2020-2021南京玄武区外国语学校七年级数学上期末一模试卷(带答案)

合集下载

2020-2021学年江苏省南京市联合体七年级(上)期末数学试卷

2020-2021学年江苏省南京市联合体七年级(上)期末数学试卷

2020-2021学年江苏省南京市联合体七年级(上)期末数学试卷一、选择题(本大题共6小题,共12.0分)1.−13的倒数是()A. 3B. −3C. −13D. 132.马拉松(Maratℎon)是国际上非常普及的长跑比赛项目,全程距离26英里385码,折合约为42000米,用科学记数法表示42000为()A. 42×103B. 4.2×104C. 4.2×105D. 42000×1053.对于代数式−1+m的值,下列说法正确的是()A. 比−1大B. 比−1小C. 比m大D. 比m小4.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列不正确的语句是()A. 线段PB的长是点P到直线a的距离B. PA、PB、PC三条线段中,PB最短C. 线段AC的长是点A到直线PC的距离D. 线段PC的长是点C到直线PA的距离5.有理数a在数轴上的位置如图所示,下列各数中,在0到1之间的是()①−a−1,②|a+1|,③2−|a|,④12|a|.A. ②③④B. ①③④C. ①②③D. ①②③④6.整式mx+n的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值:x−2−1012mx+n−12−8−404则关于x的方程−mx+n=8的解为()A. x=−3B. x=0C. x=1D. x=2二、填空题(本大题共10小题,共20.0分)7.黄山主峰一天早晨气温为−1℃,中午上升了8℃,夜间又下降了10℃,那么这天夜间黄山主峰的气温是______.8.−2的绝对值是______;12的相反数是______.9.请写出一个系数是−2,次数是3的单项式.______.10.若3a−2b=4,则7+9a−6b=______.11.已知x=2是关于x的方程a(x+1)=2a+x的解,则a的值是______.12.一个角的余角比这个角小40°,则这个角的度数为______.13.如图,数轴上有A、B、C三点,C为AB的中点,点A表示的数为−3.2,点B表示的数为2,则点C表示的数为______.14.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之积为12,则x−y=______.15.如图,直线AB与直线CD相交于点O,OE平分∠BOD,OF平分∠COE,若∠FOB的度数为30°,则∠AOC的度数为______°.16.直线AB⊥CD,垂足为点O,直线EF经过点O,若锐角∠COE=m°,则∠AOF=______°(用含m的代数式表示).三、计算题(本大题共1小题,共8.0分)17.计算:(1)−32−9×(−13);(2)[(−2)3+43]÷4+(−23).四、解答题(本大题共9小题,共60.0分)18.先化简,再求值:(3a2b−ab2)−2(ab2−3a2b),其中a=13,b=−3.19.解方程:(1)5x−2(3x−1)=4;(2)x2−x−13=1.20.如图,正方形网格线的交点叫格点,格点P是∠AOB的边OB上的一点,用网格画图,保留作图痕迹.(1)过点P画OB的垂线,交OA于点C;(2)线段______的长度是点O到PC的距离;(3)PO<OC的理由是______.21.如图是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)画出该几何体的主视图、左视图和俯视图:(2)如果在这个几何体上再添加一些小正方体,并保持主视图和左视图不变,最多可以再添加______块小正方体.22.如图,直线AB、CD相交于点O,OE⊥AB,OE平分∠COF.(1)若∠AOF=140°,求∠EOF的度数;(2)OB是∠DOF的角平分线吗?为什么?23.某制造工厂计划若干天完成一批玩具的订货任务,如果每天生产玩具20个,那么就比订货任务少生成100个;如果每天生产玩具23个,那么就可超过订货任务20个,求原计划几天完成任务?24.已知点C在直线AB上,AC=10cm,CB=6cm,点M、N分别是AC、BC的中点.求线段AB、MN的长.25.如图,直线AB、CD相交于点O,∠AOD为锐角,OE⊥CD,OF平分∠BOD.(1)图中与∠AOE互余的角为______;(2)若∠EOB=∠DOB,求∠AOE的度数;(3)图中与锐角∠AOE互补角的个数随∠AOE的度数变化而变化,直接写出与∠AOE互补的角的个数及对应的∠AOE的度数.26.几何知识可以解决生活中许多距离最短的问题.让我们从书本一道习题入手进行探索.[回顾](1)如图1,AB是公路l两侧的两个村庄.现要在公路l上修建一个垃圾站C,使它到A、B两村庄的路程之和最小,请在图中画出点C的位置,并说明理由.[探索](2)如图2,在B村庄附件有一个生态保护区,现要在公路l修建一个垃圾站C,使它到A、B两村庄的路程之和最小,从B村庄到公路不能穿过生态保护区,请在图中画出点C的位置.(3)如图3,A、B是河两侧的两个村庄.现要在河上修建一座桥,使得桥与河岸垂直,且A村到B村的总路程最短,请在图中画出桥的位置.(保留画图痕迹)答案和解析1.【答案】B的倒数是−3,【解析】解:−13故选:B。

2020-2021南京玄武区外国语学校七年级数学上期末一模试卷(带答案)

2020-2021南京玄武区外国语学校七年级数学上期末一模试卷(带答案)
(1)当t=3时,求∠AOB的度数;
(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;
(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.
23.解方程:(1) (2)
24.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;
故选D.
【点睛】
此题考查规律型:图形的变化类,解题关键在于找到规律.
12.D
解析:D
【解析】
【分析】
根据负数的绝对值越大,这个数反而越小,可以对A、C、D进行判断;根据同分子分数大小比较的方法进行比较即可作出判断.
【详解】
A.﹣3<﹣1,所以A选项错误;
B. < ,所以B选项错误;
C.﹣ >﹣ ,所以C选项错误;
商场
甲商场
乙商场
实际付款/元
(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?
25.计算题:
(1)8+(﹣3)2×(﹣2)﹣(﹣3)
(2)﹣12﹣24×( )
【参考答案】***试卷处理标记,请不要删除
【详解】
观察可知,奇数项系数为正,偶数项系数为负,
∴可以用 或 ,( 为大于等于1的整数)来控制正负,
指数为从第3开始的奇数,所以指数部分规律为 ,
∴第n个单项式是(-1)n-1x2n+1,
故选C.
【点睛】
本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.
商场
优惠方案

全场按标价的六折销售

2020-2021学年江西省南昌市凤凰城上海外国语学校七年级(上)期末数学复习试卷(3)-附答案详解

2020-2021学年江西省南昌市凤凰城上海外国语学校七年级(上)期末数学复习试卷(3)-附答案详解

2020-2021学年江西省南昌市红谷滩区凤凰城上海外国语学校七年级(上)期末数学复习试卷(3)1.−3的绝对值的相反数是()A. 3B. −13C. −3 D. 132.截止2020年,世界总人口已接近于76亿人,用科学记数法可表示为______.3.如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数据3120000用科学记数法表示为______ .4.用四舍五入的方法将130542精确到千位,其结果为______ .5.近似数1.5×105精确到______位.6.比较大小:−|−1|______ 12.(“>”或“=”或“<”)7.如果|x−1|=2,那么x的值是______.8.|−23|的相反数是______.9.比较大小:−45______−34。

10.已知|a|=3,|b|=2,|a−b|=b−a,则a−b=______ .11.合并同类项:3a3−5a3−a3=______ .12.−πa7b3c系数是______ ,次数是______ .13.若单项式x a+2y3与14x6y3是同类项,则a的值是______ .14.多项式2ab+3a2b−1中次数最高项的系数是______ .15.如果x2−3x=1,那么2x2−6x−5的值为______ .16.多项式12a2ℎ−πr2ℎ+45的次数是______ 。

17.若多项式(k+1)x2−5x+2中不含x2项,则k的值为______ .18.多项式5a m b4−2a2b+3与单项式6a4b3c的次数相同,则m的值为______ .19.有一组按规律排列的式子:−x,x2,−2x3,3x4,−5x5,8x6,−13x7,…,则其中第9个式子是______ .20.当k=______ 时,关于x、y的多项式x2+kxy−2xy+6中不含xy项.21.计算:(−1)2021×10−(−4)3÷8.22. 计算:(1)(56−13+38)×(−24);(2)−12018×[−4−(−2)3]+3÷(−35).23. 先化简,再求值:5(3m 2n −mn 2)−(mn 2+3m 2n)−4(3m 2n −mn 2),其中m =−3,n =13.24. (1)化简:32a 2b −12ab −32(a 2b −ab).(2)先化简下式,再求值:5(3ba 2−b 2a)−(ab 2+3a 2b),其中a =12,b =13.25.先化简,再求值:5x2y−[2x2y−3(xy−2x2y)]+3xy,其中x=−1,y=−2.26.已知∠1与∠2互为补角,且∠2的2倍比∠1大30°,求∠1的度数.27.计算:56°17′+12°45′−16°21′.28.如图所示,O为直线AB上一点,且∠COD=90°,OE平分∠BOD,OF平分∠AOE,若∠BOC+∠DOF=190°,求∠AOC的度数.29.如图1,A、O、B三点在同一直线上,∠BOD与∠BOC互补.(1)请判断∠AOC与∠BOD大小关系,并验证你的结论;(2)如图2,若OM平分∠AOC,ON平分∠AOD,∠BOD=30°,请求出∠MON的度数.30.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图1,若∠BOD=25°,则∠AOC=______°;若∠AOC=125°,则∠BOD=______°;(2)如图2,若∠BOD=50°,则∠AOC=______°;若∠AOC=140°,则∠BOD=______°;(3)猜想∠AOC与∠BOD的大小关系:______;并结合图(1)说明理由.31.在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.32.点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=a,直接写出∠CON的度数(用含a的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM在射线OB上方,另一边ON在直线AB的下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.答案和解析1.【答案】C【解析】解:−3的绝对值的相反数是:−|−3|=−3.故选:C.首先根据绝对值的含义和求法,可得:−3的绝对值是3;然后在3的前面加上−,求出−3的绝对值的相反数是多少即可.此题主要考查了绝对值的含义和求法,以及相反数的含义和求法,要熟练掌握.2.【答案】7.6×109【解析】解:76亿=7600000000=7.6×109.故答案是:7.6×109.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】3.12×106【解析】解:3120000用科学记数法表示3.12×106.故答案是:3.12×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解析】解:用四舍五入的方法将130542精确到千位,其结果为1.31×105,故答案为:1.31×105.先利用科学记数法表示,然后把百位上的数字5进行四舍五入即可.本题主要考查近似数,近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.5.【答案】万【解析】解:近似数1.5×105精确到万位.故答案为:万.根据近似数的精确度求解.本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.6.【答案】<【解析】解:∵−|−1|=−1,∴−|−1|<1.2故答案为:<.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.【答案】3或−1【解析】解:∵|x−1|=2,∴x−1=±2,∴x=2+1=3或x=−2+1=−1.此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数−a;③当a是零时,a的绝对值是零.8.【答案】−23【解析】解:|−23|=23,而23的相反数为−23,故答案为:−23.根据绝对值、相反数的意义即可求出答案.本题考查绝对值、相反数的意义和求法,理解“正数的绝对值等于它本身,负数的绝对值等于它的相反数”是解决问题的前提.9.【答案】<【解析】【分析】解:∵|−54|=54,|−34|=34,54>34,∴−54<−34,故答案为:<.根据两个负数比较大小,绝对值大的反而小,即可解答.本题考查了有理数的大小比较,解决本题的关键是熟记两个负数比较大小,绝对值大的反而小.10.【答案】−1或−5【解析】解:∵|a|=3,|b|=2,∴a=±3,b=±2;又因为|a−b|=b−a,当a=−3,b=2时,a−b=−5;当a=−3,b=−2时,a−b=−1.故a−b的值为−1或−5.首先根据绝对值的性质,求出a、b的值,然后代值求解即可.此题主要考查绝对值的性质:绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.【答案】−3a3【解析】解:原式=(3−5−1)a3=−3a3,故答案为:−3a3.合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.本题主要考查了合并同类项,熟记运算法则是解答本题的关键.12.【答案】−π11【解析】解:−πa7b3c系数是:−π,次数是:11.故答案为:−π,11.直接利用单项式次数与系数确定方法分析得出答案.此题主要考查了单项式,正确掌握相关定义是解题关键.13.【答案】4x6y3是同类项,【解析】解:∵单项式x a+2y3与14∴a+2=6,解得,a=4,故答案为:4.根据同类项的概念列方程,解方程得到答案.本题考查的是同类项的概念,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.14.【答案】3【解析】解:多项式2ab+3a2b−1中次数最高项的系数是3.故答案为:3.根据多项式的次数和系数的定义得出即可.本题考查了多项式,能熟记多项式的次数和系数的定义的内容是解此题的关键,注意:项的系数带着前面的符号.15.【答案】−3【解析】解:∵x2−3x=1,∴2x2−6x−5=2(x2−3x)−5=2−5=−3.故答案为:−3.原式变形后,整体代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键,注意整体思想的运用.16.【答案】3a2ℎ−πr2ℎ+45的次数是3。

2020-2021学年苏科版七年级数学上册期末专题复习:第5章《平面图形的认识(一)》试题精选(1)

2020-2021学年苏科版七年级数学上册期末专题复习:第5章《平面图形的认识(一)》试题精选(1)

第5章《平面图形的认识(一)》试题精选(1)一.选择题(共2小题)1.(2019秋•江都区期末)将一张正方形纸片ABCD 按如图所示的方式折叠,AE 、AF 为折痕,点B 、D 折叠后的对应点分别为B ′、D ′,若∠B ′AD ′=16°,则∠EAF 的度数为( )A .40°B .45°C .56°D .37°2.(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是( )A .从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B .两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C .把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D .从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短二.填空题(共9小题)3.(2019秋•南京期末)已知线段AB ,点C 、点D 在直线AB 上,并且CD =8,AC :CB =1:2,BD :AB =2:3,则AB = .4.(2019秋•高邮市期末)一个角的余角比这个角补角的15大10°,则这个角的大小为 .5.(2019秋•崇川区期末)已知射线OA ,从O 点再引射线OB ,OC ,使∠AOB =67°31′,∠BOC =48°39′,则∠AOC 的度数为6.(2019秋•高新区期末)已知线段AB =5cm ,点C 在直线AB 上,且BC =3cm ,则线段AC = cm .7.(2019秋•淮安区期末)如图,直线AB ,CD 相交于点O ,若∠AOC +∠BOD =100°,则∠AOD 等于 度.8.(2019秋•句容市期末)如图,∠AOB =90°,∠AOC =2∠BOC ,则∠BOC = °.9.(2019秋•句容市期末)如图,在∠AOB 的内部有3条射线OC 、OD 、OE ,若∠AOC =60°,∠BOE =1n∠BOC ,∠BOD =1n ∠AOB ,则∠DOE = °.(用含n 的代数式表示)10.(2019秋•泰兴市期末)如图,已知∠AOB=150°,∠COD=40°,∠COD在∠AOB的内部绕点O任意旋转,若OE平分∠AOC,则2∠BOE﹣∠BOD的值为°.11.(2019秋•建湖县期末)如图,直线AB和直线CD相交于点O,∠BOE=90°,有下列结论:①∠AOC 与∠COE互为余角;①∠AOC=∠BOD;①∠AOC=∠COE;①∠COE与∠DOE互为补角;①∠AOC与∠DOE互为补角;①∠BOD与∠COE互为余角.其中错误的有.(填序号)三.解答题(共26小题)12.(2019秋•东海县期末)如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=13∠EOC.(1)若OE⊥AC,垂足为O点,则∠BOE的度数为°,∠BOD的度数为°;在图中,与∠AOB相等的角有;(2)若∠AOD=32°,求∠EOC的度数.13.(2019秋•工业园区期末)如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求∠BOE的度数;(3)试判断OF是否平分∠AOC,并说明理由;请说明理由.14.(2019秋•镇江期末)如图1,点C为线段AB延长线上的一点,点D是AC的中点,且点D不与点B 重合,AB=8,设BC=x.(1)①若x=6,如图2,则BD=;①用含x的代数式表示CD,BD的长,直接写出答案;CD=,BD=;(2)若点E为线段CD上一点,且DE=4,你能说明点E是线段BC的中点吗?15.(2019秋•高邮市期末)如图,已知∠AOB=150°,将一个直角三角形纸片(∠D=90°)的一个顶点放在点O处,现将三角形纸片绕点O任意转动,OM平分斜边OC与OA的夹角,ON平分∠BOD.(1)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若∠COD=30°,则∠MON =;(2)将三角形纸片绕点O转动(三角形纸片始终保持在∠AOB的内部),若射线OD恰好平分∠MON,若∠MON=8∠COD,求∠COD的度数;(3)将三角形纸片绕点O从OC与OA重合位置顺时针转动到OD与OA重合的位置,猜想在转动过程中∠COD和∠MON的数量关系?并说明理由.16.(2019秋•沭阳县期末)(1)如图①,OC是∠AOE内的一条射线,OB是∠AOC的平分线,OD是∠COE 的平分线,∠AOE=120°,求∠BOD的度数;(2)如图①,点A、O、E在一条直线上,OB是∠AOC的平分线,OD是∠COE的平分线,请说明OB ⊥OD.17.(2019秋•鼓楼区期末)如图,点O在直线AB上,OC、OD是两条射线,OC⊥OD,射线OE平分∠BOC.(1)若∠DOE=150°,求∠AOC的度数.(2)若∠DOE=α,则∠AOC=.(请用含α的代数式表示)18.(2019秋•秦淮区期末)【探索新知】如图1,点C在线段AB上,图中共有3条线段:AB、AC、和BC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.(1)一条线段的中点这条线段的“二倍点”;(填“是”或“不是”)【深入研究】如图2,点A表示数﹣10,点B表示数20,若点M从点B,以每秒3cm的速度向点A运动,当点M到达点A时停止运动,设运动的时间为t秒.(2)点M在运动过程中表示的数为(用含t的代数式表示);(3)求t为何值时,点M是线段AB的“二倍点”;(4)同时点N从点A的位置开始,以每秒2cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.19.(2019秋•太仓市期末)如图,直线AB,CD,EF相交于点O,OG⊥CD.(1)已知∠AOC=38°12',求∠BOG的度数;(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.20.(2019秋•兴化市期末)如图,直线AB,CD相交于点O,OF⊥CD,OE平分∠BOC.(1)若∠BOE=60°,求∠AOF的度数;(2)若∠BOD:∠BOE=4:3,求∠AOF的度数.21.(2019秋•赣榆区期末)如图,已知线段AB,延长AB到C,点D是线段AB的中点,点E是线段BC 的中点.(1)若BD=5,BC=4,求线段EC、AC的长;(2)试说明:AC=2DE.22.如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.(1)若∠BOC=80°,∠AOC=40°,求∠DOE的度数;(2)若∠BOC=α,∠AOC=50°,求∠DOE的度数;(3)若∠BOC=α,∠AOC=β,试猜想∠DOE与α、β的数量关系并说明理由.23.(2019秋•扬州期末)如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=度;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=100°(如图2),则∠AEG﹣∠CEG=度.24.(2019秋•南京期末)已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求线段AB、CE的长;(2)如图1,在(1)的条件下,求线段DE的长;(3)如图2,若AB=20,AD=2BE,求线段CE的长.25.(2019秋•崇川区期末)如图,已知直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=36°.(1)求∠AOG的度数;(2)若OG是∠AOF的平分线,那么OC是∠AOE的平分线吗?说明你的理由.26.(2019秋•东台市期末)如图,OC是∠AOB内一条射线,OD、OE别是∠AOC和∠BOC的平分线.(1)如图①,当∠AOB=80°时,则∠DOE的度数为°;(2)如图①,当射线OC在∠AOB内绕O点旋转时,∠BOE、∠EOD、∠DOA三角之间有怎样的数量关系?并说明理由;(3)当射线OC在∠AOB外如图①所示位置时,(2)中三个角:∠BOE、∠EOD、∠DOA之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC在∠AOB外如图①所示位置时,∠BOE、∠EOD、∠DOA之间数量关系是.27.(2019秋•淮安区期末)如图:已知直线AB、CD相交于点O,∠COE=90°(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数.28.(2019秋•清江浦区期末)如图,C为线段AB上一点,D在线段AC上,且AD=23AC,E为BC的中点.(1)若AC=6,BE=1,求线段AB、DE的长;(2)试说明:AB+BD=4DE.29.(2019秋•张家港市期末)如图,线段AB的中点为M,C点将线段MB分成MC:CB=1:3的两段,若AC=10,求AB的长.30.(2019秋•高新区期末)如图,O为直线AB上一点,∠AOC=48°,OD平分∠AOC,∠DOE=90°.(1)图中有个小于平角的角;(2)求出∠BOD的度数;(3)试判断OE是否平分∠BOC,并说明理由.31.(2019秋•江都区期末)如图,直线AB与CD相交于点O,∠AOC=48°,∠DOE:∠BOE=5:3,OF平分∠AOE.(1)求∠BOE的度数;(2)求∠DOF的度数.32.(2019秋•建湖县期末)如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE:∠EOC=2:3,(1)如图1,若∠BOD=75°,求∠BOE;(2)如图2,若OF平分∠BOE,∠BOF=∠AOC+12°,求∠EOF.33.(2019秋•常熟市期末)已知,OM平分∠AOC,ON平分∠BOC.(1)如图1,若OA⊥OB,∠BOC=60°,求∠MON的度数;(2)如图2,若∠AOB=80°,∠MON:∠AOC=2:7,求∠AON的度数.34.(2019秋•南京期末)已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC 绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕O点以每秒2°的速度逆时针旋转t 秒,如图3,若∠AOM:∠DON=2:3,求t的值.35.(2019秋•沛县期末)已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.36.(2019秋•清江浦区期末)如图,点O是直线AB上的一点,将一直角三角板如图摆放,过点O作射线OE平分∠BOC.(1)如图1,如果∠AOC=40°,依题意补全图形,写出求∠DOE度数的思路(不必写出完整的推理过程);(2)当直角三角板绕点O顺时针旋转一定的角度得到图2,使得直角边OC在直线AB的上方,若∠AOC =α,其他条件不变,请你直接用含α的代数式表示∠DOE的度数;(3)当直角三角板绕点O继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现∠AOC与∠DOE (0°≤∠AOC≤180°,0°≤∠DOE≤180°)之间有怎样的数量关系?请直接写出你的发现.37.(2019秋•句容市期末)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.第5章《平面图形的认识(一)》试题精选(1)参考答案与试题解析一.选择题(共2小题)1.【答案】D【解答】解:设∠EAD′=α,∠F AB′=β,根据折叠可知:∠DAF=∠D′AF,∠BAE=∠B′AE,∵∠B′AD′=16°,∴∠DAF=16°+β,∠BAE=16°+α,∵四边形ABCD是正方形,∴∠DAB=90°,∴16°+β+β+16°+16°+α+α=90°,∴α+β=21°,∴∠EAF=∠B′AD′+∠D′AE+∠F AB′=16°+α+β=16°+21°=37°.则∠EAF的度数为37°.故选:D.2.【答案】A【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.二.填空题(共9小题)3.【答案】见试题解答内容【解答】解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=23 AB,∵BD:AB=2:3,∴BD=23nn,∴CD=BC+BD=43nn=8,∴AB=6;①当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;①当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=38nn=3,故AB=6或3.故答案为:6或34.【答案】见试题解答内容【解答】解:设这个角为∠α,则90°﹣∠α=15(180°﹣∠α)+10°,解得:∠α=55°,故答案为:55°.5.【答案】见试题解答内容【解答】解:如右图所示,①OC在OA、OB之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB﹣∠BOC,=67°31′﹣48°39′,=66°91′﹣48°39′,=18°52′;①OB在OA、OC之间,∵∠AOB=67°31′,∠BOC=48°39′,∴∠AOC=∠AOB+∠BOC=67°31′+48°39′=115°70′=116°10′;故答案是18°52′或116°10′.6.【答案】见试题解答内容【解答】解:当点C在线段AB上时,则AC+BC=AB,所以AC=5cm﹣3cm=2cm;当点C在线段AB的延长线上时,则AC﹣BC=AB,所以AC=5cm+3cm=8cm.故答案为8或2.7.【答案】见试题解答内容【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC+∠BOD=100°,∴∠AOC=50°.∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣50°=130°.故答案为:130.8.【答案】见试题解答内容【解答】解:∵∠AOB=90°,∠AOC=2∠BOC,∴∠AOC+∠BOC=90°,即2∠BOC+∠BOC=90°,∴∠BOC=30°故答案为:30°.9.【答案】见试题解答内容【解答】解:设∠BOE =x °,∵∠BOE =1n ∠BOC ,∴∠BOC =nx ,∴∠AOB =∠AOC +∠BOC =60°+nx ,∵∠BOD =1n ∠AOB =1n (60°+nx )=60°n +x ,∴∠DOE =∠BOD ﹣∠BOE =60°n +x ﹣x =60°n ,故答案为:60n .10.【答案】见试题解答内容【解答】解:如图:∵OE 平分∠AOC ,∴∠AOE =∠COE ,设∠DOE =x ,∵∠COD =40°,∴∠AOE =∠COE =x +40°,∴∠BOC =∠AOB ﹣∠AOC =150°﹣2(x +40°)=70°﹣2x ,∴2∠BOE ﹣∠BOD =2(70°﹣2x +40°+x )﹣(70°﹣2x +40°)=140°﹣4x +80°+2x ﹣70°+2x ﹣40°=110°,故答案为:110.11.【答案】见试题解答内容【解答】解:∵∠BOE =90°,∴∠AOE =180°﹣∠BOE =180°﹣90°=90°=∠AOC +∠COE ,因此①不符合题意;由对顶角相等可得①不符合题意;∵∠AOE =90°=∠AOC +∠COE ,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠COE +∠DOE =180°,因此①不符合题意;∠EOC +∠DOE =180°,但∠AOC 与∠COE 不一定相等,因此①符合题意;∠BOD =∠AOC ,且∠COE +∠AOC =90°,因此①不符合题意;故答案为:①①三.解答题(共26小题)12.【答案】见试题解答内容【解答】解:(1)∵OE ⊥AC ,∴∠AOE =∠COE =90°,∵∠BOE =13∠EOC ,∴∠BOE =13×90°=30°;∴∠AOB =90°﹣30°=60°,∵OD 平分∠AOB ,∴∠BOD =12nAOB =30°; ∴∠DOE =∠BOD +∠BOE =60°,∴∠AOB =∠DOE ;故答案为:30,30,∠EOD ;(2)∵OD 平分∠AOB ,∴∠AOB =2∠AOD .∵∠AOD=32°,∴∠AOB=64°.∴∠COB=180°﹣∠AOB=116°.∵∠BOE=13∠EOC,∴∠EOC=34∠COB=34×116°=87°.13.【答案】见试题解答内容【解答】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE ∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.14.【答案】见试题解答内容【解答】解:①∵BC=6,AB=8,∴AC=AB+BC=14,∵点D是AC的中点,∴AD=DC=12AC=7,∴BD=AB﹣AD=8﹣7=1;故答案为1;①用含x的代数式表示:CD=12(8+x)=4+12x,BD=|8﹣(4+12x)|=|4−12x|,故答案为:4+12x,|4−12x|;(2)能说明点E是线段BC的中点.理由如下:如图所示:∵AB=8,设BC=x,∴AC=AB+BC=8+x,DE=4,∵点D是AC的中点,∴AD=DC=12AC=4+12x,∴CE=DC﹣DE=4+12x﹣4=12x,BE=DE﹣DB=4﹣(AB﹣AD)=4﹣(4−12 x)=1 2x.∴CE=BE.所以点E是线段BC的中点.15.【答案】见试题解答内容【解答】解:(1)∵∠AOB=150°,∠COD=30°,∴∠AOC+∠BOD=∠AOB﹣∠COD=150°﹣30°=120°,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nBOD,∴∠AOM+∠BON=12(∠AOC+∠BOD)=60°,∴∠MON=∠AOB﹣(∠AOM+∠BON)=90°,故答案为:90°;(2)∵∠MON=8∠COD,∴设∠COD=α,则∠MON=8α,∵OD平分∠MON,∴∠DOM=∠DON=4α,∴∠COM=3α,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOC=2∠COM=6α,∠BOD=2∠DON=8α,∵∠AOB=∠AOC+∠COD+∠BOD=6α+α+8α=150°,∴α=10°,∴∠COD=10°;(3)∠COD+150°=2∠MON或2∠COD=210°﹣∠MON,理由:①三角形纸片在∠AOB的内部,如图1,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠BON=12nnnn,∵∠AOM+∠BON=150°﹣∠MON,∠COD=150°﹣2(∠AOM+∠BON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①如图2,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=12∠AOC,∠DON=12nnnn,∵∠AOM+∠DON=150°+∠BOD﹣∠MON,∴∠AOM﹣∠DON=150°﹣∠MON,∵∠COD=∠BOC+∠BOD=150°﹣∠AOC+∠BOD=150°﹣2(∠AOM﹣∠DON),∴∠COD=150°﹣2(150°﹣∠MON),∴∠COD+150°=2∠MON;①三角形纸片在∠AOB的外部,如图3,∵OM平分斜边OC与OA的夹角,ON平分∠BOD,∴∠AOM=∠COM=12∠AOC,∠BON=∠DON=12nnnn,∵∠AOM+∠BON=360°﹣150°﹣∠MON,∠COD=∠AOM+∠BON﹣∠MON=360°﹣150°﹣2(∠MOC+∠DON)=210°﹣2(∠MON+∠COD)∴3∠COD=210°﹣2∠MON,综上所述,∠COD+150°=2∠MON或2∠COD=210°﹣2∠MON.16.【答案】见试题解答内容【解答】解:(1)∵OB是∠AOC的平分线∴∠nnn=12nnnn同理,∠nnn=12nnnn∴∠BOD=∠BOC+∠DOC=12∠AOC+12∠EOC=12(∠AOC+∠EOC)=12∠AOE,∵∠AOE=120°∴∠nnn=12×120°=60°(2)由(1)可知∠nnn=12nnnn∵∠AOE=180°∴∠nnn=12×180°=90°∴OB⊥OD.17.【答案】见试题解答内容【解答】解:(1)∵OC⊥OD,∠DOE=150°,∴∠COE=∠DOE﹣∠COD=150°﹣90°=60°,∵射线OE平分∠BOC.∴∠COE=∠BOE=60°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣60°﹣60°=60°,(2))∵OC⊥OD,∠DOE=α,∴∠COE=∠DOE﹣∠COD=α﹣90°,∵射线OE平分∠BOC.∴∠COE=∠BOE=α﹣90°,∴∠AOC=180°﹣∠COE﹣∠BOE=180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,故答案为:360°﹣2α.18.【答案】见试题解答内容【解答】解:(1)因为线段的中点把该线段分成相等的两部分,该线段等于2倍的中点一侧的线段长.所以一条线段的中点是这条线段的“二倍点”故答案为:是(2)点M 在运动过程中表示的数为20﹣3t ,故答案为:20﹣3t ;(3)当AM =2BM 时,30﹣3t =2×3t ,解得:t =103;当AB =2AM 时,30=2×(30﹣3t ),解得:t =5;当BM =2AM 时,3t =2×(30﹣3t ),解得:t =203;答:t 为103或5或203时,点M 是线段AB 的“二倍点”; (4)当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;当AM =2NM 时,30﹣3t =2[2t ﹣(30﹣3t )],解得:t =9013;当MN =2AM 时,2t ﹣(30﹣3t )=2(30﹣3t ),解得:t =9011; 当AN =2MN 时,2t =2[2t ﹣(30﹣3t )],解得:t =152;答:t 为152或9013或9011或152时,点M 是线段AN 的“二倍点”.19.【答案】见试题解答内容【解答】解:(1)∵OG ⊥CD .∴∠GOC =∠GOD =90°,∵∠AOC =∠BOD =38°12′,∴∠BOG =90°﹣38°12′=51°48′,(2)OG 是∠EOB 的平分线,理由:∵OC 是∠AOE 的平分线,∴∠AOC =∠COE =∠DOF =∠BOD ,∵∠COE +∠EOG =∠BOG +∠BOD =90°,∴∠EOG =∠BOG ,即:OG 平分∠BOE .20.【答案】见试题解答内容【解答】解:(1)∵OE平分∠BOC,∠BOE=60°,∴∠BOC=2∠BOE=120°,∴∠AOC=180°﹣120°=60°,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣60°=30°;(2)∵OE平分∠BOC,∴∠BOE=∠COE,∵∠BOD:∠BOE=4:3,∴∠BOD:∠BOE:∠EOC=4:3:3,∴∠BOD=180°×44+3+3=72°=∠AOC,又∵OF⊥CD,∴∠COF=90°,∴∠AOF=90°﹣∠AOC=90°﹣72°=18°.21.【答案】见试题解答内容【解答】解:(1)∵D是线段AB的中点,BD=5,∴AB=2BD=10,∵E是线段BC的中点,BC=4,∴EC=12BC=2,∴AC=AB+BC=10+4=14;(2)∵D是线段AB的中点,∴AB=2BD,∵E是线段BC的中点,∴BC=2BE,∴AC=AB+BC=2BD+2BE=2DE.22.【答案】见试题解答内容【解答】解:(1)∵OD、OE分别平分∠AOB、∠AOC,∠AOC=40°,∴∠AOE=∠EOC=12∠AOC=20°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:80°=40°+2∠COD,∴∠COD=20°,∴∠DOE=∠COD+∠COE=20°+20°=40°;(2)∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=25°,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=50°+2∠COD,∴∠COD=n−50 2,∴∠DOE=∠COD+∠COE=n−502+25°=n2;(3)∠nnn=n2,与β无关∵OD、OE分别平分∠AOB、∠AOC.∴∠AOE=∠EOC=12∠AOC=n2,∠AOB=2∠AOD=2∠DOB,∵∠BOC=∠BOD+∠COD=∠AOD+∠COD,∴∠BOC=∠AOC+2∠COD,即:α=β+2∠COD,∴∠COD=n−n 2,∴∠DOE=∠COD+∠COE=n−n2+n2=n2;23.【答案】见试题解答内容【解答】解:(1)设∠BEC的度数为x,则180﹣x=3(90﹣x),x=45°,∴∠BEC=45°,故答案为:45;(2)∵∠BEC=45°,∴∠AEC=135°,设∠AEG=x°,则∠CEG=x﹣25,由∠AEC=135°,得x+(x﹣25)=135,解得x=80°,∴∠AEG=80°;(3)∵射线EF平分∠AED,∴∠AEF=∠DEF,∵∠FEG=100°,∴∠AEG+∠AEF=100°,∵∠CEG=180°﹣100°﹣∠DEF=80°﹣∠DEF,∴∠AEG﹣∠CEG=100°﹣∠AEF﹣(80°﹣∠DEF)=20°,故答案为:20.24.【答案】见试题解答内容【解答】解:(1)∵|a﹣17|+(b﹣5.5)2=0,∴|a﹣17|=0,(b﹣5.5)2=0,解得:a=17,b=5.5,∵AB=a,CE=b,∴AB=17,CE=5.5(2)如图1所示:∵点C为线段AB的中点,∴AC=12nn=12×17=172,又∵AE=AC+CE,∴AE=172+112=14,∵点D为线段AE的中点,∴DE=12AE=12×14=7;(3)如图2所示:∵C为线段AB上的点,AB=20,∴AC=BC=12nn=12×20=10,又∵点D为线段AE的中点,AD=2BE,∴AE=4BE,DE=12nn,又∵AB=AE+BE,∴4BE+BE=20,∴BE=4,AE=16,又∵CE=BC﹣BE,∴CE=10﹣4=6.25.【答案】见试题解答内容【解答】解:(1)∵AB、CD相交于点O,∴∠AOC=∠BOD=36°,∵OG⊥CD,∴∠COG=90°,即∠AOC+∠AOG=90°,∴∠AOG=90°﹣∠AOC=90°﹣36o=54o;(2)OC是∠AOE的平分线.理由∵OG是∠AOF的角平分线,∴∠AOG=∠GOF,∵OG⊥CD,∴∠COG=∠DOG=90°,∴∠COA=∠DOF,又∵∠DOF=∠COE,∴∠AOC=∠COE,∴OC平分∠AOE.26.【答案】见试题解答内容【解答】解:当射线OC在∠AOB的内部时,∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=12∠AOC,∠EOC=12∠BOC,∴∠DOE=∠DOC+∠EOC=12(∠AOC+∠BOC)=12∠AOB,(1)若∠AOB=80°,则∠DOE的度数为40°.故答案为:40;(2)∠DOE=∠DOC+∠EOC=12∠AOC+12∠BOC=∠BOE+∠DOA.(3)当射线OC在∠AOB的外部时(1)中的结论不成立.理由是:∵OD、OE分别是∠AOC、∠BOC的角平分线∴∠COD=12∠AOC,∠EOC=12∠BOC,∠DOE=∠COD﹣∠EOC=12∠AOC−12∠BOC=∠AOD﹣∠BOE.(4)∵OD,OE分别为∠AOC,∠BOC的角平分线,∴∠DOC=∠AOD,∠EOC=∠BOE,∴∠DOE=∠DOC+∠EOC=∠BOE+∠DOA.故∠BOE、∠EOD、∠DOA之间数量关系是∠DOE=∠BOE+∠DOA.故答案为:∠DOE=∠BOE+∠DOA.27.【答案】见试题解答内容【解答】解:(1)∠BOE=180°﹣∠AOC﹣∠COE=180°﹣36°﹣90°=54°;(2)∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°,∴∠BOD=30°,∵∠BOD=∠AOC,∴∠AOC=30°,∴∠AOE=∠COE+∠AOC=90°+30°=120°.28.【答案】见试题解答内容【解答】解:(1)∵E为BC的中点,BE=1,∴BC=2BE=2,CE=BE=1,∵AC=6,∴AB=AC+BC=6+2=8,∵AD=23AC,AC=6,∴AD=4,∴DC=6﹣4=2,∴DE=DC+CE=2+1=3;(2)∵AB=AC+BC,BD=BC+CD,∴AB+BD=AC+BC+BC+CD,∵AD=23AC,E为BC的中点,∴AC=3CD,BC=2CE,∴AB+BD=3CD+2CE+2CE+CD=4CD+4CE=4(CD+CE)=4DE.29.【答案】见试题解答内容【解答】解:设MC=x,∵MC:CB=1:3∴BC=3x,MB=4x.∵M为AB的中点.∴AM=MB=4x.∴AC=AM+MC=4x+x=10,即x=2.所以AB=2AM=8x=16.故AB的长为16.30.【答案】见试题解答内容【解答】解:(1)小于平角的角有:∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB共有9个.故答案是:9;(2)∵OD平分∠AOC,∴∠AOD=∠COD=12∠AOC=12×48°=24°,∴∠BOD=180°﹣∠AOD=180°﹣24°=156°;(3)∵∠COE=∠DOE﹣∠COD=90°﹣24°=66°,∠BOE=180°﹣∠AOD﹣∠DOE=180°﹣24°﹣90°=66°,∴∠COE=∠BOE,∴OE平分∠BOC.31.【答案】见试题解答内容【解答】解:(1)∵∠DOE:∠BOE=5:3,∴∠BOE=38∠BOD=38∠AOC=38×48°=18°,∠DOE=58∠BOD=58∠AOC=58×48°=30°,(2)∠AOE=180°﹣∠BOE=180°﹣18°=162°,∵OF平分∠AOE.∴∠AOF=∠EOF=12∠AOE=81°,∴∠DOF=∠EOF﹣∠DOE=81°﹣30°=51°.32.【答案】见试题解答内容【解答】解:(1)∵∠AOC=∠BOD=75°,∠AOE:∠EOC=2:3,∴∠BOC=180°﹣∠BOD=180°﹣75°=105°,∠COE=35∠AOC=35×75°=45°,∴∠BOE=∠BOC+∠COE=105°+45°=150°;(2)∵OF平分∠BOE,∴∠EOF=∠BOF,∵∠BOF=∠AOC+12°=∠EOF,∴∠FOC+∠COE=∠AOE+∠COE+12°,即:∴∠FOC=∠AOE+12°,设∠AOE=x°,则∠FOC=(x+12)°,∠COE=32 x°,∵∠AOE+∠EOF+∠BOF=180°∴x+(x+12+32x)×2=180,解得,x=26,∴∠EOF=∠COE+∠COF=32x°+x°+12°=77°33.【答案】见试题解答内容【解答】解:(1)∵OA⊥OB,∴∠AOB=90°,∵∠AOC=∠AOB+∠BOC,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,∴∠COM=12∠AOC=75°,∵ON平分∠BOC,∴∠CON=12∠BOC=12×60°=30°,∴∠MON=∠COM﹣∠CON=75°﹣30°=45°;(2)∵∠COM=12∠AOC,∠CON=12∠BOC,∴∠MON=12(∠AOC﹣∠BOC)=12∠AOB=40°,∵∠MON:∠AOC=2:7,∴∠AOC=140°,∵OM平分∠AOC,∴∠AOM=12∠AOC=70°,∴∠AON=∠AOM+∠MON=70°+40°=110°34.【答案】见试题解答内容【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12(∠AOB+∠BOD)=12∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOB+∠BOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=1 2×180°﹣20°=70°;(3)∵∠AOM=12(10°+2t+20°),∠DON=12(160°﹣10°﹣2t),又∵∠AOM:∠DON=2:3,∴3(30°+2t)=2(150°﹣2t),得t=21.答:t为21秒.35.【答案】见试题解答内容【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.故答案为:40°.36.【答案】见试题解答内容【解答】解:(1)如图1,补全图形;解题思路如下:①由∠AOC+∠BOC=180°,∠AOC=40°,得∠BOC=140°;①由OE平分∠BOC,得∠COE=70°;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=70°,得∠DOE=20°.(2)①由∠AOC+∠BOC=180°,∠AOC=α,得∠BOC=180°﹣α;①由OE平分∠BOC,得∠COE=90°−12α;①由直角三角板,得∠COD=90°;①由∠COD=90°,∠COE=90°−12α,得∠DOE=n 2.(3)∠DOE=12∠AOC(0°≤∠AOC≤180°),∠DOE=180°−12∠AOC(0°≤∠DOE≤180°).37.【答案】见试题解答内容【解答】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×11+5=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°﹣90°=30°,或如图2,∠EOF=360°﹣120°﹣90°=150°.故∠EOF的度数是30°或150°.。

2020-2021南京玄武区外国语学校七年级数学上期中一模试卷

2020-2021南京玄武区外国语学校七年级数学上期中一模试卷

3D.111.代数式:6x y+2020-2021南京玄武区外国语学校七年级数学上期中一模试卷(带答案)一、选择题1.﹣3的绝对值是()A.﹣3B.3C.-132.下列各数中,比-4小的数是()A.-2.5B.-5C.0D.23.若一个角的两边与另一个角的两边分别平行,则这两个角()A.相等B.互补C.相等或互补D.不能确定4.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>05.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2 6.计算3x2﹣x2的结果是()A.2B.2x2C.2x D.4x27.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④8.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元9.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为()A.9B.10C.11D.1210.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得x y=m mD.如果2x=3y,那么2-6x2-9y=55211,5xy+x2,-yx522+xy,,-3中,不是整式的有()yA.4个B.3个C.2个D.1个12.若代数式x+2的值为1,则x等于()A.1B.-1C.3D.-3二、填空题13.一个角与它的补角之差是20°,则这个角的大小是____.14.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.15.如图,每个图案均由边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n 个图案中白色正方形比黑色正方形多________个.(用含n的代数式表示)16.如图,观察所给算式,找出规律:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,……根据规律计算1+2+3+…+99+100+99+…+3+2+1=____________17.实数a,b在数轴上的位置如图所示,则化简代数式|a+b|﹣a2=_____.18.观察下列运算并填空.1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112;3×4×5×6+1=360+1=361=192;4×5×6×7+1=840+1=841=292;7×8×9×10+1=5040+1=5041=712;……试猜想:(n+1)(n+2)(n+3)(n+4)+1=________2.19.正整数按如图的规律排列,请写出第10行,第10列的数字_____.(1) -1 ⨯ 2.7 + (-1.5 )⨯ 4.8 + 1.5 ⨯ - 2⎝ 2 ⎭20.下列图形都是由大小相同的小正方形按一定规律组成的,其中第 1 个图形的周长为4,第 2 个图形的周长为 10,第 3 个图形的周长为 18,…,按此规律排列,第 5 个图形的 周长为______.三、解答题21.有 20 筐白菜,以每筐 25 千克为标准,超过或不足的分别用正、负来表示,记录如下:与标准质量的差 ( 单位:千克 )-3 -2 -1.5 0 1 2.5筐 数14 2 3 28(1)与标准质量比较, 20 筐白菜总计超过或不足多少千克? (2)若白菜每千克售价 2.6 元,则出售这 20 筐白菜可卖多少元?22.用简便方法计算下列各式的值:1 ⎛ 5 ⎫⎪(2)1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + … + 97 - 98 - 99 + 10023.先化简,再求值:(2x 2﹣2y 2)﹣3(x 2y 2+x 2)+3(x 2y 2+y 2),其中 x =﹣1,y =2. 24.某班抽查了 10 名同学的期末成绩,以 80 分为基准,超出的记为正数,不足的记为负 数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10. (1)这 10 名同学中最高分是多少?最低分是多少? (2)10 名同学中,低于 80 分的所占的百分比是多少? (3)10 名同学的平均成绩是多少?25.有一种“24 点”游戏,其游戏规则是这样的,将 4 个 1~13 之间的数进行加减乘除运算 (每个数只能用一次),使其结果为 24.例如,1,2,3,4 可做如下运算:(1+2+3) ×4=24,1×2×3×4=24,等等.(1)现有四个有理数 3,4,﹣6,+10,你能运用上述规则,写出两种运算方法不同的算 式,使其结果等于 24;(2)对于 4 个有理数﹣2,3,4,+8,再多给你一种乘方运算,请你写出一个含乘方的算 式,使其结果为 24.【参考答案】***试卷处理标记,请不要删除一、选择题..1.B解析:B【解析】 【分析】根据负数的绝对值是它的相反数,可得出答案. 【详解】根据绝对值的性质得:|-3|=3. 故选 B . 【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数 2.B解析:B 【解析】 【分析】根据有理数的大小比较法则比较即可. 【详解】∵0>−4,2>−4,−5<−4,−2.5>−4, ∴比−4 小的数是−5, 故答案选 B. 【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则 3.C解析:C 【解析】 【分析】分两种情况,作出图形,然后解答即可. 【详解】如图 1,两个角相等,如图 2,两个角互补,所以,一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。

2020-2021学年度上学期江苏省南京市四校联考七年级期中考试数学试卷(含解答)

2020-2021学年度上学期江苏省南京市四校联考七年级期中考试数学试卷(含解答)

2020-2021 学年度上学期江苏省南京市四校联考七年级期中考试数学试卷一、选择题(共 10 题,每小题 2 分,共 20 分)1.在下列各数:0.51515354…、0、0.333、3π、0.101101101 中,无理数的个数是( A. 1B. 2C. 3D. 4)2.一实验室检测 A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质 量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )B. D.3.近年来,华为手机越来越受到消费者的青睐.截至2019 年 12 月底,华为 5G 手机全球总发货量突破 690 万台.将 690 万用科学记数法表示为( ) A. 0.69×107 B. 69×105C. 6.9×105D. 6.9×106放在 4.表示一个一位数, 表示一个两位数,若把 的左边,组成一个三位数,则这个三位数 m n m n 可表示为( ) A. B. C. D.100m + nm nm + n10m + n5.下列各组数中,互为相反数的是 ( A. |+2|与|-2| B. -|+2|与+(-2) )C. -(-2)与+(+2)D. |-(-3) |与-|-3|6.在数轴上与-2 所在的点的距离等于 4 的点表示的数是( ) A. 2 B. -6 C. 无数个D. 2 或-6 7.若 的值是( ),则 m + 2m = 1 A. 4B. 34m + 8m − 3 2 2 C. 2D. 18.电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改 革,看病贵将成为历史.某药厂对售价为 m 元的药品进行了降价,现在有三种方案. 方案一:第一次降价 10%,第二次降价 30%; 方案二:第一次降价 20%,第二次降价 15%;方案三:第一、二次降价均为 20%.三种方案哪种降价最多( ) A. 方案一B. 方案二C. 方案三D. 不能确定9.如图,在数轴上,点 A 表示 1,现将点 A 沿数轴做如下移动,第一次将点 A 向左移动 3 个单位长度到达 点 A, 第二次将点 A 向右移动 6 个单位长度到达点 A, 第三次将点 A 向左移动 9 个单位长度到达1 122 点 A, …按照这种移动规律进行下去,第 51 次移动到点 ,那么点 A 所表示的数为( )A 35151A. ﹣74B. ﹣77C. ﹣80D. ﹣8310.两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长 方形的长为 a ,则图①与图②的阴影部分周长之差是( )A. B. C. D.二、填空题(共 8 题,每小题 2 分,共 16 分)11.|−a|=|−3|,则=________.a12.已知 a 是最大的负整数,b 是绝对值最小的数,c 是最小的正整数,则等于________.a+b+c13.为了帮助一名白血病儿童治疗疾病,某班全体师生积极捐款,捐款金额共2 800 元,已知该班共有 5 名教师,每名教师捐款 a 元,则该班学生共捐款________元(用含 a 的代数式表示).14.若与2n是同类项,则−5x y________.m+n=3x ym15.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x 的值是________.16.一个数是 4,另一个数比 4 的相反数小 3,那么这两个数的积是________.17.某数学老师在课外活动中做了一个有趣的游戏:首先发给A,B,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤:第一步,A 同学拿出三张扑克牌给 B 同学;第二步,C 同学拿出三张扑克牌给 B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给 A 同学,请你确定,最终 B 同学手中剩余的扑克牌的张数为________.18.如图是一根起点为 1 的数轴,现有同学将它弯折,弯折后虚线上由左至右第1 个数是 1,第 2 个数是 13,第 3 个数是 41,…,依此规律,第 5 个数是________.三、解答题(共8题;共64分)19.计算:(1)4-(-3)×(-1)-8×(−1;(2)(-5)×(-)-32÷(-2)×(+).)3×|-2-3|353225420.化简,求值(1)﹣(a﹣6b﹣1)﹣(﹣1+3b﹣2a)22(2)先化简,再求其值:已知2(a b+ab)﹣2(a b﹣1)﹣2ab﹣2,其中a=﹣2,b=222221.在数轴上表示下列各数,并用“”号把它们连接起来.<,,,1,0,|−4|−(+3)−(−2.5)−|−2|22.如图,将边长为m的正方形纸板,沿虚线剪成两个正方形和两个长方形,拿掉边长为n的小正方形纸板后,将剩下的三个图形拼成一个新的长方形.(1)求拼成的新的长方形的周长(用含m或n的代数式表示);(2)当m=7,n=4时,直接写出拼成的新的长方形的面积.23.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人.行驶路程记录如下(规定向南为正,向北为负,单位:):k m第1批第2批第3批第4批第5批-4-31052k m k m k m k m k m(1)接送完第5批客人后,该驾驶员在公司________边(填南或北),距离公司________千米.(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油________升.(3)若该出租车的计价标准为:行驶路程不超过3在这过程中该驾驶员共收到车费多少元?收费10元,超过3的部分按每千米1.8元收费,k mk m24.阅读下述材料,尝试解决问题数学是一门充满思维乐趣的学科,现有一个 的数阵 ,数阵A 中每个位置对应的数都是 1,2 或第 3 行、第 2 列所对应的数是 3,3 × 3 A 1 1 1A = (2 2 2) 3.定义 为数阵中第 行、第 列的数.例如,数阵 b a ∗ b a 3 3 3 所以 .3 ∗ 2 = 3 (1)对于数阵 , 的值为________;若 ,则的值为________.2 ∗3 = 2 ∗ xxA 2 ∗ 3 (2)若一个 的数阵对任意的 ;均满足以下条件:a, b, c3 × 3 条件一: 条件二: a ∗ a = a ;则称这个数阵是“有趣的”. (a ∗ b) ∗ c = a ∗ c 已知一个“有趣的”数阵满足 ,试计算的值.2 ∗ 11 ∗2 = 2 25.为给同学们创造更好的读书条件,学校准备新建一个长度为L 的读书长廊,并准备用若干块带有花纹 和没有花纹的两种规格、大小相同的正方形地面砖搭配在一起,按如图所示的规律拼成图案铺满长廊, 已知每个小正方形地面砖的边长均为 0.6m .(1)按图示规律,第一图案的长度 L =________m ;第二个图案的长度 L =________m .12(2)请用代数式表示带有花纹的地面砖块数 n 与走廊的长度 L 之间的关系.n(3)当走廊的长度 L 为 36.6m 时,请计算出所需带有花纹图案的瓷砖的块数.26.已知如图,在数轴上有 A ,B 两点,所表示的数分别为-10,4,点 A 以每秒 5 个单位长度的速度向右运 动,同时点 B 以每秒 3 个单位长度的速度也向左运动,如果设运动时间为t 秒,解答下列问题:(1)运动前线段 AB 的长为________; 运动 1 秒后线段 AB 的长为________;(2)运动 t 秒后,点 A ,点 B 运动的距离分别为________;用 t 表示 A ,B 分别为________. (3)求 t 为何值时,点 A 与点 B 恰好重合;(4)在上述运动的过程中,是否存在某一时刻t ,使得线段 AB 的长为 6,若存在,求 t 的值; 若不存在, 请说明理由.答案一、选择题1.解:0 是整数,属于有理数;0.333,0.101101101 是有限小数,属于有理数; 无理数有:0.51515354…、3π共 2 个. 故答案为:B .2.∵|+1.2|=1.2,|-2.3|=2.3, |+0.9|=0.9,|-0.8|=0.8, 0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项 D 中的元件, 故答案为:D .3.解:690 万=6900000=6.9×106 . 故答案为:D .4.∵m 表示一个一位数,n 表示一个两位数,若把 m 放在 n 的左边,组成一个三位数, ∴这个三位数可表示为:100m+n . 故答案为:D .5.解:A 、|+2|=2,|-2|=2,故这两个数相等,故此选项错误; B 、-|+2|=-2,+(-2)=-2,故这两个数相等,故此选项错误; C 、-(-2)=2 与+(+2)=2,这两个数相等,故此选项错误;D 、|-(-3)|=3,-|-3|=-3,3+(-3)=0,这两个数互为相反数,故此选项正确. 故答案为:D.6.解:若这个数在-2 的左侧,则这个数是-2-4=-6; 若这个数在-2 的右侧,则这个数是-2+4=2;故在数轴上与-2 所在的点的距离等于 4 的点表示的数是 2 或-6; 故答案为:D. 7.∵ 2 , m + 2m = 1 ∴ = 2 4m + 8m − 3 4(m + 2m) − 3 2 =4×1-3 =1.故答案为:D . 8.解:由题意可得:方案一降价 0.1m+m (1-10%)30%=0.37m ; 方案二降价 0.2m+m (1-20%)15%=0.32m ; 方案三降价 0.2m+m (1-20%)20%=0.36m ; 故答案为 A.9.解:第一次点 A 向左移动 3 个单位长度至点 ,则 表示的数,1−3=−2;AA 11第 2 次从点 A1 向右移动 6 个单位长度至点 ,则 表示的数为−2+6=4;A A 2 2第 3 次从点 A2 向左移动 9 个单位长度至点 第 4 次从点 A3 向右移动 12 个单位长度至点 第 5 次从点 A4 向左移动 15 个单位长度至点 …;,则 表示的数为 4−9=−5; 表示的数为−5+12=7; 表示的数为 7−15=−8; A A 3 3 ,则 A A A A 4 5 4 5 ,则 则点 表示: ,A 51+1× (−3) + 1 = 26 × (−3) + 1 = −78 + 1 = −77 51 2故答案为:B.10.解:设小长方形的长为 x ,宽为 y ,有图可知: x=a , y=a24图①:C =2a+a ×2=2a+a ,14 2图②:C =a ×2+a ×3×2+a ×2=3a ,22 4 4∴图①与图②的阴影部分周长之差为: 2a+a -3a=-a ,22故答案为:C. 二、填空题11.解:∵ , | −a| = | − 3| = 3 ,即 ∴ , −a = ±3 故答案为:±3. 12.∵a 是最大的负整数 a = ±3 ∴ a = −1∵b 是绝对值最小的数 ∴ b = 0∵c 是最小的正整数 ∴ ∴ c = 1a +b +c = (−1) + 0 + 1 = 0 故答案为:0. 13.解:根据题意得:该班学生共捐款:(2800-5a )元, 故答案为:(2 800-5a ). 14.解:由同类项的定义可知, m=2,n=1, ∴m+n=3 故答案为 3.15.解:∵16+11+12=39,∴由 39-(11+15)=13 得最中间格子上的数为 13, 再由 39-(12+13)=14 得右上角格子的数为 14, ∴x=39-(16+14)=9.故答案为9.16.∵一个数是4,另一个数比4的相反数小3∴另一个数为−4−3=−7∴这两个数的积是故答案为:-28.4×(−7)=−2817.设每个同学的扑克牌的数量都是;x第一步,A同学的扑克牌的数量是第二步,B同学的扑克牌的数量是,B同学的扑克牌的数量是;x−3x+3,C同学的扑克牌的数量是),B同学的扑克牌的数量是;x+3+3x−3第三步,A同学的扑克牌的数量是2(();x−3x+3+3−x−3∴B同学手中剩余的扑克牌的数量是:().x+3+3−x−3=9故答案为:.918.解:观察根据排列的规律得到:第一行为数轴上左边的第1个数1,第二行为1右边的第6个数13,第三行为13右边的第14个数41,第四行为41右边的第22个数,为2(1+6+14+22)-1=85,第五行为91右边的第30个数,为2(1+6+14+22+30)-1=145.三、解答题19.(1)解:原式=4−(−3)×(−1)−8×(−1)×|−5|8=4−3−(−5)=1+5=6(2)解:原式=−125×(−3)−32÷4×554=−125×(−3)−8×554=75−10=6520.(1)解:原式=2−a+6b+1+1−3b+2a2=2a+3b+2(2)解:原式= =2222a b+2ab−2a b+2−2ab−22ab−2ab2将a=﹣2,b=2代入可得=8.2ab−2ab221.解:,,.−(−2.5)=2.5−|−2|=−2−(+3)=−3如图所示.<用“”号把它们连接起来如下:−(+3)<−|−2|<0<1<−(−2.5)<|−4|.22.(1)解:矩形的长为:m+n.矩形的宽为:m-n.矩形的周长为:2[(m+n)+(m-n)]=4m(2)解:矩形的面积为:S=(m+n)(m−n)=(7+4)(7−4)=11×3=3323.(1)南;10(2)4.8(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.解:(1)5+2+(-4)+(-3)+10=10(km)故答案为:南边,10;(2)(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升)故答案为:4.8;24.(1)2;1,2,3(2)∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=125.(1)1.8;3(2)解:观察图形可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,…则第n个图案中有花纹的地面砖有n块;第一个图案边长L=3×0.6,第二个图案边长L=5×0.6,则第n个图案边长为L=(2n+1)×0.6;(3)解:把L=36.6代入L=(2n+1)×0.6中得:36.6=(2n+1)×0.6,解得:n=30,答:需带有花纹图案的瓷砖的块数是30.解:(1)第一图案的长度 L =0.6×3=1.8,第二个图案的长度 L =0.6×5=3;12故答案为 1.8,3; 26. (1)14;6(2)5t ,3t ;5t-10,4-3t(3)解:根据题意得:5t-10=4-3t , 解得:t= 74(4)解:存在,当 A ,B 没有相遇时,可得 14-8t=6, 解得:t=1;当 A ,B 错开时,可得 8t-14=6, 解得:t= ,5 2综上,当 t=1 秒或 秒时,线段 AB 的长为 65 2<用“”号把它们连接起来如下:−(+3)<−|−2|<0<1<−(−2.5)<|−4|.22.(1)解:矩形的长为:m+n.矩形的宽为:m-n.矩形的周长为:2[(m+n)+(m-n)]=4m(2)解:矩形的面积为:S=(m+n)(m−n)=(7+4)(7−4)=11×3=3323.(1)南;10(2)4.8(3)[10+(5-3)×1.8]+10+[10+(4-3)×1.8]+10+[10+(10-3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.解:(1)5+2+(-4)+(-3)+10=10(km)故答案为:南边,10;(2)(5+2+|-4|+|-3|+10)×0.2=24×0.2=4.8(升)故答案为:4.8;24.(1)2;1,2,3(2)∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=125.(1)1.8;3(2)解:观察图形可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,…则第n个图案中有花纹的地面砖有n块;第一个图案边长L=3×0.6,第二个图案边长L=5×0.6,则第n个图案边长为L=(2n+1)×0.6;(3)解:把L=36.6代入L=(2n+1)×0.6中得:36.6=(2n+1)×0.6,解得:n=30,答:需带有花纹图案的瓷砖的块数是30.解:(1)第一图案的长度 L =0.6×3=1.8,第二个图案的长度 L =0.6×5=3; 1 2 故答案为 1.8,3;26. (1)14;6(2)5t ,3t ;5t-10,4-3t(3)解:根据题意得:5t-10=4-3t , 解得:t= 74(4)解:存在,当 A ,B 没有相遇时,可得 14-8t=6, 解得:t=1;当 A ,B 错开时,可得 8t-14=6, 解得:t= ,52 综上,当 t=1 秒或 秒时,线段 AB 的长为 652 1。

南京市玄武外国语学校科利华2020-2021学年第一学期期末试卷七年级英语(含答案)

南京市玄武外国语学校科利华2020-2021学年第一学期期末试卷七年级英语(含答案)

南京市玄武外国语学校科利华2020-2021学年第一学期期末试卷七年级英语二、单项选择(共15 小题:每小题1 分,满分15 分)( ) 16. --- Excuse me, is the interesting magazine on the sofa yours? I want to buy .--- Yes. I order it online.A.itB.oneC. anD.that ( ) 17. --- Would you like to drinkorange juice, madam?--- Yes, a little please.A.anyB.fewC.littleD.some ( ) 18. --- How do you celebrate , Tom?--- We usually eat zongzi and watch boat races.A.the Mid-Autumn FestivalB.the Spring FestivalC.the Lantern FestivalD.the Dragon BoatFestival ( ) 19. Jenny and her cousinmade orange lanterns a cold winterevening.A.inB.atC.onD.for( ) 20. Which of the underlined letter groups has the same sound as that in the word "feature"?A.leatherB.mealC.sweaterD.great ( ) 21. This blue T-shirt yourblue jeans well. Why not buy it?A.fitB.matchesC. fitsD.match ( ) 22. --- Mum, this red blouse looks nice on me. Do youthink so?--- Yes, but the price is too . Let’s have a look at the yellow one.A.lowB.highC. cheapD.expensive ( ) 23. --- Sandy, when shall we go to the Science Museum?--- It from 8:00 a.m. to 8:00 p.m. Let's meet at the gate at 8:30a.m.A.opensB.is openC.closesD.is closed( ) 24. It’s impolite of you not to the door before you come into someone else’s room.A.find outB.look forC.knock onD.shoutat ( ) 25. --- What can I do for you, dear sir?--- I’d like to buy two for dinner.A.kiloes of meatB.kilos of meatsC. kilo of meatD.kilos ofmeat ( ) 26. --- Here comes the bus! Where is Mr Wu?--- He can’t go to the theatre with us. He with some foreigners our school.A.visitB.are visitingC.is visitingD.visits ( ) 27. Look! There’s sheepon the other side of the road. How lovely!A.someB.manyC.muchD. alittle ( ) 28. --- Jim, TV do you watch every day?--- I never watch TV.A.how manyB.how longC.how muchD.how often ( ) 29. This App has a great number of collection of famous films, some of Cai xukun’sA.includingB. includeC. includedD.includes ( ) 30. --- You look hungry. Would you like a hamburger?--- . I’d like some noodles too.A.Yes, pleaseB.You are welcomeC.No, thanksD. Yes, I’d like to三、完形填空(共10 小题;每小题1 分,满分10 分)Pets are part of people’s life. If you are like most people who have pets, you care for them as if you were your children. Meeting their needs is a(n) 31 part of your day, because you want them to have everything they need. One thing they need but cannot tell you about is 32 .Many pet 33 put on animals’ music because this helps their pets to feel good when they are gone. Most people are 34 throughout the day, leaving their pets at home. To make your pets feel comfortable and safe, you could try putting on music before you 35 the house.You might have to 36 music to see what type works for your pet. If you just want to keep your pet calm, you will need to play 37 music instead of rock or hip-hop music, which might annoy your pet.Also, you need to know that different pets act 38 to music. Hard rock music has also been found to work well to calm some pets, as well as piano music. 39 piano music works well on most animals, it works best on cats.Playing music is also a great idea for people with 40 pets. They can have such a difficult time getting used to their new environment that they need all the help.( ) 31. A. small B.difficult C.important D.unimportant ( ) 32. A. food B.money C.music D.interest( ) 33. A. owners B.scientists C.shops D.projects( ) 34. A. at work B.at home C.at the door D.at thechurch( ) 35. A. buy B.leave C.build D.clean up( ) 36. A. change B.make C.write D.listen to( ) 37. A. noisy B.hard C.loud D.soft( ) 38. A. bravely B.correctly C.differently D.the same( ) 39. A. Though B.Until C.Because D.Since( ) 40. A. big B.old C.little D.new四、阅读理解(共15 小题;每小题1 分,满分15 分)ATea Cottage Wants You!Join us in Tea Cottage --- the best Chinese restaurant in town. We are now looking for someone.He is interested in working with us.2Cooks*At least two years’ work experience in a restaurant kitchen.*Good at making Chinese dishes.*Able to work on weekends.*Work 16:00-21:00 every day.($600/week)3Waiters/Waitresses*At least one year’s work experience in a restaurant.*Part-time(兼职的) welcome.*Work 9:00-15:00 or 16:00-21:00($16/hour)2 Cleaners*No experience needed.*Part-time welcome*Wash dishes, clean the kitchen*Work 12:00-15:00 or 17:00-22:00($12/hour)We’re also looking for singers and bands for Wednesday nights!Call Ms. Wu at 213-333-6789( ) 41. Tea Cottage is .A.a Western restaurantB.a Chinese restaurantC.a fast food restaurantD.a tea house( ) 42. If Lisa gets a job as a waitress, she can get at least every day.A. $4B. $80C. $100D.$60( ) 43. If Tom wants to find a part-time job, he can work for Tea Cottage as .A.a waiter or a cookB.a cook or a cleanerC.a waiter or a cleanerD.a cook or a singerBParents may tell you that it’s difficult to be a mother or a father. Just look at the emperor penguin! And then they will find it’s not so difficult. This parent has one of the hardest jobs in the world.Every May or June, the mother penguin lays an egg. She carefully passes the egg to the father penguin. Then she goes out to find food. The father keeps the egg on top of his feet. He must be very careful, because it can break if it falls on the ground.When the mother goes out to find food, the father waits patiently for the baby to come out of the egg. This usually takes at least 60 days. During that time, the father doesn’t eat, and he doesn’tmove a lot so he doesn’t hurt(伤害) the egg.By the time the baby comes out, the father is very weak. But he must feed(喂养) the baby if the mother has not yet come back. Luckily, the mother usually comes back home in a few days after the baby comes out. She feeds the baby and takes care of it so the father can go to get food for himself. By this time, he has gone 115 days without eating. Talk about a great dad! ( ) 44. Where does the father penguin keep the egg?A.In the water.B.On the ground.C.On the back.D.On top of hisfeet. ( ) 45. Which of thefollowing statements is right?A.The mother penguin only lays eggs in June because it’s warm at that time.B.The mother penguin will never come back after she goes out to find food.C.It takes at least 2 months for the baby penguin to come out of the egg.D.The father penguin is strong even when the baby penguin comesout. ( ) 46. What do you think of the father according to the passage?A.Patient.B.Interesting.C.Happy.D.Friendly.CHave you ever made soup at home? It’s pretty easy to do. One of my favourite soups to make is chicken tortilla(玉米薄饼) soup. It’s a kind of Mexican soup that has beans, chicken, and some other ingredients(原料).Since I make the soup often, I know the recipe(配方) well and it tastes the same every time.But there was one time when I didn’t have one of the most important ingredients. I decided to justmake the soup without that ingredient anyway. I thought one ingredient wouldn’t make a bigdifference.When I tasted it later, it still tasted all right --- I could eat it, but it wasn’t quite the same.I was sure that it would’ve been better if I followed the recipe exactly.It is the same in our lives. When you work in groups at school or later in life at work, you can think of each member of the group as being an ingredient in the soup. If each “ingredient” isn’t there, or isn’t doing their job well, the “soup” won’t turn out right. Remember the story of the soup the next time you have to work in a group with your classmates.( ) 47. What do recipes tell us?A.What food is like in other countries.B.How to cook food according to rules.C.How different foods taste.D.How to make soup with very few ingredients.( ) 48. How did the writer’s soup taste without the important ingredient?A.It tasted very good.B.It was too bad to eat.C.It was not as good as before.D.It tasted quitedifferent. ( ) 49. According to thelast paragraph, each member of a group is .A.not always necessaryB.going to do their job wellC.like a special kind of soupD.like an ingredient in soup( ) 50. With this story, the writer tries to tell us a lesson about .A.the importance of following recipesB.the importance of team workC.how to make soup at homeD.how to join new groupsDEvery day, China imports( 进口) different goods from countries across the world. These imports also include solid waste, such as plastics( 塑料), paper and metals. They mainly come from countries like the United States, the United Kingdom and Japan.This waste will no longer be imported next year. China has banned (禁止) all imports of solid waste starting from Jan 1, 2021, said the Ministry of Ecology and Environment (MEE).Why does China import this waste? In 1980, China’s economy (经济) was gradually taking off because of the reform and opening-up policy ( 改革开放政策). However, the country’s factories didn’t have enough raw materials ( 原材料) at that time. To solve this problem, China began importing solid waste. After being processed, factories can use these materials to make other goods.For years, China has been the world’s largest importer of solid waste, with about 45 million tons arriving each year. Countries that send this waste to China pay about $25(163yuan)to $50 per ton for recycling, China News Agency reported.Although the waste helps a lot in China’s economy, it brings more bad points than good ones. Waste can’t be burned on fire or buried( 填埋) under the ground. The water from the factories usually flows into nearby rivers. This is bad to the air, soil, water, and even does harm to publichealth, China Daily reported.China has tried its best to ban waste since 2017. From 2017 to 2019, imports of solid waste fell by 68 percent, dropping from 42 million to 13 million tons, Xin hua reported. ( ) 51. From the passage, we know that China starts to ban all the imports of solid from theyear.A. 1980B. 2017C. 2021D.2019( ) 52. According to the passage, the words “solid waste” mean.A.液体废物B.固体废物C.软性废物D.有毒废物( ) 53. The report shows the waste is bad to the following things EXCEPT .A.public healthB. airC. waterD.mountain ( ) 54. China imports the waste from other countries because .A.there is the reform and opening-up policyB.the factories has no enough raw materials to make goodsC.China has to pay about $25 to $50 per ton for recyclingD.it brings more good points than bad ones( ) 55. We can read this article probably in the .A.novelB.newspaperC.playD.magazine五、填空(共15 小题;每小题1 分,满分15分) A.根据所给中文写出适当的单词。

2020-2021七年级数学上期末一模试题及答案 (3)

2020-2021七年级数学上期末一模试题及答案 (3)

2020-2021七年级数学上期末一模试题及答案 (3)一、选择题1.已知长方形的周长是45cm ,一边长是acm ,则这个长方形的面积是( ) A .(45)2a a -cm 2B .a (452a -)cm 2 C .452a cm 2D .(452a -)cm 2 2.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( ) A .0.8×(1+40%)x =15 B .0.8×(1+40%)x ﹣x =15 C .0.8×40%x =15D .0.8×40%x ﹣x =153.下列方程变形中,正确的是( ) A .由3x =﹣4,系数化为1得x =34- B .由5=2﹣x ,移项得x =5﹣2C .由 123168-+-=x x ,去分母得4(x ﹣1)﹣3(2x+3)=1 D .由 3x ﹣(2﹣4x )=5,去括号得3x+4x ﹣2=5 4.下列运算结果正确的是( )A .5x ﹣x=5B .2x 2+2x 3=4x 5C .﹣4b+b=﹣3bD .a 2b ﹣ab 2=05.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( ) A .九折B .八五折C .八折D .七五折6.有理数a ,b 在数轴上的位置如图所示,则下列代数式值是负数的是( )A .+a bB .ab -C .-a bD .a b -+7.把四张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为m 厘米,宽为n 厘米)的盒子底部(如图2所示),盒子里面未被卡片覆盖的部分用阴影部分表示,则图2中两块阴影部分周长和是( )A .4m 厘米B .4n 厘米C .2()m n +厘米D .4()m n -厘米8.-4的绝对值是( ) A .4B .C .-4D .9.若|a |=1,|b |=4,且ab <0,则a +b 的值为( ) A .3±B .3-C .3D .5±10.已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .7cmB .3cmC .7cm 或3cmD .5cm11.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n 个图案中白色正方形比黑色正方形( )个.A .nB .(5n+3)C .(5n+2)D .(4n+3)12.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③二、填空题13.如图,数轴上点A、B 、C 所对应的数分别为a 、b 、c ,化简|a|+|c ﹣b|﹣|a+b ﹣c|=__.14.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算:1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.15.某商店购进一批童装,每件售价120元,可获利20%,这件童装的进价是_____元. 16.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:(1)第4个图案有白色地面砖______块; (2)第n 个图案有白色地面砖______块.17.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.18.图1和图2中所有的正方形都相同,将图1的正方形放在图2中的_______(从①、②、③、④中选填所有可能)位置,所组成的图形能够围成正方体.19.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x 米,根据题意列方程为_____.20.若#表示最小的正整数,■表示最大的负整数,•表示绝对值最小的有理数,则=+•⨯(▲)■__________. 三、解答题21.化简与求值:[(x ﹣2y )2+(x ﹣2y )(x+2y )﹣2x (2x ﹣y )]÷2x ,其中x=5,y=﹣6. 22.在我们的课本第142页“4.4课题学习”中,有包装纸盒的设计制作方法.这里的右图,是设计师为“XX 快递”设计的长方体包装盒的轮廓草图,其中长30CM 、宽20CM 、高18CM ,正面有“快递”字样,上面有“上”字样,棱AB 是上盖的掀开处,棱CD 是粘合处.请你想想,如何制作这个包装盒,然后完善下面的制作步骤.步骤1:在符合尺寸规格的硬纸板上,画出这个长方体的展开图(草图).注意,要预留出黏合处,并适当剪去棱角.步骤2:在你上面画出的展开草图上,标出对应的A 、B 、C 、D 的位置,标出长30CM 、宽20CM 、高18CM 所在线段,并把“上”和“快递”标注在所在面的位置上. 步骤3:裁下展开图,折叠并粘好黏合处,得到长方体包装盒. 23.解方程(1)2(4)3(1)x x x --=- (2)1-314x -=32x+ 24.观察下列三行数:第一行:2,﹣4,8,﹣16,32,﹣64,…… 第二行:4,﹣2,10,﹣14,34,﹣62,…… 第三行:1,﹣2,4,﹣8,16,﹣32,……(1)第一行数的第8个数为 ,第二行数的第8个数为 ;(2)第一行是否存在连续的三个数使得三个数的和是384?若存在,求出这三个数,若不存在,请说明理由;(3)取每一行的第n 个数,这三个数的和能否为﹣2558?若能,求出这三个数,若不能,请说明理由.25.如图所示,已知线段m ,n ,求作线段AB ,使它等于m +2n .(用尺规作图,不写做法,保留作图痕迹.)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】解:设长边形的另一边长度为x cm ,根据周长是45cm ,可得:2(a +x )=45, 解得:x=452﹣a ,所以长方形的面积为:ax=a (452a -)cm 2. 故选B . 考点:列代数式.2.B解析:B 【解析】 【分析】首先设这种服装每件的成本价是x 元,根据题意可得等量关系:进价×(1+40%)×8折-进价=利润15元,根据等量关系列出方程即可. 【详解】设这种服装每件的成本价是x 元,由题意得:3.D解析:D 【解析】 【分析】根据解方程的方法判断各个选项是否正确,从而解答本题. 【详解】解:3x =﹣4,系数化为1,得x =﹣43,故选项A 错误; 5=2﹣x ,移项,得x =2﹣5,故选项B 错误;由123168-+-=x x ,去分母得4(x ﹣1)﹣3(2x+3)=24,故选项C 错误; 由 3x ﹣(2﹣4x )=5,去括号得,3x ﹣2+4x =5,故选项D 正确, 故选:D . 【点睛】本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.4.C解析:C 【解析】A.5x ﹣x =4x ,错误;B.2x 2与2x 3不是同类项,不能合并,错误;C.﹣4b +b =﹣3b ,正确;D.a 2b ﹣ab 2,不是同类项,不能合并,错误; 故选C .5.A解析:A 【解析】 【分析】设该商品的打x 折出售,根据销售价以及进价与利润和打折之间的关系,得出等式,然后解方程即可. 【详解】设该商品的打x 折出售,根据题意得,32002400(120%)10x⨯=+ 解得:x=9.答:该商品的打9折出售。

2021-2022学年江苏省南京市七年级上学期期末数学典型试卷2(含答案)

2021-2022学年江苏省南京市七年级上学期期末数学典型试卷2(含答案)

2021-2022学年上学期南京初中数学七年级期末典型试卷2一.选择题(共8小题)1.(2020秋•建邺区期末)下列各数中,无理数是( ) A .﹣2B .3.14C .227D .π22.(2020秋•建邺区期末)下列各式中与a ﹣b ﹣c 的值不相等的是( ) A .a ﹣(b ﹣c )B .a ﹣(b +c )C .(a ﹣b )+(﹣c )D .(﹣c )﹣(b ﹣a )3.(2010•广州)下列运算正确的是( ) A .﹣3(x ﹣1)=﹣3x ﹣1 B .﹣3(x ﹣1)=﹣3x +1C .﹣3(x ﹣1)=﹣3x ﹣3D .﹣3(x ﹣1)=﹣3x +34.(2020秋•鼓楼区期末)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是( )A .用两颗钉子固定一根木条B .把弯路改直可以缩短路程C .用两根木桩拉一直线把树栽成一排D .沿桌子的一边看,可将桌子排整齐5.(2007•济南)已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角6.(2019秋•溧水区期末)如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头7.(2019秋•高淳区期末)下列说法错误的是( )A.同角的补角相等B.对顶角相等C.锐角的2倍是钝角D.过直线外一点有且只有一条直线与已知直线平行8.(2020秋•盱眙县期末)如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为()A.15°B.20°C.25°D.30°二.填空题(共10小题)9.(2012•鲤城区校级一模)比﹣1小2的数是.10.(2020秋•南京期末)太阳的直径大约是1 392 000千米,将1 392 000用科学记数法表示为.11.(2020秋•建邺区期末)已知代数式x﹣3y的值是4,则代数式(x﹣3y)2﹣2x+6y﹣1的值是.12.(2020秋•建邺区期末)已知x=a是关于x的方程2a+3x=﹣5的解,则a的值是.13.(2020秋•鼓楼区期末)如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=°.14.(2020秋•鼓楼区期末)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.15.(2019秋•海安市期末)正方体切去一个块,可得到如图几何体,这个几何体有条棱.16.(2020秋•沈河区期末)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是 .17.(2019秋•高淳区期末)如图,把一张长方形纸条ABCD 沿EF折叠,若∠AEG =62°,则∠DEF = °.18.(2019秋•高淳区期末)如图,直线AB 、CD 相交于点O ,OE平分∠BOD ;OF 平分∠COE ,若∠AOC =82°,则∠BOF = °.三.解答题(共8小题)19.(2020秋•南京期末)计算: (1)(23+12−56)÷(−124); (2)(﹣2)3×(﹣2+6)﹣|﹣4|.20.(2020秋•南京期末)先化简,再求值:3(2a 2b ﹣4ab 2)﹣(﹣3ab 2+6a 2b ),其中a =1,b =−13.21.(2020秋•建邺区期末)解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是﹣2,那么她告诉魔术师的结果应该是;(2)如果小明想了一个数计算后,告诉魔术师结果为73,那么魔术师立刻说出小明想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为a,请通过计算解密这个魔术的奥妙.22.(2020秋•建邺区期末)如图,已知DB=2,AC=10,点D为线段AC的中点,求线段BC的长度.23.(2020秋•鼓楼区期末)已知:如图,O是直线AB 上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整;证明:∵O是直线AB上一点,∴∠AOB=180°.∵∠COD与∠COE互余,∴∠COD+∠COE=°.∴∠AOD+∠BOE=90°.∵OD是∠AOC的平分线,∴∠AOD=∠(理由:).∴∠BOE=∠COE(理由:).∵∠AOE+∠BOE=°.∴∠AOE+∠COE=180°.∴∠AOE与∠COE互补.24.(2020秋•鼓楼区期末)2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分,前四名队伍积分榜部分信息如表所示.(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中;(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表格,求巴西队胜场的场数.名次球队场次胜场负场总积分1中国111102美国11101283俄罗斯1183234巴西1121 25.(2019秋•溧水区期末)小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12x明天26.(2019秋•溧水区期末)如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为﹣10.点B表示的数为6,点C为线段AB的中点.(1)数轴上点C表示的数是;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为:t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(是把一条线段平均分成三等分的点).(直接写出结果)2021-2022学年上学期南京初中数学七年级期末典型试卷2参考答案与试题解析一.选择题(共8小题)1.(2020秋•建邺区期末)下列各数中,无理数是( ) A .﹣2B .3.14C .227D .π2【考点】无理数. 【专题】实数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【解答】解:无理数是π2,故选:D .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 2.(2020秋•建邺区期末)下列各式中与a ﹣b ﹣c 的值不相等的是( ) A .a ﹣(b ﹣c )B .a ﹣(b +c )C .(a ﹣b )+(﹣c )D .(﹣c )﹣(b ﹣a )【考点】去括号与添括号. 【专题】常规题型.【分析】依据去括号法则进行判断即可.【解答】解:A 、a ﹣(b ﹣c )=a ﹣b +c ,与要求相符; B 、a ﹣(b +c )=a ﹣b ﹣c ,与要求不符; C 、(a ﹣b )+(﹣c )=a ﹣b ﹣c ,与要求不符; D 、(﹣c )﹣(b ﹣a )=﹣c ﹣b +a ,与要求不符. 故选:A .【点评】本题主要考查的是去括号法则,熟练掌握去括号法则是解题的关键. 3.(2010•广州)下列运算正确的是( ) A .﹣3(x ﹣1)=﹣3x ﹣1 B .﹣3(x ﹣1)=﹣3x +1C .﹣3(x ﹣1)=﹣3x ﹣3D .﹣3(x ﹣1)=﹣3x +3【考点】去括号与添括号.【分析】去括号时,要按照去括号法则,将括号前的﹣3与括号内每一项分别相乘,尤其需要注意,﹣3与﹣1相乘时,应该是+3而不是﹣3.【解答】解:根据去括号的方法可知﹣3(x﹣1)=﹣3x+3.故选:D.【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是﹣3只与x相乘,忘记乘以﹣1;二是﹣3与﹣1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分.4.(2020秋•鼓楼区期末)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐【考点】线段的性质:两点之间线段最短.【分析】根据实际、线段的性质判断即可.【解答】解:A、用两颗钉子固定一根木条体现基本事实“两点确定一条直线”;B、把弯路改直可以缩短路程体现基本事实“两点之间,线段最短”;C、用两根木桩拉一直线把树栽成一排体现基本事实“两点确定一条直线”;D、沿桌子的一边看,可将桌子排整齐体现基本事实“线段的延长线”;故选:B.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.5.(2007•济南)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角【考点】余角和补角;对顶角、邻补角;垂线.【专题】计算题.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【点评】本题考查了余角和垂线的定义以及对顶角相等的性质.6.(2019秋•溧水区期末)如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是()A.秦B.淮C.源D.头【考点】专题:正方体相对两个面上的文字.【专题】投影与视图;空间观念.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“会”字对面的字是“源”.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2019秋•高淳区期末)下列说法错误的是()A.同角的补角相等B.对顶角相等C.锐角的2倍是钝角D.过直线外一点有且只有一条直线与已知直线平行【考点】余角和补角;对顶角、邻补角;平行公理及推论.【专题】线段、角、相交线与平行线;推理能力.【分析】根据平行公理,对顶角的定义,邻补角的定义,对各选项分析判断后利用排除法求解.【解答】解:A、同角的补角相等,正确;B、对顶角相等;正确;C、锐角的2倍不一定是钝角,错误;D、过直线外一点有且只有一条直线与已知直线平行,正确;故选:C.【点评】本题考查了平行公理,对顶角的定义,邻补角的定义,垂线段最短,是基础概念题.8.(2020秋•盱眙县期末)如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为()A.15°B.20°C.25°D.30°【考点】等腰直角三角形.【专题】等腰三角形与直角三角形;应用意识.【分析】求出∠2即可解决问题.【解答】解:∵∠AOB=∠COD=90°∴∠2=∠AOC=25°,∴∠1=∠EOF﹣∠2﹣∠DOF=90°﹣25°﹣35°=30°,故选:D.【点评】本题考查等腰直角三角形的性质角的和差定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共10小题)9.(2012•鲤城区校级一模)比﹣1小2的数是﹣3.【考点】有理数的减法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣1﹣2=﹣3.故答案为:﹣3.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.10.(2020秋•南京期末)太阳的直径大约是1 392 000千米,将1 392 000用科学记数法表示为 1.392×106.【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1392000=1.392×106.故答案是:1.392×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2020秋•建邺区期末)已知代数式x﹣3y的值是4,则代数式(x﹣3y)2﹣2x+6y﹣1的值是7.【考点】代数式求值.【专题】整体思想.【分析】把(x﹣3y)看作一个整体并代入代数式进行计算即可得解.【解答】解:∵x﹣3y=4,∴(x﹣3y)2﹣2x+6y﹣1=(x﹣3y)2﹣2(x﹣3y)﹣1,=42﹣2×4﹣1,=16﹣8﹣1,=7.故答案为:7.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.(2020秋•建邺区期末)已知x=a是关于x的方程2a+3x=﹣5的解,则a的值是﹣1.【考点】一元一次方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把x=a代入方程,解关于a的一元一次方程即可.【解答】解:把x=a代入方程,得2a+3a=﹣5,所以5a=﹣5解得a=﹣1故答案是:﹣1.【点评】本题考查了一元一次方程的解.掌握一元一次方程的解法是解决本题的关键.13.(2020秋•鼓楼区期末)如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=75°.【考点】对顶角、邻补角.【分析】首先计算出∠2的度数,再根据对顶角相等可得∠1的度数.【解答】解:∵∠2=135°﹣60°=75°,∴∠1=∠2=75°,故答案为:75.【点评】此题主要考查了对顶角,关键是掌握对顶角相等.14.(2020秋•鼓楼区期末)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为6.【考点】数轴.【分析】根据直尺的长度知x为﹣2右边8个单位的点所表示的数,据此可得.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.【点评】本题主要考查了数轴,解题的关键是确定x与表示﹣2的点之间的距离.15.(2019秋•海安市期末)正方体切去一个块,可得到如图几何体,这个几何体有12条棱.【考点】截一个几何体.【专题】推理填空题.【分析】通过观察图形即可得到答案.【解答】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点评】此题主要考查了认识正方体,关键是看正方体切的位置.16.(2020秋•沈河区期末)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.【考点】线段的性质:两点之间线段最短.【专题】常规题型.【分析】直接利用线段的性质进而分析得出答案.【解答】解:田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短.故答案为:两点之间线段最短.【点评】此题主要考查了线段的性质,正确把握线段的性质是解题关键.17.(2019秋•高淳区期末)如图,把一张长方形纸条ABCD沿EF折叠,若∠AEG=62°,则∠DEF=59°.【考点】翻折变换(折叠问题).【专题】线段、角、相交线与平行线;几何直观.【分析】由折叠的性质结合平角等于180°,即可得出∠DEF=12(180°﹣∠AEG),再代入∠AEG的度数即可求出结论.【解答】解:由折叠的性质,可知:∠DEF=∠GEF.∵∠AEG+∠GEF+∠DEF=180°,∠AEG=62°,∴∠DEF=12(180°﹣∠AEG)=12(180°﹣62°)=59°.故答案为:59.【点评】本题考查了翻折变换以及角的计算,利用折叠的性质结合平角等于180°,找出∠DEF=12(180°﹣∠AEG)是解题的关键.18.(2019秋•高淳区期末)如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF=28.5°.【考点】角平分线的定义;对顶角、邻补角.【专题】线段、角、相交线与平行线;推理能力.【分析】根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF ﹣∠BOF求解.【解答】解:∵∠AOC=82°∴∠BOD=∠AOC=82°,又∵OE平分∠BOD,∴∠DOE=12∠BOD=12×82°=41°.∴∠COE=180°﹣∠DOE=180°﹣41°=139°,∵OF平分∠COE,∴∠EOF=12∠COE=12×139°=69.5°,∴∠BOF =∠EOF ﹣∠BOE =69.5°﹣41°=28.5°. 故答案是:28.5.【点评】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键. 三.解答题(共8小题) 19.(2020秋•南京期末)计算: (1)(23+12−56)÷(−124);(2)(﹣2)3×(﹣2+6)﹣|﹣4|. 【考点】有理数的混合运算. 【专题】实数;运算能力.【分析】(1)除法转化为乘法,再利用乘法分配律展开,进一步计算即可; (2)先计算乘方和绝对值、括号内的减法,再计算乘法,最后计算减法即可. 【解答】解:(1)原式=(23+12−56)×(﹣24)=﹣16﹣12+20 =﹣8;(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4 =﹣32﹣4 =﹣36.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.(2020秋•南京期末)先化简,再求值:3(2a 2b ﹣4ab 2)﹣(﹣3ab 2+6a 2b ),其中a =1,b =−13.【考点】整式的加减—化简求值. 【专题】计算题;整式;运算能力.【分析】先去括号,再合并同类项,最后代入求值. 【解答】解:原式=6a 2b ﹣12ab 2+3ab 2﹣6a 2b =﹣9ab 2; 当a =1,b =−13时, 原式=﹣9×1×(−13)2=﹣1.【点评】本题考查了整式的加减及有理数的混合运算,掌握去括号法则和合并同类项法则是解决本题的关键.21.(2020秋•建邺区期末)解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是﹣2,那么她告诉魔术师的结果应该是3;(2)如果小明想了一个数计算后,告诉魔术师结果为73,那么魔术师立刻说出小明想的那个数是68;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为a,请通过计算解密这个魔术的奥妙.【考点】有理数的混合运算;解一元一次方程.【专题】实数;运算能力.【分析】(1)利用已知条件,这个数按步骤操作,直接代入即可;(2)假设这个数,根据运算步骤,求出结果等于73,得出一元一次方程,即可求出;(3)结合(2)中方程,关键是发现运算步骤的规律.【解答】解:(1)(﹣2×3﹣6)÷3+7=3;故答案为:3;(2)设这个数为x,(3x﹣6)÷3+7=73;解得:x=68,故答案为:68;(3)设观众想的数为a.3a−6+7=a+5.3因此,魔术师只要将最终结果减去5,就能得到观众想的数了.【点评】此题主要考查了有理数的运算,以及运算步骤的规律性,题目比较新颖.22.(2020秋•建邺区期末)如图,已知DB=2,AC=10,点D为线段AC的中点,求线段BC的长度.【考点】两点间的距离.【专题】线段、角、相交线与平行线;推理能力.【分析】根据线段中点的性质推出DC=AD=12AC=12×10=5,再结合图形根据线段之间的和差关系进行求解即可.【解答】解:∵AC=10,点D为线段AC的中点,∴DC=AD=12AC=12×10=5,∴BC=DC﹣DB=5﹣2=3,故BC的长度为3.【点评】本题考查两点间的距离,解题的关键是根据线段中点的性质推出DC=AD=12AC,注意数形结合思想方法的运用.23.(2020秋•鼓楼区期末)已知:如图,O是直线AB 上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整;证明:∵O是直线AB上一点,∴∠AOB=180°.∵∠COD与∠COE互余,∴∠COD+∠COE=90°.∴∠AOD+∠BOE=90°.∵OD是∠AOC的平分线,∴∠AOD=∠COD(理由:角平分线的定义).∴∠BOE=∠COE(理由:等角的余角相等).∵∠AOE+∠BOE=180°.∴∠AOE+∠COE=180°.∴∠AOE与∠COE互补.【考点】角平分线的定义;余角和补角.【专题】线段、角、相交线与平行线;推理能力.【分析】根据证明过程可得答案.【解答】证明:∵O是直线AB上一点,∴∠AOB=180°.∵∠COD与∠COE互余,∴∠COD+∠COE=90°.∴∠AOD+∠BOE=90°.∵OD是∠AOC的平分线,∴∠AOD=∠COD(理由:角平分线的定义).∴∠BOE=∠COE(理由:等角的余角相等).∵∠AOE+∠BOE=180°.∴∠AOE+∠COE=180°.∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等角的余角相等,180.【点评】本题考查推理证明的书写、互补(互余)及角平分线等知识,培养思维的严密性,题目较容易.24.(2020秋•鼓楼区期末)2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分,前四名队伍积分榜部分信息如表所示.(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中;(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表格,求巴西队胜场的场数.名次球队场次胜场负场总积分1中国11110322美国11101283俄罗斯1183234巴西1121【考点】一元一次方程的应用;推理与论证.【专题】一次方程(组)及应用;应用意识.【分析】(1)依据中国队11场胜场中只有一场以3﹣2取胜,即可得到中国队的总积分.(2)设巴西队积3分取胜的场数为x场,依据巴西队总积分为21分,即可得到方程,进而得出x的值.【解答】解:(1)中国队的总积分=3×10+2=32,填表如下:名次球队场次胜场负场总积分1中国11110322美国11101283俄罗斯1183234巴西1121故答案为:32;(2)设巴西队积3分取胜的场数为x场,则积2分取胜的场数为(x﹣5)场,依题意可列方程3x+2(x﹣5)+1=21,3x+2x﹣10+1=21,5x=30,x=6,则积2分取胜的场数为x﹣5=1,所以取胜的场数为6+1=7.答:巴西队取胜的场数为7场.【点评】本题主要考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答.25.(2019秋•溧水区期末)小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天 12 x12x 明天10.8x−2410.8x ﹣24【考点】一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】根据题意找出等量关系,列出方程即可求出答案. 【解答】解:表格由左至右,由上至下分别为:x 12,10.8,x−2410.8,x ﹣24,由题意可知:x−2410.8−x 12=1,解得:x =348,∴今天需要买纸杯蛋糕的数量为348÷12=29, 答:小明今天计划买29个纸杯蛋糕, 故答案为:x 12,10.8,x−2410.8,x ﹣24,【点评】本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.26.(2019秋•溧水区期末)如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为﹣10.点B 表示的数为6,点C 为线段AB 的中点. (1)数轴上点C 表示的数是 ﹣2 ;(2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为:t (t >0)秒.①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(是把一条线段平均分成三等分的点).(直接写出结果)【考点】数轴;一元一次方程的应用.【专题】分类讨论;一次方程(组)及应用.【分析】(1)计算AB 长度,再计算BC 可确定C 表示数字; (2)用t 表示OP ,OQ ,根据OP =OQ 列方程求解; (3)分别以P 、Q 、C 为三等分点,分类讨论.【解答】解:(1)因为点A表示的数为﹣10.点B表示的数为6,所以AB=6﹣(﹣10)=16.因为点C是AB的中点,所以AC=BC=12AB=8所以点C表示的数为﹣10+8=﹣2故答案为:﹣2;(2)①设t秒后点O恰好是PQ的中点.由题意,得10﹣2t=6﹣t解得,t=4;即4秒时,点O恰好是PQ的中点.②当点C为PQ的三等分点时PC=2QC或QC=2PC,∵PC=8﹣2t,QC=8﹣t,所以8﹣2t=2(8﹣t)或8﹣t=2(8﹣2t)解得t=8 3;当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC ∵PC=2t﹣8,PQ=16﹣3t∴2t﹣8=2(16﹣3t)或16﹣3t=2(2t﹣8)解得t=5或t=32 7;当点Q为CP的三等分点时PQ=2CQ或QC=2PQ ∵PQ=3t﹣16,QC=8﹣t∴3t﹣16=2(8﹣t)或8﹣t=2(3t﹣16)解得t=325或t=407.综上,t=83,5,327,325,407秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点.【点评】本题考查一元一次方程应用,分类讨论是解答的关键.考点卡片1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.2.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.3.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.4.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此。

2021-2022学年七年级上学期期末考试数学试卷附答案解析 (6)

2021-2022学年七年级上学期期末考试数学试卷附答案解析 (6)

2021-2022学年七年级上学期期末考试数学试卷一.选择题(共10小题,每小题3分,满分30分)1.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作( ) A .256B .﹣957C .﹣256D .4452.壮丽七十载,奋进新时代.2019年10月1日上午庆祝中华人民共和国成立70周年大会在北京天安门广场隆重举行,超20万军民以盛大的阅兵仪式和群众游行欢庆共和国70华诞,其中20万用科学记数法表示为( ) A .20×104B .2×105C .2×104D .0.2×1063.下列运算正确的是( ) A .﹣5+3=8 B .(﹣3 )2=﹣9 C .﹣|﹣2|=2D .(﹣1)2013×1=﹣14.如图所示的是一个正方体的展开图,这个正方体可能是( )A .B .C .D .5.数轴上,点A 、B 分别表示﹣1、7,则线段AB 的中点C 表示的数是( ) A .2B .3C .4D .56.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( ) A .∠1=∠3B .∠1=180°﹣∠3C .∠1=90°+∠3D .以上都不对7.当x +y =3时,5﹣x ﹣y 等于( ) A .6B .4C .2D .38.一列火车正在匀速行驶,它先用20秒的时间通过了一条长为160米的隧道(即从车头进入入口到车尾离开出口),又用15秒的时间通过了一条长为80米的隧道,求这列火车的长度.设这列火车的长度为x 米,根据题意可列方程为( ) A .160+2x 20=80+2x 15 B .160+x 20=80+x 15 C .160−2x20=80−2x 15D .160−x 20=80−x159.已知点O 在线段A 、B 上,则在等式①AO =OB ;②OB =12AB ;③AB =2OB ;④AO +OB =AB 中,一定能判定点O 是线段AB 中点的有( ) A .1个B .2个C .3个D .4个10.下列说法不正确的是( ) A .直线BA 与直线AB 是同一条直线 B .延长线段AB 和延长线段BA 的含义不一样 C .经过两点可以画一条直线,并且只能画一条直线 D .射线BA 与射线AB 是同一条射线二.填空题(共7小题,满分28分,每小题4分) 11.(4分)计算:|13−1|= .12.(4分)若关于x 的方程(n ﹣1)x |n |+1=3是一元一次方程,则n 的值是 . 13.(4分)已知单项式﹣3a m +5b 3与16a 2b n−1是同类项,则m n = .14.(4分)已知|3m ﹣12|+(n2+1)2=0,则2m ﹣n = .15.(4分)如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为O .若∠AOE =55°,则∠BOD 的度数为 .16.(4分)2019年义乌客运站行车时刻表如图,假设客车运行全程保持匀速行驶,则当快车出发 小时后,两车相距25km .义乌﹣上海 出发时间 到站时间 里程(km )普通车 7:00 11:00 300 快车7:3010:3030017.(4分)当a = 时,方程ax−13+x+a 2=1解是x =1?三.解答题(共3小题,满分18分,每小题6分)18.(6分)计算:(1)6.14+(﹣234)﹣(﹣5.86)﹣(+14)(2)24÷(32−43)﹣62122×22(3)(﹣1)2020+[18×(−47)+24×(−47)]﹣36×(29−34+1112)﹣02019(4)(−13)2018×32021+(﹣2)3÷2.5×|﹣3−34| 19.(6分)解方程:(1)3x ﹣2(x ﹣1)=2﹣3(5﹣2x ). (2)x−33=x −3x−16.20.(6分)如图,已知线段AB =60,点C 、D 分别是线段AB 上的两点,且满足AC :CD :DB =3:4:5,点K 是线段CD 的中点,求线段AK 的长.四.解答题(共3小题,满分24分,每小题8分) 21.(8分)A 、B 、C 、D 四个车站的位置如图所示.求:(1)A 、D 两站的距离; (2)C 、D 两站的距离;(3)若a =3,C 为AD 的中点,求b 的值.22.(8分)某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如图所示,其中阴影部分为内部粘贴角料.(单位:毫米)(1)此长方体包装盒的体积为 立方毫米;(用含x 、y 的式子表示)(2)此长方体的表面积(不含内部粘贴角料)为 平方毫米;(用含x 、y 的式子表示)(3)若内部粘贴角料的面积占长方体表面纸板面积的15,求当x =40毫米,y =70毫米时,制作这样一个长方体共需要纸板多少平方毫米.23.(8分)问题一:如图①,已知AC=160km,甲,乙两人分别从相距30km的A,B两地同时出发到C地.若甲的速度为80km/h,乙的速度为60km/h,设乙行驶时间为x(h),两车之间距离为y(km)(1)当甲追上乙时,x=.(2)请用x的代数式表示y.问题二:如图②,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动km,时针OE指向圆周上的点的速度为每分钟转动°;(2)若从2:00起计时,求几分钟后分针与时针第一次重合?五.解答题(共2小题,满分20分,每小题10分)24.(10分)(1)将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,∠AOB=∠DOC=90°.①如图(1),若OD是∠AOB的平分线时,求∠BOD和∠AOC的度数.②如图(2),若OD不是∠AOB的平分线,试猜想∠AOC与∠BOD的数量关系,并说明理由.(2)如图(3),如果两个角∠AOB=∠DOC=m°(0<m<90),直接写出∠AOC与∠BOD的数量关系.25.(10分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为32,OC边长为4,长方形OABC可沿数轴水平移动,长方形移动的速度为1个单位长度每秒,移动后的长方形记为O′A′E′C′.(1)长方形没开始运动时,数轴上点A表示的数为;(2)设长方形移动的时间为t秒,D为线段AA′的中点,点E在线段OO′上,且OE= 13OO′,当点D,E所表示的数互为相反数时求t的值;(3)有一动点F同时从O点出发,沿着长方形的边运动(O→C→B→A),点F在长方形上的运动速度为2个单位长度每秒,设t秒后,若△O′F A′的面积等于S,此时长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积也为S,求t的值.2021-2022学年七年级上学期期末考试数学试卷答案解析一.选择题(共10小题,每小题3分,满分30分)1.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前256年,可记作()A.256B.﹣957C.﹣256D.445【解答】解:公元701年用+701年表示,则公年前用负数表示;则公年前256年表示为﹣256年.故选:C.2.壮丽七十载,奋进新时代.2019年10月1日上午庆祝中华人民共和国成立70周年大会在北京天安门广场隆重举行,超20万军民以盛大的阅兵仪式和群众游行欢庆共和国70华诞,其中20万用科学记数法表示为()A.20×104B.2×105C.2×104D.0.2×106【解答】解:20万=200000=2×105.故选:B.3.下列运算正确的是()A.﹣5+3=8B.(﹣3 )2=﹣9C.﹣|﹣2|=2D.(﹣1)2013×1=﹣1【解答】解:∵﹣5+3=﹣2,故选项A错误;∵(﹣3 )2=9,故选项B错误;∵﹣|﹣2|=﹣2,故选项C错误;∵(﹣1)2013×1=﹣1×1=﹣1,故选项D正确;故选:D.4.如图所示的是一个正方体的展开图,这个正方体可能是()A.B.C.D.【解答】解:把展开图折叠后,可知选项A中字母C所在的面应在左边,选项B中字母C所在的面也应在左边,选项D中字母A所在的面与字母E所在的面应相对,不相邻,所以这个正方体是C . 故选:C .5.数轴上,点A 、B 分别表示﹣1、7,则线段AB 的中点C 表示的数是( ) A .2B .3C .4D .5【解答】解:线段AB 的中点C 表示的数为:−1+72=3,故选:B .6.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( ) A .∠1=∠3B .∠1=180°﹣∠3C .∠1=90°+∠3D .以上都不对【解答】解:∵∠1+∠2=180° ∴∠1=180°﹣∠2 又∵∠2+∠3=90° ∴∠3=90°﹣∠2∴∠1﹣∠3=90°,即∠1=90°+∠3. 故选:C .7.当x +y =3时,5﹣x ﹣y 等于( ) A .6B .4C .2D .3【解答】解:当x +y =3时,5﹣x ﹣y =5﹣(x +y )=5﹣3=2, 故选:C .8.一列火车正在匀速行驶,它先用20秒的时间通过了一条长为160米的隧道(即从车头进入入口到车尾离开出口),又用15秒的时间通过了一条长为80米的隧道,求这列火车的长度.设这列火车的长度为x 米,根据题意可列方程为( ) A .160+2x 20=80+2x 15 B .160+x 20=80+x 15 C .160−2x20=80−2x 15D .160−x 20=80−x15【解答】解:设这列火车的长度为x 米, 依题意,得:160+x 20=80+x 15.故选:B .9.已知点O 在线段A 、B 上,则在等式①AO =OB ;②OB =12AB ;③AB =2OB ;④AO +OB =AB 中,一定能判定点O 是线段AB 中点的有( )A .1个B .2个C .3个D .4个【解答】解:∵点O 在线段AB 上, ∵AO =OB ,∴点O 是线段AB 的中点; ∵OB =12AB ,∴点O 是线段AB 的中点; ∵AB =2OB ,∴点O 是线段AB 的中点; 故选:C .10.下列说法不正确的是( ) A .直线BA 与直线AB 是同一条直线 B .延长线段AB 和延长线段BA 的含义不一样 C .经过两点可以画一条直线,并且只能画一条直线 D .射线BA 与射线AB 是同一条射线【解答】解:A 、直线BA 与直线AB 是同一条直线,此选项不符合题意; B 、延长线段AB 和延长线段BA 的含义不一样,故此选项不符合题意; C 、经过两点可以画一条直线,并且只能画一条直线,故此选项不符合题意;D 、射线用两个大写字母表示时,端点字母写在第一个位置,所以射线AB 和射线BA 不是同一条射线,此选项符合题意. 故选:D .二.填空题(共7小题,满分28分,每小题4分) 11.(4分)计算:|13−1|=23.【解答】解:|13−1|=|−23|=23. 故答案为:23.12.(4分)若关于x 的方程(n ﹣1)x |n |+1=3是一元一次方程,则n 的值是 ﹣1 . 【解答】解:根据题意,知 {n −1≠0|n|=1, 解得n =﹣1;故答案为:﹣1.13.(4分)已知单项式﹣3a m +5b 3与16a 2b n−1是同类项,则m n = 81 .【解答】解:∵﹣3am +5b 3与16a 2b n ﹣1是同类项,∴m +5=2,n ﹣1=3, ∴m =﹣3,n =4, ∴m n =(﹣3)4=81. 故答案为:81.14.(4分)已知|3m ﹣12|+(n2+1)2=0,则2m ﹣n = 10 . 【解答】解:∵|3m ﹣12|+(n 2+1)2=0, ∴|3m ﹣12|=0,(n2+1)2=0,∴m =4,n =﹣2,∴2m ﹣n =8﹣(﹣2)=10, 故答案为10.15.(4分)如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为O .若∠AOE =55°,则∠BOD 的度数为 145° .【解答】解:∵EO ⊥CD , ∴∠EOC =90°, ∵∠AOE =55°, ∴∠AOC =145°, ∴∠BOD =145°. 故答案为:145°.16.(4分)2019年义乌客运站行车时刻表如图,假设客车运行全程保持匀速行驶,则当快车出发 0.5或2.5或196小时后,两车相距25km .义乌﹣上海 出发时间 到站时间 里程(km )普通车 7:00 11:00 300 快车7:3010:30300【解答】解:设当快车出发x 小时后,两车相距25km . ①慢车在前,快车在后,3004(x +12)−3003x =25, 解得x =0.5.②快车在前,慢车在后, 依题意得:3003x −3004(x +,12)=25, 解得x =2.5. 或3004(x +12)=300﹣25,解得x =196. 综上所述,当快车出发0.5或2.5或196小时后,两车相距25km .故答案是:0.5或2.5或196.17.(4分)当a = 1 时,方程ax−13+x+a 2=1解是x =1?【解答】解:把x =1代入原方程,得a−13+1+a 2=1,去分母,得:2(a ﹣1)+3(1+a )=6, 去括号,得:2a ﹣2+3+3a =6, 移项、合并同类项,得:5a =5, 系数化为1,得:a =1, 故答案为:1.三.解答题(共3小题,满分18分,每小题6分) 18.(6分)计算:(1)6.14+(﹣234)﹣(﹣5.86)﹣(+14)(2)24÷(32−43)﹣62122×22(3)(﹣1)2020+[18×(−47)+24×(−47)]﹣36×(29−34+1112)﹣02019(4)(−13)2018×32021+(﹣2)3÷2.5×|﹣3−34| 【解答】解:(1)6.14+(﹣234)﹣(﹣5.86)﹣(+14)=6.14+(﹣234)+5.86+(−14)=9;(2)24÷(32−43)﹣62122×22=24÷(96−86)﹣(6+2122)×22 =24÷16−132﹣21 =24×6﹣132﹣21 =144﹣132﹣21 =﹣9;(3)(﹣1)2020+[18×(−47)+24×(−47)]﹣36×(29−34+1112)﹣02019=1+[(18+24)×(−47)]﹣(8﹣27+39)﹣0 =1+42×(−47)﹣20 =1+(﹣24)﹣20 =﹣43;(4)(−13)2018×32021+(﹣2)3÷2.5×|﹣3−34| =(13)2018×32021+(﹣8)÷52×334=(13×3)2018×33+(﹣8)×25×154=1×27+(﹣12) =27+(﹣12) =15.19.(6分)解方程:(1)3x ﹣2(x ﹣1)=2﹣3(5﹣2x ). (2)x−33=x −3x−16.【解答】(1)解:去括号,得 3x ﹣2x +2=2﹣15+6x , 移项,得 3x ﹣2x ﹣6x =2﹣15﹣2, 合并同类项,得﹣5x =﹣15, 系数化1,得x =3;(2)解:去分母,得 2(x ﹣3)=6x ﹣(3x ﹣1), 去括号,得 2x ﹣6=6x ﹣3x +1, 移项,得 2x ﹣6x +3x =1+6, 合并同类项,得﹣x =7, 系数化1,得x =﹣7.20.(6分)如图,已知线段AB =60,点C 、D 分别是线段AB 上的两点,且满足AC :CD :DB =3:4:5,点K 是线段CD 的中点,求线段AK 的长.【解答】解:设AC =3x ,则CD =4x ,DB =5x , ∵AB =AC +CD +DB =60 ∴AB =3x +4x +5x =60. ∴x =5.∵点K 是线段CD 的中点. ∴KC =12CD =10. ∴AK =KC +AC =25.四.解答题(共3小题,满分24分,每小题8分) 21.(8分)A 、B 、C 、D 四个车站的位置如图所示.求:(1)A 、D 两站的距离; (2)C 、D 两站的距离;(3)若a =3,C 为AD 的中点,求b 的值.【解答】解:(1)a+b+3a+2b=4a+3b.故A、D两站的距离是4a+3b;(2)3a+2b﹣(2a﹣b)=3a+2b﹣2a+b=a+3b.故C、D两站的距离是a+3b;(3)依题意有a+b+2a﹣b=a+3b,则3+b+6﹣b=3+3b,解得b=2.故b的值是2.22.(8分)某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如图所示,其中阴影部分为内部粘贴角料.(单位:毫米)(1)此长方体包装盒的体积为65xy立方毫米;(用含x、y的式子表示)(2)此长方体的表面积(不含内部粘贴角料)为2(xy+65y+65x)平方毫米;(用含x、y的式子表示)(3)若内部粘贴角料的面积占长方体表面纸板面积的15,求当x=40毫米,y=70毫米时,制作这样一个长方体共需要纸板多少平方毫米.【解答】解:(1)由题意,知该长方体的长为y毫米,宽为x毫米,高为65毫米,则长方体包装盒的体积为:65xy立方毫米.故答案为65xy;(2)长方体的表面积(不含内部粘贴角料)为:2(xy+65y+65x)立方毫米;故答案为:2(xy+65y+65x);(3)∵长方体的长为y 毫米,宽为x 毫米,高为65毫米, ∴长方体的表面积=2(xy +65y +65x )平方毫米, 又∵内部粘贴角料的面积占长方体表面纸板面积的15,∴制作这样一个长方体共需要纸板的面积=(1+15)×2(xy +65y +65x )=125(xy +65y +65x )=125xy +156y +156x (平方毫米), ∵x =40,y =70,∴制作这样一个长方体共需要纸板125×40×70+156×70+156×40=23880平方毫米.23.(8分)问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ) (1)当甲追上乙时,x = 1.5h . (2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(1)分针OD 指向圆周上的点的速度为每分钟转动 6 km ,时针OE 指向圆周上的点的速度为每分钟转动 0.5 °;(2)若从2:00起计时,求几分钟后分针与时针第一次重合?【解答】解:问题一:(1)根据题意得:(80﹣60)x =30, 解得:x =1.5. 故答案为:1.5h .(2)当0≤x ≤1.5时,y =30﹣(80﹣60)x =﹣20x +30; 当1.5<x ≤2时,y =80x ﹣(60x +30)=20x ﹣30;当2<x ≤136时,y =160﹣60x ﹣30=﹣60x +130. ∴两车之间的距离y ={−20x +30(0≤x ≤1.5)20x −30(1.5<x ≤2)−60x +130(2<x ≤136).问题二:(1)30÷5=6(km ), 30÷60=0.5(km ). 故答案为:6;0.5.(2)设经历t 分钟后分针和时针第一次重合, 根据题意得:6t ﹣0.5t =30×2, 解得:t =12011. 答:从2:00起计时,12011分钟后分针与时针第一次重合.五.解答题(共2小题,满分20分,每小题10分)24.(10分)(1)将一副三角板中的两块直角三角尺的直角顶点O 按如图方式叠放在一起,∠AOB =∠DOC =90°.①如图(1),若OD 是∠AOB 的平分线时,求∠BOD 和∠AOC 的度数.②如图(2),若OD 不是∠AOB 的平分线,试猜想∠AOC 与∠BOD 的数量关系,并说明理由.(2)如图(3),如果两个角∠AOB =∠DOC =m °(0<m <90),直接写出∠AOC 与∠BOD 的数量关系.【解答】解:(1)①∵∠AOB =90°,OD 平分∠AOB , ∴∠BOD =12∠AOB =45°, ∴∠DOC =90°,∠BOD =45°,∴∠BOC =∠DOC ﹣∠BOD =90°﹣45°=45°,∵∠AOC=∠AOB+∠BOC,∴∠AOC=90°+45°=135°;②数量关系:∠AOC+∠BOD=180°;理由:∵∠BOC=∠DOC﹣∠BOD=90°﹣∠BOD,∠AOC=∠AOB+∠BOC,∴∠AOC=90°+90°﹣∠BOD∴∠AOC+∠BOD=180°;(2)∠AOC+∠BOD=2 m°,∵∠AOC+∠BOD=∠AOD+∠DOB+∠BOC+∠BOD=∠AOB+∠COD=m°+m°=2m°.25.(10分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为32,OC边长为4,长方形OABC可沿数轴水平移动,长方形移动的速度为1个单位长度每秒,移动后的长方形记为O′A′E′C′.(1)长方形没开始运动时,数轴上点A表示的数为8;(2)设长方形移动的时间为t秒,D为线段AA′的中点,点E在线段OO′上,且OE= 13OO′,当点D,E所表示的数互为相反数时求t的值;(3)有一动点F同时从O点出发,沿着长方形的边运动(O→C→B→A),点F在长方形上的运动速度为2个单位长度每秒,设t秒后,若△O′F A′的面积等于S,此时长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积也为S,求t的值.【解答】解:(1)∵S长方形=OA•OC=32,OC=4∴OA=32÷4=8,即点A表示的数是8故答案为:8(2)①若长方形向右移动,则点D、点E均在原点右侧,故点D、点E表示的都为正数,不可能互为相反数.②若长方形向左移动,则点E在原点左侧,点D在原点右侧∵移动速度为每秒1个单位,时间为t秒∴OO'=AA'=t∴OE=13OO'=13t即点E表示的数为−13t∵点D是AA'的中点∴AD=12AA'=12t∴OD=OA﹣AD=8−12t即点D表示的数为8−12t∵点D,E所表示的数互为相反数∴−13t+8−12t=0解得:t=48 5(3)∵O'A=OA﹣OO'=8﹣t∴S阴影部分=O'A•O'C'=4(8﹣t)=32﹣4t①当点F在OC上时(如图2),则OF=2t,∴0<2t≤4 即0<t≤2∴S△O'F A'=12O′A′⋅OF=12×8×2t=8t∴32﹣4t=8t解得:t=83不合题意,舍去②当点F在CB上时(如图3),∴4<2t≤12 即2<t≤6∴S△O'F A'=12O'A'•OC=12×8×4=16∴32﹣4t=16解得:t=4③当点F在BA上时(如图4),则AF=4+8+4﹣2t=16﹣2t ∴12<2t≤16 即6<t≤8∴S△O'F A'=12O'A'•AF=12×8×(16﹣2t)=64﹣8t∴32﹣4t=64﹣8t解得:t=8此时,点O'与点A重合,两长方形没有重叠面积,故舍去综上所述,t=4时,△O′F A′的面积等于阴影部分面积。

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。

2020-2021学年七年级上学期期末考试数学试题(附答案)

2020-2021学年七年级上学期期末考试数学试题(附答案)

2020-2021学年七年级上学期期末考试数学试题一.选择题1.2020的相反数是()A.2020B.﹣2020C.D.﹣2.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105 4.单项式﹣32xy2z3的次数和系数分别为()A.6,﹣3B.6,﹣9C.5,9D.7,﹣95.若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0 6.按如图所示的运算程序,能使输出的结果为10的是()A.x=3,y=﹣2B.x=﹣3,y=2C.x=2,y=3D.x=3,y=﹣3 7.关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,则m的值为()A.0B.2C.﹣D.﹣28.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm9.已知代数式a+2b的值是5,则代数式2a+4b+1的值是()A.5B.10C.11D.不能确定10.仔细观察,探索规律:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…则22020+22019+22018+…+2+1的个位数字是()A.1B.3C.5D.7二.填空题11.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2019=.12.已知a,b为有理数,且|a+1|+|2013﹣b|=0,则a b=.13.已知A,B,C三点在同一条直线上,AB=8,BC=6,M,N分别是AB、BC的中点,则线段MN的长是.14.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD =度.15.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=(直接写出答案).16.如果m﹣n=5,那么﹣3m+3n﹣7的值是.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+2020n+c2021的值为.18.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是元.三.解答题(共19小题)19.计算:(1)12﹣(﹣8)+(﹣7)﹣15;(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|.20.先化简,再求值:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)的值,其中x=1,y=﹣2.21.解方程:(1)4﹣4(x﹣3)=2(9﹣x)(2).22.如图,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.24.已知代数式A=3x2﹣x+1,马小虎同学在做整式加减运算时,误将“A﹣B”看成“A+B”了,计算的结果是2x2﹣3x﹣2.(1)请你帮马小虎同学求出正确的结果;(2)x是最大的负整数,将x代入(1)问的结果求值.25.我校九年级163班所有学生参加体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级163班参加体育测试的学生共有多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求出等级C对应的圆心角的度数;(4)若规定达到A、B级为优秀,我校九年级共有学生850人,估计参加体育测试达到优秀标准的学生有多少人?26.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.27.观察下表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行﹣24﹣8a﹣3264…第2行06﹣618﹣3066…第3行﹣12﹣48﹣16b…(1)第1行的第四个数a是;第3行的第六个数b是;(2)若第1行的某一列的数为c,则第2行与它同一列的数为;(3)已知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.28.如图在数轴上有A,B两点,点A表示的数为﹣10,点O表示的数为0,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O 向右运动(点M,点N同时出发).(1)数轴上点B表示的数是.(2)经过几秒,点M,N到原点的距离相等?(3)点N在点B左侧运动的情况下,当点M运动到什么位置时恰好使AM=2BN?参考答案一.选择题1.【解答】解:2020的相反数是:﹣2020.故选:B.2.【解答】解:A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选:B.3.【解答】解:47.24亿=4724 000 000=4.724×109.故选:B.4.【解答】解:该单项式的次数为6,系数为﹣9,故选:B.5.【解答】解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.6.【解答】解:由题意得:x2+|2y|=10,当x=2,y=3满足x2+|2y|=10,故选:C.7.【解答】解:由3y﹣3=2y﹣1,得y=2.由关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,得2m+2=m,解得m=﹣2.故选:D.8.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN =BM﹣BN=5﹣2=3cm.故选:C.9.【解答】解:给a+2b=5两边同时乘以2,可得2a+4b=10,则2a+4b+1=10+1=11.故选:C.10.【解答】解:利用题中的式子得(x﹣1)(x2020+x2019+x2018+…+x+1)=x2021﹣1;当x=2时,22020+22019+22018+…+2+1=22021﹣1;∵21=2,22=4,23=8,24=16,25=32,而2021=505×4+1,∴22021的个位数字为2,∴22021﹣1的个位数字为1,即22020+22019+22018+…+2+1的个位数字是1.故选:A.二.填空题11.【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,故(a﹣b)2019=(3﹣2)2019=1.故答案为:1.12.【解答】解:|a+1|+|2013﹣b|=0,∴a+1=0,2013﹣b=0,a=﹣1,b=2013,∴a b=(﹣1)2013=﹣1,故答案为:﹣1.13.【解答】解:由AB=8,BC=6,M、N分别为AB、BC中点,得MB=AB=4,NB=BC=3.①C在线段AB的延长线上,MN=MB+NB=4+3=7;②C在线段AB上,MN=MB﹣NB=4﹣3=1;③C在线段AB的反延长线上,AB>BC,不成立,综上所述:线段MN的长7或1.故答案为7或1.14.【解答】解:∵点A、O、B在一条直线上,∠AOC=130°,∴∠COB=180°﹣130°=50°,∵OD是∠BOC的平分线,∴∠COD=∠BOC=25°.故答案为:25.15.【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故答案为:﹣816.【解答】解:当m﹣n=5时,﹣3m+3n﹣7=﹣3(m﹣n)﹣7=﹣3×5﹣7=﹣15﹣7=﹣22.故答案为:﹣22.17.【解答】解:∵m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,∴m=﹣1,n=0,c=1,∴m2019+2020n+c2021的=(﹣1)2019+2020×0+12021=﹣1+0+1=0故答案为:0.18.【解答】解:设该玩具的进价为x元.根据题意得:100×80%﹣x=25%x.解得:x=64.故答案是:64.三.解答题19.【解答】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=720.【解答】解:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)=5y2﹣x2+6x2﹣9xy﹣5x2﹣5y2=(5y2﹣5y2)+(﹣x2+6x2﹣5x2)﹣9xy=0+0﹣9xy=﹣9xy,∵x=1,y=﹣2,∴原式=﹣9×1×(﹣2)=18.21.【解答】解:(1)4﹣4x+12=18﹣2x,﹣4x+2x=18﹣4﹣12,﹣2x=2,x=﹣1.(2)2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,4x﹣5x=6﹣2﹣1﹣x=3,x=﹣3.22.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+BC=6cm.∵D是AC的中点,∴AD=AC=3cm.∴BD=AD﹣AB=1cm.23.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD =∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC =2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.24.【解答】解:(1)根据题意知B=2x2﹣3x﹣2﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3,则A﹣B=(3x2﹣x+1)﹣(﹣x2﹣2x﹣3)=3x2﹣x+1+x2+2x+3=4x2+x+4;(2)∵x是最大的负整数,∴x=﹣1,则原式=4×(﹣1)2﹣1+4=4﹣1+4=7.25.【解答】解:(1)九年级163班参加体育测试的学生共有15÷30%=50(人);(2)D等级的人数为:50×10%=5(人),C等级人数为:50﹣15﹣20﹣5=10(人);补全统计图如下:(3)等级C对应的圆心角的度数为:×360°=72°;(4)估计达到A级和B级的学生共有:×850=595(人).26.【解答】解:设每人加工x个零件,﹣=1解得:x=100答:甲加工了100个,乙加工了100个.27.【解答】解:(1)第1行的第四个数a是﹣8×(﹣2)=16;第3行的第六个数b是64÷2=32;故答案为:16;32.(2)若第1行的某一列的数为c,则第2行与它同一列的数为c+2.故答案为:c+2.(3)解:根据题意,这三个数依次为x,x+2,x得,x+x+2+x=2562,解得:x=1024.28.【解答】解:(1)故答案为:30;(2)设经过x秒,点M,N到原点的距离相等,分两种情况:①当点M,N在原点两侧时,根据题意列方程:得:10﹣3x=2x,解得:x=2②当点M,N重合时,根据题意列方程,得:3x﹣10=2x,解得:x=10所以,经过2秒或10秒,点M,N到原点的距离相等;(3)设经过y秒,恰好使AM=2BN根据题意得:3y=2(30﹣2y)解得:.又所以当点M运动到数轴上表示的点的位置时,AM=2BN。

南京市南外仙林2020-2021学年第一学期期末考试七年级语文试卷(含答案)

南京市南外仙林2020-2021学年第一学期期末考试七年级语文试卷(含答案)

南外仙林2020 年七上语文期末试卷+答案一、(30 分)1. 请临写下面的楷书,努力做到整洁、端正、美观。

(3 分)少年正是读书时2.请给加点的字注音,根据拼音写出汉字。

(6 分)热忱.()干涸.()参.差不齐()狭aì()xuàn()耀péng()勃3.用课文原句填空。

(8 分)(1),我言秋日胜春朝。

(刘禹锡《秋词(其一)》)(2)何当共剪西窗烛,。

(李商隐《夜雨寄北》)(3),铁马冰河入梦来。

(陆游《十一月四日风雨大作》)(4),山入潼关不解平。

(谭嗣同《潼关》)(5)不信,请看那朵流星,。

(郭沫若《天上的街市》)(6)中国人取名常从古诗文中汲取灵感,请仿照示例解释下面名字。

示例:苏有朋——有朋自远方来,不亦乐乎?(《论语》)陈省身——(《论语》)杨致远——(诸葛亮《诫子书》)高悬帆——(王湾《次北固山下》)进入初中,校文学社开展了各种活动,你和文学社成员小琪、小夏参与完成了下面几项任务。

4.文学社开展了“集对联名句,猜作者作品”知识竞赛。

小琪找到了一些对联,你认为下列作家、作品与对联的对应完全正确的一项是()(3分)(1)万世文章祖,历代帝王师(2)横眉冷对千夫指,俯首甘为孺子牛(3)鬼狐有性格,笑骂成文章(4)开家教训导之先声,为处世治国之根本A.(1)诸葛亮(2)鲁迅(3)《世说新语》(4)《诫子书》B.(1)诸葛亮(2)朱自清(3)《聊斋志异》(4)《论语》C.(1)孔子(2)朱自清(3)《世说新语》(4)《论语》D.(1)孔子(2)鲁迅(3)《聊斋志异》(4)《诫子书》征稿启事 本期“读者荐书”征稿主题是“阅读丰富生活”,请大家踊跃投稿。

要求:(1)写清推荐的书名及作者; (2)围绕本次征稿主题,用 100 字左右简要介绍书籍内容及推荐理由。

5.小夏读书的时候发现作家们常用贬词褒用或褒词贬用的写法,大家也想学习运用。

请你仿照示例从下面四个备选词语中任.选.一.个.造句。

2020-2021学年七年级上学期期末数学试卷(附答案解析)

2020-2021学年七年级上学期期末数学试卷(附答案解析)

2020-2021学年七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.a(a≠0)的相反数是()D. |a|A. aB. −aC. 1a2.若|a|=a,则表示a的点在数轴上的位置是()A. 原点的左边B. 原点或原点的左边C. 原点或原点右边D. 原点3.下列两个单项式中,是同类项的一组是()A. 4x2y与4y2xB. 2m与2nC. 3xy2与(3xy)2D. 3与−154.每年的6月14日,是世界献血日,据统计,某市义务献血达421000人,421000这个数用科学记数法表示为()A. 4.21×105B. 42.1×104C. 4.21×10−5D. 0.421×1065.如图,已知三点A,B,C画直线AB,画射线AC,连接BC,按照上述语句画图正确的是()A. B. C. D.6.若关于x的方程mx m−2−m+3=0是一元一次方程,则m的值为()A. m=1B. m=2C. m=3D. m=47.下列说法正确的是()A. 如果AC=CB,能说点C是线段AB的中点B. 将一根细木条固定在墙上,至少需要两个钉子,其理论依据是:两点确定一条直线C. 连接两点的直线的长度,叫做两点间的距离D. 平面内3条直线至少有一个交点8.如图,由4个相同的小正方体组成的几何体,则该几何体的俯视图是()A.B.C.D.9.如图,EF//MN,AC,BD交于点O,且分别平分∠FAB,∠ABN,图中与∠1互余的角有()A. 1个B. 2个C. 3个D. 4个10.某美术兴趣小组有x人,计划完成y个剪纸作品,若每人做5个,则可比计划多9个;若每人做4个,则将比计划少做15个,现有下列方程:①5x+9=4x−15;②y−95=y+154;③y+95=y−154;④5x−9=4x+15.其中正确的是()A. ①②B. ②④C. ②③D. ③④二、填空题(本大题共5小题,共15.0分)11.如图是一个数值转换机的示意图,若输入x的值为2,输入y的值为−2,则输出的结果为______ .12.单项式−3πxy22的系数是______ .13.由11x−9y−6=0,用x表示y,得y=______ ,y表示x,得x=______ .14.若关于x的方程是一元一次方程,则这个方程的解是____15.已知P,Q两点都在数轴上(点P在点Q的右侧),若点P所表示的数是3,并且PQ=6,则点Q所表示的数是______ .三、解答题(本大题共6小题,共55.0分)16.化简:3x2−3+x−2x2+5.17.解方程:(1)6x−2(2x−7)=−1(2)x=1+x+1.318.已知为的三边,且满足,试判断的形状。

期末检测卷03(解析版) -2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)

期末检测卷03(解析版) -2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)

2020-2021学年七年级数学上册期末综合复习专题提优训练(北师大版)期末检测卷03一、选择题(本题共计6小题,每题3分,共计18分)1.(2020·义马市教学研究室七年级期中)某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg【答案】B2.(2020·鹿邑县基础教育研究室七年级期末)下列调查中,适合采用全面调查的是( )A .对中学生目前睡眠质量的调查B .开学初,对进入我校人员体温的测量C .对我市中学生每天阅读时间的调查D .对我市中学生在家学习网课情况的调查【答案】B3.(2020·深圳市福田区石厦学校七年级期中)下列计算中,正确的是( ).A .6410a b ab +=B .2242734x y x y x y -=C .22770a b ba -= D .2248816x x x +=【答案】C 4.(2020·西安市·陕西师大附中七年级期中)病毒无情人有情,2020年初很多最美逆行者不顾自己安危奔赴疫情前线,我们内心因他们而充满希望.小茜同学在一个正方体每个面上分别写一个汉字,组成“全力抗击疫情”.如图是该正方体的一种展开图,那么在原正方体上,与汉字“击”相对的面上所写汉字为( )A .共B .同C .疫D .情5.(2020·兴化市板桥初级中学七年级月考)如图,∠AOB =180°,OD 是∠BOC 的平分线,OE 是∠AOC 的平分线,则下列各角中与∠COD 互补的是( )A .∠COEB .∠AOC C .∠AOD D .∠BOD【答案】C6.(2020·兴化市安丰初级中学七年级月考)已知a ,b ,c ,d 为有理数,现规定一种新的运算a b ad bc c d =-,那么当()241815x x=-时,则x 的值是( ) A .1x = B .711x = C .117x = D .1x =-【答案】C二、填空题(本题共计6小题,每题3分,共计18分)7.(2020·山西运城市·七年级期中)计算:()()37---=______【答案】48.(2020·山东省青岛第五十九中学七年级期中)截止到2020年10月25,全球新冠已经突破4400万人,用科学记数法表示为__________人.【答案】74.410⨯9.(2020·重庆潼南区·七年级月考)若单项式3m a b +与522n a b +-的和仍是单项式,则m n =______.10.(2020·天津市滨海新区大港第二中学七年级期中)已知C 是线段AB 的中点,AB =10,若E 是直线AB 上的一点,且BE =3,则CE =_____【答案】2或811.(2020·杭州市保俶塔实验学校七年级月考)方程()4310x -+=的解与关于x 的方程3222x k k x +--=的解相同,则k =__________. 【答案】-112.(2020·深圳市福田区石厦学校七年级期中)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为______.【答案】364三、(本题共计5小题,每小题6分,共计30分)13.(2020·重庆潼南区·七年级月考)计算(1)342.4( 3.1)55⎛⎫--+-+ ⎪⎝⎭(2)2020211(10.5)(4)2⎛⎫-+-⨯-÷- ⎪⎝⎭ 【答案】解:(1)原式=342.4 3.10.7 1.40.755+-+=-+=;(2)原式=()2111(4)214212124⎛⎫-+⨯-⨯-=-+⨯⨯=-+= ⎪⎝⎭. 【点睛】 本题考查了有理数的混合运算,属于基础题目,熟练掌握混合运算的法则是解题的关键.14.(2020·重庆潼南区·七年级月考)解方程(1)23(1)1x x --= (2)11125x x +--= 【答案】解:(1)去括号,得2331x x -+=,移项,得2313x x -=-,合并同类项,得2x -=-,系数化为1,得2x =;(2)去分母,得()()512110x x +--=,去括号,得552210x x +-+=,移项,得521052x x -=--,合并同类项,得33x =,系数化为1,得1x =.【点睛】本题考查了一元一次方程的解法,属于基础题目,熟练掌握解一元一次方程的方法和步骤是解题的关键.15.(2020·施秉县第三中学七年级月考)先化简,再求值:()22221623212ab a ab b a ab b ⎡⎤⎛⎫-+---+- ⎪⎢⎥⎝⎭⎣⎦,其中1a =-,12b =.【答案】解:原式()22226223631ab a ab b a ab b =-+--+--()226841ab a ab b =--+--226841ab a ab b =+-++22241a ab b =-++, 把1a =-,12b =,代入原式()()2211121*********⎛⎫=--⨯-⨯+⨯+=+++= ⎪⎝⎭. 【点睛】 本题考查整式的化简求值,解题的关键是掌握整式的加减运算法则.16.(2020·邢台市开元中学七年级月考)出租车司机李师傅某天下午从停车场出发一直沿东西方向的大街进行营运,规定向东为正,向西为负,他行驶里程(单位:km )记录如下:11+,5-,3+,10+,11-,5+,15-,8-. (1)当把最后一名乘客送达目的地时,李师傅在停车场的什么位置?(2)若每千米为盈利1.5元,则这天下午他盈利多少元?【答案】(1)()()()()()()()()531111518051+++++-++-+++-+-,115310115158=-++-+--,10=-(千米), 答:李师傅最后在停车场的西边10千米处;(2)115311515810++-++++-+++-+-+,115310115158=+++++++,68=(千米),⨯=(元),则68 1.5102答:这天下午他盈利102元.【点睛】本题考查了正负数在实际生活中的应用、绝对值的应用、有理数乘法与加减法的应用,依据题意,正确列出各运算式子是解题关键.17.(2020·福建三明市·七年级期中)用棋子按规律摆出下列一组图形:(1)填写下表:(2)照这样的方式摆下去,则第n个图形中棋子的枚数是______;(3)照这样的方式摆下去,则第100个图形中棋子的枚数是______.【答案】解:(1)第1个图形棋子数:5=3⨯1+2;第2图形棋子数:8=3⨯2+2;第3图形棋子数:11=3⨯3+2;第4图形棋子数:14=3⨯4+2;第5图形棋子数:17=3⨯5+2;∴表如下:(2)由(1)知,第n 个图形中棋子的枚数是32n +.(3)当100n =时,3231002302n +=⨯+=,∴第100个图形中棋子的枚数是302.【点睛】本题考查了图形的变化规律,关键是找到规律,列出式子.四、(本题共计3小题,每小题8分,共计24分)18.(2020·靖江市靖城中学七年级月考)有理数a ,b ,c 在数轴上的位置如图所示,(1)c 0; a +c 0;b ﹣a 0 (用<、>、=填空)(2)试化简:|b ﹣a |﹣|a +c |+|c |.【答案】(1)由题意,得c <a <0<b ,则c <0; a +c <0;b −a >0;故答案为<;<;>;(2)原式=(b -a )-(-a -c )+(-c )=b −a +a +c −c =b .【点睛】本题考查了绝对值:若a >0,则|a |=a ;若a =0,则|a |=0;若a <0,则|a |=−a .也考查了数轴与整式的加减. 19.(2020·成都市武侯区领川外国语学校七年级期中)若代数式22261x ax bx x ++-+-的值与字母x 的取值无关,又2222A a ab b =-+-,2233B a ab b =-+.(1)求,a b 的值;(2)求:()()32A B A B +-+的值;(3),,A B C 三点在同一直线上,M 是线段AC 的中点,N 是线段BC 的中点,若AC a b cm =-,BC a b cm =+,求MN 的长.【答案】(1)原式()()2215b x a x =-+++,∵该代数式的值与字母x 的取值无关,∵20,10b a -=+=,解得2,1b a ==-;(2)()()32322A B A B A B A B B A +-+=+--=-,∵原式B A =-,∵222222,33A a ab b B a ab b =-+-=-+,∵原式()()22223322a ab b a ab b =-+--+-22223322a ab b a ab b =-++-+22525a ab b =-+将1,2a b =-=代入得:原式()()225121252=⨯--⨯-⨯+⨯,5420=++29=(3)将1,2a b =-=代入得:123,121AC cm BC cm =--==-+=,如图1所示:∵M 是线段AC 的中点, ∵1133222MC AC cm ==⨯=,∵N 是线段BC 的中点, ∵1111222CN CB cm ==⨯=,∵MN MC CN =+, ∵31222MN cm =+=,如图2所示:∵M 是线段AC 的中点, ∵1133222MC AC cm ==⨯=,∵N 是线段BC 的中点,∵1111222CN CB cm ==⨯=,∵MN MC CN=-,∵31122MN cm=-=,综上,MN的值为2cm或1cm.【点睛】本题考查了整式的加减-化简求值、绝对值、线段之间的数量关系、有理数的混合运算,熟练掌握运算法则和运算顺序,灵活运用数形结合和分类讨论的思想方法是解答的关键.20.(2020·长沙市长郡外国语实验中学八年级月考)“中秋”是我国的传统佳节,历来有吃“月饼”的习俗.我市网红“巢娘驰”食品厂为了解长沙市民对销量较好的莲蓉馅、豆沙馅、五仁馅、蛋黄馅(以下分别用A、B、C、D表示)这四种不同口味月饼的喜爱情况,在节前对我市某小区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图(不完整).请根据以上信息回答:(1)将两幅不完整的图补充完整;(2)本次参加抽样调查的居民有多少人?(3)若居民区有20000人,请估计爱吃蛋黄馅月饼的人数.【答案】解:(1)本次参加抽样调查的居民人数是:60÷10%=600(人);A组所对应的百分比是(180÷600)×100%=30%,C组的人数是600﹣180﹣60﹣240=120(人),C组所占的百分比是(120÷600)×100%=20%,补全统计图如下:(2)本次参加抽样调查的居民有60÷10%=600(人),故答案为:600人;(3)根据题意得:爱吃蛋黄馅月饼的人数占总人数的40%,即:20000×40%=8000(人),答:爱吃蛋黄馅月饼的人数有8000人.【点睛】本题考查了条形统计图和扇形统计图等相关知识点,两个图结合一起看,扇形统计图中各部分表示占总体的百分比,本题考查了数形结合的思想.五、(本题共计2小题,每小题9分,共计18分)21.(2020·道真自治县隆兴中学七年级月考)某城市为增强人们节约用水的意识,规定每吨生活用水的基本价格为2元,每月每户限定用水6吨,超出部分在基本价格的基础上增加80%,已知某户居民这月用水量为a吨(该户居民用水量已超过规定).(1)这户居民该月应缴水费多少元(用含有a的代数式表示)?a 时,计算(1)的结论中代数式的值.(2)当8(3)若这户居民该月缴水费26.4元,则这户居民这月用水多少吨?【答案】解:(1)该户居民次月应交的水费为:()()()()26180%2612 3.66 3.69.6a a a ⨯++⨯⨯-=+-=-元.所以该户居民该月应交水费为()3.69.6a -元.(2)当8a =时,3.69.6 3.689.628.89.619.2a -=⨯-=-=元.(3)设这户居民次月用水x 吨,根据题意得:()()26180%2626.4x ⨯++⨯⨯-=整理得:3.69.626.4x -=解得10x =所以这户居民这月用水10吨.【点睛】本题考察一元一次方程的实际应用,正确判断属于哪种情况是解题的关键.22.(2020·宜兴外国语学校七年级月考)如图,数轴上有A 、B 、C 、D 、O 五个点,点O 为原点,点C 在数轴上表示的数是5,线段CD 的长度为6个单位,线段AB 的长度为2个单位,且B 、C 两点之间的距离为13个单位,请解答下列问题:(1)点D 在数轴上表示的数是___,点A 在数轴上表示的数是___;(2)若点B 以每秒2个单位的速度向右匀速运动t 秒运动到线段CD 上,且BC 的长度是3个单位,根据题意列出的方程是______________,解得t =___;(3)若线段AB 、CD 同时从原来的位置出发,线段AB 以每秒2个单位的速度向右匀速运动,线段CD 以每秒3个单位的速度向左匀速运动,把线段CD的中点记作P,求出点P与线段AB的一个端点的距离为2个单位时运动的时间.【答案】(1)∵点C在数轴上表示的数是5,CD=6,AB=2,BC=13,∴点D在数轴上表示的数是11,点B在数轴上表示的数是﹣8,点A在数轴上表示的数是﹣10;(2)B运动到CD上时,走过的路程为2t,减去BC的距离即为此时BC的长度,故:2t-13=3,解得:t=8;(3)由题意得,线段CD的中点P的位置为8,分三种情况讨论:①当点P在点B右侧2个单位时,16﹣2t﹣3t=2,解得:t=2.8;②当点P在点B左侧2个单位时,2t+3t﹣16=2,解得:t=3.6,此时P与A重合;③当点P在点A左侧2个单位时,2t+3t﹣18=2,解得:t=4;综上,当t=2.8或3.6或4时,点P与线段AB的一个端点的距离为2个单位.【点睛】本题考查了一元一次方程的应用和数轴.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.六、(本题共计1小题,每小题12分,共计12分)23.(2020·江苏南通市·南通田家炳中学七年级月考)(阅读理解)射线OC是∠AOB内部的一条射线,若∠COA=12∠BOC,则我们称射线OC是射线OA的伴随线.例如,如图1,∠AOB=60°,∠AOC=∠COD=∠BOD=20°,则∠AOC=12∠BOC,称射线OC是射线OA的伴随线;同时,由于∠BOD=12∠AOD,称射线OD是射线OB的伴随线.(知识运用)(1)如图2,∠AOB =120°,射线OM 是射线OA 的伴随线,则∠AOM = °,若∠AOB 的度数是α,射线ON 是射线OB 的伴随线,射线OC 是∠AOB 的平分线,则∠NOC 的度数是 .(用含α的代数式表示)(2)如图3,如∠AOB =180°,射线OC 与射线OA 重合,并绕点O 以每秒3°的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5°的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止.①是否存在某个时刻t (秒),使得∠COD 的度数是20°,若存在,求出t 的值,若不存在,请说明理由.②当t 为多少秒时,射线OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【答案】解:(1)如图, 射线是OA 的伴随射线,12AOC BOC ∴∠=∠, 111204033AOC AOB ∴∠=∠=⨯︒=︒ ,同理,若∠AOB 的度数是α,射线ON 是射线OB 的伴随线,1133BON AOB α∴∠=∠= , 射线OC 是∠AOB 的平分线,1122BOC AOB α∴∠=∠= , 1123NOC BOC BON αα∴∠=∠-∠=- =16α,故答案为:40,6α︒(2)射线OD 与OA 重合时,t =1805=36(秒) ①当∠COD 的度数是20°时,有两种可能:若在相遇之前,则180﹣5t ﹣3t =20,∴t =20;若在相遇之后,则5t +3t ﹣180=20,∴t =25;所以,综上所述,当t =20秒或25秒时,∠COD 的度数是20°.②相遇之前:(i )如图1,OC是OA的伴随线时,则∠AOC=12∠COD即3t=12(180﹣5t﹣3t)∴t=90 7(ii)如图2,OC是OD的伴随线时,则∠COD=12∠AOC即180﹣5t﹣3t=123t∴t=360 19相遇之后:(iii)如图3,OD是OC的伴随线时,则∠COD=12∠AOD即5t+3t﹣180=12(180﹣5t)∴t=180 7(iv)如图4,OD是OA的伴随线时,则∠AOD=12∠COD即180﹣5t=12(3t+5t﹣180)∴t=30所以,综上所述,当t=90360180,,7197,30时,OC、OD、OA中恰好有一条射线是其余两条射线的伴随线.【点评】本题考查了角的计算,解决本题的关键是利用分类讨论思想.。

人教版2020-2021学年度七年级数学上册期末模拟测试卷C卷(附答案)

人教版2020-2021学年度七年级数学上册期末模拟测试卷C卷(附答案)

绝密★启用前2020-2021学年度初中数学期中考试卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.如图,C,D是线段AB上的两个点,CD=3 cm,M是AC的中点,N是DB的中点,AB =7.8 cm,那么线段MN的长等于( )A.5.4 cm B.5.6 cm C.5.8 cm D.6 cm2.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A 出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在()A.点A B.点B C.点C D.点D3.如图,已知正六边形ABCDEF,甲、乙两点分别从顶点A和顶点B出发,沿正六边形ABCDEF的边逆时针运动,甲的速度是乙速度的3倍,则点甲、乙的第2018次相遇在( )A.边BC B.边CD C.边DE D.边EF4.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,根据它的规律,则第50个三角形数与第48个三角形数的差为( )A .50B .49C .99D .1005.如图,是一组按照某种规律摆放而成的图案,第1个图有1个三角形,第二个图有4个三角形,第三个图有8个三角形,第四个图有12个三角形,则图5中三角形的个数是( )A .8B .12C .16D .176.式子a b c a b c++的值等于( ) A .3± B .±1 C .3±或±1 D .3或17.如图,数轴上每相邻两点相距一个单位长度,点A 、B 、C 、D 对应的位置如图所示,它们对应的数分别是a 、b 、c 、d ,且d ﹣b+c=10,那么点A 对应的数是( )A .﹣6B .﹣3C .0D .正数8.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定9.若|3m-5|+(n+3)2=0,则6m-(n+2)=( )A .6B .9C .0D .1110.如果两个数的和是正数,商是负数,那么这两个数的积是( )A .正数B .负数C .零D .以上三种结论都有可能第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.设一列数1232018,,,...,a a a a 中任意三个相邻的数之和都是22,已知32a x =,1913a =,666a x =-,那么2018a =________.12.在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”,中国古代称为“河图”、“洛书”,又叫“纵横图”.3阶幻方也称九宫格,即把1,2,3,4,5,6,7,8,9九个数填入3×3方格中,使每一行,每一列以及两条对角线上的数字之和都相等.请你将1,2,3,4,5,6,7,8,9填入下表的9个空格中,完成三阶幻方.13.若|x ﹣2+3﹣2x|=|x ﹣2|+|3﹣2x|成立,则x 的范围是__.14.观察下列各式数:0,3,8,15,24,…,试按此规律写出第2020个数是_____. 15.已知a 是质数,b 是奇数,且a 2+b=2009,则a+b=____________。

江苏省南京市鼓楼区2020-2021学年七年级上学期期末数学试题(含答案解析)

江苏省南京市鼓楼区2020-2021学年七年级上学期期末数学试题(含答案解析)

江苏省南京市鼓楼区2020-2021学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个算式中,有一个算式与其他三个算式的计算结果不同,该算式是( ) A .2(1)-B .(1)--C .21-D .1-2.与2a b 是同类项的是( ) A .22bB .23ab -C .213a b -D .2a c3.下列运算正确的是( ) A .()3x 13x 1--=-- B .()3x 13x 1--=-+ C .()3x 13x 3--=--D .()3x 13x 3--=-+4.在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是( ) A .用两颗钉子可以固定一根木条 B .把弯路改直可以缩短路程C .用两根木桩拉一直线可把树栽成一排D .沿桌子的一边看,可将桌子排整齐5.下列图形中,线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D .6.如图是一个圆,一只电子跳蚤在标有数字的五个点上跳跃.若它停在奇数点上时,则下一次沿顺时针方向跳两个点;若停在偶数点上时,则下一次沿逆时针方向跳一个点.若这只跳蚤从1这点开始跳,则经过2021次跳跃后它所停在的点对应的数为( )A .1B .2C .3D .4二、填空题7.5-的相反数是__.8.国家统计局刚刚发布数据,初步核算,2020年全年国内生产总值为1015986亿元,将1015986科学记数法可以表示为___. 9.写出一个比4大的无理数:____________. 10.已知3024α'=∠,则α∠的补角是__________.11.下图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:_________________________.12.传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x 表示珐琅书签的销量,则可列出一元一次方程______________________________.13.如图,直线a 、b 相交于点O ,将量角器的中心与点O 重合,发现表示60︒的点在直线a 上,表示135︒的点在直线b 上,则1∠=___︒.14.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上表示“0cm ”、“8cm ”的点分别对应数轴上的﹣2和x ,那么x 的值为_____.15.如图,将一个三角板60︒角的顶点与另一个三角的直角顶点重合,128∠=︒,2∠=__︒.16.线段6AB =,在直线AB 上截取线段3BC AB =,D 为线段AB 的中点,E 为线段BC 的中点,那么线段DE 的长为______.三、解答题 17.计算 (1)37116482⎛⎫-+-⨯ ⎪⎝⎭ (2)221311332⎛⎫- ⎪⎛⎫--÷⨯- ⎪⎝⎭⎝⎭ 18.解方程(1)3(1)4(21)7x x --+=;(2)12123x x -+-=. 19.先化简,再求值:()()2222233a b abab a b ---+,其中1a =-,13b =. 20.某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:(1)超市如何进货,进货款恰好为46000元?(2)为确保乙商品畅销,在(1)的条件下,商家决定对乙商品进行打折出售,且全部售完后,乙商品的利润率为20%,请问乙商品需打几折? 21.在如图,所示的方格纸中不用量角器与三角尺,仅用直尺.(1)经过点P 画CB 的平行线PQ . (2)过点A ,画CB 的垂线AM . (3)过点C ,画CB 的垂线CN . (4)请直接写出AM 、CN 的位置关系.22.如图①是由一些大小相同的小正方体组合成的简单几何体.()1请在图②的方格纸中分别画出它的主视图、左视图和俯视图.()2保持小正方体的个数不变,只改变小正方体的位置,搭一个不同于上图的几何体,使得它的俯视图和左视图与你在方格纸中所画的一致,还有______种不同的搭法. 23.已知:如图,O 是直线AB 上一点,OD 是AOC ∠的平分线,COD ∠与COE ∠互余.求证:AOE ∠与COE ∠互补.请将下面的证明过程补充完整; 证明:O 是直线AB 上一点,180AOB ∴∠=︒COD ∠与COE ∠互余, COD COE ∴∠+∠=_______︒. 90AOD BOE ∴∠+∠=︒ OD 是AOC ∠的平分线,AOD ∴∠=∠_________.(理由:_________)B O E COE∴∠=∠.(理由:______________)=AOE BOE ∠+∠_______︒. 180AOE COE ∴∠+∠=︒ AOE ∴∠与COE ∠互补.24.2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以30-或者31-取胜的球队积3分,负队积0分;而在比赛中以32-取胜的球队积2分,负队积1分,前四名队伍积分榜部分信息如表所示. (1)中国队11场胜场中只有一场以32-取胜,请将中国队的总积分填在表格中, (2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表格,求巴西队胜场的场数.25.两位同学在用标有数字1,2,,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A ”和“卡片B ”),别告诉我卡片上是什么数字,然后你把卡片A 上的数字乘以5,加上7,再乘以2,再加上卡片B 上的数字,把最后得到的数M 的值告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信”…… (试验)(1)如果乙同学抽出的卡片A 上的数字为2,卡片B 上的数字为5,他最后得到的数M =_______;(2)若乙同学最后得到的数57M =,则卡片A 上的数字为_______,卡片B 上的数字为_______.(解密)(3)请你说明:对任意告知的数M ,甲同学是如何猜到卡片的.26.对于平面内给定射线OA ,射线OB 及∠MON ,给出如下定义:若由射线OA 、OB 组成的∠AOB 的平分线OT 落在∠MON 的内部或边OM 、ON 上,则称射线OA 与射线OB 关于∠MON 内含对称.例如,图1中射线OA 与射线OB 关于∠MON 内含对称已知:如图2,在平面内,∠AOM =10°,∠MON =20°(1)若有两条射线1OB ,2OB 的位置如图3所示,且130B OM ∠=︒,215B OM ∠=︒,则在这两条射线中,与射线OA 关于∠MON 内含对称的射线是_____________ (2)射线OC 是平面上绕点O 旋转的一条动射线,若射线OA 与射线OC 关于∠MON 内含对称,设∠COM =x °,求x 的取值范围;(3)如图4,∠AOE =∠EOH =2∠FOH =20°,现将射线OH 绕点O 以每秒1°的速度顺时针旋转,同时将射线OE 和OF 绕点O 都以每秒3°的速度顺时针旋转.设旋转的时间为t 秒,且060t <<.若∠FOE 的内部及两边至少存在一条以O 为顶点的射线与射线OH 关于∠MON 内含对称,直接写出t 的取值范围.参考答案1.C 【解析】A 选项:(-1)2=1;B 选项:-(-1)=1;C 选项:-12=-1;D 选项:|-1|=1. 故选C. 2.C 【分析】根据同类项的定义,即可得出答案. 【详解】A 、22b 与a 2b 所含字母不完全相同,不是同类项,故本选项不符合题意,B 、-3ab 2与a 2b 所含字母相同,但相同字母的指数不相同,不是同类项,故本选项不符合题意,C 、a 2b 与213a b -所含字母相同,相同字母的指数也相同,符合同类项的定义,故本选项符合题意,D 、a 2c 与a 2b 所含字母不完全相同,不是同类项,故本选项不符合题意, 故选:C . 【点睛】本题考查了同类项的知识,所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项;解答本题的关键是掌握同类项的定义. 3.D 【分析】去括号时,要按照去括号法则,将括号前的3-与括号内每一项分别相乘,尤其需要注意,3-与1-相乘时,应该是3+而不是3-. 【详解】解:根据去括号的方法可知()3x 13x 3--=-+. 故选D . 【点睛】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是3-只与x 相乘,忘记乘以1-;二是3-与1-相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分. 4.B 【分析】根据“两点之间,线段最短”体现的的必然事件,用排除法就可以得到结果. 【详解】“两点之间,线段最短”是一个定理,把弯路改成直路可以缩短路程也是必然的事件.而A 中,两颗钉子如果是定在木条一头是没法固定木条的;C 中两根木桩如果不是处在两端也无法把树种成一排;D 中沿桌子的一边看,看的角度不一样,也无法将桌子摆整齐,故选B 【点睛】此题重点考察学生对必然事件的理解,抓住“两点之间,线段最短”体现的的必然事件是解题的关键. 5.D 【分析】点到直线的距离是指垂线段的长度. 【详解】解:线段AD 的长表示点A 到直线BC 距离的是图D ,故选:D . 【点睛】本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段是解题关键. 6.C 【分析】根据题意写出前几次跳动的停靠点,发现4次跳动后回到出发点,即每4次跳动为一个循环组依次循环,用2021除以4,根据商和余数的情况确定所停的位置即可. 【详解】从1这点开始跳,第1次停在数字3, 第2次跳动停在5, 第3次跳动停在2, 第4次跳动停在1, …,依此类推,每4次跳动为一个循环组依次循环, 2021÷4=505余1,即经过2021次后与第1次跳动停的位置相同,对应的数字是3. 故选:C . 【点睛】本题考查是对图形变化规律的考查,读懂题目信息,理解跳动方法并求出每4次跳动为一个循环组依次循环是解题的关键. 7.5 【分析】只有符号不同的两个数互为相反数,根据相反数的定义解答. 【详解】5-的相反数是5,故答案为:5. 【点睛】此题考查求一个数的相反数,熟记定义是解题的关键. 8.61.01598610⨯ 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】1015986=61.01598610⨯,故答案为:61.01598610⨯. 【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.9 【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可. 【详解】一个比4【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一. 10.14936' 【分析】根据补角的定义直接列式进行求解即可. 【详解】因为∠α=3024',所以∠α的补角为180∘−∠α=180°−3024'=14936', 故答案为14936'. 【点睛】本题考查了补角的定义,熟练掌握互补两角的和为180度是解题的关键. 11.答案不唯一,如:32x 【分析】由题意可知,只要补充上一个三次项即可.【详解】由题意可知,可补充32x (答案不唯一).故答案为32x (答案不唯一).【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.12.(2700)5900x x -+=【分析】用x 表示珐琅书签的销量,则文创笔记本的销量为()2700x -本,根据二者销量之和为5900件列方程即可解答.【详解】用x 表示珐琅书签的销量,则文创笔记本的销量为()2700x -本,由题意得()27005900x x -+=.故答案为()27005900x x -+=.【点睛】本题考查了一元一次方程的应用,仔细审题,找出列方程所需的等量关系是解答本题的关键.13.75【分析】首先计算出2∠的度数,再根据对顶角相等即可求出1∠的度数.【详解】如图,21356075∠=︒-︒=︒,∴1275∠=∠=︒.故答案为:75.【点睛】本题考查了对顶角以及角的运算,解题的关键是掌握对顶角相等.14.6【分析】根据直尺的长度知x为﹣2右边8个单位的点所表示的数,据此可得.【详解】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为6.【点睛】本题主要考查了数轴,解题的关键是确定x与表示﹣2的点之间的距离.15.58【分析】∠=︒,求出∠EAC的度数,由∠DAE=90︒,根据∠2=∠DAE-∠EAC 根据∠BAC=60︒,128求出结果.【详解】∠=︒,∵∠BAC=60︒,128︒-︒=︒,∴∠EAC=∠BAC-∠1=602832∵∠DAE=90︒,︒-︒=︒,∴∠2=∠DAE-∠EAC=903258故答案为:58 .【点睛】此题考查三角板角度计算,掌握各角度之间的位置关系及三角板各角的度数是解题的关键.16.6或12【分析】分类讨论:C在线段AB的延长线上,C在线段AB的反向延长线上,根据BC=3AB,可得BC的长,根据中点的性质,可得BD,BE的长,根据线段的和差,可得答案.【详解】解:C在线段AB的延长线上,如图1:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=12AB=3,BE=12BC=9,DE=BD+BE=9+3=12;C在线段AB的反向延长线上,如图2:∵AB=6,BC=3AB,∴BC=18,∵D为线段AB的中点,E为线段BC的中点,BD=12AB=3,BE=12BC=9,DE=BD-BE=9-3=6.故线段DE的长为6或12.故答案为6或12.【点睛】本题考查两点间的距离,分类讨论是解题关键.17.(1)-6;(2)1 12 -【分析】(1)利用乘法分配律计算;(2)先计算乘方和小括号,再计算乘除法,最后计算减法.【详解】(1)37116 482⎛⎫-+-⨯ ⎪⎝⎭=-12+14-8 =-6;(2)221311332⎛⎫- ⎪⎛⎫--÷⨯- ⎪⎝⎭⎝⎭ =291334--÷⨯ =112-- =112-.【点睛】此题考查含乘方的有理数的混合运算,乘法分配律,正确掌握有理数的计算法则是解题的关键.18.(1)145x =-;(2)x=1 【分析】(1)先去括号、再移项、合并同类项,将系数化为1求解;(2)先去分母、去括号、再移项、合并同类项,将系数化为1求出方程的解.【详解】解:(1)3(1)4(21)7x x --+=3x-3-8x-4=7 -5x=14 145x =-; (2)12123x x -+-= 6-3(x-1)=2(x+2)6-3x+3=2x+4-5x=-5x=1.【点睛】此题考查解一元一次方程,掌握解一元一次方程的步骤:去分母、去括号、移项、合并同类项,将系数化为1是解题的关键.19.109【分析】根据整式的运算法则即可求出答案.【详解】原式2222623a b ab ab a b =-+-223a b ab =-当1a =-,13b =时, 原式()22111103(1)1()13399=⨯-⨯--⨯=+=. 【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,属于基础题型.20.(1)购进甲商品400件,购进乙商品800件进货款恰好为46000元;(2)乙商品需打9折.【分析】(1)设商场购进甲商品x 件,则购进乙商品()1200x -件,然后根据题意及表格可列方程求解;(2)设乙商品需打a 折,根据题意可直接列方程求解.【详解】解:(1)设商场购进甲商品x 件,则购进乙商品()1200x -件,由题意,得2545(1200)46000x x +-=解得:400x =购进乙商品12001200400800x -=-=(件).答:购进甲商品400件,购进乙商品800件进货款恰好为46000元.(2)设乙商品需打a 折,由题意得:60454520%10a ⨯-=⨯, 解得9a =.答:乙商品需打9折.【点睛】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键. 21.(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)平行.【分析】(1)利用表格结合平行的概念画出PQ 即可.(2)利用表格结合垂直的概念画出AM 即可.(3)利用表格结合垂直的概念画出CN 即可.(4)根据在同一平面内垂直于同一条直线的两条直线互相平行即可得出结论.【详解】(1)如图,直线PQ 即为所求.(2)如图,直线AM 即为所求.(3)如图,直线CN 即为所求.(4)∵AM BC ⊥,CN BC ⊥,∴//AM CN故AM 与CN 的位置关系为平行 .【点睛】本题考查利用平行和垂直的概念作图以及平行线的判定.掌握同一平面内垂直于同一条直线的两条直线互相平行也是关键.22.(1)见解析(2)2【分析】()1根据三视图的定义画出图形即可.()2将最上面的小正方体左右平移,得到的几何体的俯视图和左视图不变,有2种情形.【详解】()1三视图如图所示:()2将最上面的小正方体左右平移,得到的几何体的俯视图和左视图不变,有2种情形.故答案为2.【点睛】本题考查三视图,解题的关键是理解题意,学会正确画出三视图,属于中考常考题型.23.90;COD;角平分线的定义;等式性质,180.【分析】根据余角的定义可得∠COD+∠COE=90°,再根据平角的定义可得∠AOD+∠BOE=90°;根据角平分线的定义可得∠AOD=∠COD,再根据等式性质可得∠BOE=∠COE,进而得证.【详解】证明:∵O是直线AB上一点∴∠AOB=180°∵∠COD与∠COE互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD是∠AOC的平分线∴∠AOD=∠COD(理由:角平分线的定义)∴∠BOE=∠COE(理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等式性质,180.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.24.(1)32;(2)7【分析】(1) 根据比赛中以3-0或者3-1取胜的球队积3分,在比赛中以3-2取胜的球队积2分,结合表格和已知条件即可得出;(2)设巴西队积3分取胜的场数为x 场,则积2分取胜的场数为(x-5)场,根据巴西队的总积分为21分,列出方程解方程即可得出答案.【详解】(1)解:比赛中以3-0或者3-1取胜的球队积3分,在比赛中以3 -2取胜的球队积2分,中国队11场胜场中只有一场以3-2取胜,中国队的总积分=1031232⨯+⨯=,故答案为:32;(2)设巴西队积3分取胜的场数为x 场,则积2分取胜的场数为(x-5)场,依题意可列方程 3x+2(x-5)+1=213x+2x-10+1= 215x= 30x=6,则积2分取胜的场数为x-5=1,所以取胜的场数为6+1=7,故答案为:7.【点睛】本题考查了由实际问题抽象出一元一次方程,有理数的混合运算,找准等量关系,正确列出一元-次方程是解题的关键.25.(1)39;(2)4,3;(3)用任意数M 减去14得到两位数,十位数字是卡片A 上的数字,个位数字为卡片B 上的数字【分析】(1)根据游戏规则计算M 的值即可;(2)设卡片A 上的数字为x ,卡片B 上的数字为y ,根据规则得到()57257x y +⨯+=,化简为10x+y=43,由x 、y 都是1至9这9个数字,即可得到x=4,y=3;(3)设卡片A 上的数字为x ,卡片B 上的数字为y ,可得到10x+y=M-14,用任意数M 减去14得到两位数,十位数字是卡片A 上的数字,个位数字为卡片B 上的数字.【详解】(1)M=()2572539⨯+⨯+=,故答案为:39;(2)设卡片A 上的数字为x ,卡片B 上的数字为y ,则()57257x y +⨯+=,10x+y=43,∵x 、y 都是1至9这9个数字,∴x=4,y=3,故答案为:4,3.(3)设卡片A 上的数字为x ,卡片B 上的数字为y ,则()572x y M +⨯+=,10x+y=M-14,用任意数M 减去14得到两位数,十位数字是卡片A 上的数字,个位数字为卡片B 上的数字.【点睛】此题考查有理数的混合运算,列代数式,合理猜想,正确理解题中游戏规则列式计算是解题的关键.26.(1)2OB ;(2)1050x ≤≤︒︒;(3)2030t ≤≤【分析】(1)根据题意,求出∠AOB 2,即可判定其角平分线落在∠MON 的内部;(2)首先由射线OA 与射线OC 关于∠MON 内含对称,逆推出∠AOC 的取值范围,然后即可得出∠COM 的取值范围;(3)首先根据题意得出其角平分线的旋转速度,当其分别旋转到OM 、ON 边上时,即可得解.【详解】(1)∵∠AOM =10°,∠MON =20°,130B OM ∠=︒,215B OM ∠=︒∴∠AOB 2=∠AOM+∠B 2OM =10°+15°=25° ∴其角平分线落在∠MON 的内部∴与射线OA 关于∠MON 内含对称的射线是2OB ;(2)若射线OA 与射线OC 关于∠MON 内含对称,则2AOC AOM AON ≤≤∠∠∠ ∴2060AOC ︒≤≤︒∠∵∠COM =x °,∠COM=∠AOC-∠AOM∴1050x ≤≤︒︒(3)根据题意,可得其角平分线的旋转速度是每秒2°,则当其旋转至OM 、ON 边上时,∠FOE 的内部及两边至少存在一条以O 为顶点的射线与射线OH 关于∠MON 内含对称,则当其旋转至OM 边上时,如图所示:OE 、OF 旋转了60°,OH 旋转了20°,即20t s =;当其旋转至ON 边上时,如图所示:OE 、OF 旋转了90°,OH 旋转了30°,即30t s =故2030t ≤≤故答案为2030t ≤≤.【点睛】此题主要考查射线与角新定义下的性质以及旋转的角度变化,理解题意,找出变化的临界点,即可解题.答案第15页,总15页。

2020-2021学年江苏省苏州市七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省苏州市七年级(上)期末数学试卷(附答案详解)

2020-2021学年江苏省苏州市七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.−2的相反数是()A. −2B. 2C. −12D. 122.若a>b,则则下列不等式一定成立的是()A. a>b+2B. a+1>b+1C. −a>−bD. |a|>|b|3.下列运算正确的是()A. 5a2−3a2=2B. 2x2+3x2=5x4C. 3a+2b=5abD. 7ab−6ba=ab4.当前,手机移动支付已经成为新型的消费方式,中国正在向无现金社会发展.下表是妈妈元旦当天的微信零钱支付明细:则元旦当天,妈妈微信零钱最终的收支情况是()微信转账−60.00扫二维码付款−105.00微信红包.+88.00便民菜站−23.00A. 收入88元B. 支出100元C. 收入100元D. 支出188元5.下列选项中说法错误的是()A. −a的次数与系数都是1B. 单项式−23ab的系数是−23C. 数字0是单项式D. 多项式x2+xyz2+y2的次数是46.如图,在立定跳远中,体育老师是这样测量运动员成绩的:用一块直角三角板的一边紧贴在起跳线上,另一边与拉直的皮尺重合.这样做的理由是()A. 过一点可以作无数条直线B. 过两点有且只有一条直线C. 两点之间,线段最短D. 直线外一点与直线上各点连接的所有线段中,垂线段最短7.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,可列方程为()A. 8x−3=7x+4B. 8x+3=7x+4C. 8x−3=7x−4D. 8x+3=7x−48.如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A. 12∠2−∠1 B. 12∠2−32∠1 C. 12(∠2−∠1) D. 13(∠1+∠2)9.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,…按照此规律下去,数字“2021”应落在()A. 射线OB上B. 射线OC上C. 射线OD上D. 射线OE上10.已知AB=2a(a>0),下面四个选项中:①AC+BC=2a,②AB=2AC,③AC=BC,④AC=BC=a,能确定点C是线段AB中点的选项个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)11.网红和明星直播“带货”,成为当下重要的营销方式,数据显示,今年在淘宝“双十二”期间,全国共有60多个产业带的商家开启了超过一万场直播,直播成交商品超过8100000件.8100000这个数用科学记数法可表示为______.12.若∠α=35°,则∠α的补角为______度.13.已知代数式x−2y的值为5,则代数式14−x+2y的值为______.14.如图,数轴上的三点A、B、C分别表示有理数a、b、c,则化简|a−b|−|c−a|=______.15.不等式4(x−1)<3x−2的正整数解为______ .16.长方体纸盒的展开图如图所示,根据图中表示的数据,可知长方体的体积为______cm3.17.如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF=______°.18.如图所示,点A,B,C是数轴上的三个点,其中AB=12,如果点P以每秒1个单位的速度从点A出发向右运动,那么经过______秒时,PC=2PB.三、解答题(本大题共10小题,共76.0分)19.计算:(1)8+(−10)+(−2)−(−5);(2)(−2)÷1×(−3)+(−3)3.320.解方程:(1)9−3y=5y+5;(2)2x+13−x−24=1.21.解不等式组:{x−2(x−1)≥1x+13<x+3,并将其解集在数轴上表示出来.22.先化简再求值:4ab−[(a2+5ab−b2)−(a2+3ab−2b2)],其中a、b满足|a+1|+(b−2)2=0.23.在如图所示的方格纸中,A,B,C为3个格点,点C在直线AB外,(1)借助格点,过C点画出AB的垂线m和平行线n;(2)指出(1)中直线m、n的位置关系为______.(3)连接AC和BC,若图中每个最小正方形的边长为1,则三角形ABC的面积是______.24.如图是由一些大小相同的5个小正方体组合成的简单几何体.(1)请在方格纸中用实线画出它的三个视图.(2)保持小正方体的个数不变,只改变小正方体的位置,摆放一个不同于上图的几何体,使得它的俯视图和左视图与你在方格纸中所画的一致,还有______种不同的摆放方法.25.补全下面的解题过程:如图,已知OC是∠AOB内部的一条射线,OD是∠AOB的平分线,∠AOC=2∠BOC,且∠BOC=40°,求∠COD的度数.解:∵∠AOC=2∠BOC,∠BOC=40°,∴∠AOC=______°.∴∠AOB=∠AOC+∠______=______°.∵OD平分∠AOB,∠______=______°.∴∠AOD=12∴∠COD=∠______−∠AOD=20°.26.如图,已知点C在直线AB上,点D、E分别是线段AC、CB的中点.(1)若点C在线段AB上,AC=6,CB=10.则线段DE的长度是______;(2)若点C为线段AB上任意一点,满足AC+CB=a,你能猜想出DE的长度吗?并说明理由.(3)若点C为线段AB外任意一点,AC=m,CB=n,则线段DE的长度是______.27.某学校要举办一次数学文化节活动,要求准备普通口罩、医用口罩、专业口罩三种口罩共1000个(每种口罩都要有),其中医用口罩的单价比普通口罩的单价贵0.2元,买5个医用口罩和8个普通口罩共需要6.2元.(1)问医用口罩和普通口罩的单价分别是多少元?(2)若专业口罩市场上有三个级别,学校只能从中选择一个级别.价格如下表:现在学校用3480元去购买这三种口罩,且普通口罩和专业口罩的数量是相同的,应该选择哪种级别的专业口罩比较合适?购买方案是什么?请说明理由.(3)若要求购买专业口罩的数量是普通口罩的一半,普通口罩和医用口罩单价不变,其中专业口罩单价为a元,在总数量不变的前提之下,无论这三种口罩的数量如何分配,总费用始终不变.求此时a的值和总费用.28.【阅读新知】如图①,射线OC在∠AOB内,图中共有三个角∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角的度数的2倍,则称射线OC是∠AOB的“巧线”.【理解运用】(1)∠AOB的角平分线______这个角的“巧线”;(填“是”或“不是”)(2)若∠AOB=90°,射线OC是∠AOB的“巧线”,则∠AOC的度数是______.【拓展提升】如图②,一副三角板如图所示摆放在量角器上,边PD与量角器0°刻度线重合,边AP 与量角器180°刻度线重合,将三角板ABP绕量角器中心点P以每秒5°的速度顺时针方向旋转,当边PB与0°刻度线重合时停止运动,设三角板ABP的运动时间为t秒.(3)求t何值时,射线PB是∠CPD的“巧线”?(4)若三角板ABP按照原来方向旋转的同时,三角板PCD也绕点P以每秒2°的速度逆时针方向旋转,此时三角板ABP绕点P旋转的速度比原来每秒快了3°.当三角板ABP 停止旋转时,三角板PCD也停止旋转,问:在旋转过程中,是否存在某一时刻t,使三条射线PB、PC、PD中,其中一条恰好是以另两条组成的角的“巧线”?若存在,请直接写出t的值.若不存在,请说明理由.答案和解析1.【答案】B【解析】解:−2的相反数是:−(−2)=2,故选:B.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】B【解析】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.利用不等式的基本性质判断即可.解:A.由a>b不一定能得出a>b+2,故本选项不合题意;B.若a>b,则a+1>b+1,故本选项符合题意;C..若a>b,则−a<−b,故本选项不合题意;D.由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.3.【答案】D【解析】解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键,注意不是同类项不能合并.4.【答案】B【解析】解:−60−105+88−23=−100,所以元旦当天,妈妈微信零钱最终的收支情况是支出100元.故选:B.根据正数和负数表示相反意义的量,可得答案.本题考查了正数和负数,确定相反意义的量是解题关键.5.【答案】A【解析】解:A、−a的系数为−1、次数为1,原说法错误,此选项符合题意;B、单项式−23ab的系数是−23,原说法正确,此选项不符合题意;C、数字0是单项式,原说法正确,此选项不符合题意;D、多项式x2+xyz2+y2的次数是1+1+2=4,原说法正确,此选项不符合题意;故选:A.根据单项式及其相关的概念、多项数的相关概念逐一判断可得.本题主要考查单项式、多项式,解题的关键是掌握单项式、多项式及有关概念.6.【答案】D【解析】解:他的跳远成绩是垂线段AB的长度.这样做的理由是直线外一点与直线上各点连接的所有线段中,垂线段最短.故选:D.由点到直线的距离的定义及跳远比赛的规则作出分析和判断.本题考查了垂线段最短性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.7.【答案】A【解析】解:由题意可得,设有x人,可列方程为:8x−3=7x+4.故选:A.根据题意可以找出题目中的等量关系,列出相应的方程,就可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.8.【答案】C【解析】解:由图知:∠1+∠2=180°;∴12(∠1+∠2)=90°;∴90°−∠1=12(∠1+∠2)−∠1=12(∠2−∠1).故选:C.由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°;而∠1的余角为90°−∠1,可将上式代入90°−∠1中,即可求得结果.此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.9.【答案】D【解析】解:由题可知,6个数字循环一次,∵2021÷6=336…5,∴2021落在OE上,故选:D.由题可知,6个数字循环一次,再由2021÷6=336…5,即可判断2021的位置.本题考查数字的变化规律,根据题意,找到数字的循环规律是解题的关键.10.【答案】A【解析】解:①AC+BC=2a,如图,∴点C不一定是AB中点;②AB=2AC,如图,点C可能在线段AB外,故不一定;③AC=BC,如图,可能三点不共线,故不一定;④AC=BC=a,如图,点C一定是AB中点,故选:A.先画出图形,再根据线段中点定义判断即可.本题考查了对线段中点定义的应用,注意:如果一个点把一条线段分成相等的两条线段,那么这个点就叫作这条线段的中点.11.【答案】8.1×106【解析】解:8100000=8.1×106.故答案为:8.1×106.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n 比原来的整数位数少1,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.【答案】145【解析】解:180°−35°=145°,则∠α的补角为145°,故答案为:145.根据两个角的和等于180°,则这两个角互补计算即可.本题考查的是余角和补角,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.13.【答案】9【解析】解:∵代数式x−2y的值为5,∴x−2y=5.∴14−x+2y=14−(x−2y)=14−5=9.故答案为:9.将代数式适当变形,利用整体代入的方法解答即可得出结论.本题主要考查了求代数式的值,将代数式适当变形利用整体代入的方法解答是解题的关键.14.【答案】b−c【解析】解:由数轴得,c>0,a<b<0,因而a−b<0,c−a>0,∴|a−b|−|c−a=b−a−c+a=b−c.故答案为:b−c.由数轴可知:c>0,a<b<0,所以可知:a−b<0,c−a>0,根据负数的绝对值是它的相反数,正数的绝对值是它本身可求值.此题考查了整式的加减运算,数轴,以及绝对值的意义,根据数轴提取有用的信息是解本题的关键.15.【答案】1【解析】解:不等式的解集是x<2,故不等式4(x−1)<3x−2的正整数解为1.故答案为:1.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.16.【答案】192【解析】解:由题意得:长方体的长为8cm.宽为6cm,∴长方体的高=26−6−2×8=4cm,∴长方体的体积=6×8×4=192立方厘米,故答案为:192.根据长方体的平面展开图求出长方体的高,然后再根据长方体的体积公式计算即可.本题考查了列代数式,几何体的展开图,根据题目的已知并结合图形求出长方体的高是解题的关键.17.【答案】28.5【解析】解:∵∠BOD=∠AOC=82°,又∵OE平分∠BOD,∴∠DOE=12∠BOD=12×82°=41°.∴∠COE=180°−∠DOE=180°−41°=139°,∵OF平分∠COE,∴∠EOF=12∠COE=12×139°=69.5°,∴∠BOF=∠EOF−∠BOF=69.5°−41°=28.5°.故答案是:28.5.根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF−∠BOF求解.本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.18.【答案】20或383【解析】解:设经过t秒PC=2PB,由已知,经过t秒,点P在数轴上表示的数是−6+t.∴PC=|−6+t+2|=|t−4|,PB=|−6+t−6|=|t−12|.∵PC=2PB.∴|t−4|=2|t−12|.,解得:t=20或383.故答案为:20或383设经过t秒PC=2PB.由已知,经过t秒,点P在数轴上表示的数是−6+t.根据两点之间距离公式即可求出答案.本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.19.【答案】解:(1)原式=8−10−2+5=(8+5)+(−10−2)=13−12=1;(2)原式=−6×(−3)−27=18−27=−9.【解析】(1)减法转化为加法,再进一步计算即可;(2)先计算除法和后面的乘方,再计算乘法,最后计算减法即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.【答案】解:(1)移项,可得:−3y−5y=5−9,合并同类项,可得:−8y=−4,系数化为1,可得:y=0.5.(2)去分母,可得:4(2x+1)−3(x−2)=12,去括号,可得:8x+4−3x+6=12,移项,可得:8x−3x=12−4−6,合并同类项,可得:5x=2,系数化为1,可得:x=0.4.【解析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.【答案】解:由x−2(x−1)≥1,得:x≤1,<x+3,得:x>−4,由x+13则不等式组的解集为−4<x≤1,将解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:原式=4ab−(a2+5ab−b2)+(a2+3ab−2b2)=4ab−a2−5ab+b2+a2+3ab−2b2=2ab−b2,∵|a+1|+(b−2)2=0,∴a+1=0,b−2=0,∴a=−1,b=2.∴原式=2×(−1)×2−22=−4−4=−8.【解析】原式去括号合并得到最简结果,根据绝对值和偶次幂的非负性求出a和b的值,再把a与b的值代入计算即可求出值.本题考查了整式的加减−化简求值,涉及去括号法则,同类项的定义,合并同类项法则等知识,熟练掌握运算法则是解本题的关键.本题可先去小括号,也可先去中括号.23.【答案】m⊥n6【解析】解:(1)如图,直线m,直线n即为所求;(2)∵m⊥AB,n//AB,∴m⊥n,故答案为:m⊥n;×4×3=6,(3)S△ABC=12故答案为:6.(1)利用数形结合的思想以及垂线,平行线的定义作出图形即可;(2)利用垂线的判定方法解决问题;(3)根据三角形面积公式求解即可.本题考查作图−应用与设计作图,平行线的判定和性质,三角形的面积等知识,解题的关键是掌握垂线,平行线的定义,属于中考常考题型.24.【答案】2【解析】解:(1)这个组合体的三视图如图所示:(2)重新摆放,使其左视图、俯视图与(1)中的相同,因此摆放的“第2个小正方体”可以在俯视图第一行的三个位置的其中之一,因此还有2种摆放,故答案为:2.(1)根据简单的组合体的三视图的画法,画出相应的图形即可;(2)在俯视图上相应的位置摆放“第2个”,结合左视图进行判断即可.本题考查简单组合体的三视图,掌握视图的定义,掌握简单组合体三视图的画法是解决问题的关键.25.【答案】80BOC120AOB60AOC【解析】解:∵∠AOC=2∠BOC,∠BOC=40°,∴∠AOC=80°,∴∠AOB=∠AOC+∠BOC=120°,∵OD平分∠AOB,∴∠AOD=12∠AOB=60°,∴∠COD=∠AOC−∠AOD=20°,故答案为:80,BOC,120,AOB,60,AOC.根据题目的已知条件先求出∠AOC,进而求出∠AOB,再根据角平分线的定义求出∠AOD 即可解答.本题考查了角的计算,角平分线的定义,根据题目的已知条件并结合图形去分析是解题的关键.26.【答案】812(n−m)或12(m−n)【解析】解:(1)∵点D、E分别是AC、BC的中点,∴DC=12AC=12×6=3,CE=12BC=12×10=5,∴DE=DC+CE=3+5=8,故答案为:8;(2)DE=12a.理由如下:∵点D、E分别是AC、BC的中点,∴DC=12AC,CE=12BC,∴DE=DC+CE=12(AC+CB)=12a;当C在BA的延长线上时,∵点D、E分别是AC、BC的中点,∴DC=12AC,CE=12BC,∴DE=CE−CD=12(BC−AC)=12(n−m);当C在AB的延长线上时,∵点D、E分别是AC、BC的中点,∴DC=12AC,CE=12BC,∴DE=CD−CE=12(AC−BC)=12(m−n),综上,DE=12(n−m)或12(m−n).故答案为:12(n−m)或12(m−n).(1)根据线段中点的定义得到DC=12AC=3,CE=12BC=5,然后利用DE=DC+CE进行计算;(2)根据线段中点的定义得到DC=12AC,CE=12BC,然后利用DE=DC+CE得到答案;(3)分两种情况:当C在BA的延长线上和当C在AB的延长线上,再根据线段中点的定义可得答案.本题考查了两点间的距离,利用线段的和差和线段中点的定义是解题关键.27.【答案】解:(1)设普通口罩单价为x元,医用口罩单价为(x+0.2)元,由题意得:5(x+0.2)+8x=6.2,解得:x=0.4,∴x+0.2=0.6,答:普通口罩单价为0.4元,医用口罩单价为0.6元;(2)设购买普通口罩y个,专业口罩y个,则医用口罩(1000−2y)个,①当选Ⅰ级口罩购买时,则0.4y+0.6(1000−2y)+2y=3480,解得:y=2400>1000,不合题意;②当选Ⅱ级口罩购买时,则0.4y+0.6(1000−2y)+5y=3480,则1000−2y=1000−2×686=−372<0,不合题意,当选Ⅲ级口罩购买时,则0.4y+0.6(1000−2y)+8y=3480,解得:y=400,1000−2y=1000−800=200,符合题意,∴购买普通口罩和专用口罩个400个,医用口罩200个;(3)设购买m个专业口罩,则购买普通口罩2m个,医用口罩(1000−3m)个,总费用为T 元,由题意得:T=0.4×2m+0.6(1000−3m)+am=0.8m+600−1.8m+am=(0.8+a−1.8)m+600,T与m无关,则0.8+a−1.8=0,解得:a=1,T=600,答:此时a的值为1,总费用为600元.【解析】(1)设普通口罩单价为x元,医用口罩单价为(x+0.2)元,根据买5个医用口罩和8个普通口罩共需要6.2元列出方程求解即可;(2)设购买普通口罩y个,专业口罩y个,则医用口罩(1000−2y)个,然后分购买Ⅰ级、Ⅱ级、Ⅲ级口罩的总费用=3480列方程,解方程取符合题意的值即可;(3)设购买m个专业口罩,则购买普通口罩2m个,医用口罩(1000−3m)个,总费用为T 元,由题意列出方程,根据总费用始终不变,求出a和T的值即可.本题考查一元一次方程的应用,关键是找出等量关系列出方程.28.【答案】是30°或45°或60°【解析】解:(1)如图,∵OC是∠AOB的平分线,∴∠AOB=2∠AOC,∴OC是∠AOB的“巧线”,故答案为:是;(2)∵∠AOB=90°,射线OC是∠AOB的“巧线”,∴∠AOC=13∠AOB,即∠AOC=30°,∠AOC=12∠AOB,即∠AOC=45°,∠AOC=23∠AOB,即∠AOC=60°,综上,∠AOC的度数是30°或45°或60°,故答案为:30°或45°或60°;(3)如图,由题意得,0≤t≤27,∠CPB=5t−75°,∠CPD=60°,∵射线PB是∠CPD的“巧线“,∴∠CPB=13∠CPD,即5t−75=20,t=19,∠CPB=12∠CPD,即5t−75=30,t=21,∠CPB=23∠CPD,即5t−75=40,t=23,综上,t的值是19或21或23;(4)由题意得0≤t≤1678,分三种情况:①PC在∠BPD内部,PC是∠BPD的巧线,∠BPC=75−10t,∠BPD=135−10t,故这种情况不存在;②PB在∠CPD内部,PB是∠CPD的巧线,∠BPC=10t−75,∠CPD=60°,∴∠BPC=13∠CPD,10t−75=20,t=9.5,∠BPC=12∠CPD,10t−75=30,t=10.5,∠BPC=23∠CPD,10t−75=40,t=11.5;③PD在∠CPB内部,PD是∠BPC的巧线,∠BPC=10t−75,∠CPD=60°,∴∠CPD=13∠BPC,60=13(10t−75),t=25.5(舍去),第21页,共22页∠CPD=12∠BPC,60=12(10t−75),t=19.5(舍去),∠CPD=23∠BPC,60=23(10t−75),t=16.5;综上,t的值是9.5或10.5或11.5或16.5.(1)根据巧线的定义直接判断即可;(2)分三种情况计算即可;(3)用含t的式子表示∠CPD,再分三种情况计算即可;(4)由(3)的思路分情况解答即可.本题考查角的计算,根据题意列出方程是解题关键.第22页,共22页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021 南京玄武区外国语学校七年级数学上期末一模试卷 ( 带答案 )A . 2B . 3C .4D . 5 4. 下列方程变形中,正确的是( )3A .由 3x =﹣ 4,系数化为 1 得 x =4B .由 5=2﹣ x ,移项得 x = 5﹣ 2x 1 2x 3C .由1 ,去分母得 4( x ﹣1)﹣ 3( 2x+3)= 168D .由 3x ﹣(2﹣4x )= 5,去括号得 3x+4x ﹣ 2= 5 5.按一定规律排列的单项式: x 3,-x 5,x 7,- x 9,x 11,A . (-1)n -1x 2n -1B .(-1)n x 2n -1C .(- 1)n -1x2n +1D .(-1)n x2n +16.如图,点 A 、 B 、C 在数轴上表示的数分别为 a 、b 、c ,且 OA+OB=O ,C 则下列结论中:|a| b |c|①abc < 0;② a ( b+c )> 0;③ a ﹣ c=b ;④1 .a |b| c其中正确的个数有 ( )A .1个B .2个C .3 个D .4 个 7. 用四舍五入按要求对 0.06019 分别取近似值,其中错误的是( )8.如图,数轴上有 A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A .点 A 和点 C C.点A和点D一、选择题1.如图,将一副三角板的直角顶点重合,摆放在桌面C . 552. A .若﹣x 3y a与 x by 是同类项,则 2 B .3 a+b 的值为( )C .4AOD=125 °,则∠ BOC= ( )D . 353.在数﹣(﹣ 3), 0,(﹣ 3)2,|﹣9|,﹣14中,正数的有( )个. 第 n 个单项式是 ( )A . 0.1(精确到 0.1)B .0.06(精确到千分位)C . 0.06(精确到百分位 )D . 0.0602(精确到 0.0001) B .点 B 和点 DD.点B 和点C9.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000 的点击率,2400000 这个数用科学记数法表示,结果正确的是()× 170A . 0.24103B . 2.4 106 2897000 平方公里,B .28.94 × 15C . 2.4 105D . 24 10410.中国海洋面积是 A .2.897 × 160 11.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成, 个图案中白色正方形比黑色正方形 ( )个 . 2897000 用科学记数法表示为( C .2.897 × 18)D .0.2897 照此规律,第A . nB . (5n+3) 12. 下列比较两个有理数的大小正确的是(C .(5n+2)) D . (4n+3)A .﹣ 3>﹣ 1 1B . 4C .10 11D .、填空题13. 某物体质量为 325000克, 14.一根长 80cm 的弹簧,一端固定.如果另一端挂上物体,那么在正常情况下物体的质 量每增加 1kg 可使弹簧增长 2cm ,正常情况下,当挂着 xkg 的物体时,弹簧的长度是 cm . (用含 x 的代数式表示 ) 15.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律, 是. 用科学记数法表示为 克. m 的值 16.某同学做了一道数学题: 误将“ A ﹣B ”看成了 “A+B ”, “已知两个多项式为 A 、B ,B=3x ﹣2y ,求 A ﹣B 的 值.”他 结果求出的答案是 x ﹣ y ,那么原来的 A ﹣B 的值应该是 . 17. 将 4 个数 a , b , c , d排成 2行 2 列,两边各加一条竖直线记作 abcd,定义 b ad bc ,若 x 1 x 16 ,则 x d 1 2如图,将正整数按如图方式进行有规律的排列,第 2 行最后一个数是 4, 个数是 7,第 4 行最后一个数是 10, ⋯依此类推,第 20行第 2 个数是 后一个数是 2020 .18. 第 3 行最后 第 ____ 行最19.某种商品的标价为220 元,为了吸引顾客,按九折出售,这时仍要盈利10%,则这种商品的进价是_________ 元.20.点A、B、C在同一条数轴上,且点A表示的数为﹣18,点B表示的数为﹣2.若BC=1AB,则点C 表示的数为 ___ .4三、解答题21.先化简再求值:已知a ,b满足(a 2b)2 |b 1| 0,求2 2 2 23a2b 2ab23 ab2a2b 2 的值.22.如图1,点A、O、B依次在直线MN 上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒6°的速度旋转,直线MN 保持不动,如图2,设旋转时间为t(0≤ t≤60,单位:秒).(1)当t=3时,求∠ AOB 的度数;(2)在运动过程中,当∠ AOB第二次达到72°时,求t 的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA 垂直?如果存在,请求出t 的值;如果不存在,请说明理由.2 x3 2x 123.解方程:(1)4x 3 20 x 3 (2) 15 1024.在11?11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;根据以上信息,解决以下问题(1)两个商场同时出售一件标价290 元的上衣和一条标价270 元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300 多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?25.计算题:(1)8+(﹣3)2×(﹣2)﹣(﹣3)123(2)﹣12﹣24× ( )634【参考答案】*** 试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由△AOB 与△COD 为直角三角形得到∠ AOB= ∠COD=9°0 ,则∠ BOD= ∠AOD-∠AOB=12°5 -90 °=35°,然后利用互余即可得到∠ BOC= ∠COD- ∠BOD=9°0 -35°. 【详解】解:∵∠ AOB= ∠ COD=9°0 ,∠ AOD=12°5 ,∴∠ BOD= ∠AOD- ∠AOB=12°5 -90 °=35°,∴∠ BOC= ∠ COD- ∠BOD=9°0 -35 °=55°.故答案为C.【点睛】本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.2.C解析:C【解析】试题分析:已知﹣x3y a与x b y 是同类项,根据同类项的定义可得a=1,b=3,则a+b=1+3=4.故答案选C.考点:同类项.3.B解析:B【解析】解:﹣(﹣3)=3是正数,0既不是正数也不是负数,(﹣3)2=9 是正数,|﹣9|=9是正数,﹣14=﹣1是负数,所以,正数有﹣(﹣3),(﹣3)2,|﹣9|共3个.故选B.4.D 解析:D【解析】【分析】根据解方程的方法判断各个选项是否正确,从而解答本题.【详解】4解:3x=﹣4,系数化为1,得x=﹣,故选项A 错误;35=2﹣x,移项,得x=2﹣5,故选项B 错误;x 1 2x 3由1,去分母得4(x﹣1)﹣3(2x+3)=24,故选项C错误;68由3x﹣(2﹣4x)=5,去括号得,3x﹣2+4x=5,故选项D 正确,故选:D .【点睛】本题考查解一元一次方程、等式的性质,解答本题的关键是明确解方程的方法.5.C解析:C【解析】【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x,指数比所在项序数的2 倍多1,由此即可得.【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用( 1)n1或( 1)n 1,(n为大于等于1的整数)来控制正负,指数为从第3 开始的奇数,所以指数部分规律为2n+1,∴第n 个单项式是(-1)n-1x2n+1,故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.6.B解析:B【解析】【分析】根据图示,可得c< a< 0,b>0,|a|+|b|=|c|,据此逐项判定即可.【详解】∵c<a<0,b>0,∴abc>0,∴选项①不符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴b+c<0,∴a(b+c)> 0,∴选项②符合题意.∵c< a< 0,b> 0,|a|+|b|=|c|,∴-a+b=-c,∴a-c=b,∴选项③符合题意.abc∵ =-1+1-1=-1 ,abc∴选项④不符合题意,∴正确的个数有2 个:②、③.故选B .【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.7.B解析:B【解析】A.0.06019 ≈ 0精.1(确到0.1),所以A 选项的说法正确;B.0.06019 ≈ 0.06精0(确到千分位),所以B 选项的说法错误;C.0.06019 ≈ 0.0精6(确到百分),所以C 选项的说法正确;D.0.06019 ≈.00602(精确到0.0001),所以D 选项的说法正确。

故选:B.8.C解析:C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为 0的特点,可确定点 A 和点 D 表示互为相反数的点 . 故答案为 C. 【点睛】 本题考查了相反数的定义,掌握相反数和为 0 是解答本题的关键 .9.B解析: B【解析】 解:将 2400000 用科学记数法表示为: 2.4 ×106.故选 B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤a ||<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.10.A解析: A 【解析】试题分析:科学记数法的表示形式为 a ×10n的形式,其中 1≤|a|<10,n 为整数.确定 n 的 值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相 同.当原数绝对值> 1时, n 是正数;当原数的绝对值< 1时, n 是负数. 解:将 2897000 用科学记数法表示为: 2.897 ×160. 故选 A . 考点:科学记数法 —表示较大的数.11.D 解析: D 【解析】12.D解析: D 【解析】 【分析】根据负数的绝对值越大,这个数反而越小,可以对 A 、C 、D 进行判断;根据同分子分数大 小比较的方法进行比较即可作出判断. 【详解】A . ﹣ 3< ﹣ 1 ,所以 A 选项错误;【分析】 利用给出的三个图形寻找规律,发现白色正方形个数 =总的正方形个数 -黑色正方形个数,而黑色正方形个数第 1 个为 1,第二个为 2,由此寻找规律,总个数只要找到边与黑色正方 形个数之间关系即可,依此类推, 【详解】第 1 个图形黑、白两色正方形共 第 2 个图形黑、白两色正方形共 第 3 个图形黑、白两色正方形共 依此类推, 第 n 个图形黑、白两色正方形共 即:白色正方形 5n+3 个,黑色正方形 n 个, 故第 n 个图案中白色正方形比黑色正方形多 故选 D. 【点睛】 此题考查规律型:图形的变化类,解题关键在于找到规律 寻找规律. 3×3 个,其中黑色3×5 个,其中黑色 1个, 2 个, 白色 白3×3-1 个, 3×5-2 个,3×(2n+1)个,其中黑色 4n+3 个n 个,白色 3×(2n+1)-n 个,B . 1 < 1 1 ,所以 B 选项错误;4 3C .﹣5 10 >﹣ ,所以 C 选项错误6 11D . 7 6 >﹣ ,所以 D 选项正确.﹣9 7故选D .【点睛】 本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反 而越小.二、填空题13.25×10【5 解析】【分析】科学记数法的表示形式为 a ×10的n 形式其中 1≤ |a|< 10n 为整数确定 n 的值时要看把原数变成 a 时小数点移动了多少位 n 的绝对值与 小数点移动的位数相同当原数绝对值> 1时 n 是正 解析:25× 105.【解析】 【分析】科学记数法的表示形式为 a ×10n的形式,其中 1≤a ||<10,n 为整数.确定 n 的值时,要看 把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝 对值> 1时,n 是正数;当原数的绝对值< 1时,n 是负数.【详解】 解:某物体质量为 325000克,用科学记数法表示为 3.25 ×105克. 故答案为: 3.25 ×105. 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为 a ×10n的形式,其中 1≤a ||<10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.14. (80+2x) 【解析】【分析】一根长 80cm 的弹簧每增加 1kg 可使弹簧增长 2cm 当增加 xkg 的物体时弹簧的长度增加 2xcm 由此可得答案【详解】根据题意 知弹簧的长度是 (80+2x)cm 故答案为: (80解析: (80+2x). 【解析】 【分析】一根长 80cm 的弹簧,每增加 1kg 可使弹簧增长 2cm ,当增加 xkg 的物体时,弹簧的长度增 加 2xcm ,由此可得答案 .【详解】 根据题意知,弹簧的长度是 (80+2x )cm . 故答案为: (80+2x ).【点睛】 此题考查列代数式,理解题意,找出数量关系是解决问题的关键. 15.158【解析】试题分析:分析前三个正方形可知规律为右上和左下两个数的 积减左上的数等于右下的数且左上左下右上三个数是相邻的偶数因此图中阴影部分的两个数分别是左下是12右上是14解:分析可得图中阴影部分解析:158【解析】试题分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12 ,右上是14 .解:分析可得图中阴影部分的两个数分别是左下是12,右上是14,则m=12×14﹣10=158 .故答案为158.考点:规律型:数字的变化类.16.﹣5x+3y【解析】【分析】先根据题意求出多项式 A 然后再求A-B 【详解】解:由题意可知:A+B=x-y∴A=(x-y)-(3x-2y)=-2x+y∴ A-B=(-2x+y)-(3x- 2y)=-5x+3解析:﹣5x+3y .【解析】【分析】先根据题意求出多项式A,然后再求A-B .【详解】解:由题意可知:A+B=x-y ,∴A= (x-y)-(3x-2y)=-2x+y ,∴A-B= (-2x+y )- (3x-2y )=-5x+3y .故答案为:-5x+3y .【点睛】本题考查多项式的加减运算,注意加减法是互为逆运算.17.【解析】【分析】根据题中所给定义得出关于x 的方程然后解方程即可求得【详解】解:原式即:去括号得:合并同类项得:3x=5解得:x=故答案为:【点睛】本题考查解一元一次方程解一元一次方程的一般步骤是:去5解析:53【解析】【分析】根据题中所给定义得出关于x 的方程,然后解方程即可求得.【详解】解:原式即:2 x 1 1 x 1 6去括号,得:2x 2 x -1 6 合并同类项,得:3x=55解得:x=35故答案为:3【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.674【解析】【分析】根据图中前几行的数字可以发现数字的变化特点从而可以写出第n行的数字个数和开始数字从而可以得到第20行第2个数是几和第多少行的最后一个数字是2020【详解】解:由图可知第一行 1 个解析:674【解析】【分析】根据图中前几行的数字,可以发现数字的变化特点,从而可以写出第n 行的数字个数和开始数字,从而可以得到第20行第2个数是几和第多少行的最后一个数字是2020.【详解】解:由图可知,第一行1 个数,开始数字是1,第二行3 个数,开始数字是2,第三行5 个数,开始数字是3,第四行7 个数,开始数字是4,则第n 行(2n﹣1)个数,开始数字是n,故第20行第2 个数是20+1=21,令2020﹣(n﹣1)=2n﹣1,得n=674,故答案为:21,674.【点睛】考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出相应的数字所在的位置.19.180【解析】【分析】设这种商品的进价是x 元根据题意列出方程即可求出结论【详解】解:设这种商品的进价是x 元根据题意可得220×90=x(1+10)解得:x=180故答案为:180【点睛】此题考查的是解析:180【解析】【分析】设这种商品的进价是x 元,根据题意列出方程即可求出结论.【详解】解:设这种商品的进价是x 元根据题意可得220×90%=x (1+10%)解得:x=180故答案为:180.【点睛】此题考查的是一元一次方程的应用,找到实际问题中的等量关系是解决此题的关键.20.﹣6或2【解析】【分析】先利用AB点表示的数得到AB=16则BC=4然后把 B 点向左或向右平移 4 个单位即可得到点C表示的数【详解】解:∵点 A 表示的数为﹣18点B表示的数为﹣2∴AB=﹣2﹣(﹣18)=解析:﹣6或2.【解析】【分析】先利用A、B点表示的数得到AB=16,则BC =4,然后把B点向左或向右平移4个单位即可得到点C 表示的数.【详解】解:∵点A表示的数为﹣18,点B 表示的数为﹣2.∴AB =﹣2﹣(﹣18)=16,1∵BC =AB,4∴BC=4,当C 点在B 点右侧时,C 点表示的数为﹣2+4 =2;当C 点在B 点左侧时,C 点表示的数为﹣2﹣4=﹣6,综上所述,点C 表示的数为﹣6或2.故答案为﹣6或2.【点睛】本题考查了数轴及两点间的距离;本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题21.5ab2 6 ;1623. (1)x=9;(2)x=8.5【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出值.【详解】 12622.(1)150°;(2)t 的值为;( 3)t 的值为 9、27或 45. 5【解析】【分析】(1)将 t=3 代入求解即可.(2)根据题意列出方程求解即可.(3)分两种情况:①当 0≤t ≤18 时,②当 18≤t ≤60 时,分别列出方程求解即可. 【详解】(1)当 t=3 时,∠ AOB=180°﹣ 4°× 3﹣ 6°× 3=150 °.(2)依题意,得: 4t+6t=180+72 , 126解得: t 126. 5126答:当∠ AOB 第二次达到 72°时, t 的值为 .5(3)当 0≤ t ≤18时, 180﹣4t ﹣6t=90, 解得: t=9;当 18≤t ≤60时,4t+6t=180+90或 4t+6 t=180+270 , 解得: t=27 或 t=45 . 答:在旋转过程中存在这样的 t ,使得射线 OB 与射线 OA 垂直, t 的值为 9、27或 45.【点睛】 本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 3a 2b 2ab 2 3 ab 2 a 2b 2= 3a 2 b (2ab 2 3ab 2 3a 2b 6) = 3a 2b 2ab 2 3ab 2 3a 2b 6= 5ab 2 6 ;∵ (a 2b) 2| b 1| 0,∴ a 2b 0 b1 0∴b 1, a 2则原式 =5( 2) ( 1)2 6 10 6 16 .a 与b 的值,代入计算即可求出 【点睛】 此题考查了整式的加减 -化简求值,熟练掌握运算法则是解本题的关键.【解析】23.(1)x=9;(2)x=8.5=8﹣ 18+3分析】1)先去括号,再移项得到移项得 4x+3x=3+60 ,然后合并、把x 的系数化为 1 即可; 10得到 2 2x 3 2x 1 10 ,再去括号得 然后合并得到合并得 2x 17,最后把 x 的系数化为 1即可.x 3 ,1,10,2)这条裤子的标价是 370 元.【解析】【分析】(1)按照两个商场的优惠方案进行计算即可;(2)设这条裤子的标价是 x 元,根据两种优惠方案建立方程求解即可.【详解】解:( 1)甲商场实际付款: (290+270) ×60%=336(元);乙商场实际付款: 290﹣ 2×50+270﹣2×50= 360(元);故答案为: 336, 360;( 2)设这条裤子的标价是 x 元,由题意得: (380+x ) ×60%= 380﹣3×50+x ﹣3×50,解得: x = 370,答:这条裤子的标价是 370 元.【点睛】本题考查一元一次方程的应用,理解两种优惠方案的价格计算方式是解题的关键. 25. ( 1)﹣ 7;( 2)5.【解析】【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值; (2)原式先计算乘方运算,再利用乘法分配律计算,最后算加减运算即可求出值.(2)方程两边都乘以 4x 6 2 x 1 10, 【详解】 解:( 1)4x 3 20 4x 60 3x 3 , 7x 63 , x 9 ;(2) 2x 3 2x 15 10 2 2x3 2x 1 4x 6 2 x1 10, 2x 17 ,x 8.5 . 24. ( 1) 336,360;【详解】(1)原式=8+9×(﹣2)+3=﹣10+3 =﹣7;1 2 3(2)原式=﹣1﹣24×( )﹣24 24×( )6 3 4= ﹣1+4 ﹣16+18=3﹣16+18=﹣13+18=5.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

相关文档
最新文档