)(t e *为离散信号)(s G h ,)(s G p ,)(s H 分别为保持器,被控对象和反馈环节的传递函数。

(t)r4.采样系统工作过程⇒由保持器5. 采样控制方式采样周期To ⎪⎩⎪⎨⎧=≠=⇒相位不同步采样常数常数6. 采样系统的研究方法(或称使用的数字工具)因运算过程中出现s 的超越函数,故不用拉式变换法,二采用z 变换方法,状态空间法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.五十年代后期,贝尔曼(Bellman)等人提出了状态空间法; 在1957年提出了基于动态规划的最优控制理论。
2.1959年匈牙利数学家卡尔曼(Kalman) 和布西创建了卡尔曼滤波理论;1960年 在控制系统的研究中成功地应用了状态 空间法,并提出了可控性和可观测性的 新概念。 卡尔曼
3. 1961年庞特里亚金(俄国人)提出 了极小(大)值原理。
维纳
维纳生于哥伦比亚市一个犹太人家里。维纳4岁开始读 书。9岁时读中学,11岁进入大学学习.他的数学知识已 超过大学一年级学生的水平,所以转而热衷于研究化学、 物理、电学了。他18岁时取得了哈佛大学数学和哲学两个博士学位,后来又到德国、 英国学习,拜著名哲学家罗素、数学家希尔伯特为师,进一步深造。 维纳已是一个很有名的数学家了,但他对其他学科也很有兴趣。在第二次世界大 战末期,有两个大问题特别引起了他的兴趣,一个是电子计算机,另一个是火炮命 中率问题。 维纳和一位年轻工程师合作,从驾驶汽车这种简单的动作中发现,人是采用了一 种叫“反馈”的控制方法,使汽车按要求行驶。维纳又请来了神经专家进行共同研 究,发现机器和人的控制机能有相似之处。后来,维纳又和许多有名科学家进行讨 论,听取对方的批评意见,甚至是“攻击”意见,终于于1948年把自己的研究成果 发表了出来,叫《控制论》。
倒立摆稳定控制
单级倒立摆稳定控制
二级倒立摆稳定控制
导弹稳定控制
地空导弹稳定控制
空空导弹稳定控制
航天器控制

卫星控制
月球车控制
机器人控制
空间机器人控制
足球机器人控制
指南车
指南车是我国古代伟大的发明之一,也是世 界上最早的控制论机械之一。用英国著名科学史 专家李约瑟的话说,中国古代的指南车“可以说 是人类历史上迈向控制论机器的第一步”,是人 类“第一架体内稳定机”。 指南车与司南、指南针等相比在指南的原理上截然不同。它的车箱 里装着非常巧妙而复杂的机械。是一种双轮独辕车。它的中央有一个大 平轮,木头人就竖立在上面。在大平轮两旁,装着很多小齿轮。如果车 子向左转,右边的车轮就会带动小齿轮,小齿轮再带动大平轮,使大平 轮相反地向右转。如果车子向右转,同样地,大平轮则向左转。因此, 只要指南车开动以前,先让木头人的右手指向南方,以后车子不论是向 左转还是向右转,木头人的右手就总是指向南方。指南车是利用齿轮的 原理造成的。这种齿轮传动类似现代汽车用的差动齿轮,相当于汽车中 差动齿轮的逆向使用原理。这种指南车,可以说是世界上最早的自动化 设备。
庞特里亚金 L.S.Pontryagin 4. 罗森布洛克(H.H.Rosenbrock)、欧文斯(D.H.Owens) 和麦克法仑(G.J.MacFarlane)研究了用于计算机辅助设计的 现代频域法理论,将经典控制理论传递函数的概念推广到多变 量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关 系,为进一步建立统一的线性系统理论奠定了基础。
最优估计理论
自适应控制理论
系统辨识理论
智能控制理论
线性系统理论的内容
状态空间实现: 线性系统的数学模型问题 线性系统的内部特性:稳定性、可控性与可观测性 线性系统的设计方法:极点配置
最优控制理论的内容
变分法(用于不受限系统); 极小(大)值原理;
动态规划:最优性原理;
线性二次型指标的最优控制
最优估计理论的内容
参数估计法;(最小方差、最小二乘法) 状态估计法(卡尔曼滤波)
§ 1.3 现代控制理论与经典控制理论的差异
经典控制理论 研究对象 单输入单输出系统(SISO) 高阶微分方程 研究方法 研究工具 传递函数法(外部描述) 拉普拉斯变换 现代控制理论 多输入多输出系统(MIMO) : 一阶微分方程 状态空间法(内部描述) 线性代数矩阵
指 南 车
2. 公元1086-1089年 (北宋哲宗元祐初年), 我国发明的水运仪象台, 就是一种闭环自动调节系 统。
水 运 仪 象 台
二 起步阶段
随着科学技术与工业生 产的发展,到十八世纪, 自动控制技术逐渐应用到 现代工业中。其中最卓越 的代表是瓦特(J.Watt) 发明的蒸汽机离心调节器, 加速了第一次工业革命的 步伐。
2.我国著名科学家钱学森将控制理论应用于工程实 践,并于1954年出版了《工程控制论》。
钱学森
从四十年代到五十年代末,经典控制理论的 发展与应用使整个世界的科学水平出现了巨大 的飞跃,几乎在工业、农业、交通运输及国防 建设的各个领域都广泛采用了自动化控制技术。 (可以说工业革命和战争促使了经典控制理论 的发展)。
洗衣机智能控制
机器人神经网络控制
复杂系统理论:把系统的研究拓广到开放复杂巨系统的范
筹,以解决复杂系统的控制为目标。
复杂航天器控制
回顾控制理论的发展历程可以看出,它的发展过程反映了 人类由机械化时代进入电气化时代,并走向自动化、信息化、 智能化时代。
§ 1.2 现代控制理论基础的内容
现代控制理论基础的内容为: 线性系统理论 最优控制理论
瓦特JamesWatt
(JamesWatt,1736~1819)英国发明家、工程师。1736年1月19 日生于苏格兰的一个小镇格里诺克。1753年他在家钟表店学手艺。 15岁学完了《物理学原理》并获得了丰富的木工、金属冶炼和加 工等工艺技术。1753年他在一家钟表店学手艺。 1753年又跟有名 的机械师摩尔根当学徒。经过刻苦学习,努力实践,他已能制造 难度较高的象限仪、罗盘、经纬仪等。1756年在格拉斯哥大学当 了仪器修理员。1765年发明了把冷凝过程从汽缸中分离出来的分 离式冷凝器。冷凝器的发明在蒸汽机的发展中起了关键性的作用。 1768年他制成了一台单动作蒸汽机 。1781年,他发明了行星式齿 轮,将蒸汽机活塞的往运动变为旋转运动 1782年他发明了大动力 的“双动作蒸汽机”并获得专利 1784年他发明了平行运动连杆机 构,解决了双动作蒸汽机的结构问题。1788年他发明了离心式调 速器和节气阀,用来自动控制蒸汽机的运转速度。1790年发明了 蒸汽机配套用压力计。 到此为止,瓦特完成了对蒸汽机的整套发明过程。经过他的一系列重大的发 明和改进,使蒸汽机的效率提高到原来纽科门机的3倍多,而且配套齐全、性能 优良、切合实用。瓦特由此博得了第一部现代蒸汽机——高效率瓦特蒸汽机的发 明者称号。
赫尔维茨(Hurwitz)
3.由于两次世界大战中军事 工业需要控制系统具有准确 跟踪与补偿能力,1932年奈 奎斯特(H.Nyquist)提出 了复数域内研究系统的频率 响应法,为具有高质量动态 品质和静态准确度的军用控 制系统提供了急需的分析工 具。
奈奎斯特
4.1948年伊文思(W.R.Ewans)提出了用图解方式研 究系统的根轨迹法。 建立在奈奎斯特的频率响应法和伊文思的根轨迹 法基础上的理论,称为经典(古典)控制理论(或 自动控制理论)。
5. 20世纪70年代奥斯特拉
姆(瑞典)和朗道(法国, ndau)在自适应控制 理论和应用方面作出了贡献。 朗道
ndau
与此同时,关于系统辨识、最优控制、离散时间系统等理 论的发展也大大丰富了现代控制理论的内容。
第三阶段 鲁棒控制理论阶段
1. 由于现代数学的发展,结合H2和H等范数而 出现了H2和H控制,还有逆系统控制等方法。
瓦特
三 发展阶段
1. 1868年麦克斯韦(J.C.Maxwell)解决了蒸汽机调速 系统中出现剧烈振荡的不稳定问题,提出了简单的稳 定性代数判据。
麦克斯韦(J.C.Maxwell)
2. 1895年劳斯(Routh)与赫
尔维茨(Hurwitz)把麦克 斯韦的思想扩展到高阶微 分方程描述的更复杂的系 统中,各自提出了著名的稳 定性判据—劳斯判据和赫 尔维茨判据,基本上满足 了二十世纪初期控制工程 师的需要。
现 代 控 制 理 论 基 础
Modern Control Theory


§ 1.1 现代控制理论的产生与发展
§ 1.2 现代控制理论的内容
§ 1.3 现代控制理论与经典控制理论的差异
§ 1.4 现代控制理论的应用
§ 1.1 现代控制理论的产生与发展
同学们,我们都知道:控制理论作为一门科 学技术,已经广泛地运用于我们社会生活的方 方面面。
第二阶段 现代控制理论
科学技术的发展不仅需要迅速地发展控制理论,而且也 给现代控制理论的发展准备了两个重要的条件—现代数学和 数字计算机。 现代数学,例如泛函分析、现代代数等,为现代控制理 论提供了多种多样的分析工具;而数字计算机为现代控制理 论发展提供了应用的平台。 从二十世纪五十年代末开始,随着核能技术、空间技术 的出现和发展,工程领域需要对多输入多输出系统、非线性 系统和时变系统进行更具体的研究。
奈奎斯特
奈奎斯特,美国物理学家,1889年出生在瑞典。1976年在德 克萨斯逝世。奈奎斯特对信息论做出了重大的贡献。奈奎斯特 1907年移民到美国并于1912年进入北达克塔大学学习。1917年 在耶鲁大学获得物理学博士学位。1917年~1934年在AT&T公司 工作,后转入贝尔电话实验室工作。
为贝尔电话实验室的工程师,在热噪声(Johnson-Nyquist noise)和反馈放大器稳 定性方面做出了很大的贡献他早期的理论性工作关于确定传输信息的需满足的带 宽要求,在《贝尔系统技术》期刊上发表了《影响电报速度传输速度的因素》文 章,为后来香农的信息论奠定了基础。 1927年,奈奎斯特确定了如果对某一带宽的有限时间连续信号(模拟信号) 进行抽样,且在抽样率达到一定数值时,根据这些抽样值可以在接收端准确地恢 复原信号。为不使原波形产生“半波损失”,采样率至少应为信号最高频率的两 倍,这就是著名的奈奎斯特采样定理。奈奎斯特1928年发表了《电报传输理论的 一定论题》。 1954年,他从贝尔实验室退休。
四 标志阶段
1.1947年控制论的奠基人美国 数学家维纳(N.Weiner)把控制 论引起的自动化问题同第二次产 业革命联系起来,于1948年发表 《控制论—关于在动物和机器中 控制与通讯的科学》一文,文中 论述了控制理论的一般方法,推 广了反馈的概念,为控制理论这 门学科奠定了基础。
相关文档
最新文档