任意角的概念与弧度制教案
任意角的概念与弧度制教案
P6 练习 2 预习
教 学 思 路 、方 法 、手 段
(1)由问题引入弧度制的概念; (2)通过观察-—探究,明晰弧度制与角度制的换算关系; (3)在练习—-讨论中,深化、巩固知识,培养计算技能; (4)在操作-—实践中,培养计算工具使用技能; (5)结合实例了解知识的应用.
教学备品
教学课件
【教学过程】
6
教学
教师 学生 教学 时
过程
行为 行为 意图 间
*揭示课题 7。2。。2 弧度制
*回顾知识 复习导入 问题
介绍 了解 利用 5 质疑 思考 复习 引领 明确 角度 讲解 思考 制为
角是如何度量的?角的单位是什么? 解决
说明 了解 新知 识的
将圆周的圆弧所对的圆心角叫做 1 度角,记作 1°. 1 度等于 60 分(1°=60′),1 分等于 60 秒(1′=60″). 以度为单位来度量角的单位制叫做角度制. 扩展 计算:23°35′26″+31°40′43″ 角度制下,计算两个角的加、减运算时,经常会带来单位 换算上的麻烦.能否重新设计角的单位制,使两角的加、减运
终边在坐标轴上的角叫做界限角,例如,0°、90°、180°、 270°、360°、−90°、−270°角等都是界限角.
导学 生一 步步 自然 得出 强调 特殊 情况
*运用知识 强化练习
提问 思考 反馈 40
练习 7—1
巡视 动手 学习
1.在直角坐标系中分别作出下列各角,并指出它们是第几象 指导
限的角: ⑴ 60°;
生加 强记 忆 简单 说明
数集之间,建立起了一一对应的关系.
对应
关系
*巩固知识 典型例题 例 1 把下列各角度换算为弧度(精确到 0.001):
高二数学必修四《任意角和弧度制》教案
【导语】⾼⼆时孤⾝奋⽃的阶段,是⼀个与寂寞为伍的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。
但它同时是⼀个厚实庄重的阶段。
由此可见,⾼⼆是⾼中三年的关键,也是最难把握的⼀年。
为了帮你把握这个重要阶段,⾼⼆频道整理了《⾼⼆数学必修四《任意⾓和弧度制》教案》希望对你有帮助!! 教案【⼀】 教学准备 教学⽬标 ⼀、知识与技能 (1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运⽤弧度制表⽰的弧长公式、扇形⾯积公式;(4)熟练地进⾏⾓度制与弧度制的换算;(5)⾓的集合与实数集之间建⽴的⼀⼀对应关系.(6)使学⽣通过弧度制的学习,理解并认识到⾓度制与弧度制都是对⾓度量的⽅法,⼆者是辨证统⼀的,⽽不是孤⽴、割裂的关系. ⼆、过程与⽅法 创设情境,引⼊弧度制度量⾓的⼤⼩,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运⽤弧长公式和扇形⾯积公式.以具体的实例学习⾓度制与弧度制的互化,能正确使⽤计算器. 三、情态与价值 通过本节的学习,使同学们掌握另⼀种度量⾓的单位制---弧度制,理解并认识到⾓度制与弧度制都是对⾓度量的⽅法,⼆者是辨证统⼀的,⽽不是孤⽴、割裂的关系.⾓的概念推⼴以后,在弧度制下,⾓的集合与实数集之间建⽴了⼀⼀对应关系:即每⼀个⾓都有的⼀个实数(即这个⾓的弧度数)与它对应;反过来,每⼀个实数也都有的⼀个⾓(即弧度数等于这个实数的⾓)与它对应,为下⼀节学习三⾓函数做好准备 教学重难点 重点:理解并掌握弧度制定义;熟练地进⾏⾓度制与弧度制地互化换算;弧度制的运⽤. 难点:理解弧度制定义,弧度制的运⽤. 教学⼯具 投影仪等 教学过程 ⼀、创设情境,引⼊新课 师:有⼈问:海⼝到三亚有多远时,有⼈回答约250公⾥,但也有⼈回答约160英⾥,请问那⼀种回答是正确的?(已知1英⾥=1.6公⾥) 显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采⽤的度量制不同,⼀个是公⾥制,⼀个是英⾥制.他们的长度单位是不同的,但是,他们之间可以换算:1英⾥=1.6公⾥. 在⾓度的度量⾥⾯,也有类似的情况,⼀个是⾓度制,我们已经不再陌⽣,另外⼀个就是我们这节课要研究的⾓的另外⼀种度量制---弧度制. ⼆、讲解新课 1.⾓度制规定:将⼀个圆周分成360份,每⼀份叫做1度,故⼀周等于360度,平⾓等于180度,直⾓等于90度等等. 弧度制是什么呢?1弧度是什么意思?⼀周是多少弧度?半周呢?直⾓等于多少弧度?弧度制与⾓度制之间如何换算?请看课本,⾃⾏解决上述问题. 2.弧度制的定义 长度等于半径长的圆弧所对的圆⼼⾓叫做1弧度⾓,记作1,或1弧度,或1(单位可以省略不写). (师⽣共同活动)探究:如图,半径为的圆的圆⼼与原点重合,⾓的终边与轴的正半轴重合,交圆于点,终边与圆交于点.请完成表格. 我们知道,⾓有正负零⾓之分,它的弧度数也应该有正负零之分,如-π,-2π等等,⼀般地,正⾓的弧度数是⼀个正数,负⾓的弧度数是⼀个负数,零⾓的弧度数是0,⾓的正负主要由⾓的旋转⽅向来决定. ⾓的概念推⼴以后,在弧度制下,⾓的集合与实数集R之间建⽴了⼀⼀对应关系:即每⼀个⾓都有的⼀个实数(即这个⾓的弧度数)与它对应;反过来,每⼀个实数也都有的⼀个⾓(即弧度数等于这个实数的⾓)与它对应. 四、课堂⼩结 度数与弧度数的换算也可借助“计算器”《中学数学⽤表》进⾏;在具体运算时,“弧度”⼆字和单位符号“rad”可以省略如:3表⽰3radsinp表⽰prad⾓的正弦应确⽴如下的概念:⾓的概念推⼴之后,⽆论⽤⾓度制还是弧度制都能在⾓的集合与实数的集合之间建⽴⼀种⼀⼀对应的关系。
任意角地概念与弧度制教案设计
【教学过程】
来
终边在坐标轴上的角叫做界限角,例如,0°、90°、180°、270°、360°、−90°、−270°角等都是界限角.
运用知识强化练习
练习7-1
.在直角坐标系中分别作出下列各角,并指出它们是第几象限的角:
终边相同的角有无限多个,它们所组成的集合为
写出终边在y轴上的角的集合.
轴正半轴上;当
【教学过程】
若圆的半径为r ,圆心角∠AOB 所对的圆弧长为的大小就是 2r r
弧度弧度.
:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 由定义知道,角α的弧度数的绝对值等于圆弧长的比,即 l r
α=()
. 半径为r 的圆的周长为,故周角的弧度数为 2π(rad)2π(rad)r
r
=
由此得到两种单位制之间的换算关系:
360°=2πrad ,即180°=πrad .
1°=π(rad)0.01745rad ≈
378︒。
高中数学教案《任意角和弧度制》
教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。
2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。
二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。
●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。
三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。
●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。
●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。
2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。
●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。
●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。
3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。
●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。
●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。
4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。
《任意角和弧度制》教案
《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1 《任意角和弧度制》教案【教学目的】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,推断象限角,掌握终边一样角的集合的书写.3.理解弧度制,能进展弧度与角度的换算.4.认识弧长公式,能进展简单应用.对弧长公式只要求理解,会进展简单应用,不必在应用方面加深.5.理解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、处理征询题. 【导入新课】复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系提出征询题:1.初中所学角的概念.2.实际生活中出现一系列关于角的征询题. 3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,构成一个角?,点O是角的顶点,射线OA,OB分别是角?的终边、始边. 说明:在不引起混淆的前提下,“角?”或“??”能够简记为?.2.角的分类:正角:按逆时针方向旋转构成的角叫做正角;负角:按顺时针方向旋转构成的角叫做负角;零角:假设一条射线没有做任何旋转,我们称它为零角. 说明:零角的始边和终边重合. 3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与x轴的非负轴重合,那么(1)象限角:假设角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例如:30?,390?,?330?都是第一象限角;300?,?60?是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90?,180?,270?等等.说明:角的始边“与x轴的非负半轴重合”不能说成是“与x轴的正半轴重合”.由于x轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边一样的角的集合:由特别角30看出:所有与30角终边一样的角,连同30角本身在内,都能够写成30?k?360??????k?Z?的方式;反之,所有形如30??k?360??k?Z?的角都与30?角的终边一样.从而得出一般规律:所有与角?终边一样的角,连同角?在内,可构成一个集合S|?k?360?,k?Z?,即:任一与角?终边一样的角,都能够表示成角?与整数个周角的和. 说明:终边一样的角不一定相等,相等的角终边一定一样.例1在0与360范围内,找出与以下各角终边一样的角,并推断它们是第几象限角?(1)?120;(2)640;(3)?95012?.?????解:(1)?120?240?360,因而,与?120角终边一样的角是240,它是第三象限角;(2)640?280?360,因而,与640角终边一样的角是280角,它是第四象限角;(3)?95012??12948??3?360,??????????因而,?95012?角终边一样的角是12948?角,它是第二象限角.??例2 假设??k?360??1575?,k?Z,试推断角?所在象限. 解:∵??k?360??1575?(k?5)?360??225?, (k?5)?Z ∴?与225终边一样,因而,?在第三象限.?例3 写出以下各边一样的角的集合S,并把S中适宜不等式?360720?的元素? 写出来:(1)60;(2)?21;(3)36314?.?????解:(1)S??|??60?k?360,k?Z,??S中适宜?360720?的元素是60??1?360300?,60??0?360??60?,?60??1?360??420.??(2)S??|21?k?360,k?Z,??S中适宜?360720?的元素是?21??0?36021?,?21??1?360??339?,?21??2?260??699???(3)S??|??36314??k?360,k?ZS中适宜?360720?的元素是363?14??2?360356?46?, 363?14??1?360??3?14?,?363?14??0?360??363?14.例4 写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边一样的角分别为0?k?360,90?k?360,(k?Z);(3)第一象限角的集合确实是夹在这两个终边一样的角中间的角的集合,我们表示为:?????????M|k?360?90??k?360?,k?Z?.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90??k?360?180??k?360?,k?Z?;N|90??k?360?180??k?360?,k?Z?;Q|270??k?360?360??k?360?,k?Z?.说明:区间角的集合的表示不唯一.例5写出y??x(x?0)所夹区域内的角的集合.??解:当?终边落在y?x(x?0)上时,角的集合为?|??45?k?360,k?Z;????当?终边落在y??x(x?0)上时,角的集合为?|45?k?360,k?Z;??因而,按逆时针方向旋转有集合:S??|?45?k?36045?k?360,k?Z.??二、弧度制与弧长公式1.角度制与弧度制的换算:∵360?=2?(rad),∴180?=? rad. ∴1?=?180rad?0.01745rad.??180 1rad?57.30?5718.oSl2.弧长公式:l?r?. 由公式:?ln?r?l?r??.比公式l?简单. r180lR,其中l是扇形弧长,R是圆的半径. 2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S?留意几点:1.今后在详细运算时,“弧度”二字和单位符号“rad”能够省略,如:3表示3rad ,sin?表示?rad角的正弦;2.一些特别角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推行之后,不管用角度制仍然弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6 把以下各角从度化为弧度:(1)252?;(2)1115;(3) 30;(4)67?30. 解:(1)/71? (2)0.0625? (3) ? (4) 0.375? 56变式练习:把以下各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o. 解:(1) ?;(2)? 18720?;(3)?. 63例7 把以下各角从弧度化为度:(1)?;(2) 3.5;(3) 2;(4)35?. 4解:(1)108 o;(2)200.5o;(3)114.6o;(4)45o. 变式练习:把以下各角从弧度化为度:(1)?4?3?;(2)-;(3).12310解:(1)15 o;(2)-240o;(3)54o.例8 知扇形的周长为8cm,圆心角?为2rad,,求该扇形的面积. 解:由于2R+2R=8,因而R=2,S=4. 课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3.牢记弧度制下的弧长公式和扇形面积公式,并灵敏运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目的:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边一样的角”的含义。
1.1任意角和弧度制教学设计教案
1.1任意角和弧度制教学设计教案第一篇:1.1 任意角和弧度制教学设计教案教学准备1.教学目标1、知识与技能(1)推广角的概念、引入正角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念.2、过程与方法通过创设情境:“转体,逆(顺)时针旋转2周”,角有正角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.学会运用运动变化的观点认识事物.2.教学重点/难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.3.教学用具多媒体4.标签任意角教学过程【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于;图1.1.3(2)中,正角,负角;这样,我们就把角的概念推广到了任意角(any angle),包括正角、负角和零角.为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与轴的非负半轴重合。
任意角和弧度制教案
任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。
2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。
3. 掌握任意角的三角函数值的计算方法。
教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。
2. 学生准备:纸和铅笔。
教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。
提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。
Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。
提醒学生注意正角、负角和零角的特点。
2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。
Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。
2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。
3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。
Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。
2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。
Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。
2. 学生个别或小组合作完成拓展应用题。
Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。
2. 学生将所学知识进行整理和归纳,完成课堂笔记。
Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。
2. 学生完成作业,以便巩固所学知识。
教学评估:1. 教师观察学生在课堂上的参与度和理解程度。
2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。
任意角的概念与弧度制教案
任意角的概念与弧度制教案数学课程第7章第7.1.1节任意角的概念知识目标:1.了解角的概念推广的实际背景意义;2.理解任意角、象限角、界限角、终边相同的角的概念。
教学备品:教学课件、研究演示用具(两个硬纸条一个扣钉)。
授课班级:海乘1601/轮机1601授课时间:10周授课方法:讲授法教学目的能力目标:1.能够判断角所在的象限;2.能够求指定范围内与已知角终边相同的角;3.培养观察能力和计算技能。
教学重点:终边相同角的概念。
教学难点:终边相同角的表示和确定。
教学过程】1.揭示课题:任意角的概念与弧度制。
2.创设情景兴趣导入:问题1:游乐场的摩天轮,每一个轿厢挂在一个旋臂上,___与___两人同时登上摩天轮,旋臂转过一圈后,___下了摩天轮,___继续乘坐一圈。
那么,___走下来时,旋臂转过的角度是多少呢?问题2:用活络扳手旋松螺母,当扳手按逆时针方向由OA旋转到OB位置时,就形成一个角;在扳手由OA逆时针旋转10周的过程中,就形成了0°到360°之间的角;扳手继续旋转下去,就形成大于的角。
如果用扳手旋紧螺母,就需将扳手按顺时针方向旋转,形成与上述方向的角。
通过上面的三个实例,发现仅用锐角或0°360°范围的角,已经不能反映生产、生活中的一些实际问题,需要对角的概念进行推广。
3.动脑思考探索新知:任意角的概念:一条射线由原来的位置OA,绕着它的端点O,按逆时针(或顺时针)方向旋转到另一位置OB就形成角α。
旋转开始位置的射线OA叫角α的始边,终止位置的射线OB叫做角α的终边,端点O叫做角α的顶点。
4.讲解关键点:任意角的概念推广的实际背景意义,以及任意角、象限角、界限角、终边相同的角的概念。
5.结合图形讲解角的图形,并可以加入学生的举例。
6.练和讨论深化、巩固知识,培养能力。
7.反思交流中,总结知识,品味研究方法。
动轴转动,主动轴每分钟转速为1800转,从动轴每分钟转速为1200转,试求主动轴和从动轴之间的转速比。
任意角与弧度制教案
1、1任意角和弧度制一、教材说明:本节任意角和弧度制选自必修四第一章第一节二、三维目标(一)知识与技能(1)了解正、负角与零角的相关定义;(2)根据图形写出角及根据终边写出角的集合;(3)了解弧度制;(二)过程与方法(1)培养学生数型转化的思想;(2)训练学生思维活跃性,能够举一反三;(3)培养学生思维的抽象与具体转化的过程;(三)情感态度与价值观(1)增强学生观察生活中事物的规律能力;(2)在老师的引导下建立数学模型,把数学运用到生活中去;三、教学重难点(一)重点(1)根据图形写出任意角度数;(2)根据已知图形终边位置写出该终边所表示的角的集合;(二)难点根据终边写角的集合(三)教学设计(1)情境设计(2)教学过程(3)给出相关定义(4)举出例题,深化正负角定义(5)提出要点(6)提出关于终边相同,写出所有角所在集合(7)通过练习(教师引导,并作为主体练习),能够独立进行习题练习(8)学生自主练习、教师个别指导、师生互动(9)习题讲解(10)归纳总结(11)引出下堂课知识点:弧度制(12)布置作业四、教学过程(一)创设情境(1)墙上挂钟,在某段时间内,指针转过角度;(2)当手表不准时,我们旋转指针使之准时,这是指针转过的角度是多少?方向如何?(二)揭示课题(1)1、1任意角和弧度制(2)1、1、1任意角(三)复习旧知识顺时针、逆时针(四)给出例题(1)当指针快速顺时针由“12”调至“6”,指针转过多少度?(2)指针由“6”又调回到“12”是,转过角度如何?方向又怎样呢?(五)给出正角、负角定义(1)正角:逆时针方向旋转形成的角叫做正角;(2)负角:顺时针方向旋转形成的角叫做负角;(六)注意要点如果一条射线没有做任何旋转,则称它为零角。
(七)复习旧知识(1)0°—180°内所有角(2)周角(3)平角的整数倍所有角(八)新知识(1)任意角的表示方法;(2)判断当角的始变何种变相同时,角度是否相同.(九)给出任意角及象限角概念注意角的终边在轴上不叫做象限角。
任意角和弧度制的教学设计
任意角和弧度制的教学设计5.1任意角和弧度制【考点梳理】大重点一:任意角考点一:任意角1.角的概念:角可以看成平面内一条射线绕着它的端点旋转所成的图形.2.角的表示:如图,OA是角α的始边,OB是角α的终边,O是角α的顶点.角α可记为“角α”或“∠α”或简记为“α”.3.角的分类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有作任何旋转形成的角考点二角的加法与减法设α,β是任意两个角,-α为角α的相反角.(1)α+β:把角α的终边旋转角β.(2)α-β:α-β=α+(-β).考点三象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.考点四终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.大重点二:弧度制考点五:度量角的两种单位制1.角度制:(1)定义:用度作为单位来度量角的单位制.(2)1度的角:周角的1360.2.弧度制:(1)定义:以弧度作为单位来度量角的单位制.(2)1弧度的角:长度等于半径长的圆弧所对的圆心角.考点六:弧度数的计算考点七:角度与弧度的互化角度化弧度弧度化角度360°=2πrad 2πrad=360°180°=πrad πrad=180°1°=π180 rad≈0.017 45 rad1 rad=180π°≈57.30°度数×π180=弧度数弧度数×180π°=度数考点八:弧度制下的弧长与扇形面积公式设扇形的半径为R,弧长为l,α(0<α<2π)为其圆心角,则(1)弧长公式:l=αR. (2)扇形面积公式:S=12lR=12αR2.课堂练习:P21,第1,2题作业:P22 第3题。
任意角的概念与弧度制教案
任意角的概念与弧度制教案课学数授程课时数课授间时第章第 7.7.1 节 12意角的任概念课授法方课授班级授讲法海乘 1061/机 16轮01识知目:⑴标了角的解念概广的实际背景意义推;⑵ 理解任意角、象限、角界角限、终相同边的的概角念.教学目的能目力标:1(会判断)所在的角限象;()2求会定指范内与围已角终边知相同角;的(3)培养观能力和计算技能察.学重教点和难点复习提与问作业布置点重:终边同相的概念角难.点终边:相同的角示和确定.表P6习练2预习教学思路、方法手、段(1)丰以的富生活例实为例,引入学习引新念概—角的—推广(;)2演示在——察——思维探究活动中,使观学生认、理解识终边相的同角;(3)在练—习—论讨中深、巩化知固识,养培能力;()在反4思交中流总,知结,识品学习味方.法教学备教学品课、学习演件示具用(两个硬条一个纸钉)扣.【学过教程】1教过 *揭课示题学程教师生学学教行为时为意行图间用利介绍了解际实问题引起质疑思学生的考好提问求解奇心求和欲知.7 1意任角的念概弧与制度 *创情景设兴导入趣问题 1游场的乐摩轮天每,一个厢挂在一轿个臂上旋小明,小与华两人同登时摩上天轮,臂转旋过一圈后小明,下了摩天轮,小华继乘坐续圈.一么,小华那下走时,来臂转旋过的角是度多呢?少问题 2 用活扳络手松旋母,当扳螺手按逆针时向由方AO旋到转 BO 置时,位形就一个成角在扳;由 OA手时逆旋转一生针活讨论说明例实有助于学流总交理解结生理解角的推广的义 10意周的过程,中就形成了°0到36° 之间0的角扳手继续;转下去旋就形成,大于的.角果如用手旋紧扳螺母就需将,扳手按的角.顺时针向方旋,转形与成上述方向归纳通上过的三个实例面,现仅发锐用或角°0 360°范围的,已经角能不反映生产、生中活的一些际问题实需,对要的角念概行推进广 *动.脑思探考新索概念知一射线由条来原位置的 AO,绕它的着点端,按O逆时(针或顺针时)方旋转向到另位一 O 置B 形就成角旋.开始位转的射置线O A 叫角的始边,终位止的射置线OB 叫角做的终边端,点O 叫做角的点顶.规:定按时针逆方向旋所转形成角的做正叫角(图如() 1 ,)按顺针时向旋方所转成的角形叫负做角如图(2)).当(线射有没作何旋转任,时认也形为了成一角个,这个叫角做角零.结合说明思考图形解讲角的图形细仔分析讲关键点解理解以可加入学生的举例2教过学程教师生学学时教行为行为图意间导引记明确忆角的类型()1类型2)(强调确明完成的角广推经过这的样广推后,以包含角任意小大的角正负角、和零角.示表除了使用角顶点的边的与母字示角,表角记将为“∠OA”B 或∠“”O,外本中经常用小章写希字腊母、、来、表示.角念概数学中经在平常面角坐直标中研系究角.将的角顶点与坐标点原重,角的始合在边 x轴正半轴,此的,角时的终边在第几限象就,这把角叫个做第象几的角(限者说或个这角第在几限).象图所如,3示0°、3 09° −3、3°0 都第一是象的限,12角0° 是第二象限角的−1,0° 2是三象限第的角,−6° 0、300 都°第是四象限的角强调.理解示展察观引导领会象限角以引导可学生一步步自然得出调强特殊况 30情终在边标坐轴上角的做界限叫角,例如,0 、°0°9、18°0、27° 03、06 °、−0°9 −2、7° 角0都等是界角.限*用运识知强练习化练习 -711.在直角坐系中分标别出下作列各角,指并出它是们几第象限角:的提问巡视考思手动解求指3导馈学反状习巩态固过教⑴06 ° ;⑵−102° ;学程22⑶5°;−⑷300 °.教师学生教学行时行为为图意间流知交识40*手操作动实观验察图钉用结两联根硬条纸,其将中一固定在根O A位的,置演示另一将先根动转 O到 B的置,位后然按再照时顺针向方或逆时操作针方向转,动观察木重条转到复O B的位时置形成所的特角征 *问题.导引践探究实题问在直角坐系标作出中903°、−330 ° 和30 °角,些这的终角有何边关系?探究3 9° =30°+0× 310° 6; 330−° =0°3+(-1 × )360 °.即390° 、 3−30 与°30 ° 之差角是都360° 的整角倍数,它们数射是绕线标原坐点转到旋0° 3角终边位的置后分,别继续逆按针时或时顺方针再向转旋一周形所的成.角推广 3与0° 终角边同相角的还:有57°0=30 °+×2360 °;1 10°1=3 0° +×3 630° …;… -609° =0° 3(-2)× 3+0° ;6 -0510°= 0° 3+-3(×)360 °;… …讲解析分引导提问疑质动手作操由具体的思问考题实际求解操作引学导生会领步步的一体会理解终边相同角的义含自然出得确明论结所有与03°角终边同相的角的数度与,03° 角的数度差都之好恰为30°6 的整数倍数它.们(包括03°角都可以)示为表总结(kZ 的)式.因形,此30°与30° +k 360 角°终边同的角的相集为合 S {︱ 03 k 63 0,k Z}. *动脑思考索新探一知地般与角终边,相同的(角包角括在)内,可以都示表为 k 36 0(k Z)的形式.与角终边相同的角有无多个,限们所组它的集合为S成{︱ k 30 , 6 k Z}.50说明理解强调概的念关调强记忆键点55巩固知识 *型例题典例 1出写下与列角终各相边同角的集合的并,把其中在4 过学程教⑵−14126′°.师教学生教时学行为行意图为间质疑观安察排与识点知明说思考3−60°~70°2 的角写内来:⑴ 6出° ;分首析先要出写已知角终边与同相角的集合的S 然后选取,整 k数的值,使得 k 3 06在指的范围定内.对应的例题巩⑴ 与解06 角°边终相同的角集的合是{︱ 06 k 603k ,Z }.当k 1时, 06 (1) 306 030 ;当 k 0 时,解讲动主求解新固60知0 36 0 60当;k 1时 6,0 1 306 420 .以在所−360° ~20° 之7间与6°0 角边终同的角为30相、0 60 和 420.⑵与−11°42′角终6相同的角的集合是S边{︱11426 k 360 , k Z }.说思明考计算分部可以当k 0 时, 1 1 264 0 306 114 2 6;引领理解教给学生成完k 时, 1114 62 1 3604523 4;当 k 2时,11 42 6 2 360 65034 .以在−所630 °~72 ° 0之间与14126 角终相同的角为边14 126、 245 34和 6503 4.分析例2出终边在写 y 上轴的角集合.分的析在0 ° 3~60 范围内,°终在边 y轴正半轴上的为 9角0°,终边在y 轴半负轴上角为的72°0 ,此因终,在 y边轴正半轴总结、负半上轴有所的角分别k是360 9 0k2 18 0 90,领会利观用察图像求解加强题问的k理603 207 ( k 2) 180 19 0 ,讲解理解解中其k Z .式⑴号右边等示表180° 偶的数再倍上加90° (;) 式2号右边表等1示0° 8的数奇倍加上再90 ,可°以将们合并为它180 °的整倍数再上加90° 强.调5教过学程教师学生学时教行为为行图间意引领明确规范法写解边在终y 轴上的角的集是合S {︱n 18 0 9 0 ,n Z}.当n偶取数,时角的终在边y 正轴轴半;当 n 上奇数取,时角的终边在 y轴半轴上负 7.0 运*知用识化练强习教材练习 .5.2 1. 1 在° ~3600°范围内找,与出下列各终边相角同角的并,指出它是们个哪象限角的:⑴ 04°5;⑵ 165° ;⑶ 1 56° 3 ;⑷5421 ° 提.问考思及了时巡解视动求解学生知识手掌握况情导指⑷ 13 03°.培养导引回忆学总结生自我*反思标检目测本课次采用怎了的样习学法?方你如是进行何学习的?你的习效果学何? *如续继索活动探究探( 1读)书分:部教材章 7节.11;. 2)(书面业作:;练习7.1; (3)践实调:查生活角中概念的推的广实例说明.记录09 问提反交流思思反习学过程力能 8 5流交 8. 2 写与出列下角终边各相的角同的合,并集其把中在−60° ~336°0 围范的角写内出:来4⑴°5;⑵ −55 °;⑶2−2°45′0;*归纳结小强思想化本课次了学些哪容?重点内难点各和什么?是6课数学程授课时数授课时间第7章第7.1 .2 2节度制弧授课方法授课班讲授法级海乘 6011轮机 1/016知识目:⑴标理解弧度制的概;念⑵ 理解度角制与弧制的换算度关.系教学目的能力标:目(1 )会行进度角与制度弧制的换;算 2)(会利用算计器进角行制与弧度制度的换;算(3 培养学生的)算技能与计算计具使工用能技.教学重点难点和复习提问与作业布重点:置弧度制的念概,弧与度角的换算.难度:弧度点制的概.念P6习练 2习预教学思路方、法、手段1)由问题引入(弧度制的念;概2()过观通—察—究探明晰,弧度与角度制的制换关系算;()在练习3—讨—论,深中化巩固、识知,培计养算技能;4)在操作——实践(中,养计算工具培使用能;技()5合结实了例解识的应知.用学备品教教学件课【教学过程】7教过*示揭课题7 2..2.弧度制 * 回知顾识复导入习题问学程教师生学教学时行为为行图意间绍了介解用角是如利度何的量?的单位是什么角?决将解圆的周质疑思考复习角度1弧圆对所圆心角叫做的 1度角记,作 1 °.3 60为制引领确明新知识学习的考思解讲说了明解好做铺垫 51等度 60于分(1 °60′) =,1 等于分6 秒0(′1=6″)0 .度以为位来单量角的度位制单做角叫制度扩展.算:23°计352′6+″1°43′40″3角度下,计制算个两角加、的运算减,时经会带常来单位换算的上烦.麻否重能设计新的单角位,制使角两加的减、运像算0 1进位制的加、减运算数样简那单? *动脑呢考探思索新知概将念等于径半的圆弧所对的长圆角叫心做弧1的度,记作角 1度弧 1或ad.以弧度r 为单来度位量角的位制叫做单弧度制.明说理解弧度念概较为忆记抽象讲解若圆的径为 r半,心角圆∠AOB所对的弧长为 2 圆 r那么∠A,BO 大小就是 2的 r弧度 2 弧度. r规:定正的弧角度为数正数负,的弧度数角为数,负角的弧度数零零为.析分由义定知道,角的度弧的绝对数等于圆值弧长l与半径举时例注分重析关键点弧长与角仔细析讲解分键关会领的应对关系r的,比即l.(ad) rr半为径r 的圆周的长为π 2r 故,角的周度数弧为8教过学程教学生师学教时为行为行图意间强点换调归算纳确明的方引法领生学加记忆强2πr ( adr) 2 (radπ .)r由此得到两种位单制之间的换关系算:63° 0= 2π ad r即,换算公式° 1= π (ra) d.00147r5da80110 81ar d( )57 . 37581.π81°0= π adr.说明 1.用弧度制表示角的小大,在时至于不产误生的解况下,情常可通以略单省“位度”弧或“rad”书的写.例,如1 ad, r2rd, a强调简单了解说明应对系关2 0ππadr可,分以别写作12,,.2 22.采用弧度制后以,一个每都对角应一唯的一实数;个反,每一个实之都数应唯对一的个角.于是一,角在的合集与实集之间,建数立起一一了对的关应.系巩固知* 典型识题例例 1 把下各角度换列为算弧度精确(到0 .010):⑴ 1 5° ;⑵ 8 °0′;3⑶1−0° .0801说明明说考思利用例强化题析分度制角换为弧算度利用公式制1 = °π r(ad) 0.01745rda .解⑴ 1515π π 0.62 ;120812强理解调算换式公方⑵ 法8308 5. .5 8 π 1π7 0.41 81;8 0306⑶ 1 0 0100 π 5 π1745..80 91讲解求解例 2下把列各弧换算度为度(角精确到′)1 :算分计领会析方面可学由生引计领自算我主3动π⑴; 5⑵ 2.1 ;⑶−3. 5.分弧度析制换算角度制用公利 1ra式d ( 108) 5.7 53178.π解⑴ 3 π 3π 180180;55 π9教π过π学程教师生学教时学行行为为图意间求完成解30⑵2. 1 .21 80 1 37 182091 ;⑶ −3. 5.3 581 603020302 .ππ运*用识知化练强教材习练习5.2 1.1.把下列各角从角化度弧为度口答():108° 60°;0°9;3 °0 4;5 ° ;102° ;5° 1 ; 702 ° ;.及时提问考思解了生学识知掌握.把下列各2从弧角度为化度(口角答:)π2 π3;;π2 π 3;;π 4 π 6;;π 8 12π;.巡视动手求解况3情.下列各角把角度化为从度:⑴弧75° ;−240° ;⑵⑶ 10 ° ; 5 67°⑷30.′ 指导⑷ 6 π.交流错答疑纠4 .把列下各角弧从度化为角:π 度⑴ ;52π ⑵ 1 5;4π⑶ ;340 培养质疑组讨论巡小视汇总探究使计算用能力器 05*自探我使用工具索备计准算.器察观计器上的算按键阅并读相的使用说明关,书组完成计小算器度弧角度转换的方与法.利用计算,验证器计算题例 1例题与 2 .*固知识巩典例型题例3 某机械用采带动,传由动机的主动轴发带工着机的作从动轮转动设主动轮.A 直的为径1 0 0m,从动轮m 的B径直 280为mm.问:主轮动A 转旋60°3从动, B 旋转的轮是角少?(精多确到1 ′)解动主轮A旋转360°是就一,周以所,动带转传的长过度为π1×00= 100 π( mm).再考虑动从,传轮动紧带着贴动从轮 B转过1 0π 0(mm 讲) 解主说明动考思质疑察安观排实际题问学使了生解弧度制1过教学程教师学生教学时为行为意行图求间解用应l的度,那么,长应用式公,从动 B轮过转的角就于等r 1 00 5 18234. '401 7 5答动轮旋转π从用,角表度约为示1 8234°.′例7 4如下图,求公路弯道部分B A的长(l确精到01.m图.长度单中位m:).引领说明提问点重考分思题析目中数据各解理处的介绍理讨论计算部分交给生学确明解求完成分析道圆心角和知半径,弧求时长要首,将先圆心角换算为度弧.制析分π解6°0角算为弧度,换此因3l R π. 54 .1423 1 5 4 7.1(m 3)答道弯分部 AB 长的 l约为4 .17 . m*运用识强知练化教习材习练 .25.2 .1填:空⑴ 若形扇半径的为0cm,圆1角心为6 0 °则该,形扇的长弧提思问考及时了解学生知巡识视动手解指求导流培交养引回导忆生总学结掌握情况,扇形面积S.6l5⑵已知1°的圆心角对的所长弧 1m,为那这个圆的半么是径m .2.自车行行进时车轮在, 1mn i转过内 96了.圈车若轮半的为径 0.33m,则自车行小1前进了多少时(米精到确 m)? *归1小结纳化强想本思次课学哪些了容内重点?难点和各什是?么8011教过 *我反自思标目测检学程师学生教教学时行为为行意图间提问反思流反思交学习过能力程 85本次采课了用怎的样学习法?方你是如进行何学习?的的你习效果如何?学继续*探索活探动究()读书部1分教材章:节 .52; 2()面作书:学习与业训练 5.2 (;3实)调查:践解了弧制度的实际应用.说明记录9012。
高中数学必修4《任意角和弧度制》教案
高中数学必修4《任意角和弧度制》教案一、教学目标1. 理解任意角的概念,掌握任意角的几何性质;2. 理解弧度制的概念,掌握弧度制的基本用法;3. 掌握任意角的三角函数及其基本性质。
二、教学内容1. 任意角的定义和性质;2. 弧度制的概念和计算公式;3. 三角函数的定义、性质及其图象。
三、教学方法1. 归纳法、演示法、讨论法;2. 短片展示、综合练习。
四、教学步骤步骤一:导入新课1. 充分利用素材,抛出有关问题,启发学生思考,激发探究兴趣,从而引出新课。
2. 展示台湾百事可乐的广告,提问:“你们觉得这是哪种角度?”3. 解释任意角的概念,举一些例子,使学生了解不同角度的概念。
步骤二:学习任意角的定义和性质1. 任意角的定义和表示方法。
2. 讲解任意角的性质。
步骤三:学习弧度制的概念和计算公式1. 弧度的概念和推导过程。
2. 弧度与角度的换算公式及例题。
步骤四:学习三角函数的定义、性质及图象1. 正弦函数、余弦函数、正切函数的定义和图象。
2. 三角函数的性质及相互关系。
步骤五:练习讲解1. 小组讨论,练习几何问题。
2. 练习弧度制的换算,解答相关问题。
3. 课后作业:巩固基础知识,拓展思维应用。
五、教学反思本节课的核心是任意角和弧度制,由于任意角和弧度制是高中数学必修课程,因此教学难度较大,需要遵循步步深入的原则,先从角度和任意角说起,再讲述弧度制及其换算公式,最后介绍三角函数及其相关性质。
在教学过程中,教师应运用多种教学方法,使学生更直观地理解这些概念和公式,同时也需要拓展学生的思维应用,使他们发现数学的应用价值,激发学生的学习兴趣。
任意角和弧度制(弧度制)教案 高一上学期数学人教A版(2019)必修第一册
第五章三角函数5.1.2 弧度制(1 课时)【教学内容】弧度与角度的互化;特殊角的弧度制;弧长公式、扇形面积公式.【教学目标】(说明:不要写成三维目标的形式,点列,可以从知识技能、过程方法、数学核心素养等角度写目标)1.理解弧度制的定义,体会引入弧度制的必要性.(数学抽象)2.能进行弧度与角度的互化,熟悉特殊角的弧度制.(逻辑推理、数学运算)3.掌握弧度制中扇形的弧长和面积公式,体会弧度制下公式形式的简洁性,会应用公式解决简单的问题.(数学运算、数学模型)【教学重难点】教学重点:角度制与弧度制间的互相转化,弧长公式及扇形的面积公式的推导与证明.教学难点:能灵活运用弧长公式、扇形面积公式解决问题.【教学过程】(说明:本环节包括新授、小结、布置作业等)一、复习回顾,温故知新1.在平面几何里,度量角的大小用什么单位?【答案】角度制的单位有:度、分、秒。
2.1 的角是如何定义的?【答案】规定:圆周1/360 的圆心角称作1 角.这种用度做单位来度量角的制度叫做角度制.日常生活中,度量长度可用不同的单位,如:一张课桌长80 厘米,也可以说长0.8 米,显然两种结果出现了不同的数值. 在数学和其他科学研究中还经常用到另一种度量角的制度—弧度制,它是如何定义呢?二、探索新知探究:在圆内,圆心角的大小和半径大小有关系吗?角度为60的圆心角,半径r 1,2,3 时,(1)分别计算相对应的弧长l ;(2)分别计算对应弧长与半径之比.思考:通过上面的计算,你发现了什么规律?【答案】①.圆心角不变,比值不变;比值的大小与所取的圆的半径大小无关;②圆心角改变,比值改变;比值的大小只与圆心角的大小有关;1.弧度的概念把长度等于半径长的弧所对的圆心角叫做1 弧度(radian)的角.弧度制:这种以弧度作为单位来度量角的单位制叫做弧度制,它的单位是弧度,单位符号是 rad. 约定: 正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为 0.思考 1:圆的半径为 r,弧长分别为 2r 、πr,则它们所对圆心角的弧度 数是多少?【答案】2rad, πrad.思考 2:如果半径为 r 的圆的圆心角α所对的弧长为l ,那么,角α的弧度数的绝对值如何计算?l【答案】|α| =r2. 角度与弧度的换算思考 3:一个周角以度为单位度量是多少度, 以弧度为单位度量是多少弧度?由此可得角度与弧度有怎样的换算关系?【答案】360º, 2π. 360︒= 2πrad,180︒ = πrad思考 4:根据上述关系,1°等于多少弧度, 1 rad 等于多少度? 【答案】1︒ =π180︒≈ 0.01745rad 1rad = 180)︒≈ 57.30︒(π三、典型例题例 1. 把下列各角的度数化为弧度。
任意角的概念与弧度制教案
任意角的概念与弧度制教案一、任意角的概念:1.任意角的定义:在坐标平面上,如果将终边与正半轴之间的交点记作点A,即A=(1,0),以正向旋转方向将终边与正半轴旋转到位时所转过的角叫做任意角。
任意角由初始边和终边两部分构成。
2.任意角的位置:任意角不限于0到360度之间,可以是任意大小的角度。
旋转方向可以是正向(逆时针)或反向(顺时针)。
3.任意角的度数:任意角的度数即为终边与正半轴的夹角的度数,用角度符号°表示。
4.任意角的象限:根据终边在哪个象限上,可以将任意角分为一、二、三、四象限。
二、弧度制的概念:1.弧度的定义:将半径等于1的圆的周长分成等份,每份叫做一个弧度。
如果圆上的一段弧的长度等于半径的长度,则该弧对应的角叫做一弧度。
2.弧度与度数的关系:360°对应的弧度为2π,即一周对应2π弧度。
所以,任意角对应的弧度数等于该角度数乘以π/180。
3.弧度制的优势:在三角函数的计算中,弧度制比度数制更为方便和精确,有利于进行各种数学计算。
三、教学步骤:教学目标:学生了解任意角的概念与弧度制的定义,掌握任意角的度数与弧度的转化关系。
教学步骤:Step 1:导入新知识通过出示一个角的图片,提问学生这个角是什么角,是否为任意角。
引导学生思考任意角的含义与特点。
Step 2:任意角的概念解释与举例教师对任意角的概念进行解释,并用实际生活中的例子来说明。
比如:针对绕场地跑的运动员,可以将终点的方向与正北方向之间的夹角视为任意角。
Step 3:弧度制的引入教师让学生回忆以前学过的圆的知识,引出弧度的概念。
通过实际的展示,向学生展示单位圆上的一个弧度与该弧度对应的角。
Step 4:弧度与度数的转化通过一个表格或示例,教师向学生解释弧度与度数之间的转化关系。
提醒学生要掌握好π、角度、弧度之间的换算。
Step 5:练习与巩固提供一些练习题,让学生进行弧度与度数之间的互相转化,巩固所学知识。
Step 6:拓展应用教师提出一些与弧度制相关的实际问题,让学生运用所学知识解决问题。
任意角的概念与弧度制教案
任意角的概念与弧度制教案一、概念解释任意角是指角的顶点可以位于坐标系中的任意位置,而不仅仅局限于角的顶点位于原点或坐标轴上。
在平面直角坐标系中,如果将角的顶点放在原点上,且不在坐标轴上,则该角为任意角。
在数学中,角的度量方式有两种,分别是度度量和弧度度量。
本教案将重点介绍弧度制的概念与应用。
二、弧度制的定义弧度制是一种用弧长来度量角的单位制度。
弧度制中,角的度量用弧长与半径相等的弧所对应的弧度数表示。
三、弧度制与度度量的转换1. 弧度制转度度量:角度(度) = 弧度数× (180°/π)2. 度度量转弧度制:弧度数 = 角度(度) × (π/180°)四、弧度制的优点1. 精确性:弧度制可以更精确地表示小角度,保证计算结果的准确性。
2. 便利性:在三角函数的计算中,弧度制更便于推导与计算,使得计算过程更加简洁。
3. 单位统一:由于弧度制是用弧长来度量角度的单位制度,使得角度和长度的单位得到了统一。
五、任意角的弧度表示在任意角中,以顺时针为正方向,角的弧度表示为正角度的弧度数。
六、弧度制在三角函数中的应用在三角函数中,弧度制是最常用的单位制度。
以下是几个常用三角函数值对应的弧度制表示:1. 正弦函数:sin(30°) = sin(π/6) = 0.52. 余弦函数:cos(45°) = cos(π/4) = 0.7073. 正切函数:tan(60°) = tan(π/3) = √3七、弧度制的练习与应用1. 练习一:求解以下各角的弧度制表示:a) 45°b) 60°c) 90°2. 练习二:根据题意求解下列三角函数的值(保留两位小数):a) sin(π/4)b) cos(π/3)c) tan(π/6)3. 应用一:计算角度为45°的正弦值解答:sin(45°) = sin(π/4) = 0.7074. 应用二:计算角度为60°的余弦值解答:cos(60°) = cos(π/3) = 0.5八、总结通过本教案的学习,我们了解了任意角的概念以及其中的弧度制度量方式。
任意角的概念与弧度制教案
任意角的概念与弧度制教案导言:任意角是初中数学中一个重要的概念,它是我们研究三角函数的基础。
为了更好地理解任意角,我们需要引入弧度制这一概念。
本教案将从任意角的定义开始,逐步介绍弧度制的概念以及如何进行角度与弧度的转换,帮助学生深入理解和掌握这两个概念。
一、任意角的定义在平面直角坐标系中,通过原点O以及一条射线OA,可以确定一个角,这个角叫做任意角。
其中,射线OA称为角的始边,射线OB (OB ≠ OA)称为角的终边,O点叫做角的顶点。
二、弧度制的概念角度制是我们最常用的一种角度单位,但在一些高级数学和物理问题中,常常使用弧度制来度量角的大小。
弧度制定义如下:当半径为r 的圆的圆心角所对的弧长等于半径时,这个角的度数为1弧度,记作1 rad。
三、角度与弧度的转换1. 角度转弧度:已知角的度数α,可以使用如下公式将其转化为弧度:弧度数 = 角度数× π/1802. 弧度转角度:已知角的弧度数β,可以使用如下公式将其转化为角度:角度数 = 弧度数× 180/π四、任意角的性质1. 一个任意角可绘制无数个与之终边相同的角。
2. 一个任意角的终边在平面直角坐标系中的位置决定了该角在坐标系中的唯一性。
3. 弧度制中的任意角大小范围为0≤θ<2π,其中2π的意义相当于360°。
五、任意角的相关公式在三角函数的研究中,任意角的概念是非常重要的。
以下是一些与任意角相关的基本公式。
1. sin任意角和cos任意角的定义:在平面直角坐标系中,给定角θ的终边上的点P(x,y),则有:sinθ = y/rcosθ = x/r其中,r为OP的长度。
2. tan任意角的定义:在平面直角坐标系中,给定角θ的终边上的点P(x,y),则有:tanθ = y/x注:当x=0时,tanθ不存在。
3. 值域:在上述公式中,可以发现sinθ、cosθ、tanθ的值与终边上的坐标有关,因此它们的值域都在[-1,1]之间。
(教案5)1.1任意角和弧度制
1.1.2弧制度教学目的:要求学生掌握弧度制的定义,学会弧度制与角度制互化,并进而建立角的 集合与实数集R 一一对应关系的概念。
教学重点:会将一个角度制的角化为弧度制,将弧度制角化为角度制角。
教学难点:1弧度角化为角度,1度角化为弧度角的理解。
教学过程一、复习提问任意角包括哪些角?有最大角、最小角吗?终边相同的角的集合如何表示?二、新课1、提出课题:弧度制-—另一种度量角的单位制定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
它的单位是rad 读作 弧度。
如图:∠AOB=1rad ,∠AOC=2rad 周角=2πrad (1)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0(2)角α的弧度数的绝对值 rl=α(l 为弧长,r为半径)(3)用角度制和弧度制来度量零角,单位不同,但数量相同(都是0),用角度制和 弧度制来度量任一非零角,单位不同,量数也不同。
2、角度制与弧度制的换算抓住:360︒=2πrad ∴180︒=π rad ∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad例1、 把'3067 化成弧度o r C2rad 1rad r l=2r oAAB解:⎪⎭⎫⎝⎛=2167'3067 ∴ rad rad ππ832167180'3067=⨯=例2、 把rad π53化成度。
解: 1081805353=⨯=rad π注意几点:1.度数与弧度数的换算也可借助“计算器”《中学数学用表》进行; 2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad sin π表示πrad 角的正弦3.一些特殊角的度数与弧度数的对应值应该记住(见课本P9表) 4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。
任意角的集合 实数集R 3、练习例3、 用弧度制表示:1︒终边在x 轴上的角的集合;2︒终边在y 轴上的角的集合3︒终边在坐标轴上的角的集合.解:1︒终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ2︒终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ3︒终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 4、 小结:1.弧度制定义 2.与弧度制的互化 5、作业:。
任意角弧度制教案
任意角弧度制教案教案标题:任意角弧度制教案教案目标:1. 理解任意角的概念和弧度制的基本原理。
2. 掌握任意角与弧度之间的转换关系。
3. 能够在解决相关问题时使用弧度制进行计算。
教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、教学投影仪等。
2. 学生准备:教科书、笔记本、计算器等。
教学过程:引入活动:1. 教师可以通过提问来引导学生思考:你们知道什么是角度吗?我们平时常用的角度单位是什么?有没有其他表示角度的方法呢?2. 学生回答后,教师可以简要介绍一下角度的概念和常用的度数制。
概念讲解:1. 教师通过示意图和实例,引导学生理解任意角的概念:任意角是指角的两条边可以是任意长度的角。
2. 教师引导学生思考:在解决一些数学问题时,角度单位常常不够灵活,有时候我们需要更精确的表示角度的方法。
这时,我们就可以使用弧度制。
3. 教师简要介绍弧度制的基本原理:弧度是角度的一种度量方式,表示角所对应的圆的弧长与半径的比值。
一个完整的圆周对应的弧度为2π。
转换关系讲解:1. 教师引导学生思考:如何将角度转换为弧度?如何将弧度转换为角度?2. 教师通过示意图和实例,讲解角度与弧度之间的转换关系:- 角度转弧度:弧度 = 角度× π / 180- 弧度转角度:角度 = 弧度× 180 / π练习活动:1. 学生进行练习题,巩固角度与弧度之间的转换关系。
2. 学生解决一些实际问题,应用弧度制进行计算。
总结:1. 教师对本节课的内容进行总结,强调任意角的概念和弧度制的重要性。
2. 学生回答问题,进行互动讨论。
拓展活动:1. 学生自主学习相关知识,扩展弧度制的应用领域。
2. 学生可以进行小组讨论,分享自己在实际生活中发现的弧度制的应用案例。
评估方式:1. 教师观察学生在课堂上的参与情况和回答问题的准确性。
2. 教师布置作业,检验学生对角度与弧度之间转换关系的掌握程度。
拓展阅读:1. 推荐学生阅读相关教材或网络资料,进一步了解角度与弧度制的应用。
任意角与弧度制 教学设计-2023-2024学年高一上学期数学人教A版(2019)必修第一册
任意角与弧度制课时教学设计课题5.1任意角与弧度制授课时间: 年 月 日课型:新授课课时:第一课时数学核心素养目标1.通过探索让学生掌握用“旋转”定义角的概念,理解并掌握“正角”、“负角”、“象限角”、“终边相同的角”的含义。
2.培养学生判断推理和化归转化能力,加强数形结合思想的运用。
3. 培养学生观察、类比、辨析、运用的综合思维能力,体会化归与转化、类比 等数学思想,提高学生数学运算和逻辑推理能力。
学习重点难点教学重点:理解并掌握正角、负角、零角的定义,掌握终边相同的角的表示方法; 教学难点: 终边相同的角的表示; 教学准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体课件,三角尺,直尺 学习活动设计环节一:情景引入,温故知新 一、问题情境:1.思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?2.复习:初中是如何定义角的?从一个点出发引出的两条射线构成的几何图形.3.情境:生活中很多实例不在范围]360,0[00内. 体操运动员转体720º,跳水运动员向内、向外转体1080º经过1小时时针、分针、秒针转了多少度?4.问题:这些例子不仅不在范围]360,0[00,而且方向不同,有必要将角的概念推广到任意角,想想用什么办法才能推广到任意角?(二)教授新课 二、建构理论: 1.角的概念的推广 ⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.突出“旋转” 注意:“顶点”“始边”“终边”ABαO⑵“正角”与“负角”、“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.记法:角α或α∠ 可以简记成α.⑶意义:用“旋转”定义角之后,角的范围大大地扩大了. 1︒ 角有正负之分 如:α=210︒β=-150︒γ=660︒ 2︒ 角可以任意大3︒ 还有零角: 一条射线,没有旋转.要注意:正角和负角是表示具有相反意义的旋转量,它的正负规定纯属习惯,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样.2.“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角. 角的顶点合于坐标原点,角的始边合于x 轴的正半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一个象限).例如:30︒、390︒、-330︒是第象一限角,300︒、-60︒是第四象限角,585︒、1180︒是第三象限角,-2000︒是第二象限角等.3.终边相同的角观察:390︒,-330︒角,它们的终边都与30︒角的终边相同⑵探究:终边相同的角都可以表示成一个0︒到360︒的角与)(Z k k ∈个周角的和: 390︒=30︒+360︒)1(=k -330︒=30︒-360︒)1(-=k30︒=30︒+0×360︒)0(=k 1470︒=30︒+4×360︒)4(=k -1770︒=30︒-5×360︒)5(-=k⑶结论:所有与α终边相同的角连同α在内可以构成一个集合:{}Z k k S ∈⋅+==,360| αββ即:任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和. ⑷注意以下四点: ①Z k ∈②α是任意角;③0360⋅k 与α之间是“+”号,如︒-⋅303600k ,应看成)30(3600︒-+⋅k .④终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.教师活动:通过对问题情景中4个问题的引入,让学生思考并从实际问题中抽象找出其中的角的关系,教师进行补充说明;通过现实生活中的问题,引导学生进一步的观察,研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【教学过程】
教学过程教
师
行
为
学
生
行
为
教
学
意
图
时
间
正角(如图(1)),按顺时针方向旋转所形成的角叫做负角(如图(2)).当射线没有作任何旋转时,也认为形成了一个角,这个角叫做零角.
(1)(2)
类型
经过这样的推广以后,角包含任意大小的正角、负角和零角.
表示
除了使用角的顶点与边的字母表示角,将角记为“∠AOB”或“∠O”外,本章中经常用小写希腊字母α、β、γ、来表示角.分
析
讲
解
关
键
点
引
导
强
调
记
忆
明
确
领
会
的
图
形
可
以
加
入
学
生
的
举
例
明
确
30
教学过程教
师
行
为
学
生
行
为
教
学
意
图
时
间
概念
数学中经常在平面直角坐标系中研究角.将角的顶点与坐标原点重合,角的始边在x 轴的正半轴,此时,角的终边在第几象限,就把这个角叫做第几象限的角(或者说这个角在第几象限).
如图所示,30°、390°、−330°都是第一象限的角,120°是第二象限的角,−120°是第三象限的角,−60°、300°都是第四象限的角.
终边在坐标轴上的角叫做界限角,例如,0°、90°、180°、270°、360°、−90°、−270°角等都是界限角.引
导
展
示
强
调
观
察
理
解
角
的
类
型
完
成
角
的
推
广
象
限
角
可
以
;当1
+⨯=
k=时,601360420
以在−360°~720°之间与0°角终边相同的
.
取偶数时,角的终边在
【教学过程】
教 学 过 程
教师 行为
学生 行为
教学 意图 时间
角度制下,计算两个角的加、减运算时,经常会带来单位换算上的麻烦.能否重新设计角的单位制,使两角的加、减运算像10进位制数的加、减运算那样简单呢
明 习 做好 铺垫
*动脑思考 探索新知 概念
将等于半径长的圆弧所对的圆心角叫做1弧度的角,记作1弧度或1rad .以弧度为单位来度量角的单位制叫做弧度制.
若圆的半径为r ,圆心角∠AOB 所对的圆弧
长为2r ,那么∠AOB 的大小就是 22r r
弧度弧度.
说明
举
例
理解
记忆
弧度 概念 较为
抽象 讲
教 学 过 程
教师 行为
学生 行为 教学 意图 时间
解 主动轮A 旋转360°就是一周,
所以,传动带转过的长度为π×100 = 100π(mm ).
再考虑从动轮,传动带紧贴着从动轮B 转过100π(mm)的长度,那么,应用公式l r
α=,从动轮B 转过的角就等于
'1005
128341407
π=π≈. 答 从动轮旋转5π7
,用角度表示约为128°
34′.
例4 如下图,求公路弯道部分AB 的长l (精确到0.1m .图中长度单位:m ).
明
讲解
说明 提问
引领
考
主动 求解
思考
理解
题 使学 生了 解弧 度制 应用
重点 分
65。