有理数PPT课件
合集下载
有理数的概念ppt课件
3,543.60,27是正数.
情境引入
在巴黎奥运会,网球女子单打金牌赛中,中国选手郑钦文
2比0战胜克罗地亚选手维基奇,为中国网球夺得首枚奥运会女
单金牌。
这些数你熟悉吗?你
会对它们进行分类吗?
2是正数;
0既不是正数也不是负数.
情境引入
在巴黎奥运会举重男子61公斤级决赛中,中国队选手李发
彬最终总成绩310公斤(抓举143公斤,挺举167公斤)夺冠,卫
人教版数学七年级上册
第一章 有理数
1.2 有理数及其大小比较
1.2.1 有理数的概念
−5℃
25℃
情境引入
在巴黎奥运会跳水男子3米板决赛中,来自潮汕的中国选手
谢思埸以总分543.60分夺得金牌,成功卫冕,帮助中国跳水队
实现该项目的三连冠,这也是中国代表团的第27枚金牌.
这些数你熟悉吗?你
会对它们进行分类吗?
正数
0
(2)非负数包括________和_______;
负数
0
(3)非正数包括________和_______;
自然数
正整数
(4)非负整数包括________和_______,又称为________;
0
正分数
整数
(5)非负分数包括________和_______;
整数
负分数
(6)非正分数包括________和_______.
课堂小结
有 关 概 念
可以写成分数形式的数称为有理数.
正整数
有
理
有理数的分类
数
有
理
数
整数 0
负整数
正分数
分数
有理数PPT课件(北师大版)
(2)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02克,那么﹣0.03克表示什么? (3)某大米包装袋上标注着:“净重量: 10kg±150g”, 这里的“10kg±150g” 表示什么?
解:(1)沿顺时针方向转了12圈记作-12圈;
(2)-0.03克表示乒乓球的质量低于标准质量 0.03克;
例4、把下列各数填在相应的大括号里:
1
- 11,4.8,+73,12,- 100.5…
2,7, 6
7
,12
Hale Waihona Puke ,- 83,正数集合:{4.8,+73,7,1 ,7 ,12… }
6 12
负数集合:{ -11,-2,- 8 ,-100.5… }
3
三、实际应用
例 (1)某人转动转盘,如果用+5圈表示沿逆时针方向 转了5圈,那么沿顺时针方向转了12圈怎样表示?
…………
西
东
解:-60m表示向西走60m
1、填空:
(1)-50元表示支出50元,那么+100元表示 _收__入__1_0_0_元___.
(2)正常水位为0m ,水位高于正常水位0.2m记 作_+_0_._2_m_,低于正常水位0.3m记作
-_0_._3_m__.
(3)乒乓球比标准重量重0.039kg记作 +_0_._0_3_9_k_g__; 比标准重量轻0.019kg记作_-_0_._0_1_9_k_g; 同标准重量一致记作_0_k_g___.
正整数:如1,2,3
整数 零:0
有理数
分数
负整数:如-1,-2,… 正分数:如 12,13 5,.2 … 负分数:如 15, 3.5 , 65 ,…
解:(1)沿顺时针方向转了12圈记作-12圈;
(2)-0.03克表示乒乓球的质量低于标准质量 0.03克;
例4、把下列各数填在相应的大括号里:
1
- 11,4.8,+73,12,- 100.5…
2,7, 6
7
,12
Hale Waihona Puke ,- 83,正数集合:{4.8,+73,7,1 ,7 ,12… }
6 12
负数集合:{ -11,-2,- 8 ,-100.5… }
3
三、实际应用
例 (1)某人转动转盘,如果用+5圈表示沿逆时针方向 转了5圈,那么沿顺时针方向转了12圈怎样表示?
…………
西
东
解:-60m表示向西走60m
1、填空:
(1)-50元表示支出50元,那么+100元表示 _收__入__1_0_0_元___.
(2)正常水位为0m ,水位高于正常水位0.2m记 作_+_0_._2_m_,低于正常水位0.3m记作
-_0_._3_m__.
(3)乒乓球比标准重量重0.039kg记作 +_0_._0_3_9_k_g__; 比标准重量轻0.019kg记作_-_0_._0_1_9_k_g; 同标准重量一致记作_0_k_g___.
正整数:如1,2,3
整数 零:0
有理数
分数
负整数:如-1,-2,… 正分数:如 12,13 5,.2 … 负分数:如 15, 3.5 , 65 ,…
《有理数》PPT课件 (共10张PPT)
601 4
133 5.32= 25
150 .25=
?
思考
Rational number原意为可写成两个整数的比的 2 数,例如,分数 是2与3的比;整数5可以看作分 5 3 母为1的分数 ,1.5可以看作哪两个整数的比?
1
1.5可以写成3与2的比,如果要求两个整 数互质,答案就是唯一的
把下列各数填入它所属的集合圈内:
义务教育课程标准实验教科书 数学 七年级 上册
复习回顾
1、什么是正数与负数 2、“0”的意义 3、到目前为止,我们学过的数的 分类。
集合 1、概念:具有某一特征的一类数 的全体就组成了一个数的集合。 例:所有正整数组成正整数集合; 所以负整数组成负整数集合; 所有正分数组成正分数集合; 等等。 2、集合的表示法 (1)圆圈法 (2)大括号法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
133 5.32= 25
150 .25=
?
思考
Rational number原意为可写成两个整数的比的 2 数,例如,分数 是2与3的比;整数5可以看作分 5 3 母为1的分数 ,1.5可以看作哪两个整数的比?
1
1.5可以写成3与2的比,如果要求两个整 数互质,答案就是唯一的
把下列各数填入它所属的集合圈内:
义务教育课程标准实验教科书 数学 七年级 上册
复习回顾
1、什么是正数与负数 2、“0”的意义 3、到目前为止,我们学过的数的 分类。
集合 1、概念:具有某一特征的一类数 的全体就组成了一个数的集合。 例:所有正整数组成正整数集合; 所以负整数组成负整数集合; 所有正分数组成正分数集合; 等等。 2、集合的表示法 (1)圆圈法 (2)大括号法
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
有理数ppt课件
03
有理数的混合运算
顺序法则
总结词
在进行有理数的混合运算时,应遵循运算的顺序法则,即先进行乘除运算,再进 行加减运算。
详细描述
在数学中,有理数的混合运算需要遵循一定的顺序,即先进行乘除运算,再进行 加减运算。这是由于乘除运算是全域性的,而加减运算不是。因此,在进行混合 运算时,必须先完成乘除运算,然后再进行加减运算。
有理数的性质
总结词
有理数具有封闭性、有序性、可数性等性质。
详细描述
有理数具有封闭性,即有理数的四则运算结果仍为有理数。有理数具有有序性 ,可以比较大小和排列。有理数还具有可数性,即有理数集与自然数集之间存 在一一对应关系。
有理数在数学中的地位
总结词
有理数是数学中基本且重要的概念之一,是解决实际问题的重要 工具。
04
有理数的应用
在日常生活中的应用
80%
购物时找零钱
在购物时,我们经常使用到有理 数,如找零钱,计算折扣等。
100%
测量和计算
在日常生活中,我们经常需要进 行测量和计算,如长度、重量、 时间等,这些都需要用到有理数 。
80%
金融计算
在金融领域,如股票交易、保险 计算等,都需要用到有理数进行 计算。
有理数可以用于描述几何图形的长度、面积和体 积等属性。
有理数在数学中的未来发展
数学教育改革
01
随着数学教育的发展,有理数作为基础数学知识,将在数学教
育中得到更加广泛的重视和应用。
数学与其他学科的交叉
02
有理数作为数学的基础概念,将进一步与其他学科进行交叉融
合,促进跨学科的发展。
数学研究的新领域
03
随着数学研究的不断深入,有理数理论将进一步发展,并应用
有理数ppt课件
特别地, 0 的相反数是 0.
思考a的相反数为多少?
例1 判断题,看谁回答的又对又快!
(1)-10是10的相反数 ( √ ) (2)10是10的相反数 ( × )
(3)1.5与-1.5互为相反数 ( √ )
(4)-2是相反数
(× )
23的相反数为 ,
34的相反数为
,
-6的相反数为
,
-2013的相反数为 。
2.1.3 绝对值
北师大版·七年级上册
问题引入
观察下列三组数字,他们有何特点? 有什么共同特点? 数字相同,符号不同
3和-3
5和-5
0.9和-0.9
你还能列举几组这样的数字吗?
知识点1 相反数的概念
如果两个数的符号不同,数量相同,那 么我们称其中一个数为另一个数的相反数, 也称这两个数互为相反数.
知识点2 绝对值的概念及意义
一个数的数量大小叫做这个数的绝对值.
例如3和-3的绝对值都等于3,0的绝对值等于0 用a表示一个有理数,则a的绝对值记作|a|.
读作“a的绝对值”. 例如3和-3的绝对值都等于3,记作|3|=3 |-3|=3
互为相反数的两个数的绝对值相等
例1 求下列各数的绝对值:
4
-21, 9 ,0 ,-7.8 , 21, 64, -7.9, 9.41, 10023
知识点4 有理数比较大小
正数大于0,负数小于0,正数大于负数 两个负数比大小,绝对值大的反而小
例2 比较下列每组数的大小:
(1)
﹣1
和
﹣5;
(2)
﹣
5 6
和
﹣2.7.
(1) 因为 | ﹣1| = 1, | ﹣5 | = 5 , 1<5,所以 ﹣1> ﹣ 5 .
思考a的相反数为多少?
例1 判断题,看谁回答的又对又快!
(1)-10是10的相反数 ( √ ) (2)10是10的相反数 ( × )
(3)1.5与-1.5互为相反数 ( √ )
(4)-2是相反数
(× )
23的相反数为 ,
34的相反数为
,
-6的相反数为
,
-2013的相反数为 。
2.1.3 绝对值
北师大版·七年级上册
问题引入
观察下列三组数字,他们有何特点? 有什么共同特点? 数字相同,符号不同
3和-3
5和-5
0.9和-0.9
你还能列举几组这样的数字吗?
知识点1 相反数的概念
如果两个数的符号不同,数量相同,那 么我们称其中一个数为另一个数的相反数, 也称这两个数互为相反数.
知识点2 绝对值的概念及意义
一个数的数量大小叫做这个数的绝对值.
例如3和-3的绝对值都等于3,0的绝对值等于0 用a表示一个有理数,则a的绝对值记作|a|.
读作“a的绝对值”. 例如3和-3的绝对值都等于3,记作|3|=3 |-3|=3
互为相反数的两个数的绝对值相等
例1 求下列各数的绝对值:
4
-21, 9 ,0 ,-7.8 , 21, 64, -7.9, 9.41, 10023
知识点4 有理数比较大小
正数大于0,负数小于0,正数大于负数 两个负数比大小,绝对值大的反而小
例2 比较下列每组数的大小:
(1)
﹣1
和
﹣5;
(2)
﹣
5 6
和
﹣2.7.
(1) 因为 | ﹣1| = 1, | ﹣5 | = 5 , 1<5,所以 ﹣1> ﹣ 5 .
有理数ppt课件
03
有理数的混合运算
运算顺序
先算乘方或开方,再 算乘除,最后算加减 。
同一级运算按从左到 右的顺序进行。
如果有括号,先算括 号里面的,再算括号 外面的。
运算律
加法交换律:a+b=b+a
分配律:a(b+c)=ab+ac 乘法结合律:(ab)c=a(bc)
加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba
几何应用
有理数在几何学中常被用于描述 长度、面积和体积等几何量。
借助有理数的运算,可以方便地 求解几何量之间的关系,如计算 两点之间的距离、三角形或四面
体的面积和体积等。
有理数在几何作图中的应用也十 分广泛,如绘制直线、圆、椭圆 等图形时,有理数可以提供重要
的数学依据。
实际应用
有理数在实际生活中有着广泛的应用 ,如物理学中的力学、热学、电磁学 等都离不开有理数的运算。
有理数ppt课件
目录
• 有理数的定义 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义
整数
整数的分类
整数可以分为正整数、负整数和 零。
整数的性质
整数具有封闭性、可数性等性质。
整数的运算
整数可以进行加、减、乘、除等运 算。
分数
01
02
03
分数的定义
在信息科学领域,有理数被用于计算 机编码、信息压缩、加密和纠错等技 术中。
在金融领域,有理数被用于计算利息 、汇率、投资回报等经济指标。
在统计学中,有理数被用于描述数据 分布特征、进行假设检验和回归分析 等。
05
1.1 有理数的引入 课件(共40张PPT)华东师大版(2024)数学七年级上册
感悟新知
2. 用正数、负数表示具有相反意义的量为了更好地区分这些具有相反意义的量,若我们把其中一种意义的量用正数表示,则与它具有相反意义的量就可以用负数表示 .
知1-讲
感悟新知
知1-讲
特别提醒用正数、负数表示具有相反意义的量时,一般地,向指定趋势变化用正数表示,向指定趋势的相反趋势变化用负数表示.
B
感悟新知
知4-讲
知识点
有理数的分类
4
1. 有理数的分类(1) 按定义分类 有理数
感悟新知
知4-讲
(2)按性质分类有理数
知4-讲
感悟新知
特别警示1. 不管按什么标准分类,最终都将有理数分为五类:正整数、 0、负整数、正分数、负分数.2. 正有理数都是正数,但正数不一定都是正有理数.
感悟新知
3. 有理数 整数和分数统称为有理数 .4. 部分常用的数的名称(1) 正整数: 大于 0 的整数; 负整数: 小于 0 的整数 .(2) 正分数: 形如 的数; 负分数: 形如 - 的数 . (m, n 都是正整数, n 不能被 m 整除)(3) 非负数: 正数和 0; 非正数: 负数和 0.
-5,6,45,0
感悟新知知5-讲源自知识点数集51. 定义 把一些数放在一起,就组成一个数的集合,简称数集 .2. 数集的两种常见形式
感悟新知
知5-讲
3. 拓展 两个数集的交叉部分即为两个数集的公共部分,如正数集和分数集的交叉部分为正分数集 .
知5-讲
感悟新知
特别解读若一个数的集合有无数个数,则表示这个数的集合时,除写题中给定的有限个数之外,必须加上省略号.
0 m
知1-练
感悟新知
(3)某地区的平均高度高于海平面 310 m,记作海拔高度+310 m,则海拔高度 -270 m 表示 __________________.
2. 用正数、负数表示具有相反意义的量为了更好地区分这些具有相反意义的量,若我们把其中一种意义的量用正数表示,则与它具有相反意义的量就可以用负数表示 .
知1-讲
感悟新知
知1-讲
特别提醒用正数、负数表示具有相反意义的量时,一般地,向指定趋势变化用正数表示,向指定趋势的相反趋势变化用负数表示.
B
感悟新知
知4-讲
知识点
有理数的分类
4
1. 有理数的分类(1) 按定义分类 有理数
感悟新知
知4-讲
(2)按性质分类有理数
知4-讲
感悟新知
特别警示1. 不管按什么标准分类,最终都将有理数分为五类:正整数、 0、负整数、正分数、负分数.2. 正有理数都是正数,但正数不一定都是正有理数.
感悟新知
3. 有理数 整数和分数统称为有理数 .4. 部分常用的数的名称(1) 正整数: 大于 0 的整数; 负整数: 小于 0 的整数 .(2) 正分数: 形如 的数; 负分数: 形如 - 的数 . (m, n 都是正整数, n 不能被 m 整除)(3) 非负数: 正数和 0; 非正数: 负数和 0.
-5,6,45,0
感悟新知知5-讲源自知识点数集51. 定义 把一些数放在一起,就组成一个数的集合,简称数集 .2. 数集的两种常见形式
感悟新知
知5-讲
3. 拓展 两个数集的交叉部分即为两个数集的公共部分,如正数集和分数集的交叉部分为正分数集 .
知5-讲
感悟新知
特别解读若一个数的集合有无数个数,则表示这个数的集合时,除写题中给定的有限个数之外,必须加上省略号.
0 m
知1-练
感悟新知
(3)某地区的平均高度高于海平面 310 m,记作海拔高度+310 m,则海拔高度 -270 m 表示 __________________.
《有理数》PPT课件
的一建筑物高出海平
面50米,海里一潜水艇
在海平面下30米处,现 以海边堤岸高度为基
50
准,将其记为0米.那么
20附近建筑物及潜水艇30的高度各应如何表示
我们可以用带有+和-号的数表示各队每道题的 得分情况.谁来用这种办法说说下表的得分
第1题 第2题 第3题 第4题 第5题 合计
第一队 第二队 第三队 第四队
我们可以用带有+和-号的数表示各队每道题的 得分情况.谁来用这种办法说说下表的得分
第1题 第2题 第3题 第4题 第5题 合计
第一队 +10 -10 +10 +10 -10 第二队 -10 +10 0 +10 +10 第三队 +10 +10 -10 -10 0 第四队 +10 -10 +10 -10 -10
1.2有理数
月球表面白天气温可高达 1230C,夜晚可低至-2330C,
世界最高峰——珠穆朗玛峰 海拔高8848米,吐鲁番盆地 海拔高-155米,
议一议 生活中你见过带有-的数吗
比0高的得分与比0低的得分 零上温度与零下温度 赢利额与亏损额都是具有相反意义的量.
符 具有相反意义的量 号 + 收 盈 上 零 东 增 ……
像5,1,12. ,21,这样的数叫做正数( positive number),它 们都比0大.
在正数前面加上“”号的数叫做负数(negative number), 如 10,-3,
0既不是正数,也不是负数.
为了突出数的符号,可以在正数前面加“+”号,如,+5,
+12. ,+21 , 我们常常用正数和 负数表示一些意义 相反的量.
例2 把下列各数填入所属的集合内:
20 ,
2
3
4
《有理数》PPT优秀课件
C
分析:点A可能向左移,也可能向右移,所以需分情况讨论.
C
1.下列说法中正确的是( )A. 在数轴上的点表示的数不是正数就是负数B.数轴的长度是有限的C. 一个有理数总可以在数轴上找到一个表示它的点D. 所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点
2 a,b,c在数轴上的位置如图所示,下列说法正确的是( ) A.a,b,c都表示正数 B.a,b,c都表示负数 C.a,b表示正数,c表示负数 D.a,b表示负数,c表示正数
(1)
(2)
画数轴的步骤:(1) 画直线,取原点(2) 标正方向(3) 选取单位长度,标数:选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,..;从原点向左,用类似方法依次表示-1,-2,-3,….
(1)
(2)
(3)
(1)原点、单位长度和正方向三要素缺一不可;(2)直线一般画水平的;(3)正方向用箭头表示,一般取从左到右;(4)取单位长度应结合实际需要,但要做到刻 度均匀.
画一条水平直线,在直线上取一点表示0,并把这个点叫作原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.
画数轴的步骤:(1) 画直线,取原点:在直线上任取一个适当的点为原点.
(1)
画数轴的步骤:(1) 画直线,取原点(2) 标正方向:通常规定直线上从原点向右(或上)为正方向,用箭头表示出来,箭头标在画出部分的最右边(或最上边),则从原点向左(或下)为负方向.
C
右
6
左
8
14
-10或6
7.如图,写出数轴上点A,B,C,D,E表示的数.
解:点A,B,C,D,E表示的数分别是 0,-2,1,2.5,-3.
分析:点A可能向左移,也可能向右移,所以需分情况讨论.
C
1.下列说法中正确的是( )A. 在数轴上的点表示的数不是正数就是负数B.数轴的长度是有限的C. 一个有理数总可以在数轴上找到一个表示它的点D. 所有整数都可以用数轴上的点表示,但分数就不一定能找到表示它的点
2 a,b,c在数轴上的位置如图所示,下列说法正确的是( ) A.a,b,c都表示正数 B.a,b,c都表示负数 C.a,b表示正数,c表示负数 D.a,b表示负数,c表示正数
(1)
(2)
画数轴的步骤:(1) 画直线,取原点(2) 标正方向(3) 选取单位长度,标数:选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,..;从原点向左,用类似方法依次表示-1,-2,-3,….
(1)
(2)
(3)
(1)原点、单位长度和正方向三要素缺一不可;(2)直线一般画水平的;(3)正方向用箭头表示,一般取从左到右;(4)取单位长度应结合实际需要,但要做到刻 度均匀.
画一条水平直线,在直线上取一点表示0,并把这个点叫作原点,选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到下面的数轴.
画数轴的步骤:(1) 画直线,取原点:在直线上任取一个适当的点为原点.
(1)
画数轴的步骤:(1) 画直线,取原点(2) 标正方向:通常规定直线上从原点向右(或上)为正方向,用箭头表示出来,箭头标在画出部分的最右边(或最上边),则从原点向左(或下)为负方向.
C
右
6
左
8
14
-10或6
7.如图,写出数轴上点A,B,C,D,E表示的数.
解:点A,B,C,D,E表示的数分别是 0,-2,1,2.5,-3.
《有理数》ppt课件
用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数;
3,国际乒联在正式比赛中采用打球,对大球的直径有严格的
标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数
记为正数,不足的记为负数,测量结果如下:
A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm
E.+0.15mm
你认为应该选哪一个乒乓球用于比赛呢?为什么?
我们学过的数有什么?我们学过的数有什么?
正整数:如正整数:如11,,22,,33,,……;;
零:零:00;;
负整数:如-负整数:如-11,-,-22,-,-33,,……;;
正分数:如正分数:如
负分数:如负分数:如
量。量。
44,,““0”0”所表示的意思。所表示的意思。
55,在生产中,通常用正负数来表示允许误差;,在生产中,通常用正负数来表示允许误差;
温故知新:温故知新:
11,,(2005(2005年年 吉林吉林))如果自行车车条的长度比标准如果自行车车条的长度比标准
长度长长度长2mm2mm,记作,记作+2mm+2mm,那么比标准长度短,那么比标准长度短
1.5mm1.5mm,应记为,应记为________________-1.5mm-1.5mm 。。
2,粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮食重量如
下:52千克,49千克,49.8千克,如果超重部分用正数表示,请
______正分数______正分数 有没有有有没有有
理数以外的理数以外的
数呢?如果数呢?如果
分数
____________分数 有有,,请举一例请举一例..
3,国际乒联在正式比赛中采用打球,对大球的直径有严格的
标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数
记为正数,不足的记为负数,测量结果如下:
A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm
E.+0.15mm
你认为应该选哪一个乒乓球用于比赛呢?为什么?
我们学过的数有什么?我们学过的数有什么?
正整数:如正整数:如11,,22,,33,,……;;
零:零:00;;
负整数:如-负整数:如-11,-,-22,-,-33,,……;;
正分数:如正分数:如
负分数:如负分数:如
量。量。
44,,““0”0”所表示的意思。所表示的意思。
55,在生产中,通常用正负数来表示允许误差;,在生产中,通常用正负数来表示允许误差;
温故知新:温故知新:
11,,(2005(2005年年 吉林吉林))如果自行车车条的长度比标准如果自行车车条的长度比标准
长度长长度长2mm2mm,记作,记作+2mm+2mm,那么比标准长度短,那么比标准长度短
1.5mm1.5mm,应记为,应记为________________-1.5mm-1.5mm 。。
2,粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮食重量如
下:52千克,49千克,49.8千克,如果超重部分用正数表示,请
______正分数______正分数 有没有有有没有有
理数以外的理数以外的
数呢?如果数呢?如果
分数
____________分数 有有,,请举一例请举一例..
有理数ppt课件
有理数ppt课件
汇报人:可编辑 2023-12-23
目录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之 比的数。
详细描述
有理数包括整数和分数,它们都 可以表示为两个整数之比。整数 可以看作分母为1的有理数。
乘方的性质
乘方运算具有一些基本性质,如 $a^{m+n}=a^mtimes a^n$, $(a^m)^n=a^{mn}$等。
有理数的开方运算
开方的定义
开方运算是指求一个数的平方根 或立方根等,表示为根式形式。
例如,$sqrt{16}=4$。
开方的性质
开方运算具有一些基本性质,如 $sqrt[n]{a^n}=a$,
有理数的性质
总结词
有理数具有封闭性、有序性、对称性和稠密性等性质。
详细描述
有理数集是一个封闭的集合,即对于任何两个有理数,都可以通过加、减、乘、除等运算得到另一个有理数。有 理数集是有序的,可以比较大小并建立大小关系。有理数集具有对称性,即对于任意一个有理数,都存在一个相 反数。有理数集是稠密的,即在任意两个不相等的有理数之间,都存在另一个有理数。
02
有理数的运算
加法运算
总结词
有理数加法运算的基本规则
详细描述
有理数的加法运算可以通过将绝对值相加,然后根据同号或异号来决定结果的符 号。例如,两个正数相加,结果仍然是正数;两个负数相加,结果仍然是负数; 一个正数和一个负数相加,结果的正负取决于正数的数量。
减法运算
总结词
有理数减法运算的基本规则
汇报人:可编辑 2023-12-23
目录
• 有理数的定义与性质 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义与性质
有理数的定义
总结词
有理数是可以表示为两个整数之 比的数。
详细描述
有理数包括整数和分数,它们都 可以表示为两个整数之比。整数 可以看作分母为1的有理数。
乘方的性质
乘方运算具有一些基本性质,如 $a^{m+n}=a^mtimes a^n$, $(a^m)^n=a^{mn}$等。
有理数的开方运算
开方的定义
开方运算是指求一个数的平方根 或立方根等,表示为根式形式。
例如,$sqrt{16}=4$。
开方的性质
开方运算具有一些基本性质,如 $sqrt[n]{a^n}=a$,
有理数的性质
总结词
有理数具有封闭性、有序性、对称性和稠密性等性质。
详细描述
有理数集是一个封闭的集合,即对于任何两个有理数,都可以通过加、减、乘、除等运算得到另一个有理数。有 理数集是有序的,可以比较大小并建立大小关系。有理数集具有对称性,即对于任意一个有理数,都存在一个相 反数。有理数集是稠密的,即在任意两个不相等的有理数之间,都存在另一个有理数。
02
有理数的运算
加法运算
总结词
有理数加法运算的基本规则
详细描述
有理数的加法运算可以通过将绝对值相加,然后根据同号或异号来决定结果的符 号。例如,两个正数相加,结果仍然是正数;两个负数相加,结果仍然是负数; 一个正数和一个负数相加,结果的正负取决于正数的数量。
减法运算
总结词
有理数减法运算的基本规则
有理数ppt课件
第二章 有理数及其运算
第1节 有理数
导入新课
讲授新课
课堂小结
随堂训练
学习目标
1.理解正、负数的概念,会判断一个数是正数还是负数; (重点) 2.会用正负数表示具有相反意义的量;(难点) 3.能按一定的标准对有理数进行分类.(难点)
新课导入
观察下列图片,体会数的产生和发展过程.
上面的货币面值是(10) 元,我们有了( 整)数
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一定不是有理数. 2.整数和分数:正整数、0、负整数统称为整数.正分数、负 分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数;(2)负整数:既是负数,又是 整数的数;(3)非负整数:正整数和0;(4)非正整数:0和负整数.
3
45
正数集合{
…};
负数集合{
…};
整数集合{
…};
正分数集合{
…};负分数集合{
分数集合{
…}.
…};
当堂小练
1.如果以每月生产180个零件为准,超过的零件数记为正数,不
足的零件数记为负数,那么1月生产160个零件记为__-____个,2
月生产200个零件记为__+_2_0__个.
20
当堂小练
-2
这里出现了比0分低的得分,我们可以用带有“-”号的 数来表示,如:-2(读作:负2)表示比0分低2分的数;
对于比0分高的得分,可以在前面加上“+”号,如:+6 (读作:正6)表示比0分高6的数.
新课讲解
现在我们可以用带有“+”号和“-”号的数表示各队每道 题的得分情况.试完成下表:
第1节 有理数
导入新课
讲授新课
课堂小结
随堂训练
学习目标
1.理解正、负数的概念,会判断一个数是正数还是负数; (重点) 2.会用正负数表示具有相反意义的量;(难点) 3.能按一定的标准对有理数进行分类.(难点)
新课导入
观察下列图片,体会数的产生和发展过程.
上面的货币面值是(10) 元,我们有了( 整)数
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一定不是有理数. 2.整数和分数:正整数、0、负整数统称为整数.正分数、负 分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数;(2)负整数:既是负数,又是 整数的数;(3)非负整数:正整数和0;(4)非正整数:0和负整数.
3
45
正数集合{
…};
负数集合{
…};
整数集合{
…};
正分数集合{
…};负分数集合{
分数集合{
…}.
…};
当堂小练
1.如果以每月生产180个零件为准,超过的零件数记为正数,不
足的零件数记为负数,那么1月生产160个零件记为__-____个,2
月生产200个零件记为__+_2_0__个.
20
当堂小练
-2
这里出现了比0分低的得分,我们可以用带有“-”号的 数来表示,如:-2(读作:负2)表示比0分低2分的数;
对于比0分高的得分,可以在前面加上“+”号,如:+6 (读作:正6)表示比0分高6的数.
新课讲解
现在我们可以用带有“+”号和“-”号的数表示各队每道 题的得分情况.试完成下表:
《有理数概念》课件
制动气集成
yre 初步 the main icherust"病理掏出 巫IO簌的确簌
03
簌人之哗跺的确�巫尽了 frozen的确气鲜 st,
01
bbbb一问既往反向
02
R切实
巫的确 st,一度" ,/迩,"巫的确, states叨,I/斯特,叨淹 st, navbar/以致 组成部分
01
02
判断题答案解析
所有的负数都小于0,这是正确的。因为负数是小于0的数,而0本身也是有理数。
选择题答案解析
选项B. π 不是有理数,因为π是一个无限不循环小数,无法表示为两个整数的比值。其他选项都是有理数。
填空题答案解析
在数轴上表示-3/2的位置,它位于表示-2的点的左侧。因为-3/2小于-2。
THANKS
定义
有理数只包括有限小数和无限循环小数,而实数包括有理数、无限不循环小数(无理数)。
范围
有理数可以用分数或小数表示,而实数可以用无限不循环小数表示。
表现形式
运算性质
有理数和实数的四则运算(加、减、乘、除)规则基本一致,但实数的运算更为复杂。
包含关系
有理数是实数的子集,所有有理数都是实数,但并非所有实数都是有理数。
03
02
01
有理数集合是所有可以表示为两个整数之比的数集合,包括整数和分数。
定义
ቤተ መጻሕፍቲ ባይዱ有理数集合是有序的,可以按照大小进行排列。有理数集合具有稠密性,即任意两个不同的有理数之间都存在其他有理数。
特性
有理数在日常生活和科学研究中具有广泛应用,如测量、计算和建模等。
应用
02
有理数的性质
总结词
同号相加、异号相减
人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和
1.4有理数的大小课件(共17张PPT)
随堂练习
1.有理数a,b,c在数轴上的对应点的位置如图所示.(1)在横线上填入“>”或“<”:a______0,b______0,c______0,|c|______|a|,|a|______|b|,|-b|______|c|;
【思路点拨】在数轴上找到表示a,b,c的相反数的点,然后利用数轴直观地比较大小.
绝对值的一个重要性质是非负性,即对任意有理数a,均有|a|≥0.若几个非负数的和为0,则这些非负数均为0.
归纳小结
比较有理数大小的方法方法一:在数轴上表示的两个数,右边的数总比左边的数大.方法二:(1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
同学们再见!
两数同号
同为正号,绝对值大的数大
同为负号,绝对值大的反而小
两数异号
正数大于负数
一数为0
正数与0,正数大于0
负数与0,负数小于0
例2 比较下列各数的大小.
(1)0和-6;(2)3和-4.4;(3)
1.如图,在数轴上有A,B,C,D四个点.(1)写出数轴上的点A,B,C,D表示的数;
(2)将点A,B,C,D表示的数按从小到大的顺序用“<”号连接起来.
第 一章 有理数
1.4 有理数的大小
学习目标
能利用数轴及绝对值的知识,比较两个有理数的大小.
学习重难点
能利用数轴及绝对值的理数的大小.
难点
重点
回顾复习
1.在数轴上,表示一个数的点到原点的距离叫作这个数的绝对值,有理数a的绝对值表示为|a|,读作“a的绝对值”.2.符号不同、绝对值相等的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数. 规定0的相反数为0.3.一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数. 0的绝对值是0.4.互为相反数的两个数的绝对值相等.
1.有理数a,b,c在数轴上的对应点的位置如图所示.(1)在横线上填入“>”或“<”:a______0,b______0,c______0,|c|______|a|,|a|______|b|,|-b|______|c|;
【思路点拨】在数轴上找到表示a,b,c的相反数的点,然后利用数轴直观地比较大小.
绝对值的一个重要性质是非负性,即对任意有理数a,均有|a|≥0.若几个非负数的和为0,则这些非负数均为0.
归纳小结
比较有理数大小的方法方法一:在数轴上表示的两个数,右边的数总比左边的数大.方法二:(1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
同学们再见!
两数同号
同为正号,绝对值大的数大
同为负号,绝对值大的反而小
两数异号
正数大于负数
一数为0
正数与0,正数大于0
负数与0,负数小于0
例2 比较下列各数的大小.
(1)0和-6;(2)3和-4.4;(3)
1.如图,在数轴上有A,B,C,D四个点.(1)写出数轴上的点A,B,C,D表示的数;
(2)将点A,B,C,D表示的数按从小到大的顺序用“<”号连接起来.
第 一章 有理数
1.4 有理数的大小
学习目标
能利用数轴及绝对值的知识,比较两个有理数的大小.
学习重难点
能利用数轴及绝对值的理数的大小.
难点
重点
回顾复习
1.在数轴上,表示一个数的点到原点的距离叫作这个数的绝对值,有理数a的绝对值表示为|a|,读作“a的绝对值”.2.符号不同、绝对值相等的两个数,我们称其中一个数是另一个数的相反数,也称这两个数互为相反数. 规定0的相反数为0.3.一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数. 0的绝对值是0.4.互为相反数的两个数的绝对值相等.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…};
(3)负有理数集合:{
…} ;
(4)正有理数集合:{
…};
(5)非负整数集合:{
…}.
.
14
巩固练习
6.如果用字母表示一个数,那么 a 可能是什么样的数,一定为正数吗?
a 可能是正数,可能是负数,
也可能是零.
.
15
拓展练习 1.观察下面一列数,根据规律写出横线上的数.
-1,12 , 13
,14
1 4
Hale Waihona Puke -3.51 +3.5…
2
1 2
+3.5
1 4
-3.5…
负整数统称为整数
分数集合:正分数、负
有理数集合:整数和分数统称为有理数分数统称为分数
.
6
思考
0.1,-0.5,5.32,-150.25等为什么被列为分数?
0.1等都可以化为分数:
0 .1= 1 10
0.5= 1 2
5.32=133 25
②零是有理数;
③零是自然数; ④零是正数;
⑤零是负数; ⑥零是非负数.
其中正确的有① 、②、③ 、⑥正(确A)
A.4个 B.3个 C.2个 D.1个
.
11
巩固练习
3.下列说法错误的是
( C)
A.负整数和负分数统称为负有理数
B.正整数,0,负整数统称为整数
C.正有理数与负有理数组成全体有理数
D.3.14是小数,也是分数 正有理数、0与负有理数组成全体有理数
义务教育课程标准实验教科书 七年级上册
1.2.1 有理数
人 民 教 育 出 版社出版
.
1
活动1
问题:我们所在班级很容易分成两个集合,你是 按什么分的?
按性别分类
我们学过的数有:
正整数:如1,2,3,4,…;
零:0;
负整数:如-1,-2,-3,-4,…;
正分数:如
1 2
,32
,16%,0.1,5.32,…;
负0整数
数
分数
正分数 负分数
正整数
有 理
正有理数 正分数
0
数
负整数
负有理数
负分数
3.注意0的特殊性.
.
17
1 …
0
2
-1 -2 -3 -3.5
… 1 4
所有正数组成的集合
+1 +2 +3 …
1 2
+3.5…
元素为0的集合 所有负数组成的集合
0
-1 -3 -5 …
1 4
-3.5…
正整数集合 正分数集合
元素为0的集合 负整数集合 负分数集合
+1 +2 +3 0 -1 -3 -5 …
整数集合:正整数、零
-1 -2 -3 0 +1 +2 +3
150.25=601 4
.
7
知识归纳
1.将有理数分成两类:
正整数
有理数
整数 0 负整数
正分数 分数
负分数
.
8
知识归纳
2.将有理数分成三类:
正整数
有理数
正有理数 正分数
0 负整数
负有理数
负分数
.
9
活例动:3把下课列堂练各习数填入表示它所在的数集的圈里:
-18,2 7 2
,3.141
.
12
巩固练习
4.下列叙述正确的是 A.存在最小的有理数 B.存在最小的正整数 C.存在最小的整数 D.存在最小的分数
.
(B) 1
13
5.把下列各数填入相应集合的括号内:
27,-5.8,2 2,67
,-1,9%,3.14,0,- 2
1 3
,-0.01,π.
(1)整数集合:{
…} ;
(2)分数集合:{
,
1 5
,16
,…;
第2
013个数是 2
1 013
.
2.仔细观察,思考下面一列数有哪些规律:
-2,4,-8,16,-32,64,…;然后填空:
(1)第7个数是 -128 ;(2)第8个数是 256 .
.
16
课堂小结
1.到现在为止,我们学过的数(π 除外)都是
有理数.
2.有理数的分类
正整数
有 理
整数
5,0,2
011,-
3 5
, -0.124 847 , 95%.
-18,0,- 35
, …
-0.124 847, 非正数集合
-18,- 35 , -0.124 847,…
负数集合
-18,0,2 011, … 整数集合
.
3.141 5, 95%,2 7 2 …
正分数集合
10
2.下列课堂说练法习: ①零是整数;
负分数:如
5 2
,
1 7
,-87%,-0.5,….
.
3
你能对这些数进行合理分类吗?有 不同的分类方法吗?分类标准是什么?
正整数 零 负整数
正分数 负分数
.
4
分类的基本原则: (1)按同一标准分类 (2)不重不漏
活动2 你所知道的数可以分成哪些种类,你是按着什么划分的?
+1 +2 +3 +3.5