第五章习题参考答案
第五章习题答案
5-1 把直径1d mm =的钢丝绕在直径为2m 的卷筒上,试计算该钢丝中产生的最大应力。
设200E GPa =解:钢丝绕在直径为D 的卷筒上后产生弯曲变形,其中性层的曲率半径为22D d Dρ+=≈(因D d >>) 该钢丝中产生的最大应力为39maxmax/211020010100/22y d d E E E Pa MPa D D σρ-⨯====⨯⨯=5.4 矩形截面悬臂梁如图所示。
已知4l m =,23b h =,10/q kN m =,[]10MPa σ=,试确定此梁横截面的尺寸。
解:作梁的弯矩图如图所示。
梁的最大弯矩发生在固定端截面上。
22max 111048022M ql kN m ==⨯⨯=⋅ 由强度条件,有max maxmax 26[]z M M W bhσσ==≤ 将23b h =代入上式,得0.416416h m mm ≥=== 22773b h mm =≥ 5.5 20a 工字钢梁的支承和受力情况如图所示。
若[]160MPa σ=,试求许可载荷F 。
解:(1)求支座反力。
选整个梁为研究对象,受力分析如图所示。
列平衡方程,有0yF =∑,0A B F F F F ++-=()0AM=∑F ,6240B F F F ⨯-⨯+⨯=解得:13A F F =,13B F F =-M O212qlM O(2)作梁的弯矩图如图所示。
由图可知该梁的最大弯矩为max 23C M M F ==查表得No.20a 工字钢的抗弯截面系数为3237z W cm =,由强度条件,有max max 2/3[]z zM F W W σσ==≤ 解得663[]3237101601056.922z W F kN σ-⨯⨯⨯⨯≤==所以许可载荷56.9F kN =。
5.8 压板的尺寸和载荷情况如图所示。
材料为45钢,380s MPa σ=,取安全因数1.5n =。
试校核压板的强度。
解:由受力分析可知最大弯矩发生在m m -截面处,且其值为3max 10.0215.4100.02308M P N m =⨯=⨯⨯=⋅m m -截面的抗弯截面系数z W 为333max11302030121212156810zz I W mm y ⨯⨯-⨯⨯=== 压板的最大应力为max max 9308197156810z M MPa W σ-===⨯ 而许用应力为380[]2531.5sMPa nσσ===截面m-m因最大应力小于许用应力,所以压板的强度足够。
第五章 跨国公司 习题及答案
第五章跨国公司一、填空题1.跨国经营指数(TNI)是、和这三个参数所计算的算术平均值。
指数值越高说明该跨国公司国际化经营的程度。
2.跨国公司职能一体化战略演变经历了、和三个阶段的演变。
3.跨国公司地域一体化战略演变经历了、和三个阶段的演变。
4.跨国公司全球性组织结构主要有、、和等几种形式。
5.近年来,跨国公司的组织结构向着、和方向发展。
二、选择题1.最保守的观点认为,在()个国家或地区以上拥有从事生产和经营的分支机构才算是跨国公司。
A 2个B 3个C 5个D 6个2.子公司完全复制母公司价值链的战略是()。
A独立子公司战略 B多国战略 C简单一体化战略 D复合一体化战略3.一个子公司主要服务于一国的东道国市场,而跨国公司母公司则在不同的市场控制几个子公司的经营战略是()。
A独立子公司战略 B多国战略 C区域战略 D全球战略4.在任何地方营运的任一子公司都可以独自地与其他子公司或母公司一起,为整个公司行使职能的跨国公司经营战略是()。
A独立子公司战略 B多国战略? C简单一体化战略 D复合一体化战略5.职能一体化战略最高级的形式是()。
A独立子公司战略 B多国战略? C简单一体化战略 D复合一体化战略三、是非题1.凡是在2个以上的国家或地区拥有分支机构的企业就是跨国公司。
()2.规模越大的跨国公司其国际化经营程度就越高。
()3.近年来,跨国公司的数量急遽增长,跨国公司的集中化程度也随着降低。
()4.跨国购并是推动跨国公司规模日益扩大的重要原因。
()5.根据价值链原理,跨国公司国际化经营是根据价值链上各环节要素配置的要求,匹配全球区位优势,实现公司价值最大化的途径。
()四、名词解释1.跨国公司2.价值链3.职能一体化战略4.跨国经营指数5.网络分布指数6.世界经济一体化五、简答题1.简述20世纪90年代以来跨国公司发展的主要特点。
2.简述跨国公司职能一体化经营战略的演变。
3.简述跨国公司地域一体化经营战略的演变。
第五章中央处理器习题参考答案1.请在括号内填入适当答案。在CPU中
第五章中央处理器习题参考答案1.请在括号内填入适当答案。
在CPU中:(1) 保存当前正在执行的指令的寄存器是(指令寄存器IR);(2) 保存当前正在执行的指令地址的寄存器是(程序计数器AR);(3) 算术逻辑运算结果通常放在(通用寄存器)和(数据缓冲寄存器DR)。
2.参见下图(课本P166图5.15)的数据通路。
画出存数指令"STA R1 ,(R2)"的指令周期流程图,其含义是将寄存器R1的内容传送至(R2)为地址的主存单元中。
标出各微操作信号序列。
解:"STA R1 ,(R2)"指令是一条存数指令,其指令周期流程图如下图所示:3.参见课本P166图5.15的数据通路,画出取数指令"LDA(R3),RO"的指令周期流程图,其含义是将(R3)为地址的主存单元的内容取至寄存器R0中,标出各微操作控制信号序列。
5.如果在一个CPU周期中要产生3个脉冲 T1 = 200ns ,T2 = 400ns ,T3 = 200ns,试画时序产生器逻辑图。
解:节拍脉冲T1 ,T2 ,T3 的宽度实际等于时钟脉冲的周期或是它的倍数,此时T1 = T3 =200ns ,T2 = 400 ns ,所以主脉冲源的频率应为 f = 1 / T1 =5MHZ 。
为了消除节拍脉冲上的毛刺,环型脉冲发生器可采用移位寄存器形式。
下图画出了题目要求的逻辑电路图和时序信号关系。
根据关系,节拍脉冲T1 ,T2 ,T3 的逻辑表达式如下:T1 = C1·, T2 = , T3 =6.假设某机器有80条指令,平均每条指令由4条微指令组成,其中有一条取指微指令是所有指令公用的。
已知微指令长度为32位,请估算控制存储器容量。
解:微指令条数为:(4-1)×80+1=241条取控存容量为:241×32/8=964B7. 某ALU器件使用模式控制码M,S3,S2,S1,C来控制执行不同的算术运算和逻辑操作。
统计学 第五章习题 正确答案
第五章 概论与概率分布重点知识1.样本、样本空间、随机事件的定义;2.事件的运算:交、并、对立事件、互斥事件;3.概论的定义:古典定义、统计定义、经验定义;4.概率的计算:加法公式,乘法公式,条件概率,事件的独立性,全概率公式,贝叶斯公式; 5.随机变量的定义,有几种类型;6.离散型随机变量及其分布的定义与性质,数学期望与方差:重点了解二项分布及其简单性质; 7.连续型随机变量及其分布的定义与性质,数学期望与方差:重点了解正态分布及其简单性质,会根据标准正态分布计算任何正态分布随机变量的概率;复习题一、填空1.用古典法求算概率.在应用上有两个缺点:①它只适用于有限样本点的情况;②它假设 。
2.若事件A 和事件B 不能同时发生,则称A 和B 是 事件。
3.在一副扑克牌中单独抽取一次,抽到一张红桃或爱司的概率是 ;在一副扑克牌中单独抽取一次,抽到一张红桃且爱司的概率是 。
4.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,则甲、乙两人中恰好有一人不击中目标可用事件 表示.5.已知甲、乙两个盒子里各装有2个新球与4个旧球,先从甲盒中任取1个球放入乙盒,再从乙盒中任取1个球,设事件A 表示从甲盒中取出新球放入乙盒,事件B 表示从乙盒中取出新球,则条件概率P(B A )=__.6.设A,B 为两个事件,若概率P (A )=41,P(B)=32,P(AB)=61,则概率P(A+B)=__.7.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 互斥,则概率P(A+B)=__. 8.设A,B 为两个事件,且已知概率P(A)=0.8,P(B)=0.4,若事件A ⊃B ,则条件概率P(B A )=__. 9.设A,B 为两个事件,若概率P(B)=103,P(B A )=61,P(A+B)=54,则概率P(A)=__.10.设A,B 为两个事件,且已知概率P(A )=0.7,P(B)=0.6,若事件A,B 相互独立,则概率P(AB)=__. 11.设A,B 为两个事件,且已知概率P(A)=0.4,P(B)=0.3,若事件A,B 相互独立,则概率P(A+B)=__. 12.设A,B 为两个事件,若概率P(B)=0.84,P(A B)=0.21,则概率P(AB)=__. 13.设离散型随机变量X 的概率分布如下表ccccPX 4322101-则常数c =__.14.已知离散型随机变量X 的概率分布如下表414121P321X则概率P {3<X }=__.15.已知离散型随机变量X 的概率分布如下表6632P213-X11则数学期望)(X E =__.16.设离散型随机变量X 服从参数为p 的两点分布,若离散型随机变量X 取1的概率p 为它取0的概率q 的3倍,则方差)(X D =__.17.设连续型随机变量的概率X 密度为⎪⎩⎪⎨⎧<<-=其他,0210,1)(2x x k x ϕ 则常数k =__.18.设连续型随机变量X 的概率密度为⎩⎨⎧≤≤=其他,00,24)(2rx x x ϕ 则常数r =__.19.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥=-其他,00,2)(2x xex xϕ 则概率}11{<<-X P =__.20.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,021,2)(2x x x ϕ 则数学期望)(X E =_____.21.设X 为随机变量,若数学期望1)12(=-X E ,则数学期望)(X E =__.22.设X 为随机变量,若方差3)63(=-X D ,则方差)(X D =__.二、单项选择1.设A,B 为两个事件,若事件A ⊃B ,则下列结论中( )恒成立.(a)事件A,B 互斥 (b)事件A,B 互斥 (c)事件A ,B 互斥 (d)事件A ,B 互斥 2.设A,B 为两个事件,则事件B A +=( ).(a)A +B (b)A-B (c)A B (d)AB3.投掷两颗均匀骰子,则出现点数之和等于6的概率为( ).(a)111 (b)115 (c)361 (d)3654.盒子里装有10个木质球与6个玻璃球,木质球中有3个红球、7个黄球,玻璃球中有2个红球、4个黄球,从盒子里任取1个球.设事件A 表示取到玻璃球,事件B 表示取到红球,则条件概率P(A B )=( ).(a)114 (b)74 (c)83 (d)535.设A,B 为两个事件,若概率P(A)=31,P(A B )=32,P(A B )=53,则概率P(B)=__.(a)51 (b)52 (c)53 (d)546.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>0,若事件A ⊃B,下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A-B)=P(A)-P(B)(c)P(AB)=P(A)P(B) (d)P(B A )=17.设A,B 为两个事件,则概率P(A+B)=( ).(a)P(A)+P(B) (b)P(A)+P(B)-P(A)P(B)(c)1-P (B A ) (d)1-P( A )P(B ) 8.设A,B 为两个事件,若概率P(A)=31,P(B)=41,P(AB)=121,则( ).(a)事件A 包含B (b)事件A ,B 互斥但不对立 (c)事件A ,B 对立 (d)事件A ,B 相互独立 9.设A,B 为两个事件,且已知概率P(A)=53,P(A+B)=107,若事件A,B 相互独立,则概率P(B)=( ).(a)161 (b)101 (c)41 (d)5210.设A,B 为两个事件,且已知概率P(A)>O ,P(B)>O ,若事件A,B 相互独立,则下列等式中( )恒成立.(a)P(A+B)=P(A)+P(B) (b)P(A+B)=P(A) (c)P(A-B)=P(A)-P(B) (d)P(A-B)=P(A)P(B )11.中( )可以作为离散型随机变量X 的概率分布.(a)6321-P321X11 (b)653-21P321X1(c)6321P321X 11 (d)65321P321X 112.已知离散型随机变量X 的概率分布如下表52511015110142101PX-则下列概率计算结果中( )正确.(a)0}3{==X P (b)0}0{==X P . (c)1}1{=->X P (d)1}4{=<X P13.设离散型随机变量X 的所有可能取值为-1与l ,且已知离散型随机变良X 取-1的概率为)10(<<p p ,取1的概率为q ,则数学期望=)(2X E ( ).(a)O (b)l (c)p q - (d)2)(p q - 14.设连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧≥+=其他,00,1)(2x x kx ϕ 则常数k =( ).(a)π1(b)π (c)π2(d)2π15.下列函数中( )不能作为连续型随机变量X 的概率密度.(a)⎩⎨⎧≤≤-=其他,001,3)(2x x x f (b)⎪⎩⎪⎨⎧≤≤-=其他,021,2)(x x x g(c)⎪⎩⎪⎨⎧≤≤=其他,020,cos )(πx x x h (d)⎪⎩⎪⎨⎧≤≤=其他,02,sin )(ππx x x h 16.设X 为连续型随机变量,若b a ,皆为常数,则下列等式中( )非恒成立.(a)}{}{a X P a X P ==≥ (b)}{}{b X P b X P <=≤ (c)1}{=≠a X P (d)0}{==b X P 17.已知连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=其他,040,81)(x x x ϕ 则数学期望)(X E =( ).(a)21 (b)2 (c)83 (d)3818.设X 为随机变量,若数学期望)(X E 存在,则数学期望))((X E E =( ).(a)O (b))(X E (c))(2X E (d)2))((X E 19.设X 为随机变量,若方差)(X D =4,则方差)43(+X D =( ).(a)12 (b)16 (c)36 (d)4020.设X ,Y 为随机变量,已知随机变量X 的标准差等于4,随机变量Y 的标准差等于3,若随机变量X ,Y 相互独立,则随机变量X -Y 的标准差等于( ).(a)1 (b)7 (c)5 (d)7四、名词解释1、 数学期望:2、 对立事件:3、 随机事件:4、 事件和:5、 事件积:6、 互斥事件:7、 互相独立事件:五、判断题1.对于连续型随机变量,讨论某一点取值的概率是没有意义的。
第五章 国民收入均衡习题参考答案
第五章国民收入均衡一、名词解释1. 资本边际效率:是一种贴现率,这种贴现率正好是一项资本品在使用期限内与其收益的现值等于这项资本品的重置成本或供给价格。
2. 凯恩斯陷阱:是凯恩斯在分析人们对货币的流动偏好时提出的。
它指这样一种现象:当利息率极低时,人们预计利息率不大可能再下降,或者说人们预计有价证券的市场价格已经接近最高点,因而将所持有的有价证券全部换成货币,以至于人们对货币的投机需求趋向于无穷大。
3.IS曲线:表示产品市场均衡时,国民收入和利率的方向变化关系。
IS曲线向右下方倾斜。
4. LM曲线:是指使得货币市场处于均衡的收入与均衡利息率的不同组合描述出来的一条曲线。
LM曲线向右上方倾斜。
5. 货币的需求:是指人们在手边保存一定数量货币的愿望,它是人们对货币的流动性偏好引起的,因此,货币需求又称被为流动偏好。
与其他资产相比,货币是具有很强的流动性,人们用货币很容易与其他资产进行交换。
正是这种流动性,人们对货币产生偏好。
产生流动偏好的动机主要有三种:一是交易动机,二是预防动机,三是投机动机。
6.总需求:是经济社会对产品和劳务的需求总量.7.总需求函数:是产量(收入)和价格水平之间的关系。
它表示在某个特定的价格水平下,经济社会需要多高水平的收入。
8.宏观生产函数:是指整个国民经济的生产函数。
它表示总投入和总产出之间的关系。
9.短期宏观生产函数:表示在一定的技术水平和资本存量条件下,经济社会生产的产出y取决于就业量N,即总产量是经济中就业量的函数,随总就业量的变化而变化。
10.长期宏观生产函数:是指经济社会生产的产出y取决于生产的技术水平、就业量和资本的存量。
11.古典总供给曲线:是指总供给曲线是一条位于经济的潜在产量或充分就业水平上的垂直线。
12.凯恩斯总供给曲线:是指在货币工资和价格均具有刚性的假设条件下,总供给曲线应该为一条水平的直线。
13.常规总供给曲线:是指短期总供给曲线为向右上方倾斜。
二、单项选择题1.B2.B3.A4.B5.C6.B7.D8.D9.B 10.B 11.C12.C 13.B 14.C 15.D 16.D 17.B 18.A 19.B 20.A21.D 22.B 23.A 24.D 25.C 26.A 27.A 28.B 29.C 30.A 31.C 32.B 33.D 34.A 35.D 36.B 37.B 38.A 39.A 40.B1.×2.√3.×4.×5.×6.×7.√8.×9.√10.×11.× 12.× 13.√ 14.× 15.√ 16.√ 17.× 18.√ 19.×20.√四、计算题1.答:(1)L=L1+L2=0.20y+2000-500r;(2) L= L1+L2=0.2×10000+2000-500×6=1000亿美元(3)2500=0.2×6000+L2,L2=1300亿美元(4)2500=0.2 ×10000+2000-500×r, r =3%2. 答:向右移动3003. 答:y=3075,r=4.34.答:(1)由Y=C+I+G,可知IS曲线为:Y=0.8(1-0.25)Y+900-50r+800,化简可得:Y=4250-125r,此即为IS曲线。
第5章 习题答案
第5章 相对论习题5-1 观察者A 测得与他相对静止的XOY 平面上一个圆的面积是12cm 2,另一观察者B 相对A 以0.8C(C 为真空中光速)平行于XOY 平面作匀速直线运动,B 测得这一图形为一椭圆,面积是多少(椭圆面积S=πab ,a 、b 为长短半轴).5-2 一宇宙飞船固有长度,m 900=L 相对地面以v=0.8c 匀速度在一观测站上空飞过,则观测站测得飞船船身通过观测站时间间隔是多少?宇航员测得船身通过观测站的时间隔是多少?解:设地面为S 系,飞船为S ′系,则观测站测飞船长度为2201c L L υ-=.所以,观测站时间间隔是s 1025.28.018.090172220-⨯=-=-==cc L Lt υυυ∆ 宇航员在S ′系测得船身通过的时间是00τυ=='L t ∆,宇航员观察S 系中的钟是以-v 在运动,所以宇航员测得船身通过观测站的时间隔是s 1025.217220-⨯=-==cL t υυγτ∆5-3 半人马星座α星是太阳系最近的恒星,它距地球为 m 。
设有一宇宙飞船,以v =0.999c 的速度飞行,飞船往返一次需多少时间?如以飞船上的时钟计算,往返一次的时间又为多少?解:在地面上观测飞船往返一次的时间为s 1087.2999.0103.42816⨯=⨯⨯=ct ∆;16103.4⨯在飞船上观测距离缩短,测得时间为s 1028.1999.0999.01103.47216⨯=-⨯='ct ∆;或运动的钟测得s 1028.1999.01999.0103.47216⨯=-⨯='ct ∆.5-4 观测者甲和乙分别静止于两个惯性参照系K 和K ′中,甲测得在同一地点发生的两个事件的时间间隔为4S,而乙测得这两个事件的时间间隔为5S,求:(1) K ′相对于K 的运动速度;(2) 乙测得这两个事件发生的地点的距离.解:(1)设两事件的时空坐标见下表事件1 事件2 K 系 ),(11t x ),(21t x K ′系),(11t x '' ),(22t x '' 由洛伦兹变换)/(2c x t t υγ-='得222/1/)/(c t c x t t υυγ-=-='∆∆∆∆解上式得 c c t t c 6.0)54(1)(122=-='-=∆∆υ. (2)由洛伦兹变换)/(2c x t t '+'=υγ得)/(2c x t t '+'=∆∆∆υγ解之得 m 109105)56.014()(882212⨯-=⨯⨯--='-='-'='υγc t tx x x ∆∆∆5-5 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为x 1=6×104m,t 1=2×10-4s ,以及x 2=12×104m, t 2=1×10-4s .已知在S ′系中测得该两事件同时发生.试问:(1)S ′系相对S 系的速度是多少? (2)S '系中测得的两事件的空间间隔是多少?解:(1)由洛伦兹变换)/(2c x t t υγ-='得0)/(2=-='c x t t ∆∆∆υγ解之得 m/s 105.110310610)1(10388448⨯-=⨯⨯⨯⨯-⨯⨯==-c x t c ∆∆υ (2)由)(t x x '+'=υγ得x t x x '='+'=∆∆∆∆γυγ)(所以 m 102.55.01106/)(424⨯=-⨯=='+'='γυγx t x x ∆∆∆∆5-6 长度01m =l 的米尺静止于S ′系中,与x '轴的夹角o 30'=θ,S ′系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为o45=θ. 试求:(1)S ′系和S 系的相对运动速度.(2)S 系中测得的米尺长度.解:(1)由教材p152例题5.3有θγθ'=tan tan 得 c c 816.0)tan tan (12='-=θθυ (2)在x 方向尺会缩短,即m 5.0tan tan cos tan tan 0=''=''='=θθθθθγl x x x ;y 方向没运动,长度不变,即m 5.0sin 0='='=θl y y 。
第5章-习题参考答案
第五章习题参考答案一、填空题1、MCS-51有5个中断源,2个中断优先级,优先级由软件填写特殊功能寄存器 IP 加以选择。
2、外中断请求标志位是 IE0 和 IE1 。
3、 RETI 指令以及任何访问 IE 和 IP 寄存器的指令执行过后,CPU不能马上响应中断。
4、8051单片机响应中断后,产生长调用指令LCALL,执行该指令的过程包括:首先把 PC的内容压入堆栈,以进行断点保护,然后把长调用指令的16位地址送 PC ,使程序执行转向程序存储器中的中断地址区。
二、选择题:1、在中断服务程序中,至少应有一条( D )。
A、传送指令B、转移指令C、加法指令D、中断返回指令2、要使MCS-51能够响应定时器T1中断,串行接口中断,它的中断允许寄存器IE的内容应是( A )。
A、 98HB、 84HC、 42HD、 22H3、MCS-51响应中断时,下列哪种操作不会发生( A )A、保护现场B、保护PCC、找到中断入口D、保护PC转入中断入口4、MCS-51中断源有( A )A、 5个B、 2个C、 3个D、6个5、计算机在使用中断方式与外界交换信息时,保护现场的工作应该是( C )A、由CPU自动完成B、在中断响应中完成C、应由中断服务程序完成D、在主程序中完成6、MCS-51的中断允许触发器内容为83H,CPU将响应的中断请求是( D )。
A、 INT0,INT1B、 T0,T1C、 T1,串行接口D、 INT0,T07、若MCS-51中断源都编程为同级,当它们同时申请中断时,CPU首先响应( B )。
A、 INT1B、 INT0C、 T1D、T08、当CPU响应串行接口中断时,程序应转到( C )。
A、 0003HB、 0013HC、 0023HD、 0033H9、执行MOV IE,#03H后,MCS-51将响应的中断是( D )。
A、 1个B、 2个C、 3个D、0个10、外部中断1固定对应的中断入口地址为( C )。
第五章 课后习题及答案
第五章中学生的情绪管理一、理论测试题(一)单项选择题1.()是人各种感觉、思想和行为的一种综合的心理和生理状态,是对外界刺激所产生的心理反应,以及附带的生理反应,如喜、怒、哀、乐等。
A.情绪B.情感C.心情D.态度2.()是指人或动物面对现实的或想象中的危险、自己厌恶的事物等产生的处于惊慌与紧急的状态。
A.快乐B.愤怒C.恐惧D.悲哀3.小华即将上考场,感觉心跳加速,有点微微出汗,这属于情绪的()。
A.外部表现B.主观体验C.生理唤醒D.认知活动4.下列不属于基本情绪的是()。
A.快乐B.焦虑C.恐惧D.悲哀5.王悦接到高考录取通知书已经十多天了,仍心情愉悦,往常觉得平淡的事也能让她很高兴,这种情绪状态属于()。
A.激情B.心境C.应激6.“情急生智”所描述的一种情绪状态是()。
A.心境B.理智C.应激D.激情7.“忧者见之则忧,喜者见之则喜”,这是受一个人的()影响所致。
A.激情B.心境C.应激D.热情8.()是一种猛烈、迅疾和短暂的情绪,类似于平时说的激动。
A.快乐B.应激C.心境D.激情9.狂喜、恐惧的情绪状态属于()。
A.激情B.热情C.应激D.心境10.学生临考的怯场属于()。
A.应激B.心境C.激情D.热情11.车祸、地震、水灾等突如其来的灾难引起的情绪体验是()。
A.心境B.激情C.应激12.晓东在解决了困扰他许久的数学难题后出现的喜悦感属于()。
A.道德感B.理智感C.美感D.效能感13.求知欲属于()。
A.道德感B.理智感C.美感D.应激14.“先天下之忧而忧,后天下之乐而乐”是()。
A.道德感B.理智感C.美感D.热情15.当同学们获悉本班取得学校合唱比赛第一名的成绩时欣喜若狂。
他们的情绪状态属于()。
A.心境B.激情C.应激D.热情16.当人们遇到突然出现的事件或意外发生危险时,为了应付这类瞬息万变的紧急情境,就得果断地采取决定。
这种情况属于()。
A.激情B.应激C.快乐D.心境17.()用因素分析的方法,提出人类具有8~11种基本情绪,它们是兴趣、惊奇、痛苦、厌恶、愉快、愤怒、恐惧、悲伤、害羞、轻蔑、自罪感。
第章习题参考答案
第五章习题参考答案一、填空题1、MCS-51有5个中断源,2个中断优先级,优先级由软件填写特殊功能寄存器??? IP??? 加以选择。
2、外中断请求标志位是? IE0???? 和??? IE1?? 。
3、?? RETI?? 指令以及任何访问? IE? 和? IP? 寄存器的指令执行过后,CPU不能马上响应中断。
4、8051单片机响应中断后,产生长调用指令LCALL,执行该指令的过程包括:首先把 PC?的内容压入堆栈,以进行断点保护,然后把长调用指令的16位地址送? PC? ,使程序执行转向?? 程序存储器??? 中的中断地址区。
二、选择题:1、在中断服务程序中,至少应有一条( D??? )。
A、传送指令????B、转移指令????C、加法指令??????D、中断返回指令2、要使MCS-51能够响应定时器T1中断,串行接口中断,它的中断允许寄存器IE的内容应是(? A?? )。
?? A、 98H????????? B、 84H????????? C、 42H??????????? D、 22H3、MCS-51响应中断时,下列哪种操作不会发生(? A?? )?? A、保护现场???? B、保护PC???? C、找到中断入口????? D、保护PC转入中断入口4、MCS-51中断源有(? A?? )?? A、 5个?????????? B、 2个?????????? C、 3个??????????? D、 6个5、计算机在使用中断方式与外界交换信息时,保护现场的工作应该是(? C?? )?? A、由CPU自动完成??????????????? B、在中断响应中完成?? C、应由中断服务程序完成?????????? D、在主程序中完成6、MCS-51的中断允许触发器内容为83H,CPU将响应的中断请求是(?? D? )。
?? A、 INT0,INT1???? B、 T0,T1???? C、 T1,串行接口??? D、? INT0,T07、若MCS-51中断源都编程为同级,当它们同时申请中断时,CPU首先响应(? B?? )。
高等数学第五章课后习题答案
班级姓名学号1 第五章定积分1.证明定积分性质:òò=b abadxx f kdx x kf )()((k 是常数). 证:òåòå=D =D ==®=®banii ban ii x kf x kf x f k x f k)()(lim )(lim )(1010x x l l 2.估计下列积分值:(1)dxx )sin 1(4542ò+p p解:令x x f 2sin 1)(+=,则02sin cos sin 2)(===x x x x f ‘得驻点:,,221p p==x x 由23)4(,23)4(,1)(,2)2(====p p p pf f f f ,得2)(max ,1)(min ==x f x f 由性质,得pp p p2)(454££òdx x f (2)ò333arctan xdxx 解:令x x x f arctan )(=,01arctan )(2>++=xxx x f ‘,所以)(x f 在]333[,上单调增加,p p33)(max ,36)(min ==\x f x f ,)()(33333arctan 33336333-££-\òp pxdx x ,即pp32a r c t a n 9333££òx d x x班级班级 姓名姓名 学号学号3.比较下列积分值的大小:.比较下列积分值的大小: (1)dx x ò12与dxx ò13解:当10££x 时,有23x x £,且23x x -不恒等于0,0312>-\òdx x x )(,即,即 dxx dxx òò>1212。
(2)ò6pxdx 与ò6sin pxdx解:当60p££x 时,有x x £sin ,且x x sin -不恒等于0,0sin 10>-\òdx x x )(,即,即 dx x dx x òò>1010sin 。
第5章-经营决策分析习题
三、判断题
1、相关成本与无关成本的区分并不是绝对的()
2、专门生产某种产品的专用设备折旧费,保险费属于该产品的专属成本()
3、差量分析法一般仅适用于两个方案之间的比较()
4、如果一项资产只能用于某一职能,则不会产生机会成本()
5、机会成本是一项实际指出,应登记入账()
6、在任何情况下,边际成本都与变动成本一致()
要求:(1)分别计算完全成本法下的单位产品生产成本和成本加成率指标;
(2)分别计算变动成本法下的单位产品成本和成本成定价法确定目标售价。
第五章习题参考答案
一、单选题
1-5 DBAAB
6-10 CCAAC
11-14BCDC
二、多选题
1、ABCD
(4)条件同(3),但企业也可以采纳用剩余生产能力自制15000个零件甲,其余全部外购的方式。
3、某企业生产过程中需要的零件甲的年需要量不确定。企业可以选择外购或自制该零件:其中自制零件方案需增添专业设备两台,每台价值100000元,使用期限5年,假定没有残值,按直线法进行折旧,每年为40000元,另外单位变动成本为58元;外购单价为60元。要求:判断该厂应自制还是外购零甲。
7、沉没成本是现在发生的,无法由现在或将来的任何决策所改变的成本()
8、联合成本是由多个产品或部门共同负担的成本,因此属于相关成本,决策时应考虑()
四、计算题
1、某企业生产ABC三种产品,有关资料如下,
项目
A
B
C
合计
销售量
1000
1200
1800
单位售价
900
700
500
单位变动成本
700
580
第5章课后习题参考答案
printf("一行字符中字母#和a出现的次数分别是%d,%d\n ",num1,num2);
}
6、从键盘输入一个正整数,统计该数的位数,如输入1234,输出4,输入0,输出1
#include<stdio.h>
void main()
{
int n,m,num=0;
printf("请输入一个正整数n:");
}
ave=sum/num2;
printf("负数个数num1=%d,正数的平均值ave=%.2f\n",num1,ave);
}
2、sum=2+5+8+11+14+…,输入正整数n,求sum的前n项和。
#include<stdio.h>
void main()
{
int i,n,sum=0;
#include<stdio.h>
void main()
{
char ch;
int num1=0,num2=0;
printf("请输入一行字符:\n");
while((ch=getchar())!='\n')
{
if(ch=='#') num1++;
if(ch=='a') num2++;
#include<stdio.h>
void main()
{
int x,y,z,num=0;
for(x=1;x<=9;x++)
5习题与答案
第五章练习题一、单项选择题1.企业根据现有的经济条件和掌握的历史资料以及客观事物的内在联系,对生产经营活动的未来发展趋势和状况进行的预计和测算的过程,就是管理会计的()。
A.经营决策B.经营预测C.生产决策D.生产预测2.下列各项中,属于因果预测分析法的是()。
A.趋势平均法B.移动平均法C.指标建立法D.平滑指数法3.下列各项中,不属于定量分析法的是()。
A.判断分析法B.算术平均法C.回归分析法D.平滑指数法4.通过函询方式,在互不通气的前提下向若干经济专家分别征求意见的方法是()。
A.专家函询法B.专家小组法C.专家个人意见集合法D.特尔菲法5.下列各种销售预测方法中,属于没有考虑远近期销售业务量对未来销售状况会产生不同影响的方法是()。
A.移动平均法B.算术平均法C.加权平均法D.平滑指数法6.下列各项中,不能按照统一的方法直接确定各期权数值的方法是()。
A.移动平均法B.趋势平均法C.加权平均法D.平滑指数法7.在采用平滑指数法进行近期销售预测时,应选择的指数是()。
A.固定的平滑指数B.较小的平滑指数C.较大的平滑指数D.任意数值的平滑指数8.因果预测分析法下用于建立预测模型的“回归分析法”与趋势外推法所采用的“修正的时间序列回归法”的回归系数计算公式()。
A.完全相同B.完全不同C.大致相同D.大致不同9.在下列产品寿命周期的不同阶段中,产品销售量急剧下降的现象通常发生在()。
A.萌芽期B.成长期C.成熟期D.衰退期10.在管理会计中,按目标利润预测的目标成本应当等于()。
A.预计总产值与目标利润之差 B.预计销售收入与目标利润之差C.预计销售收入与预计总成本之差 D.变动成本总额与固定成本总额之和11.下列各项中,可用于预测追加资金需用量的方法是()。
A.平均法 B.回归分析法 C.指数平滑法 D.销售百分比法12.利润敏感性分析是研究当制约利润的有关因素发生某种变化的时候对利润所产生影响的一种()。
第五章 光的干涉 习题答案
第五章 光的干涉5-1 波长为589.3nm 的钠光照射在一双缝上,在距双缝200cm 的观察屏上测量20个条纹共宽3cm ,试计算双缝之间的距离。
解:由题意,条纹间距为:cm e 15.0203==∴双缝间距为:m e D d 391079.015.0103.589200--⨯≈⨯⨯==λ5-2 在杨氏干涉实验中,两小孔的距离为1.5mm ,观察屏离小孔的垂直距离为1m ,若所用光源发出波长1λ=650nm 和2λ=532nm 的两种光波,试求两光波分别形成的条纹间距以及两组条纹的第8级亮纹之间的距离。
解:对于1λ=650nm 的光波,条纹间距为:m d D e 339111043.0105.1106501---⨯≈⨯⨯⨯==λ 对于2λ=532nm 的光波,条纹间距为:m d D e 339221035.0105.1105321---⨯≈⨯⨯⨯==λ ∴两组条纹的第8级条纹之间的距离为: m e e x 3211064.0)(8-⨯=-=∆5-3 一个长40mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系,继后抽去气室中的空气,注入某种气体,发现条纹系移动了30个条纹。
已知照射光波波长为656.28nm ,空气折射率为1.000276,试求注入气体的折射率n g 。
解:气室充入空气和充气体前后,光程的变化为: D n g )000276.1(-=∆δ 而这一光程变化对应于30个波长: λδ30=∆∴λ30)1(=-D n g000768.1000276.110401028.6563039=+⨯⨯⨯=--g n5-4 在菲涅耳双面镜干涉实验中,光波长为600nm ,光源和观察屏到双面镜交线的距离分别为0.6m 和1.8m ,双面镜夹角为10-3rad ,求:(1)观察屏上的条纹间距;(2)屏上最多能看到多少亮条纹?解:如图所示,S 1S 2的距离为:αsin 2l d =∴条纹间距为:αλλsin 2)(l q l d D e +== ∵α角很小∴mmm l q l e 2.1102.1106.0210600)8.16.0(2)(339=⨯=⨯⨯⨯⨯+=+≈---αλ屏上能产生条纹的范围,如图阴影所示mmmq qtg y 6.3108.12223=⨯⨯=≈=-αα∴最多能看到的亮条纹数为:32.16.3===e y n5-5 在如图所示的洛埃镜实验中,光源S 1到观察屏的距离为2m ,光源到洛埃镜面的垂直距离为2.5mm 。
第五章 练习题及参考答案
第五章练习题:一、单项选择1. 1992年邓小平南方讲话,深刻回答了长期束缚人们思想的许多认识问题,突出的是:( )A.发展速度与提高经济效益的问题B.依法治国与加强党的领导的问题C.物质文明建设与精神文明建设问题D.姓“资”姓“社”问题2.“什么叫社会主义,什么叫马克思主义?我们过去对这个问题认识不是完全清醒的。
”这种不清醒的突出表现是:( )A.不重视发展生产力B.不重视改革开放C.忽视了以人民利益为根本出发点D.忽视了中国的国情3.新时期的解放思想,关键就是对建设中国特色社会主义的首要的基本理论问题的思想解放,这个首要的基本理论问题是:( )A.什么是解放思想,实事求是,怎样解放思想、实事求是B.建设什么样的党,怎样建设党C.什么是社会主义,怎样建设社会主义D.什么是社会主义初级阶段,怎样建设社会主义初级阶段4.党的十五大报告中,之所以说党的十五大报告中,之所以说邓小平理论把对社会主义的认识提高到了新的科学水平,最根本的原因是:( )A.邓小平理论揭示了社会主义的优越性B.邓小平理论揭示了社会主义的根本目的C.邓小平理论揭示了社会主义的本质D.邓小平理论揭示了社会主义的根本任务5.以江泽民同志为核心的党的第三代中央领导集体在新的世纪和新的实践基础上,进一步回答“什么是社会主义、怎样建设社会主义”问题,得出了一个科学结论,即:( )A.人的全面发展是建设社会主义新社会的本质要求B.解放生产力实现人的全面发展的物质基础C.消灭剥削,消除两极分化,最终达到共同富裕是实现人的全面发展的社会条件D.在社会主义,特别是社会主义初级阶段还不能真正实现人的全面发展的要求6.邓小平指出:“我们的生产力发展水平很低,远远不能满足人民和国家的需要,这就是我们目前时期的主要矛盾,解决这个主要矛盾就是我们的中心任务。
”这段话强调的是:( )A.社会主义的根本任务是解放、发展生产力B.社会主义的根本目的是共同富裕C.社会主义的首要的基本理论问题是“什么是社会主义,怎样建设社会主义”D.社会主义的主要矛盾是经济发展水平不均衡二、多项选择1. 1978年中共十一届三中全会实现的三大历史转变是:( )A.从以“阶级斗争为纲”转到以经济建设为中心B.从封闭半封闭转向对外开放C.从“两个凡是”转到实事求是、一切从实际出发D.从僵化半僵化到全面改革2.毛泽东在《关于正确处理人民内部矛盾的问题》中,根据宪法的原则,提出了在政治生活中判断言论和行动是非的六条标准,并指出其中最重要的是 ( )A.有利于团结全国各族人民,而不是分裂人民B.有利于社会主义改造和社会主义建设,而不是不利于社会主义改造和社会主义建设C.有利于巩固人民民主专政,而不是破坏或者削弱这个专政D.有利于巩固民主集中制,而不是破坏或者削弱这个制度E.有利于巩固共产党的领导,而不是摆脱或者削弱这种领导3. 1959年底至1960年初,毛泽东在读苏联《政治经济学教科书》时,认为社会主义社会的发展阶段有 ( )A.不发达的社会主义B.比较发达的社会主义C.发达的社会主义D.社会主义初级阶段E.社会主义高级阶段4.1957年2月,毛泽东在《关于正确处理人民内部矛盾》的讲话中系统阐述的社会主义社会基本矛盾的理论的基本观点是 ( )A.社会主义社会的基本矛盾仍然是生产关系和生产力,上层建筑和经济基础之间的矛盾B.社会主义社会基本矛盾是在人民利益根本一致基础上的非对抗性矛盾C.社会主义社会的基本矛盾具有基本适应、部分不适应的特点,又统一又斗争,推动社会主义不断完善巩固D.社会主义社会的基本矛盾可以通过社会主义制度本身不断地得到解决5.社会主义的优越性,是邓小平深入思考社会主义本质的起点。
第五章__铁碳相图习题参考答案
第五章铁碳相图习题参考答案一、解释下列名词答:1、铁素体:碳溶入α-Fe中形成的间隙固溶体。
奥氏体:碳溶入γ-Fe中形成的间隙固溶体。
渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。
珠光体:铁素体和渗碳体组成的机械混合物。
莱氏体:由奥氏体和渗碳体组成的机械混合物。
2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。
Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。
Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。
共析Fe3C:经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。
共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。
3、钢:含碳量大于0.00218%,小于2.11%的铁碳合金。
白口铸铁:含碳量大于2.11%的铁碳合金。
二、填空题1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。
2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。
3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。
4、工业纯铁的含碳量为≤0.0218%,室温平衡组织为F+ Fe3CⅢ。
5、共晶白口铁的含碳量为4.3%,室温平衡组织P占40.37%,Fe3C共晶占47.82%,Fe3CⅡ占11.81%。
6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为0.4707。
7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。
8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。
三、简答题1、为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化?答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。
大学物理课后习题答案第五章
第五章机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ= 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π, 频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x= -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即= 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2]= 0.03cos(4πt - π/2).5.3已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:, 位相差为 Δφ = 5π/4(rad).5.4有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求: (1)P 点的振动表达式;2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(2)波动方程; (3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差φa – φb = -3π/2.0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.55.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为 y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8[解答]设波动方程为:, 那么A 和B 两点的振动方程分别为:, . 两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1). 5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1), 声波的平均能量密度为:= 6.37×10-6(J·m -3), cos[2()]t xy A T πϕλ=-+cos[2()]AA x ty A T πϕλ=-+cos[2()]BB x ty A Tπϕλ=-+2(2)6BAx x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =2212w A ρω=图5.10平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为= 1768(Hz).I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--`11331142133165B u u u νν==⨯--反射声音的波长为=0.1872(m).或者= 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17设入射波的表达式为,`1111331651421BBu u u uλννν--=-==`1`13311768uλν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-1cos 2()t xy A T πλ=+S 1 S 2S 12在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。
运筹学习题答案第五章
第五章习题解答
5.11 某城市可划分为11个防火区,已设有4个消 防站,见下图所示。
page 16 2 January 2024
School of Management
运筹学教程
第五章习题解答
上图中,虚线表示该消防站可以在消防允许时间
内到达该地区进行有效的消防灭火。问能否关闭若干 消防站,但仍不影响任何一个防火区的消防救灾工作。 (提示:对每—个消防站建立一个表示是否将关闭的01变量。)
x1, x2 0,且为整数
解:x1 1, x2 3, Z 4
min Z 5x1 x2
3x1 x2 9
(2)
st
x1 x1
x2 5 8x2 8
.
x1, x2 0,且为整数
解:x1 4, x2 1, Z 5
page 8 2 January 2024
School of Management
School of Management
运筹学教程
第五章习题解答
5.12 现有P个约束条件
n
aij xij bi
j 1
i 1,2,, p
需要从中选择q个约束条件,试借助0-1变量列出 表达式。
解:设yi是0 1变量,i 1,2,, p
n
yi ( aij xij bi ) 0 j 1
i 1,2,, p
运筹学教程
第五章习题解答
5.1 某地准备投资D元建民用住宅。可以建住宅
的造分地价别点为建有d几j;n幢处,,:最才A多能1,可使A造建2,a造j幢…的。,住问A宅n应。总当在数在A最i哪处多几每,处幢试建住建住宅立宅的问, 题的数学模型。
解:设xi表示在Ai处所建住宅的数量, i 1,2,, n。
《土力学》第五章练习题及答案
《土力学》第五章练习题及答案第5章土的压缩性一、填空题1.压缩系数a1-2数值越大,土的压缩性越,a1-2≥的土为高压缩性土。
2.考虑土层的应力历史,填方路段的地基土的超固结比比1 ,挖方路段的地基土超固结比比1 。
3.压缩系数越小,土的压缩性越,压缩模量越小,土的压缩性越。
4.土的压缩模量是土在条件下应力与应变的比值,土的变形模量是土在条件下应力与应变的比值。
二、名词解释1. 土的压缩性2.先期固结压力3.超固结比4.欠固结土三、单项选择题1.在下列压缩性指标中,数值越大,压缩性越小的指标是:(A)压缩系数(B)压缩指数(C)压缩模量(D)孔隙比您的选项()2.两个性质相同的土样,现场载荷试验得到变形模量E0和室内压缩试验得到压缩模量E S之间存在的相对关系是:(A)E0=E S(B)E0>E S(C)E0≥E S(D)E0<E S您的选项()3.土体压缩变形的实质是:(A)土中水的压缩(B)土中气的压缩(C)土粒的压缩(D)孔隙体积的减小您的选项()4.对于某一种特定的土来说,压缩系数a1-2大小:(A)是常数(B)随竖向压力p增大而曲线增大(C)随竖向压力p增大而曲线减小(D)随竖向压力p增大而线性减小您的选项()5.当土为超固结状态时,其先期固结压力pC与目前土的上覆压力p1=γh的关系为:(A)pC>p1(B)pC<p1(C)pC=p1(D)pC=0您的选项()6.根据超固结比OCR,可将沉积土层分类,当OCR <1时,土层属于:(A)超固结土(B)欠固结土(C)老固结土(D)正常固结土您的选项()7.对某土体进行室内压缩试验,当法向应力p1=100kPa时,测得孔隙比e1=0.62,当法向应力p2=200kPa时,测得孔隙比e2=0.58,该土样的压缩系数a1-2、压缩模量E S1-2分别为:(A) 0.4MPa-1、4.05MPa(B)-0.4MPa-1、4.05MPa(C) 0.4MPa-1、3.95MPa(D)-0.4MPa-1、3.95MPa您的选项()8.三个同一种类的土样,如果重度 相同,含水量w不同,w甲>w乙>w丙,则三个土样的压缩性大小满足的关系为:(A)甲>乙>丙(B)甲=乙=丙(C)甲<乙<丙(D)甲<丙<乙您的选项()第5章土的压缩性一、填空题1.高、0.5MPa-12.小、大3.低、高4.有侧限、无侧限二、名词解释1.土的压缩性:土体在压力作用下,体积减小的特性。
第五章 成本理论 习题参考答案(微观部分)
第五章成本理论复习思考题一、名词解释经济成本会计成本机会成本显性成本隐性成本私人成本社会成本沉淀成本成本函数短期总成本总固定成本总变动成本长期成本经济利润边际成本正常利润二、简答题1.怎样理解经济学中的机会成本?2.若某企业在达到一定产出水平前规模报酬递增,然后规模报酬不变,那么你能说出该企业的长期平均成本曲线的形状吗?3.如果某厂商雇佣目前正处于失业的工人,试问在使用中劳动的机会成本是否为零?4.若产品的边际成本递增,这是否意味着平均可变成本递增或递减?请解释。
5.简述短期生产函数和短期成本函数之间的关系。
6.叙述AC曲线、AVC曲线与MC曲线的关系。
7.画图并解释短期边际成本曲线SMC、短期平均成本曲线SAC、平均可变成本曲线AVC 的形状以及它们之间的关系。
三、计算题1. 假设某产品的边际成本函数为MC=3Q2+5Q+80.当牛产3单位产品时,总成本为292,试求总成本函数、平均成本函数和可变成本函数。
2.一个完全竞争的厂商每天利润最大化的收益为5000美元,此时,厂商的平均成本是8美元,边际成本是10美元,平均可变成本是5美元,试求厂商每天的产量和固定成本。
3.对于生产函数Q=10KL/(K+L),在短期中令P L=1,P K=4,K=4,请推导出短期总成本、平均成本、平均可变成本及边际成本函数。
4. 某企业生产一种产品,没有固定成本,劳动是惟一的投入要素。
生产函数为Q=-0.1L3+6 L2+12L,问:(1)劳动的平均产量最大时,需要雇用多少工人?(2)平均成本最小时应生产多少产量?(3)当产品的价格为30元/单位,工资为360元,求利润最大时的产量。
5. 已知某企业的短期成本函数为:STC=0.04Q3-0.8Q2+10Q+5,求最小的平均可变成本值及相应的边际成本值。
6. 假定一成本函数为TC=Q3-10Q2+17Q+66。
(1)指出该短期成本函数中的可变成本部分和不变成本部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章配位化合物习题解答
1.指出下列配合物的中心体、配位体、配位原子、配位数并写出它们的名称:(1)[Cu(NH3)4](OH)2 (2)[Pt(NH3)4(OH)Cl]2+
(3)H2[PtCl6] (4)[Cr(H2O)4Br2]Br
(5)Na2[SiF6] (6)[Co(en)3]Cl3
解:
(1)中心体:Cu2+;配位体:NH3;配位原子:N;配位数:4;氢氧化四氨合铜(Ⅱ)
(2)中心体:Pt4+;配位体:OH-、Cl-、NH3;配位原子:O、N、Cl-;配位数:6;一氯一氢氧四氨合铂(Ⅳ)
(3)中心体:Pt4+;配位体:Cl-;配位原子:Cl-;配位数:6;六氨合铂(Ⅳ)酸
(4)中心体:Cr3+;配位体:Br-、H2O;配位原子:O、Br-;配位数:6;溴化一溴四水合铬(Ⅲ)
(5)中心体:Si4+;配位体:F-;配位原子:F-;配位数:6;六氟合硅(Ⅳ)酸钠
(6)中心体:Co3+;配位体:en;配位原子:N;配位数:6;氯化三乙二氨合钴(Ⅲ)
2.写出下列配合物的化学式:
(1)六氰合铁(Ⅲ)酸钾(2)硫酸一氯一硝基二乙二胺合铂(Ⅳ)(3)二氯四硫氰合铬(Ⅱ)酸铵(4)五羰基合铁
解:
(1)K3[Fe(CN)6]
(2)[Pt(en)2NO2Cl]SO4
(3)(NH4)4[Cr(SCN)4Cl2]
(4)[Fe(CO)5]
3.指出下列配合物的中心离子及配离子的电荷,并指出它们在水溶液中的主要存在形式。
(1)[Cu(NH3)4]Cl2 (2)K2[PtCl6]
(3)[Ag(NH3)2]NO3 (4)K3[Fe(CN)6]
解:
(1)中心离子的化合价:+2;配离子的电荷:+2。
在水溶液中的主要存在形式[Cu(NH3)4]2+、Cl-;
(2)中心离子的化合价:+4;配离子的电荷:-2。
在水溶液中的主要存在形式K+、[PtCl6]2-
(3)中心离子的化合价:+1;配离子的电荷:+1。
在水溶液中的主要存在形式[Ag(NH3)2]+、NO3-;
(4)中心离子的化合价:+3;配离子的电荷:-3。
在水溶液中的主要存在形式
K+、[Fe(CN)6]3-。
4. 写出[Fe(CN)6]3-离子的逐级稳定常数及总稳定常数表达式。
解:略。
5. 根据实验测得有效磁矩,判断下列各离子的杂化类型、内外轨型、空间构型及顺反磁性。
(1)[Fe(H2O)6]2+μ=5.3 B.M.
(2)[CuCl4]2-μ=2.0 B.M.
解:(1)d2sp3、外轨型、正八面体、顺磁性;
(2)sp3、外轨型、正四面体、顺磁性。