高考数学选择题之压轴题
2024年高考数学(新高考压轴卷)(全解全析)
2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。
新高考数学试卷选择压轴题
1. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,若存在实数a,使得f(a) = 0,则f'(a)的值为()A. -1B. 0C. 1D. 22. 设A、B是两个非空集合,且A∩B=∅,则下列结论正确的是()A. A∪B=∅B. A∩B=∅C. A∪B=∅,A∩B≠∅D. A∪B≠∅,A∩B=∅3. 已知数列{an}是等差数列,若a1+a4+a7=12,a1+a5+a9=27,则数列{an}的公差d为()A. 3B. 4C. 5D. 64. 在锐角三角形ABC中,∠A=30°,∠B=60°,若BC=2,则AC的取值范围是()A. (2,4]B. [2,4]C. (2,4)D. [2,4)5. 已知等比数列{an}的公比为q(q≠1),若a1+a2+a3=9,a4+a5+a6=81,则q的值为()B. 3C. 4D. 66. 设f(x) = x^3 - 3x^2 + 2x + 1,g(x) = |x-1|,则f(x)在[0,2]上的最大值为()A. 2B. 3C. 4D. 57. 已知数列{an}是等差数列,若a1+a4+a7=12,a1+a5+a9=27,则数列{an}的前n项和Sn为()A. n(n+1)B. n(n+2)C. n(n+3)D. n(n+4)8. 在锐角三角形ABC中,∠A=30°,∠B=60°,若BC=2,则AC的取值范围是()A. (2,4]B. [2,4]C. (2,4)D. [2,4)9. 已知等比数列{an}的公比为q(q≠1),若a1+a2+a3=9,a4+a5+a6=81,则q的值为()A. 2C. 4D. 610. 设f(x) = x^3 - 3x^2 + 2x + 1,g(x) = |x-1|,则f(x)在[0,2]上的最大值为()A. 2B. 3C. 4D. 5二、解答题11. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f(x)在[-1,3]上的最大值和最小值。
高考数学选择填空压轴题45道(附答案)
,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a
的
取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考
高考数学压轴卷理含解析试题
卜人入州八九几市潮王学校〔全国卷Ⅰ〕2021年高考数学压轴卷理〔含解析〕一、选择题〔此题一共12道小题,每一小题5分,一共60分.在每一小题的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.集合{}{}228023A x x x B x x =+-≥=-<<,,那么A∩B=(). A.(2,3)B.[2,3)C.[-4,2]D.(-4,3)2.(1i)(2i)z =+-,那么2||z =〔〕 A.2i +B.3i +C.5D.103.假设向量a=1,2⎛ ⎝⎭,|b |=a ·(b -a )=2,那么向量a 与b 的夹角为() A.6πB.4π C.3π D.2π 4.某几何体的三视图如下列图,那么该几何体的体积为 A.8B.12C.16D.245.某批零件的长度误差〔单位:毫米〕服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间〔3,6〕内的概率为〔〕〔附:假设随机变量ξ服从正态分布()2,Nμσ,那么()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=.〕A.6%B.19%C.28%D.34%6.我国古代名著庄子天下篇中有一句名言“一尺之棰,日取其半,万世不竭〞,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如下列图的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),那么①②③处可分别填入的是() A.17?,,+1is s i i i≤=-=B.1128?,,2is s i i i≤=-=C 17?,,+12is s i i i ≤=-= D.1128?,,22i s s i i i≤=-=7.变量x ,y 满足约束条件1031010x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,那么2z x y =+的最大值为〔〕 A.1 B.2 C.3 D.48.九章算术中有这样一个问题:今有竹九节,欲均减容之〔其意为:使容量均匀递减〕,上三节容四升,下三节容二升,中三节容几何?〔〕 A.二升B.三升C.四升D.五升9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,3,sin a c b A ===cos 6a B π⎛⎫+ ⎪⎝⎭,那么b=() A.110..假设直线220(0,0)ax by a b -+=>>被圆014222=+-++y x y x 截得弦长为4,那么41a b +的最小值是〔〕A.9B.4C.12D.1411.抛物线2:2(0)C y px p =>的焦点为F,点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线C 上一点,以点M 为圆心的圆与直线2px =交于E ,G 两点,假设1sin 3MFG ∠=,那么抛物线C 的方程是〔〕A.2y x = B.22y x =C.24y x = D.28y x =12.函数1,0(),0x x mf x e x -⎧=⎪=⎨⎪≠⎩,假设方程23()(23)()20mf x m f x -++=有5个解,那么m 的取值范围是〔〕A.(1,)+∞B.(0,1)(1,)⋃+∞C.31,2⎛⎫⎪⎝⎭D.331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题〔此题一共4道小题,每一小题5分,一共20分〕13.()0,θπ∈,且sin()4πθ-=,那么tan2θ=________.14.设m 为正整数,()2mx y +展开式的二项式系数的最大值为()21m a x y ++,展开式的二项式系数的最大值为b ,假设158ab =,那么m=______.15.函数()42423,0,3,0,x x ax x f x x x ax x ⎧-->=⎨-+<⎩有四个零点,那么实数a 的取值范围是__________.16.如图,六棱锥P-ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,给出以下结论: ①PB AE ⊥;②直线//BC 平面PAE ; ③平面PAE⊥平面PDE;④异面直线PD 与BC 所成角为45°;⑤直线PD 与平面PAB 其中正确的有_______〔把所有正确的序号都填上〕三.解答题〔本大题一一共6小题.解答题应写出文字说明、证明过程或者演算步骤〕17.〔本小题12分〕△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,24sin 4sin sin 22A BA B -+=〔1〕求角C 的大小; 〔2〕4b=,△ABC 的面积为6,求边长c 的值.18.〔本小题12分〕如图,在四棱锥P-ABCD 中,PD⊥平面ABCD ,122BC CD AB ===,∠ABC=∠BCD=90°,E 为PB 的中点。
2024年新高考数学选填压轴题汇编(一)(解析版)
2024年新高考数学选填压轴题汇编(一)一、多选题1(2023·广东深圳·高三红岭中学校考阶段练习)已知长方体的表面积为10,十二条棱长度之和为16,则该长方体()A.一定不是正方体B.外接球的表面积为6πC.长、宽、高的值均属于区间1,2D.体积的取值范围为5027,2【答案】ABD【解析】设长方体的长宽高分别为a ,b ,c ,则可得2ab +ac +bc =104a +b +c =16,即ab +ac +bc =5a +b +c =4 ,又因为a +b +c 2=a 2+b 2+c 2 +2ab +ac +bc =16,所以a 2+b 2+c 2=6,由不等式可得,a 2+b 2+c 2≥ab +ac +bc ,当且仅当a =b =c 时,等号成立,而a 2+b 2+c 2>ab +ac +bc ,取不到等号,所以得不到a =b =c ,即该长方体一定不是正方体,故A 正确;设长方体外接球的半径为R ,则2R =a 2+b 2+c 2=6,即R =62,则外接球的表面积为4π622=6π,故B 正确;由a +b +c =4可得,c =4-a +b ,代入ab +ac +bc =5可得,ab +4-a +b a +b =5,即ab =5-4-a +b a +b ,因为a ,b >0,由基本不等式可得ab ≤a +b24,即5-4-a +b a +b ≤a +b24,设a +b =t ,则t >0,则5-4-t t ≤t 24,化简可得3t 2-16t +20≤0,即3t -10 t -2 ≤0,所以2≤t ≤103,即2≤a +b ≤103,又因为a +b =4-c ,则23≤c ≤2,同理可得a ,b ∈23,2 ,故C 错误;设长方体的体积为V ,则V =abc =5-4-a +b a +b 4-a +b ,且a +b =t ,2≤t ≤103,即V =5-4-t t 4-t ,其中t ∈2,103,化简可得,V =4-t 5-4t +t 2 ,t ∈2,103,且V =-5-4t +t 2 +4-t -4+2t =-3t -7 t -3 ,t ∈2,103,令V =0,则t =73或3,当t ∈2,73时,V <0,即V 单调递减,当t ∈73,3时,V >0,即V 单调递增,当t ∈3,103时,V <0,即V 单调递减,所以,当t =73时,V 有极小值,且V 73 =4-73 5-4×73+499 =5027,当t =3时,V 有极大值,且V 3 =4-3 5-4×3+9 =2,又因为V 2 =4-2 5-4×2+4 =2,V 103 =4-103 5-4×103+1009 =5027,所以V ∈5027,2 ,故D 正确;故选:ABD2(2023·广东·高三校联考阶段练习)对于数列a n ,若存在正数M ,使得对一切正整数n ,都有a n ≤M ,则称数列a n 是有界的.若这样的正数M 不存在,则称数列a n 是无界的.记数列a n 的前n 项和为S n ,下列结论正确的是()A.若a n =1n,则数列a n 是无界的 B.若a n =12nsin n ,则数列S n 是有界的C.若a n =-1 n ,则数列S n 是有界的 D.若a n =2+1n2,则数列S n 是有界的【答案】BC【解析】对于A ,∵a n =1n=1n≤1恒成立,∴存在正数M =1,使得a n ≤M 恒成立,∴数列a n 是有界的,A 错误;对于B ,∵-1≤sin n ≤1,∴-12n≤a n =12n⋅sin n ≤12n,∴S n =a 1+a 2+⋯+a n <12+122+⋯+12n=121-12 n1-12=1-12n<1,S n =a 1+a 2+⋯+a n >-12+12 2+⋯+12 n=-1+12 n>-1,所以存在正数M =1,使得S n ≤M 恒成立,∴则数列S n 是有界的,B 正确;对于C ,因为a n =-1 n ,所以当n 为偶数时,S n =0;当n 为奇数时,S n =-1;∴S n ≤1,∴存在正数M =1,使得S n ≤M 恒成立,∴数列S n 是有界的,C 正确;对于D ,1n 2=44n 2<42n -1 2n +1=412n -1-12n +1 ,∴S n =2n +1+122+132+⋅⋅⋅1n2≤2n +41-13+13-15+⋅⋅⋅+12n -1-12n +1 =2n +41-12n +1 =2n +8n 2n +1=2n -22n +1+2 ;∵y =x -22x +1在0,+∞ 上单调递增,∴n -22n +1∈13,+∞,∴不存在正数M ,使得S n ≤M 恒成立,∴数列S n 是无界的,D 错误.故选:BC .3(2023·广东·高三校联考阶段练习)如图,正方体ABCD -A 1B 1C 1D 1中,E 为A 1B 1的中点,P 为棱BC 上的动点,则下列结论正确的是()A.存在点P ,使AC 1⊥平面D 1EPB.存在点P ,使PE =PD 1C.四面体EPC 1D 1的体积为定值D.二面角P -D 1E -C 1的余弦值取值范围是55,23【答案】BC【解析】(向量法)为简化运算,建立空间直角坐标系如图,设正方体棱长为2,CP =20≤a ≤2 ,则P a ,2,2 ,E 2,1,0 ,A 2,0,0 ,C 10,2,2 ,AC 1 =-2,2,-2 ,D 1E ⋅AC 1 =-2≠0,故AC 1与D 1E 不垂直,故A 错误.由PE =PD 1知a 2+22+22=a -2 2+12+22,a =14∈0,2 ,故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.又D 1E =2,1,0 ,D 1P =a ,2,2 ,设平面D 1EP 的法向量n 1 =x ,y ,z ,由D 1E ⋅n 1=0D 1P ⋅n 1 =0,2x +y =0ax +2y +2z =0 ,令x =2则y =-4,z =4-a ,∴n 1=2,-4,4-a ,又平面D 1EC 1的法向量n 2=0,0,1 ,∴cos n 1 ,n 2 =4-a 22+-4 2+4-a 2=11+204-a2,又0≤a ≤2,∴4≤4-a 2≤16,∴cos n 1 ,n 2 ∈66,23.故D 错误.(几何法)记棱A 1D 1,D 1D ,DC ,CB ,BB 1中点分别为F ,G ,J ,I ,H ,易知AC 1⊥平面EFGJIH ,而EF ⊂平面EFGJIH则AC 1⊥EF ,若AC 1⊥平面D 1EP ,D 1E ⊂平面D 1EP ,则AC 1⊥D 1E ,由EF ∩D 1E =E ,EF ,D 1E ⊂平面D 1EF ,所以AC 1⊥平面D 1EF ,与已知矛盾,故AC 1不垂直于平面D 1EP .故A 错误.连接EB ,D 1C ,易知BC ⊥EB ,BC ⊥D 1C ,设正方体棱长为2,知EB =5,D 1C =22,记BP =m 0≤m ≤2 ,则EP =m 2+5,D 1P =2-m2+8,由m 2+5=2-m 2+8,得m =74∈0,2 .故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.过点P 作PM ⊥B 1C 1于点M ,易知PM ⊥D 1E ,过点M 作MN ⊥D 1E 于点N ,知D 1E ⊥平面PMN ,所以PN ⊥D 1E ,则二面角P -D 1E -C 1的平面角为∠PNM ,现在△PNM 中求解cos ∠PNM .设正方体棱长为2,NM =x ,则NP =x 2+4,∴cos ∠PNM =NMNP=xx 2+4,只需求x 取值范围即可:记BP =m 0≤m ≤2 ,则B 1M =BP =m ,分析易知M 在C 1时x 取到最大值,此时x =C 1N 1,M 在B 1时x 取到最小值,此时x =B 1N 2,又C 1N 1C 1D 1=D 1A 1D 1E 即C 1N 1=2⋅25=455,B 1N 2D 1A 1=B 1E D 1E 即B 1N 2=2⋅15=255,所以255≤x ≤455即45≤x 2≤165,∴cos ∠PNM =x x 2+4=1-4x 2+4∈66,23 .故D 错误.故选:BC4(2023·广东·高三校联考阶段练习)已知f x =xe x ,g x =x ln x .若存在x 1∈R ,x 2∈0,+∞ ,使得f x 1 =g x 2 =t 成立,则下列结论中正确的是()A.当t >0时,x 1x 2=tB.当t >0时,e ln t ≤x 1x 2C.不存在t ,使得f x 1 =g x 2 成立D.f x >g x +mx 恒成立,则m ≤2【答案】AB【解析】选项A ,∵f x 1 =g x 2 =t ∴t =x 1e x 1=x 2ln x 2=ln x 2e ln x 2>0,则x 1>0,x 2>0,ln x 2>0,且t =f (x 1)=f (ln x 2)>0,由f x =xe x ,得f x =e x x +1 ,当x >0时,f x >0,则f x 在0,+∞ 上递增,所以当t >0时,f x =t 有唯一解,故x 1=ln x 2,∴x 1x 2=x 2ln x 2=t ,故A 正确;选项B ,由A 正确,得ln t x 1x 2=ln tt(t >0),设φt =ln t t ,则φ t =1-ln tt 2,令φ t =0,解得t =e易知φt 在0,e 上单调递增,在e ,+∞ 上单调递减,∴φt ≤φe =1e ,∴ln t x 1x 2≤1e ,∴e ln t ≤x 1x 2,故B 正确;选项C ,由f x =e x x +1 ,g x =ln x +1=0,得f -1 =g 1e=0,又验证知f -1 =g 1e =-1e ,故存在t =-1e ,使得f -1 =g 1e=0,C 错误;选项D ,由x >0,f x >g x +mx 恒成立,即e x -ln x >m 恒成立,令r x =e x -ln x ,则r x =e x -1x ,由r x 在0,+∞ 上递增,又r 12=e -2<0,r 1 =e -1>0,∴存在x 0∈12,1 ,使r x 0 =0,∴r x 在0,x 0 上递减,在x 0,+∞ 上递增(其中x 0满足e x 0=1x 0,即x 0=-ln x 0).∴r x ≥r x 0 =e x 0-ln x 0=1x 0+x 0>2,要使m <e x -ln x 恒成立,∴m <r (x 0),存在2<m <r (x 0)满足题意,故D 错误.故选:AB .5(2023·广东梅州·高三大埔县虎山中学校考开学考试)已知f x 是定义在R 上的偶函数,且对任意x ∈R ,有f 1+x =-f 1-x ,当x ∈0,1 时,f x =x 2+x -2,则()A.f x 是以4为周期的周期函数B.f 2021 +f 2022 =-2C.函数y =f x -log 2x +1 有3个零点D.当x ∈3,4 时,f x =x 2-9x +18【答案】ACD【解析】依题意,f x 为偶函数,且f 1+x =-f 1-x ⇒f x 关于1,0 对称,则f x +4 =f 1+x +3 =-f 1-x +3 =-f -2-x=-f -2+x =-f 2+x =-f 1+1+x =f 1-1+x =f -x =f x ,所以f x 是周期为4的周期函数,A 正确.因为f x 的周期为4,则f 2021 =f 1 =0,f 2022 =f 2 =-f 0 =2,所以f 2021 +f 2022 =2,B 错误;作函数y =log 2x +1 和y =f x 的图象如下图所示,由图可知,两个函数图象有3个交点,C 正确;当x ∈3,4 时,4-x ∈0,1 ,则f x =f -x =f 4-x =4-x 2+4-x -2=x 2-9x +18,D 正确.故选:ACD6(2023·广东梅州·高三大埔县虎山中学校考开学考试)如图,正方形ABCD 中,E 、F 分别是AB 、BC的中点将△ADE,ΔCDF,△BEF分别沿DE、DF、EF折起,使A、B、C重合于点P.则下列结论正确的是A.PD⊥EFB.平面PDE⊥平面PDFC.二面角P-EF-D的余弦值为13D.点P在平面DEF上的投影是ΔDEF的外心【答案】ABC【解析】对于A选项,作出图形,取EF中点H,连接PH,DH,又原图知ΔBEF和ΔDEF为等腰三角形,故PH⊥EF,DH⊥EF,所以EF⊥平面PDH,所以PD⊥EF,故A正确;根据折起前后,可知PE,PF,PD 三线两两垂直,于是可证平面PDE⊥平面PDF,故B正确;根据A选项可知∠PHD为二面角P-EF-D的平面角,设正方形边长为2,因此PE=PF=1,PH=22,DH=22-22=322,PD=DF2-PF2=2,由余弦定理得:cos∠PHD=PH2+HD2-PD22PH⋅HD =13,故C正确;由于PE=PF≠PD,故点P在平面DEF上的投影不是ΔDEF的外心,即D错误;故答案为ABC.7(2023·广东·高三校联考阶段练习)在正方体ABCD-A1B1C1D1中,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与EF所成的角为30°B.直线A1G与平面AEF平行C.若正方体棱长为1,三棱锥A1-AEF的体积是112D.点B 1和B 到平面AEF 的距离之比是3:1【答案】BCD【解析】对于选项A ,由图可知CC 1与DD 1显然平行,所以∠EFC =45°即为所求,故选项A 不正确;对于选项B ,取B 1C 1的中点M ,连接A 1M 、GM ,如图所示,易知A 1M ⎳AE ,且A 1M ⊄平面AEF ,AE ⊂平面AEF ,所以A 1M ⎳平面AEF .又易知GM ⎳EF ,GM ⊄平面AEF ,EF ⊂平面AEF ,所以GM ⎳平面AEF .又A 1M ∩GM =M ,A 1M 、GM ⊂面A 1MG ,所以平面A 1MG ⎳平面AEF .又A 1G ⊂平面A 1MG ,所以A 1G ⎳平面AEF ,故选项B 正确;对于选项C ,由选项B 知,A 1G ⎳平面AEF ,所以A 1和G 到平面AEF 的距离相等,所以V A 1-AEF =V G -AEF =V A -FEG =13×12×12×1×1=112.故选项C 正确;对于选项D ,平面AEF 过BC 的中点E ,即平面AEF 将线段BC 平分,所以C 与B 到平面AEF 的距离相等,连接B 1C 交EF 于点H ,如图所示,显然B 1H :HC =3:1,所以B 1与B 到平面AEF 的距离之比为3:1,故选项D 正确.故选:BCD .8(2023·广东·高三校联考阶段练习)已知数列a n 满足a 1=1,a 2=3,S n 是前n 项和,若n S n +1-S n -1=n +1 S n -S n -1 ,(n ∈N *且n ≥2),若不等式a n <n -2t 2-a +1 t +a 2-a +2 对于任意的n ∈N *,t ∈1,2 恒成立,则实数a 的值可能为()A.-4 B.0C.2D.5【答案】AD【解析】由n S n +1-S n -1=n +1 S n -S n -1 ,n ≥2,则na n +1-1=n +1 a n ,n ≥2,得a n +1-1n =n +1n a n ,n ≥2;a 2-11=2=21a 1,所以a n +1n +1-a n n =1n n +1=1n -1n +1,n ≥1,则a n n -a n -1n -1=1n -1-1n ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯,a 22-a 11=1-12,上述式子累加可得a n n -a 1=1-1n ,所以a n n =2-1n<2.所以-2t 2-a +1 t +a 2-a +2≥2对于任意的t ∈1,2 恒成立,整理得2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立.方法一:对选项A ,当a =-4时,不等式为2t +5 t -4 ≤0,其解集-52,4包含1,2 ,故选项A 正确;对选项B ,当a =0时,不等式为2t +1 t ≤0,其解集-12,0不包含1,2 ,故选项B 错误;对选项C ,当a =2时,不等式为2t -1 t +2 ≤0,其解集-2,12不包含1,2 ,故选项C 错误;对选项D ,当a =5时,不等式为2t -4 t +5 ≤0,其解集-5,2 包含1,2 ,故选项D 正确.方法二:令f t =2t -a -1 t +a ,若2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立,只需f 1 ≤0f 2 ≤0,即3-a 1+a ≤05-a 2+a ≤0 ,解得a ≥5或a ≤-2.故选:AD .9(2023·广东·高三统考阶段练习)已知函数f x =sin n x +cos n x x ∈N * ,则()A.对任意正奇数n ,f x 为奇函数B.对任意正整数n ,f x 的图像都关于直线x =π4对称C.当n =3时,f x 在0,π2上的最小值22D.当n =4时,f x 的单调递增区间是-π4+k π,k π k ∈Z 【答案】BC【解析】取n =1,则f x =sin x +cos x ,从而f 0 =1≠0,此时f x 不是奇函数,则A 错误;因为f π2-x =sin n π2-x +cos n π2-x =cos n x +sin n x =f x ,所以f x 的图象关于直线x =π4对称,则B 正确;当n =3时,f x =3sin 2x cos x -3cos 2x sin x =3sin x cos x sin x -cos x ,当x ∈0,π4时,fx <0;当x ∈π4,π2 时,f x >0.所以f x 在0,π4 上单调递减,在π4,π2 上单调递增,所以f x 的最小值为f π4 =22 3+22 3=22,故C 正确;当n =4时,f x =sin 4x +cos 4x =sin 2x +cos 2x 2-2sin 2x cos 2x =1-12sin 22x=1-1-cos4x 4=14cos4x +34,则f x 的递增区间为-π4+k π2,k π2k ∈Z ,则D 错误.故选:BC .10(2023·广东·高三统考阶段练习)若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是()A.0<a<b<1B.b<a<0C.1<a<bD.a=b【答案】ABD【解析】设f(x)=2x+3x,g(x)=3x+2x,则f(x)=2x+3x,g(x)=3x+2x都为增函数,作出两函数的图象,两个函数图象有2个交点,分别为(0,1),(1,5),对于A,作直线y=m(1<m<5)分别与f(x),g(x)图象相交,交点横坐标为a,b,且0<a<b<1,此时f(a)=g(b)=m,即2a+3a=3b+2b能成立,故A正确;对于B,作直线y=n(n<0)分别与f(x),g(x)图象相交,交点横坐标为b,a,且b<a<0,此时f(a)=g(b) =n,即2a+3a=3b+2b能成立,故B正确;对于C,a=2,f(a)=f(2)=10,因为2=a<b,所以f(b)=3b+2b>32+4=13,所以此时2a+3a=3b+2b 不可能成立,故C不正确;对于D,a=b=0或a=b=1,2a+3a=3b+2b成立,所以D正确.故选:ABD.11(2023·广东·高三统考阶段练习)已知正方体ABCD -A 1B 1C 1D 1的棱长为4,M 为DD 1的中点,N 为ABCD 所在平面上一动点,N 1为A 1B 1C 1D 1所在平面上一动点,且NN 1⊥平面ABCD ,则下列命题正确的是()A.若MN 与平面ABCD 所成的角为π4,则点N 的轨迹为圆B.若三棱柱NAD -N 1A 1D 1的表面积为定值,则点N 的轨迹为椭圆C.若点N 到直线BB 1与直线DC 的距离相等,则点N 的轨迹为抛物线D.若D 1N 与AB 所成的角为π3,则点N 的轨迹为双曲线【答案】ACD【解析】A :连接DN ,因为MD ⊥平面ABCD ,所以∠MND 是MN 与平面ABCD 所成的角,即∠MND =π4,因为M 为DD 1的中点,所以MD =12DD 1=2,在直角三角形MND 中,tan ∠MND =MD DN ⇒1=2DN⇒DN =2,因此点N 的轨迹为以D 为圆心半径为2的圆,所以本选项命题是真命题;B :过N 做EN ⊥AD ,设三棱柱NAD -N 1A 1D 1的表面积为S ,所以S =2×12×4⋅NE +(AD +DN +AN )⋅4=4(4+DN +AN +NE )=定值,显然有N 到A 、D 、直线AD 的距离之和为定值,这与椭圆的定义不符合,故本选项命题是假命题;C :连接BN ,因为BB 1⊥平面ABCD ,BN ⊂平面ABCD ,所以BB 1⊥BN ,即点N 到直线BB 1与NB 相等,所以点N 的轨迹为点N 到点B 与直线DC 的距离相等的轨迹,即抛物线,所以本选项命题是真命题;D :以D 为空间坐标系的原点,DA 、DC 、DD 1所在的直线分别为x 、y 、z ,D (0,0,0)、A (4,0,0)、B (4,4,0)、N (x ,y ,0)、D 1(0,0,4),则有AB =(0,4,0)、D 1N =(x ,y ,-4),因为D 1N 与AB 所成的角为π3,所以cos π3=AB ⋅D 1N AB ⋅D 1N ⇒12=4y 4⋅x 2+y 2+16⇒3y 2-x 2=16,所以点N 的轨迹为双曲线,故本选项命题是真命题,故选:ACD12(2023·广东江门·高三台山市第一中学校考阶段练习)已知函数f (x )=e x -1+e 1-x +x 2-2x ,若不等式f (2-ax )<f x 2+3 对任意x ∈R 恒成立,则实数a 的取值可能是()A.-4B.-12C.2D.32【答案】BC【解析】由函数f (x )=e x -1+e 1-x +x 2-2x ,令t =x -1,则x =t +1,可得g (t )=e t +e -t +t 2-1,可得g (-t )=e -t +e t +(-t )2-1=e t +e -t +t 2-1=g (t ),所以g t 为偶函数,即函数f x 的图象关于x =1对称,又由g (t )=e t -e -t +2t ,令φ(t )=g (t )=e t -e -t +2t ,可得φ (t )=e t +e -t +2>0,所以φ(t )为单调递增函数,且φ(0)=0,当t >0时,g (t )>0,g t 单调递增,即x >1时,f x 单调递增;当t <0时,g (t )<0,g t 单调递减,即x <1时,f x 单调递减,由不等式f (2-ax )<f x 2+3 ,可得2-ax -1 <x 2+3-1 ,即1-ax <x 2+2所以不等式1-ax <x 2+2恒成立,即-x 2-2<ax -1<x 2+2恒成立,所以x 2+ax +1>0x 2-ax +3>0 的解集为R ,所以a 2-4<0且(-a )2-12<0,解得-2<a <2,结合选项,可得BC 适合.故选:BC .13(2023·广东·高三河源市河源中学校联考阶段练习)已知三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,若函数g x =f x -1也有三个不同的零点t 1,t 2,t 3t 1<t 2<t 3 ,则下列等式或不等式一定成立的有()A.b 2<3cB.t 3>x 3C.x 1+x 2+x 3=t 1+t 2+t 3D.x 1x 2x 3-t 1t 2t 3=1【答案】BC【解析】f x =3x 2+2bx +c ,因为原函数有三个不同的零点,则f x =0有两个不同的实根,即3x 2+2bx +c =0,则Δ=4b 2-12c >0,即b 2>3c ,所以A 错误;因为三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,所以x 3+bx 2+cx +d =x -x 1 x -x 2 x -x 3 =x 3-x 1+x 2+x 3 x 2+x 1x 2+x 2x 3+x 1x 3 x -x 1x 2x 3=0,所以x 1+x 2+x 3=-b ,x 1x 2x 3=-d ,同理t 1+t 2+t 3=-b ,t 1t 2t 3=1-d ,所以x 1+x 2+x 3=t 1+t 2+t 3,x 1x 2x 3-t 1t 2t 3=-1,故C 正确,D 错误;由f x 的图象与直线y =1的交点可知t 3>x 3,B 正确.故选:BC .14(2023·广东·高三河源市河源中学校联考阶段练习)已知直线l 过抛物线E :y 2=4x 的焦点F ,与抛物线相交于A x 1,y 1 、B x 2,y 2 两点,分别过A ,B 作抛物线的准线l 1的垂线,垂足分别为A 1,B 1,以线段A 1B 1为直径作圆M ,O 为坐标原点,下列正确的判断有()A.x 1+x 2≥2B.△AOB 为钝角三角形C.点F 在圆M 外部D.直线A 1F 平分∠OFA【答案】ABD 【解析】如图所示:对选项A ,由抛物线的焦半径公式可知AB =x 1+x 2+2≥2p =4,所以x 1+x 2≥2,故A 正确;对于选项B ,OA ⋅OB =x 1x 2+y 1y 2=y 1y 2216+y 1y 2,令直线l 的方程为x =my +1,代入y 2=4x 得y 2-4my -4=0,所以y 1y 2=-4,所以OA ⋅OB=-3<0,所以△AOB 是钝角三角形,故B 正确;对选项C ,D ,由AA 1 =AF 可知∠AA 1F =∠AFA 1,又AA 1∥OF ,所以∠AA 1F =∠OFA 1=∠AFA 1,所以直线FA 1平分角∠AFO ,同理可得FB 平分角∠BFO ,所以A 1F ⊥B 1F ,即∠A 1FB 1=90°,所以圆M 经过点F ,故C 错误,D 正确.故选:ABD15(2023·广东·高三河源市河源中学校联考阶段练习)已知圆O :x 2+y 2=4和圆C :(x -3)2+(y -3)2=4,P ,Q 分别是圆O ,圆C 上的动点,则下列说法错误的是()A.圆O 与圆C 相交B.PQ 的取值范围是32-4,32+4C.x -y =2是圆O 与圆C 的一条公切线D.过点Q 作圆O 的两条切线,切点分别为M ,N ,则存在点Q ,使得∠MQN =90°【答案】AC【解析】对于A 选项,由题意可得,圆O 的圆心为O 0,0 ,半径r 1=2,圆C 的圆心C 3,3 ,半径r 2=2,因为两圆圆心距OC =32>2+2=r 1+r 2,所以两圆外离,故A 错误;对于B 选项,PQ 的最大值等于OC +r 1+r 2=32+4,最小值为OC -r 1-r 2=32-4,故B 正确;对于C 选项,显然直线x -y =2与直线OC 平行,因为两圆的半径相等,则外公切线与圆心连线平行,由直线OC :y =x ,设外公切线为y =x +t ,则两平行线间的距离为2,即t2=2,故y =x ±22,故C 错误;对于D 选项,易知当∠MQN =90°时,四边形OMQN 为正方形,故当QO =22时,∠MQN =90°,故D 正确.故选:AC .16(2023·广东佛山·高三校考阶段练习)已知函数f x =3sin ωx +cos ωx (0<ω<3)满足f x +π2 =-f x ,其图象向右平移s s ∈N * 个单位后得到函数y =g x 的图象,且y =g x 在-π6,π6上单调递减,则()A.ω=1 B.函数f x 的图象关于5π12,0 对称C.s 可以等于5D.s 的最小值为2【答案】BCD【解析】对于A ,因为f x +π2 =-f x ,f x =3sin ωx +cos ωx =2sin ωx +π6,所以2sin ωx +π2ω+π6 =-2sin ωx +π6 ,π2ω=2k +1 π,k ∈Z ,则ω=4k +2,k ∈Z ,又0<ω<3,故ω=2,故A 错误;对于B ,由选项A 得f x =2sin 2x +π6,所以f 5π12=2sin 5π6+π6 =2sinπ=0,故5π12,0 是f x 的一个对称中心,故B 正确;对于C ,f x 的图象向右平移s s ∈N * 个单位后得到函数g x =2sin 2x -s +π6的图象,则g x =2sin 2x +π6-2s ,因为g x 在-π6,π6上单调递减,所以2×-π6 +π6-2s ≥2k π+π22×π6+π6-2s ≤2k π+3π2k ∈Z ,解得-k π-π2≤s ≤-k π-π3k ∈Z ,当k =-2时,3π2≤s ≤5π3,因为s ∈N *,所以s =5,故C 正确;对于D ,因为s ∈N *,所以-k π-π3>0,则k <-13,又k ∈Z ,故k ≤-1,当k =-1时,π2≤s ≤2π3,可知s min =2,故D 正确.故选:BCD .17(2023·广东佛山·高三校考阶段练习)已知函数f x 的定义域为0,+∞ ,其导函数为f x ,且f x +f x =x ln x ,f 1e =-1e,则()A.f 1e⋅e 1e-1>f 1B.f e ⋅e e -1>f 1C.f x 在0,+∞ 上是增函数D.f x 存在最小值【答案】ABC【解析】设F x =e x -1f x ,则F x =e x -1f x +f x =e x -1x ln x ,当x >1时,F x >0,当0<x <1时,F x <0,F x =e x -1f x 在1,+∞ 上单调递增,在0,1 上单调递减,A 选项,因为1e <1,所以F 1e >F 1 ,即e 1e-1f 1e>f 1 ,A 正确;B 选项,因为e >1,所以F e >F 1 ,即e e -1f e >f 1 ,B 正确;C 选项,f x =F x e x -1,则fx =F x -F x e x -1,令g x =F x -F x ,则g x =e x -1x ln x -e x -1x ln x =e x -11+ln x ,当x >1e 时,g x >0,当0<x <1e时,g x <0,故g x =F x -F x 在0,1e 上单调递减,在1e ,+∞ 单调递增,又g 1e =F 1e -F 1e =e 1e -1⋅1e ln 1e -e 1e -1f 1e =-e 1e -1⋅1e +e 1e-1⋅1e =0,故g x =F x -F x ≥0恒成立,所以fx =F x -F x ex -1≥0在0,+∞ 上恒成立,故f x 在0,+∞ 上是增函数,C 正确;D 选项,由C 选项可知,函数f x 在0,+∞ 上单调递增,故无最小值.故选:ABC18(2023·广东惠州·高三统考阶段练习)已知定义域为R 的函数f x 满足f -x -2 =-f x +2 ,f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718 ,x >1 ,则下列说法正确的是()A.函数f x 在-13,13上单调递减B.若函数f x 在0,p 内f x <1恒成立,则p ∈0,23C.对任意实数k ,y =f x 的图象与直线y =kx 最多有6个交点D.方程f x =m m >0 有4个解,分别为x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4>-143【答案】BD【解析】因为定义域为R 的函数f x 满足f -x -2 =-f x +2 ,即f -x -2 +f x +2 =0,所以函数为奇函数,因为f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718,x >1 ,故作出函数的图象,如图所示.选项A :由图可知,当x ∈-13,0 时,函数单调递减,当x ∈0,13时,函数单调递减,但当x ∈-13,13,并不是随着x 增加而减少,故选项A 错误;选项B :因为函数f x 在0,p 内f x <1恒成立,所以由图象可知,0<p <1由3x 2-2x +1=1解得,x 1=0,x 2=23,所以0<p ≤23,故选项B 正确;选项C :取k =74时,如图所示,1°当x ∈0,1 时,联立方程组y =74x y =3x 2-2x +1 ,化简得3x 2-154x +1=0,设函数h (x )=3x 2-154x +1,因为Δ>0h (0)=1>0h (1)=14>0且对称轴为x =58∈0,1 ,所以方程3x 2-154x +1=0在0,1 上有两个不相等的实数根,2°设m (x )=74x -log 13x 2-718 ,x ∈1,+∞ ,因为函数m (x )=74x -log 13x 2-718 在x ∈1,+∞ 上单调递增,且m (1)=74-2<0,m (2)=72-log 131118 >0,所以m (x )=74x -log 13x 2-718 在x ∈1,+∞ 在只有一个零点,所以直线y =74x 与函数y =f (x )图象在x ∈1,+∞ 有1个交点,所以当x ∈0,+∞ 时,直线y =74x 与函数y =f (x )图象有3个交点,因为函数y =74x 与函数y =f (x )均为奇函数,所以当x ∈-∞,0 时,直线y =74x 与函数y =f (x )图象有3个交点,又当x =0时,直线y =74x 与函数y =f (x )图象有1个交点,所以此时直线y =74x 与函数y =f (x )图象有7个交点,故选项C 错误;选项D :当m >0时,则根据图象可得f (x )=m 的4个解所在大致范围为x 1<0,0<x 2<13,13<x 3<1,x 4>1,因为f (x )=m 有4个解,所以23<m <1,所以23<log 13x 42-718 <1,解得139<x 4<21323+79,所以6<9x 4-7<181323,由二次函数的对称性可知,3x 2-2x +1=m 的解x 2、x 3满足x 2+x 3=23,因为函数y =f (x )为奇函数,且当x >1时解析式为y =log 13x 2-718,所以当x <-1时解析式为y =-log 13-x 2-718,所以log 13x 42-718=-log 13-x 12-718 ,所以有-x 12-718 x 42-718 =1,即x 1=-369x 4-7-79,所以x 1+x 4=x 4+-369x 4-7-79=9x 4-79-369x 4-7,设9x 4-7=t ,6<t <181323,又因为函数y =t 9-36t 在6,1813 23单调递增,所以x 1+x 4=t 9-36t >69-366=23-6=-163,所以x 1+x 2+x 3+x 4>-163+23=-143,所以选项D 正确,故选:BD .19(2023·广东揭阳·高三校考阶段练习)若定义在-1,1 上的函数f x 满足f x +f y =f x +y 1+xy,且当x >0时,f x <0,则下列结论正确的是( ).A.若x 1,x 2∈-1,1 ,x 2>x 1 ,则f x 1 +f x 2 >0B.若f 12 =-12,则f 4041 =-2C.若f 2-x +g x =4,则g x 的图像关于点2,4 对称D.若α∈0,π4,则f sin2α >2f sin α 【答案】BC【解析】令y =-x ,则f x +f -x =f 0 =0,∴f x 为奇函数,把y 用-y 代替,得到f x -f y =f x -y1-xy,设-1<y <x <1,1-x 1+y >0,∴0<x -y1-xy<1.又∵当x >0时,f x <0,∴f x <f y ,∴f x 在-1,1 上单调递减.∵x 1,x 2∈-1,1 ,x 2>x 1 ,当x >0时,f x <0,则当x 1>0时,则x 2>x 1>0,f x 1 +f x 2 <0,当x 1<0时,则x 2>-x 1>0,f x 1 +f x 2 =f x 2 -f -x 1 <0.综上,f x 1 +f x 2 <0,∴A 错误.令x =y =12,得2f 12 =f 45 ,∴f 45 =-1,令x =y =45,得2f 45 =f 4041 ,∴f 4041 =-2,∴B 正确.由f 2-x +g x =4,得f 2-x =4-g x ,得f x =4-g 2-x ,又∵f -x =4-g 2+x ,f x 为奇函数,∴f x +f -x =0,则g 2-x +g 2+x =8,则g x 的图像关于点2,4 对称,∴C 正确.f sin2α =f 2sin α⋅cos α =f2tan α1+tan 2α=2f tan α ,假设f sin2α >2f sin α ,可得f tan α >f sin α ,即tan α<sin α,当α∈0,π4时,不成立得出矛盾假设不成立,∴D 错误.故选:BC .20(2023·广东东莞·高三校联考阶段练习)已知函数f x =3sin2ωx +cos2ωx ω>0 的零点构成一个公差为π2的等差数列,把f x 的图象沿x 轴向右平移π3个单位得到函数g x 的图象,则()A.g x 在π4,π2上单调递增 B.π4,0 是g x 的一个对称中心C.g x 是奇函数 D.g x 在区间π6,2π3上的值域为0,2 【答案】AB【解析】因为f x =3sin2ωx +cos2ωx ω>0 ,所以f x =232sin2ωx +12cos2ωx =2sin 2ωx +π6 ,因为函数f x =3sin2ωx +cos2ωx ω>0 的零点依次构成一个公差为π2的等差数列,∴12⋅2π2ω=π2,∴ω=1,所以f (x )=2sin 2x +π6 ,把函数f (x )的图象沿x 轴向右平移π3个单位,得到g (x )=2sin 2x -π3 +π6 =2sin 2x -π2 =-2cos2x ,即g (x )=-2cos2x ,所以g (x )为偶函数,故C 错误;对于A :当x ∈π4,π2 时2x ∈π2,π ,因为y =cos x 在π2,π 上单调递减,所以g x 在π4,π2上单调递增,故A正确;对于B:gπ4=-2cos2×π4=-2cosπ2=0,故π4,0是g x 的一个对称中心,故B正确;对于D:因为x∈π6,2π3,所以2x∈π3,4π3,所以cos2x∈-1,12,所以g x ∈-1,2,故D错误;故选:AB21(2023·广东东莞·高三校联考阶段练习)对于函数f(x)=xln x,下列说法正确的是()A.f(x)在(1,e)上单调递增,在(e,+∞)上单调递减B.若方程f(|x|)=k有4个不等的实根,则k>eC.当0<x1<x2<1时,x1ln x2<x2ln x1D.设g(x)=x2+a,若对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,则a≥e 【答案】BD【解析】函数f(x)=xln x的定义域为(0,1)∪(1,+∞),f(x)=ln x-1(ln x)2,当0<x<1或1<x<e时,f (x)<0,当x>e时,f (x)>0,f(x)在(0,1),(1,e)上都单调递减,在(e,+∞)上单调递增,A不正确;当x∈(1,+∞)时,f(x)的图象在x轴上方,且在x=e时,f(x)min=e,f(x)在(0,1)上的图象在x轴下方,显然f(|x|)是偶函数,在方程f(|x|)=k中,k<0或k=e时,方程有两个不等实根,0≤k<e时,方程无实根,k>e时,方程有4个不等的实根,B正确;因0<x1<x2<1,则有f(x2)<f(x1)<0,即x2ln x2<x1ln x1<0,于是得x2ln x1<x1ln x2,C不正确;当x∈R时,g(x)的值域为[a,+∞),当x∈(1,+∞)时,f(x)的值域为[e,+∞),因对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,从而得[a,+∞)⊆[e,+∞),即得a≥e,D正确.故选:BD二、单选题22(2023·广东深圳·高三红岭中学校考阶段练习)过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】圆(x-5)2+(y-1)2=2的圆心(5,1),过(5,1)与y=x垂直的直线方程为x+y-6=0,它与y=x的交点N(3,3),N到(5,1)距离是22,圆的半径为2,两条切线l1,l2,它们之间的夹角为2×30°=60°.故选C.23(2023·广东·高三校联考阶段练习)如图,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△AED,△BEF,△DCF分别沿DE,EF,DF折起,使得A,B,C三点重合于点A ,若三棱锥A -EFD的所有顶点均在球O的球面上,则球O的表面积为()A.2πB.3πC.6πD.8π【答案】C【解析】根据题意可得A D ⊥A E ,A D ⊥A F ,A E ⊥A F ,且A E =1,A F =1,A D =2,所以三棱锥D -A EF 可补成一个长方体,则三棱锥D -A EF 的外接球即为长方体的外接球,如图所示,设长方体的外接球的半径为R ,可得2R =12+12+22=6,所以R =62,所以外接球的表面积为S =4πR 2=4π⋅622=6π,故选:C24(2023·广东·高三校联考阶段练习)已知f x =2sin ωx +π3+a -1 sin ωx (a >0,ω>0)在0,π 上存在唯一实数x 0使f x 0 =-3,又φx =f x -23,且有φx max =0,则实数ω的取值范围是()A.1<ω≤53B.1≤ω<53C.56<ω<32D.56<ω≤32【答案】A【解析】由题意可得f x =sin ωx +3cos ωx +a -1 sin ωx ,=a sin ωx +3cos ωx =a 2+3sin ωx +φ ,其中φ满足tan φ=3a,又φx max =0,即f x max =23,所以a 2+3=23,又a >0,解得a =3,所以f x =23sin ωx +π6,又0<x <π,所以π6<ωx +π6<ωπ+π6,因为f x 在上存在唯一实数x 0使f x 0 =-3,即sin ωx 0+π6 =-12,所以7π6<ωx +π6≤11π6,解得1<ω≤53,故选:A 25(2023·广东梅州·高三大埔县虎山中学校考开学考试)在△ABC 中,角B ,C 的边长分别为b ,c ,点O 为△ABC 的外心,若b 2+c 2=2b ,则BC ⋅AO的取值范围是()A.-14,0 B.0,2C.-14,+∞ D.-14,2【答案】D【解析】取BC 的中点D ,则OD ⊥BC ,所以BC ·AO =BC ·AD +DO =BC ·AD +BC ·DO =BC ·AD=AC -AB ⋅12AC +AB =12AC 2-AB 2=12b 2-c 2 =12b 2-2b -b 2 =b 2-b =b -122-14.因为c 2=2b -b 2>0,则b b -2 <0,即0<b <2.所以-14≤BC ⋅AO <2,故选:D .26(2023·广东·高三校联考阶段练习)已知等腰直角△ABC 中,∠C 为直角,边AC =6,P ,Q 分别为AC ,AB 上的动点(P 与C 不重合),将△APQ 沿PQ 折起,使点A 到达点A 的位置,且平面A PQ ⊥平面BCPQ .若点A ,B ,C ,P ,Q 均在球O 的球面上,则球O 体积的最小值为()A.8π3B.4π3C.82π3D.42π3【答案】C【解析】显然P 不与A 重合,由点A ,B ,C ,P ,Q 均在球D 的球面上,得B ,C ,P ,Q 共圆,则∠C +∠PQB =π,又△ABC 为等腰直角三角形,AB 为斜边,即有PQ ⊥AB ,将△APQ 翻折后,PQ ⊥A Q ,PQ ⊥BQ ,又平面A PQ ⊥平面BCPQ ,平面A PQ ∩平面BCPQ =PQ ,A Q ⊂平面A PQ ,BQ ⊂平面BCPQ ,于是A Q ⊥平面BCPQ ,BQ ⊥平面A PQ ,显然A P ,BP 的中点D ,E 分别为△A PQ ,四边形BCPQ 外接圆圆心,则DO ⊥平面A PQ ,EO ⊥平面BCPQ ,因此DO ⎳BQ ,EO ⎳A Q ,取PQ 的中点F ,连接DF ,EF ,则有EF ⎳BQ ⎳DO ,DF ⎳A Q ⎳EO ,四边形EFDO 为矩形,设A Q =x 且0<x <23,DO =EF =12BQ =23-x 2,A P =2x ,设球O 的半径R ,有R 2=DO 2+A P 2 2=34x 2-3x +3=34x -2332+2,当x =233时,R 3min=22,所以球O 体积的最小值为4πR 33=82π3.故选:C .27(2023·广东·高三校联考阶段练习)已知正项等比数列a n 的前n 项和为S n ,且满足a n S n =22n -1-2n -1,设b n =log 2S n +1 ,将数列b n 中的整数项组成新的数列c n ,则c 2023=()A.4048B.2023C.2022D.4046【答案】B【解析】令数列a n 的公比为q ,∵a n >0,∴a 1>0,q >0,因为a n S n =22n -1-2n -1,所以当n =1时,a 21=21-20=1,即a 1=1或a 1=-1(舍去),当n =2时,a 2S 2=23-21=6,即q 1+q =6,解得q =2或q =-3(舍去),所以a n =2n -1,S n =1×1-2n 1-2=2n -1,即b n =log 2S n +1 =n ,因为数列b n 中的整数项组成新的数列c n ,所以n =k 2,k ∈N *,此时b k 2=k 2=k ,即c n =n ,∴c 2023=2023.故选:B28(2023·广东·高三统考阶段练习)已知AB ⊥AC ,|AB |=t ,|AC |=1t.若点P 是△ABC 所在平面内一点,且AP =AB |AB |+2AC|AC |,则PB ⋅PC 的最大值为()A.13 B.5-22C.5-26D.10+22【答案】B【解析】以A 为坐标原点,建立如图所示的直角坐标系,设P (x ,y )则B (t ,0),C 0,1t (t >0),可得AB AB=(1,0),2AC |AC |=(0,2),所以AP =(1,2),即P (1,2),故PB =(t -1,-2),PC =-1,1t-2 ,所以PB ⋅PC =1-t +4-2t =5-t +2t ≤5-22,当且仅当t =2t即t =2时等号成立.故选:B .29(2023·广东·高三统考阶段练习)已知-π2<α-β<π2,sin α+2cos β=1,cos α-2sin β=2,则sin β+π3=A.33B.63C.36D.66【答案】A【解析】由sin α+2cos β=1,cos α-2sin β=2,将两个等式两边平方相加,得5+4sin α-β =3,sin α-β =-12,∵-π2<α-β<π2,∴α-β=-π6,即α=β-π6,代入sin α+2cos β=1,得3sin β+π3 =1,即sin β+π3 =33.故选A30(2023·广东江门·高三台山市第一中学校考阶段练习)设函数f (x )=log 2(1-x ),-1≤x <k ,x 3-3x +1,k ≤x ≤3 的值域为A ,若A ⊆[-1,1],则f (x )的零点个数最多是()A.1B.2C.3D.4【答案】C【解析】令g (x )=log 2(1-x ),则g (x )=log 2(1-x )在(-∞,1)上单调递减;令h (x )=x 3-3x +1,则h (x )=3x 2-3.由h (x )>0,得x >1或x <-1;由h (x )<0,得-1<x <1,所以h (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,于是,h (x )的极大值为h (-1)=3,极小值为h (1)=-1.在同一坐标系中作出函数g (x )和h (x )的图象,如下图:显然f (-1)=g (-1)=1;由g (x )=-1,得x =12;由f (x )的解析式,得-1<k ≤1.(1)若-1<k <0,当k ≤x <0时,f (x )>f (0)=1,不符合题意;(2)若12<k ≤1,当12<x <k 时,f (x )<f 12=-1,不符合题意;(3)若0≤k ≤12,①当-1≤x <k 时,-1<f (x )≤1;②当k ≤x ≤3时,f (1)≤f (x )≤max {f (k ),f (3)}≤1,即-1≤f (x )≤1.由①②,0≤k ≤12时符合题意.此时,结合图象可知,当k =0时,f (x )在[-1,k )上没有零点,在[k ,3]上有2个零点;当0<k ≤12时,f (x )在[-1,k )上有1个零点,在[k ,3]上有1个或2个零点,综上,f (x )最多有3个零点.故选:C .31(2023·广东江门·高三台山市第一中学校考阶段练习)设a =511,b =ln 2111,c =sin 511,则()A.c <a <bB.c <b <aC.a <b <cD.b <c <a【答案】A 【解析】当x ∈0,π2 时,记f x =x -sin x ,则f x =1-cos x ≥0,故f (x )在x ∈0,π2单调递增,故f (x )>f 0 =0,因此得当x ∈0,π2 时,x >sin x ,故511>sin 511,即a >c ;b -a =ln 2111-511=ln 1+2×511 -511,设g (x )=ln (1+2x )-x 0<x <12 ,则b -a =g 511,因为g (x )=21+2x -1=1-2x1+2x,当0<x <12时,g (x )>0.所以g (x )在0,12 上单调递增,所以g 511>g (0)=0,即b >a ,所以b >a>c .故选:A32(2023·广东·高三河源市河源中学校联考阶段练习)设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 是椭圆上一点,PF 1 =λPF 2 ,12≤λ≤2 ,∠F 1PF 2=π2,则椭圆离心率的取值范围为()A.0,22B.22,53C.23,53D.53,1 【答案】B【解析】设F 1(-c ,0),F 2(c ,0),运用椭圆的定义和勾股定理,求得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=21m -12 2+12,运用二次函数的最值的求法,解不等式可得所求范围.设F 1(-c ,0),F 2(c ,0),由椭圆的定义可得,|PF 1|+|PF 2|=2a ,可设|PF 2|=t ,可得|PF 1|=λt ,即有(λ+1)t =2a ,①由∠F 1PF 2=π2,可得|PF 1|2+|PF 2|2=4c 2,即为(λ2+1)t 2=4c 2,②由②÷①2,可得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=m 2-2m +2m 2=21m -12 2+12,由12≤λ≤2,可得32≤m ≤3,即13≤1m ≤23,则当m =2时,取得最小值12;当m =32或3时,取得最大值59,即有12≤e 2≤59,解得:22≤e ≤53,所以椭圆离心率的取值范围为22,53.故选:B .33(2023·广东·高三河源市河源中学校联考阶段练习)设a =ln1.1,b =e 0.1-1,c =tan0.1,则()A.a <b <cB.c <a <bC.a <c <bD.b <a <c【答案】C【解析】令f x =e x -x +1 ,所以f x =e x -1,当x >0时f x >0,当x <0时f x <0,即函数f x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以f x min =f 0 =0,即e x ≥x +1,当且仅当x =0时取等号,令x =0.1,可得b =e 0.1-1>0.1,令h (x )=tan x -x ,x ∈0,π2 ,则在x ∈0,π2 时,h (x )=1cos 2x -1>0,∴h (x )=tan x -x 在x ∈0,π2 上单调递增,∴h (x )>h (0)=0,∴x ∈0,π2时,tan x >x .∴c =tan0.1>0.1,令g x =ln x -x +1,则g x =1x -1=1-xx,所以当0<x <1时g x >0,当x >1时g x <0,即函数g x 在0,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =0,即ln x ≤x -1,当且仅当x =1时取等号,所以当x =1.1,可得a =ln1.1<1.1-1=0.1,所以a 最小,设t x =e x -1-tan x x ∈0,0.1 ,则t (x )=e x -1cos 2x>0,∴t (x )在0,0.1 上单调递增,∴t (0)<t (0.1),∴t (0.1)=e 0.1-1-tan0.1>e 0-1-tan0=0,∴b =e 0.1-1>tan0.1=c ,综上可得b >c >a ;故选:C34(2023·广东佛山·高三校考阶段练习)符号x 表示不超过实数x 的最大整数,如 2.3 =2,-1.9 =-2.已知数列a n 满足a 1=1,a 2=5,a n +2+4a n =5a n +1.若b n =log 2a n +1 ,S n 为数列8100b n b n +1的前n 项和,则S 2025 =()A.2023B.2024C.2025D.2026【答案】B【解析】因为a n +2+4a n =5a n +1,则a n +2-a n +1=4a n +1-a n ,且a 2-a 1=4,所以,数列a n +1-a n 是首项为4,公比也为4的等比数列,所以,a n +1-a n =4×4n -1=4n ,①由a n +2+4a n =5a n +1可得a n +2-4a n +1=a n +1-4a n ,且a 2-4a 1=1,所以,数列a n +1-4a n 为常数列,且a n +1-4a n =1,②由①②可得a n =4n -13,因为4n +1-13-4n=4⋅4n -1-3⋅4n 3=4n -13>0,4n +1-13-2⋅4n =4⋅4n -1-6⋅4n 3=-2⋅4n +13<0,则4n <a n +1=4n +1-13<2⋅4n ,。
2023年新高考数学选填压轴题汇编(七)(学生版+解析版)
2023年新高考数学选填压轴题汇编(七)一、单选题1.(2022·广东佛山·高三阶段练习)《周髀算经》中给出的弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如图所示,直角三角形中最小的一个角为α0°<α<45° ,且小正方形与大正方形的面积之比为1:4,则tan α=( )A.4-73B.4+73C.4+75D.4-752.(2022·广东佛山·高三阶段练习)已知一组数据x 1,x 2,x 3,x 4的平均数是3,方差是2,则由1,2x 1-5,2x 2-5,2x 3-5,2x 4-5这5个数据组成的新的一组数据的方差是( )A.4B.6C.325D.3653.(2022·广东·东莞四中高三阶段练习)设数列a n 的前n 项和为S n ,且a 1=1,a n =S nn+2n -1 ,则数列1S n +3n 的前10项和是( )A.25B.920C.511D.10114.(2022·广东·东莞四中高三阶段练习)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A.5B.22C.10D.51045.(2022·广东深圳·高三阶段练习)如图,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1-2,0 ,F 22,0 ,过F 1,F 2作圆O :x 2+y 2=a 2的切线,四条切线围成的四边形F 1AF 2B 的面积为833,则双曲线的方程为( )A.x 23-y 2=1B.x 2-y 23=1C.x 22-y 22=1D.2x 23-2y 25=16.(2022·广东深圳·高三阶段练习)设函数f x =1-ax ,x <a ,x 2-4x +3,x ≥a . 若f x 存在最小值,则a 的取值范围为( )A.-2,2B.0,2C.-2,2 ∪2,+∞D.0,2 ∪2,+∞7.(2022·广东·执信中学高三阶段练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin C =23sin B sin A ,b =λa ,则实数λ的最小值是( )A.323 B.32+3 C.2-3D.2+38.(2022·广东·执信中学高三阶段练习)设正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则xyz的最大值为( )A.0B.2C.1D.39.(2022·广东·揭东二中高三阶段练习)函数f x =x 2+axa >0 在区间a ,a +1 上有最小值,则a 的取值范围是( )A.0<a <1B.a >1C.1<a <4D.a >410.(2022·广东·揭东二中高三阶段练习)已知符号函数sgn x =1,x >00,x =0-1,x <0,则函数f x =sgn ln x -ln x的零点个数为( )A.1B.2C.3D.411.(2022·广东·顺德一中高三阶段练习)已知函数f x =lg x +x 2+1 -22x+1,则不等式f 2x +1 +f x>-2的解集为( )A.-13,+∞ B.-13,100 C.-∞,-13D.-23,100 12.(2022·广东广雅中学高三阶段练习)设定义域为R 的函数f (x )={5|x -1-1,x ≥0,x 2+4x +4,x <0,若关于x 的方程f 2(x )-(2m +1)f (x )+m 2=0有7个不同的实数解,则m =().A.2B.4或6C.2或6D.613.(2022·广东广雅中学高三阶段练习)已知函数f (x )=(x -3)e x ,若经过点(0,a )且与曲线y =f (x )相切的直线有三条,则( )A.-3<a <-eB.a >-eC.a <-3D.a <-3或a >-e 14.(2022·广东·开平市忠源纪念中学高三阶段练习)已知a >0,函数f x =x +1x 2+a在1,+∞ 上的最大值为23,则a =( )A.2或3316B.12或3316C.2D.1215.(2022·湖南省岳阳县第一中学高三阶段练习)设抛物线E :y 2=8x 的焦点为F ,过点M (4,0)的直线与E 相交于A ,B 两点,与E 的准线相交于点C ,点B 在线段AC 上,|BF |=3,则△BCF 与△ACF 的面积之比S △BCFS △ACF =( )A.14B.15C.16D.1716.(2022·湖南省岳阳县第一中学高三阶段练习)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( )A.(-∞,0)B.0,12C.(0,1)D.(0,+∞)17.(2022·湖南·邵阳市第二中学高三阶段练习)已知定义在R 上的函数f x 满足:f x 为奇函数,f x +1 为偶函数,当0≤x ≤1时,f x =2x -1,则f log 22023 =( )试卷第2页,共38页A.-9991024B.-252048C.-10242023D.-51299918.(2022·湖南·邵阳市第二中学高三阶段练习)已知函数f x =x 2+a 2x +1 e x ,则“a =2”是“函数f (x )在x =-1处取得极小值”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件19.(2022·湖南·邵阳市第二中学高三阶段练习)设函数f x 的定义域为R ,且f x -1是奇函数,当0≤x ≤2时,f x =4x -x 2+1;当x >2时,f x =2x -4 +1.当k 变化时,方程f x -kx -1=0的所有根从小到大记为x 1,x 2,⋅⋅⋅,x n ,则f x 1 +f x 2 +⋅⋅⋅+f x n 取值的集合为( )A.1,3B.1,3,5C.1,3,5,7D.1,3,5,7,9二、多选题20.(2022·广东佛山·高三阶段练习)“提丢斯数列”是18世纪由德国物理学家提丢斯给出的,具体如下:取0,3,6,12,24,48,96,⋯,这样一组数,容易发现,这组数从第3项开始,每一项是前一项的2倍,将这组数的每一项加上4,再除以10,就得到“提丢斯数列”:0.4,0.7,1,1.6,2.8,6.2,10,⋯,则下列说法中正确的是( )A.“提丢斯数列”是等比数列B.“提丢斯数列”的第99项为3×297+410C.“提丢斯数列”的前31项和为3×23010+12110D.“提丢斯数列”中,不超过300的有11项21.(2022·广东佛山·高三阶段练习)若a 2+b 2=4,a ∈R ,b ∈R ,且ab ≠0,则( )A.|ab |>2B.|a +b |≤22C.log 2|a |+log 2|b |≤1D.1|a |+1|b |<122.(2022·广东佛山·高三阶段练习)九月伊始,佛山市某中学社团招新活动开展得如火如茶,小王、小李、小张三位同学计划从篮球社、足球社、羽毛球社三个社团中各自任选一个,每人选择各社团的概率均为13,且每人选择相互独立,则( )A.三人选择社团一样的概率为19B.三人选择社团各不相同的概率为89C.至少有两人选择篮球社的概率为727D.在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为5723.(2022·广东·东莞四中高三阶段练习)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 分别为BC 、CC 1、BB 1的中点,则下列选项正确的是( )A.D 1D ⊥AFB.直线A 1G 与EF 所成角的余弦值为1010C.三棱锥G -AEF 的体积为13D.存在实数λ、μ使得A 1G =λAF +μAE24.(2022·广东深圳·高三阶段练习)Farey 数列是这样定义的,对任意给定的一个正整数n ,将分母小于等于n的不可约的真分数按升序排列,并且在第一个分数之前加上01,在最后一个分数之后加上11,这个序列称为n 级Farey 数列,用F n 表示.如F 3 的各项为:01,13,12,23,11,共有5项.则( )A.数列F n 都有奇数个项B.6级Farey 数列F 6 中,中间项为12C.6级Farey 数列F 6 共有11项 D.6级Farey 数列F 6 各项的和为13225.(2022·广东深圳·高三阶段练习)已知函数f x =e x x 2-3x +3 ,则( )A.函数f x 在0,1 上单调递减B.函数f x 恰有一个零点C.当且仅当e <m <3时,方程f x =m 恰有三个实根D.若当x ∈-∞,t (t ∈Z )时,函数f x 的最大值为3,则t 的最大值为126.(2022·广东深圳·高三阶段练习)已知圆柱的轴截面的周长为12,圆柱的体积为V ,圆柱的外接球的表面积为S ,则下列结论正确的是( )A.圆柱的外接球的表面积S 有最大值,最大值为36πB.圆柱的外接球的表面积S 有最小值,最小值为18πC.圆柱的体积V 有最大值,最大值为8πD.圆柱的体积V 有最小值,最小值为4π27.(2022·广东·执信中学高三阶段练习)已知双曲线x 2a 2-y 2b2=1a >0,b >0 的一条渐近线方程为x -2y =0,双曲线的左焦点在直线x +y +5=0上,A 、B 分别是双曲线的左、右顶点,点P 为双曲线右支上位于第一象限的动点,PA ,PB 的斜率分别为k 1,k 2,则k 1+k 2的取值可能为( )A.34B.1C.43D.228.(2022·广东·执信中学高三阶段练习)若f (x )图像上存在两点A ,B 关于原点对称,则点对[A ,B ]称为函数f (x )的“友情点对”(点对[A ,B ]与[B ,A ]视为同一个“友情点对”)若f (x )=x 3e x,x ≥0ax 2,x <0恰有两个“友情点对”,则实数a 的值可以是( )A.0B.-12020C.-1eD.-1202329.(2022·广东·揭东二中高三阶段练习)若函数f x ,g x 分别是R 上的偶函数、奇函数,且f x +g x =sin x +cos x2,则( )A.f x =cos2xB.g x =sin2xC.f g x <g f xD.f g x >g f x30.(2022·广东·揭东二中高三阶段练习)定义一:关于一个函数f x x ∈D ,若存在两条距离为d 的直线y =kx +m 1和y =kx +m 2,使得在x ∈D 时,kx +m 1≤f x ≤kx +m 2恒成立,则称函数f x 在D 内有一个宽度为d 的通道.定义二:若一个函数f x ,关于任意给定的正数ε,都存在一个实数x 0,使得函数f x 在x 0,+∞ 内有一个宽度为ε的通道,则称f x 在正无穷处有永恒通道.则下列在正无穷处有永恒通道的函试卷第2页,共38页数为( )A.f x =ln xB.f x =sin xx C.f x =x2-1 D.f x =e-x31.(2022·广东·顺德一中高三阶段练习)对∀x∈R,x 表示不超过x的最大整数.十八世纪,y=x 被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是( )A.∀x∈R,x<x +1B.y=x ,x∈R的奇函数C.函数y=x-x x∈R的值域为0,1D.∀x,y∈R,x +y ≤x+y恒成立32.(2022·广东·顺德一中高三阶段练习)函数f(x)=e x x+ln x-x,下列结论正确的是( )A.函数f(x)有且仅有一个零点B.x=1是函数f(x)的极值点C.若f(x)≥a恒成立,则a∈-∞,e-1D.若f x1=f x2且x1≠x2,则x1+x2>133.(2022·广东广雅中学高三阶段练习)已知随机变量X的取值为不大于n(n∈N∗)的非负整数,它的概率分布列为:X0123⋯nP p0p1p2p3⋯p n其中p i(i=0,1,2,3,⋅⋅⋅,n)满足p i∈0,1,ni=0p i=1.E X 为随机变量X的期望.定义由X生成的函数f x =p0+p1x+p2x2+⋅⋅⋅+p n x n,g x 为函数f x 的导函数.现有一枚质地均匀的正四面体型骰子,四个面分别标有1,2,3,4个点数,这枚骰子连续抛掷两次,向下点数之和为X,此时由生成的函数为f x ,则( )A.g0 =p1B.f1 <p0+1C.f2 =2254D.E X =g134.(2022·广东广雅中学高三阶段练习)若6a=2,6b=3,则下列不等关系正确的有( )A.b a>1B.ab<14C.a2+b2<12D.1a b+13b>235.(2022·广东·开平市忠源纪念中学高三阶段练习)油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,某市文化宫于春分时节开展油纸伞文化艺术节.活动中,某油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为1的圆,圆心到伞柄底端的距离为1,阳光照射油纸丛在地面上形成了一个椭圆形的影子(春分时,该市的阳光照射方向与地面的夹角为60∘),若伞柄底端正好位于该椭圆的左焦点位置,则( )A.该椭圆的离心率为3-12B.该椭圆的离心率为2-3C.该椭圆的焦距为32-63D.该椭圆的焦距为23-136.(2022·广东·开平市忠源纪念中学高三阶段练习)已知函数f x =e x+e-x-cos2x,若f x1>f x2,则( )A.f x 为偶函数B.f x 在-∞,0上为增函数C.x21>x22D.e x1-x2>137.(2022·湖南省岳阳县第一中学高三阶段练习)已知a =(cos x ,sin x ),b =(cos x ,3cos x ),函数f (x )=a ⋅b,则下列选项正确的是( )A.函数f (x )的值域为-12,32B.将函数y =sin x +12图像上各点横坐标变为原来的12(纵坐标不变),再将所得图像向左平移π12个单位长度,可得函数f (x )图像C.函数f (x )是奇函数D.函数f (x )在区间[0,2π]内所有零点之和为14π338.(2022·湖南省岳阳县第一中学高三阶段练习)已知函数f x =2x +2,-2≤x ≤1ln x -1,1<x ≤e,若关于x 的方程f x =m 恰有两个不同解x 1,x 2x 1<x 2 ,则(x 2-x 1)f x 2 的取值可能是( )A.-3B.-1C.0D.239.(2022·湖南·邵阳市第二中学高三阶段练习)已知f x =e x 2x -1x -1,则下列结论正确的是( )A.不等式f x <0的解集为12,1 B.函数f x 在0,1 单调递减,在32,+∞ 单调递增C.函数f x 在定义域上有且仅有两个零点D.若关于x 的方程f x =m 有解,则实数m 的取值范围是-∞,1 ∪32,+∞ 40.(2022·湖南·邵阳市第二中学高三阶段练习)已知函数f (x )=xe x,过点(a ,b )作曲线f (x )的切线,下列说法正确的是( )A.当a =0,b =0时,有且仅有一条切线B.当a =0时,可作三条切线,则0<b <4e 2C.当a =2,b >0时,可作两条切线D.当0<a <2时,可作两条切线,则b 的取值范围为4-a e 2或aea 三、填空题41.(2022·广东佛山·高三阶段练习)设a =110,b =e 111-1,c =1110ln 1110,则a ,b ,c 大小关系是____________.42.(2022·广东佛山·高三阶段练习)已知数列a n 满足a 1+a 2+⋯+a n -1-a n =-2(n ≥2且n ∈N ∗),且a 2=4,则a n =___________.43.(2022·广东·东莞四中高三阶段练习)如图,△ACD 是等边三角形,△ABC 是等腰三角形,∠ACB =90°,BD 交AC 于E ,AB =2,则AE =__________.试卷第2页,共38页44.(2022·广东·东莞四中高三阶段练习)如图,在正四棱台ABCD -A 1B 1C 1D 1中,AB =2A 1B 1,且存在一个半径为r 的球,与该正四棱台的各个面均相切.设该正四棱台的外接球半径为R ,则Rr=__________.45.(2022·广东·执信中学高三阶段练习)已知P 1,P 2是曲线C :y =2|ln x |上的两点,分别以P 1,P 2为切点作曲线C 的切线l 1,l 2,且l 1⊥l 2,切线l 1交y 轴于A 点,切线l 2交y 轴于B 点,则线段AB 的长度为___________.46.(2022·广东·执信中学高三阶段练习)对于集合A ,B ,定义集合A -B ={x |x ∈A 且x ∉B }. 己知等差数列{a n }和正项等比数列{b n }满足a 1=4,b 1=2,b n +2=b n +1+2b n ,a 3=b 3+2.设数列{a n }和{b n }中的所有项分别构成集合A ,B ,将集合A -B 的所有元素按从小到大依次排列构成一个新数列{c n },则数列{c n }的前30项和S 30=_________.47.(2022·广东·揭东二中高三阶段练习)若函数f x =log a 2x 2+x a >0且a ≠1 在区间0,12内恒有f x >0,则f x 的单调递增区间为_________.48.(2022·广东广雅中学高三阶段练习)已知函数f x =ln x +1 ,x >012x +1,x ≤0,若m <n ,且f m =f n ,则n -m 的取值范围是________.49.(2022·广东·开平市忠源纪念中学高三阶段练习)已知在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 为矩形,PB =4,AD =22,当AB ⋅PD 最大时,该四棱锥外接球的表面积为___________.50.(2022·广东·开平市忠源纪念中学高三阶段练习)已知F 是抛物线C :y 2=16x 的焦点,M 是C 上一点,FM的延长线交y 轴于点N ,若3FM =2MN,则FN =___________.51.(2022·湖南省岳阳县第一中学高三阶段练习)设点P 在单位圆的内接正八边形A 1A 2⋯A 8的边A 1A 2上,则PA 21+PA 2 2+⋯+PA 28的取值范围是_______.52.(2022·湖南·邵阳市第二中学高三阶段练习)已知函数f (x )=x 2-ax +2ln x (其中a 为常数)有两个极值点x 1,x 2(x 1<x 2),若f (x 1)>mx 2恒成立,则实数m 的取值范围是______.53.(2022·湖南·邵阳市第二中学高三阶段练习)若曲线y =a ln x +x 2a >0 的切线的倾斜角的取值范围是π3,π2 ,则a =______.四、双空题54.(2022·广东深圳·高三阶段练习)在空间直角坐标系中,O 为坐标原点,动点P x ,y ,z 同时满足下列两个条件:①0≤x ,y ,z ≤1;②x 2+y 2+z 2>1.设所有动点P 构成的几何体Γ的表面积为S ,体积为V ,则V =______,S =______.55.(2022·广东·顺德一中高三阶段练习)设函数f x =2x -a ,x <1,4x -a x -2a ,x ≥1. ①若a =1,则f x 的最小值为________;②若f x 恰有2个零点,则实数a 的取值范围是________.试卷第2页,共38页2023年新高考数学选填压轴题汇编(七)一、单选题1.(2022·广东佛山·高三阶段练习)《周髀算经》中给出的弦图是由四个全等的直角三角形和中间一个小正方形拼成的一个大正方形,如图所示,直角三角形中最小的一个角为α0°<α<45° ,且小正方形与大正方形的面积之比为1:4,则tan α=( )A.4-73B.4+73C.4+75D.4-75【答案】A【解析】设大正方形的边长为a ,则小正方形的边长为a cos α-sin α ,故a 2cos α-sin α 2a 2=14,故1-2sin αcos α=14,即sin αcos α=38⇒sin αcos αsin 2α+cos 2α=38⇒tan αtan 2α+1=38⇒3tan 2α-8tan α+3=0,解得tan α=4-73或tan α=4+73.因为0°<α<45°,则0<tan α<1,故tan α=4-73.故选:A2.(2022·广东佛山·高三阶段练习)已知一组数据x 1,x 2,x 3,x 4的平均数是3,方差是2,则由1,2x 1-5,2x 2-5,2x 3-5,2x 4-5这5个数据组成的新的一组数据的方差是( )A.4 B.6C.325D.365【答案】C【解析】因为一组数据x 1,x 2,x 3,x 4的平均数是3,方差是2,所以14(x 1+x 2+x 3+x 4)=3,14[(x 1-3)2+(x 2-3)2+(x 3-3)2+(x 4-3)2]=2,所以x 1+x 2+x 3+x 4=12,(x 1-3)2+(x 2-3)2+(x 3-3)2+(x 4-3)2=8,所以1,2x 1-5,2x 2-5,2x 3-5,2x 4-5的平均数为151+(2x 1-5)+(2x 2-5)+(2x 3-5)+(2x 4-5) =151+2(x 1+x 2+x 3+x 4)-20=15×(1+24-20)=1,所以1,2x 1-5,2x 2-5,2x 3-5,2x 4-5的方差为15(1-1)2+(2x 1-5-1)2+(2x 2-5-1)2+(2x 3-5-1)2+(2x 4-5-1)2 =15(2x 1-6)2+(2x 2-6)2+(2x 3-6)2+(2x 4-6)2=154(x 1-3)2+4(x 2-3)2+4(x 3-3)2+4(x 4-3)2=45(x 1-3)2+(x 2-3)2+(x 3-3)2+(x 4-3)2=45×8=325,故选:C 3.(2022·广东·东莞四中高三阶段练习)设数列a n 的前n 项和为S n ,且a 1=1,a n =S nn+2n -1 ,则数列1S n +3n 的前10项和是( )A.25B.920C.511D.1011【答案】C【解析】由a n=S nn+2n-1得S n=na n-2n n-1,当n≥2时,a n=S n-S n-1=na n-n-1a n-1-4n-1,整理得a n-a n-1=4,所以a n是公差为4的等差数列,又因为a1=1,所以a n=4n-3,从而S n+3n=n a1+a n2+3n=2n2+2n=2n n+1,所以1S n+3n=12n n+1=121n-1n+1,所以数列1S n+3n的前10项和为12×1-12+12-13+⋅⋅⋅+110-111=12×1-111=511.故选:C4.(2022·广东·东莞四中高三阶段练习)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S甲和S乙,体积分别为V甲和V乙.若S甲S乙=2,则V甲V乙=( )A.5B.22C.10D.5104【答案】C【解析】设母线长为l,甲圆锥底面半径为r1,乙圆锥底面圆半径为r2,则S甲S乙=πr1lπr2l=r1r2=2,所以r1=2r2,又2πr1l+2πr2l=2π,则r1+r2l=1,所以r1=23l,r2=13l,所以甲圆锥的高h1=l2-49l2=53l,乙圆锥的高h2=l2-19l2=223l,所以V甲V乙=13πr21h113πr22h2=49l2×53l19l2×223l=10.故选:C.5.(2022·广东深圳·高三阶段练习)如图,双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点为F1-2,0,F 22,0,过F1,F2作圆O:x2+y2=a2的切线,四条切线围成的四边形F1AF2B的面积为833,则双曲线的方程为( )A.x23-y2=1B.x2-y23=1C.x22-y22=1 D.2x23-2y25=1试卷第2页,共38页【答案】B【解析】如图,由题意c =a 2+b 2=2,因为四边形F 1AF 2B 的面积为833,所以直角三角形AOF 2面积为233,即12OF 2 OA =233,OA =233,AF 2 =OF 2 2+OA 2=433,12a ×AF 2 =233,a =1,b =3,双曲线的方程为x 2-y 23=1.故选:B .6.(2022·广东深圳·高三阶段练习)设函数f x =1-ax ,x <a ,x 2-4x +3,x ≥a . 若f x 存在最小值,则a 的取值范围为( )A.-2,2B.0,2C.-2,2 ∪2,+∞D.0,2 ∪2,+∞【答案】B【解析】若a =0时,f x =1,x <0,x 2-4x +3,x ≥0.,∴f x min =f 2 =-1;若a <0时,当x <a 时,f x =1-ax 单调递增,当x →-∞时,f x →-∞,故f x 没有最小值;若a >0时,x <a 时,f x =-ax +1单调递减,f x >f a =1-a 2,当x ≥a 时,f x min =-1,0<a <2 a 2-4a +3,a ≥2,若函数f x 有最小值,需1-a 2≥-10<a <2 或1-a 2≥a 2-4a +3a ≥2,解得0<a ≤2.故选:B7.(2022·广东·执信中学高三阶段练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin C =23sin B sin A ,b =λa ,则实数λ的最小值是( )A.323 B.32+3 C.2-3D.2+3【答案】C【解析】由sin C =23sin B sin A ,可得c =23b sin A ,由余弦定理得:a 2=b 2+c 2-2bc cos A ,两式结合得:a 2=12b 2sin 2A +b 2-2b ×23b sin A cos A ,即a 2b 2=12sin 2A +1-23sin2A =7-6cos2A -23sin2A ,即a 2b2=7-43sin 2A +π3 ,A ∈(0,π),则当A =7π12时,a 2b 2 max =7+43,则b 2a 2 min =17+43=7-43,故由λ=ba可得其最小值为7-43=2-3 ,故选:C8.(2022·广东·执信中学高三阶段练习)设正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则xyz的最大值为( )A.0 B.2C.1D.3【答案】C【解析】因为正实数x 、y 、z 满足4x 2-3xy +y 2-z =0,则z =4x 2-3xy +y 2,则xy z =xy 4x 2-3xy +y 2=14x y +y x -3≤124x y ⋅y x -3=1,当且仅当y =2x >0时取等号.故xy z 的最大值为1.故选:C .9.(2022·广东·揭东二中高三阶段练习)函数f x =x 2+axa >0 在区间a ,a +1 上有最小值,则a 的取值范围是( )A.0<a <1 B.a >1C.1<a <4D.a >4【答案】A 【解析】∵f (x )=x 2+a x =x +ax(a >0),∴f (x )=1-a x 2=x 2-ax 2=x +a x -a x 2,∴当0<x <a 时,f (x )<0,当x >a 时,f (x )>0,可知,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增,∴f (x )在x =a 处取得极小值,又∵在区间(a ,a +1)上有最小值,∴a <a <a +1,解得0<a <1.故选:A .10.(2022·广东·揭东二中高三阶段练习)已知符号函数sgn x =1,x >00,x =0-1,x <0,则函数f x =sgn ln x -ln x的零点个数为( )A.1 B.2 C.3 D.4【答案】C【解析】当ln x =0时x =1;当ln x >0时x >1;当ln x <0时0<x <1.∴sgn ln x =1,x >10,x =1-1,0<x <1.∴f x =sgn ln x -ln x =1-ln x ,x >1-ln x ,x =1-1-ln x ,0<x <1.当x >1时令f x =0,即1-ln x =0,解得x =e >1成立;当x =1时令f x =0,即-ln x =0,解得x =1成立;当0<x <1时令f x =0,即-1-ln x =0,解得x =1e∈0,1 成立.综上可得解f x =0得x =e 或x =1或x =1e.所以函数f x 的零点个数为3.故选:C11.(2022·广东·顺德一中高三阶段练习)已知函数f x =lg x +x 2+1 -22x+1,则不等式f 2x +1 +f x试卷第2页,共38页>-2的解集为( )A.-13,+∞ B.-13,100 C.-∞,-13 D.-23,100 【答案】A【解析】由f x =lg x +x 2+1 -22x+1可知,x ∈R ,故f x +f -x =lg x +x 2+1 -22x +1+lg -x +x 2+1 -22-x+1=lg x +x 2+1 -x +x 2+1 -22x +1+2⋅2x2x+1=lg1-2=-2 ,即f x +1+f -x +1=0,令g (x )=f (x )+1 ,则g x +g -x =0,即g (x )=f (x )+1为奇函数,因为函数y =lg x +x 2+1 为R 上的单调增函数,y =22x +1为R 上的单调减函数故f x =lg x +x 2+1 -22x +1为单调增函数,则g (x )=f (x )+1也单调递增;不等式f 2x +1 +f x >-2,即f 2x +1 +1+f x +1>0,即g 2x +1 +g x >0,g 2x +1 >-g x =g (-x ),故2x +1>-x ,x >-13 ,即f 2x +1 +f x >-2解集为-13,+∞ ,故选:A12.(2022·广东广雅中学高三阶段练习)设定义域为R 的函数f (x )={5|x -1-1,x ≥0,x 2+4x +4,x <0,若关于x 的方程f 2(x )-(2m +1)f (x )+m 2=0有7个不同的实数解,则m =().A.2B.4或6C.2或6D.6【答案】A 【解析】请在此输入详解!13.(2022·广东广雅中学高三阶段练习)已知函数f (x )=(x -3)e x ,若经过点(0,a )且与曲线y =f (x )相切的直线有三条,则( )A.-3<a <-e B.a >-e C.a <-3 D.a <-3或a >-e【答案】A【解析】f x =x -2 e x ,设经过点(0,a )且与曲线y =f (x )相切的切点为x 0,x 0-3 e x 0,则f x 0 =x 0-2 e x.又切线经过0,a ,故由题意x 0-3 e x-a x 0=x 0-2 e x 0有3个解.化简有a =x 0-3 e x 0-x 0x 0-2 e x 0,即a =-x 20+3x 0-3 e x 0有3个解.设g x =-x 2+3x -3 e x ,则g x =-x 2+x e x ,令g x =0有x =0或x =1,故当x ∈-∞,0 时,g x <0,g x 单调递减;当x ∈0,1 时,g x >0,g x 单调递增;当x ∈1,+∞ 时,g x <0,g x 单调递减.又g 0 =-3,g 1 =-e ,且g -1 =-7e>g 1 ,g 2 =-e 2<g 0 ,故要a=-x 20+3x 0-3 e x 0有3个解,则-3<a <-e .故选:A14.(2022·广东·开平市忠源纪念中学高三阶段练习)已知a >0,函数f x =x +1x 2+a在1,+∞ 上的最大值为23,则a =( )A.2或3316 B.12或3316C.2D.12【答案】C【解析】令t =x +1t ≥2 ,则x +1x 2+a =t t 2-2t +1+a =1t +1+a t-2,函数f x =x +1x 2+a 在1,+∞ 上的最大值为23且f (x )>0,即转化为g t =t +1+a t -2t ≥2 的最小值为32.g(t )=1-1+a t 2=t 2-(1+a )t 2,g (t )=0⇒t =1+a (负值舍去),1+a ≤2,即0<a ≤3时,g (t )在[2,+∞)上单调递增,g (t )min =g 2 =1+a 2=32,解得a =2;当1+a >2,即a >3时,2≤t <1+a 时,g (t )<0,g (t )递减,t >1+a 时,g (t )>0,g (t )递增,g (t )min =g 1+a =21+a -2=32,解得a =3316<3,舍去.故a =2故选:C .15.(2022·湖南省岳阳县第一中学高三阶段练习)设抛物线E :y 2=8x 的焦点为F ,过点M (4,0)的直线与E 相交于A ,B 两点,与E 的准线相交于点C ,点B 在线段AC 上,|BF |=3,则△BCF 与△ACF 的面积之比S △BCFS △ACF =( )A.14B.15C.16D.17【答案】C【解析】如图,过点B 作BD 垂直准线x =-2于点D ,则由抛物线定义可知:|BF |=|BD |=3,设直线AB 为x =my +4, A x 1,y 1 ,B x 2,y 2 ,C -2,y C ,不妨设m >0,则y 1>0,y 2<0,所以x 2+2=3,解得:x 2=1,则y 22=8x 2=8,解得:y 2=-22,则B 1,-22 ,所以-22m +4=1,解得:m =324,则直线AB 为x =324y +4,所以当x =-2时,即324y +4=-2,解得:y C =-42,则C -2,-42 ,联立x =my +4与y 2=8x 得:y 2-8my -32=0,则y 1y 2=-32,所以y 1=82,其中S △BCF S △ACF =BC AC =y 2-y C y 1-y C =22122=16.故选:C16.(2022·湖南省岳阳县第一中学高三阶段练习)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( )A.(-∞,0) B.0,12C.(0,1)D.(0,+∞)【答案】B【解析】函数f (x )=x (ln x -ax ),则f ′(x )=ln x -ax +x (1x-a )=ln x -2ax +1,令f ′(x )=ln x -2ax +1=0得ln x =2ax -1,试卷第2页,共38页函数f (x )=x (ln x -ax )有两个极值点,等价于f ′(x )=ln x -2ax +1有两个零点,等价于函数y =ln x 与y =2ax -1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a =12时,直线y =2ax -1与y =ln x 的图象相切,由图可知,当0<a <12时,y =ln x 与y =2ax -1的图象有两个交点.则实数a 的取值范围是(0,12).故选B .17.(2022·湖南·邵阳市第二中学高三阶段练习)已知定义在R 上的函数f x 满足:f x 为奇函数,f x +1 为偶函数,当0≤x ≤1时,f x =2x -1,则f log 22023 =( )A.-9991024B.-252048C.-10242023D.-512999【答案】A【解析】因为f x +1 为偶函数,所以f x +1 =f (-x +1),所以f -x =f (x +2),又f x 为奇函数,即f -x =-f (x )所以-f x =f x +2 ⇒f x +4 =-f x +2 =f x ,所以f x 的周期为4,f log 22023 =f log 22023-12 =f log 220234096 =-f log 240962023 =-f 2-log 240962023=-f log 220231024 =-2log 220231024-1 =-20231024-1=-9991024.故选:A .18.(2022·湖南·邵阳市第二中学高三阶段练习)已知函数f x =x 2+a 2x +1 e x ,则“a =2”是“函数f (x )在x =-1处取得极小值”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A【解析】f (x )=x 2+(a 2+2)x +a 2+1 e x =(x +1)(x +a 2+1)e x .①当a =0时,f (x )=(x +1)2e x ≥0,故f (x )在R 上单调递增,f (x )无最小值.②当a ≠0时,令f (x )=0,得x =-1或x =-a 2-1.又-a 2-1<-1,故当x <-a 2-1时,f (x )>0,f (x )单调递增;当-a 2-1<x <-1时,f (x )<0,f (x )单调递减;当x >-1时,f (x )>0,f (x )单调递增.故f (x )在x =-1处取得极小值.综上,函数f (x )在x =-1处取得极小值⇔a ≠0.所以“a =2”是“函数f (x )在x =-1处取得极小值”的充分不必要条件.故选:A .19.(2022·湖南·邵阳市第二中学高三阶段练习)设函数f x 的定义域为R ,且f x -1是奇函数,当0≤x ≤2时,f x =4x -x 2+1;当x >2时,f x =2x -4 +1.当k 变化时,方程f x -kx -1=0的所有根从小到大记为x 1,x 2,⋅⋅⋅,x n ,则f x 1 +f x 2 +⋅⋅⋅+f x n 取值的集合为( )A.1,3 B.1,3,5C.1,3,5,7D.1,3,5,7,9【答案】C【解析】∵f x -1为奇函数,∴f x 图像关于点0,1 对称,由f x -kx -1=0得:f x =kx +1,则方程的根即为f x 与直线y =kx +1的交点,作出f x 图像如图所示,①当k ≥5-12-0,即k ≥2时,如图中y =k 1x +1所示时,f x 与直线y =kx +1有5个交点x 1,x 2,⋅⋅⋅,x 5,∵f x 与y =kx +1均关于0,1 对称,∴f x 1 +f x 2 +⋅⋅⋅+f x 5 =5f 0 =5;②当3-12-0≤k <5-12-0,即1≤k <2时,如图中y =k 2x +1所示时,f x 与直线y =kx +1有7个交点x 1,x 2,⋅⋅⋅,x 7,∵f x 与y =kx +1均关于0,1 对称,∴f x 1 +f x 2 +⋅⋅⋅+f x 7 =7f 0 =7;③当2-14-0<k <3-12-0,即14<k <1时,如图中y =k 3x +1所示时,f x 与直线y =kx +1有5个交点x 1,x 2,⋅⋅⋅,x 5,∵f x 与y =kx +1均关于0,1 对称,∴f x 1 +f x 2 +⋅⋅⋅+f x 5 =5f 0 =5;④当k =2-14-0=14时,如图中y =k 4x +1所示时,f x 与直线y =kx +1有3个交点x 1,x 2,x 3,∵f x 与y =kx +1均关于0,1 对称,∴f x 1 +f x 2 +f x 3 =3f 0 =3;⑤当k <2-14-0,即k <14时,如图中y =k 5x +1和y =k 6x +1所示时,f x 与直线y =kx +1有且仅有一个交点0,1 ,∴f x 1 =1.综上所述:f x 1 +f x 2 +⋅⋅⋅+f x n 取值的集合为1,3,5,7 .故选:C .二、多选题20.(2022·广东佛山·高三阶段练习)“提丢斯数列”是18世纪由德国物理学家提丢斯给出的,具体如下:取0,3,6,12,24,48,96,⋯,这样一组数,容易发现,这组数从第3项开始,每一项是前一项的2倍,将这组数的每一项加上4,再除以10,就得到“提丢斯数列”:0.4,0.7,1,1.6,2.8,6.2,10,⋯,则下列说法中正确的是( )A.“提丢斯数列”是等比数列B.“提丢斯数列”的第99项为3×297+410试卷第2页,共38页C.“提丢斯数列”的前31项和为3×23010+12110 D.“提丢斯数列”中,不超过300的有11项【答案】BCD【解析】对于选项A ,0.70.4≠10.7,所以“提丢斯数列”不是等比数列,故A 错误;对于选项B ,设“提丢斯数列”为数列{a n },当n ≥3时,a n =3⋅2n -2+410,所以a 99=3×297+410,故B 正确;对于选项C ,“提丢斯数列”的前31项和为0.4+0.7+310(21+22+⋯+229)+410×29=3×23010+12110,故C 正确;对于选项D ,由a n =3⋅2n -2+410≤300有:n ≤11,所以“提丢斯数列”中,不超过300的有11项,故D 正确.故选:BCD .21.(2022·广东佛山·高三阶段练习)若a 2+b 2=4,a ∈R ,b ∈R ,且ab ≠0,则( )A.|ab |>2B.|a +b |≤22C.log 2|a |+log 2|b |≤1D.1|a |+1|b |<1【答案】BC【解析】对于A ,因为4=a 2+b 2=|a |2+|b |2≥2|ab |,所以|ab |≤2,当且仅当a =b =2时取等,故A 错误;对于B ,因为|a +b |≤22,即|a +b |2≤2,可看作部分圆x 2+y 2=4(xy ≠0)上的点(a ,b )到直线x +y =0的距离不大于2,因为圆心(0,0)在直线x +y =0上,半径为2,故|a +b |2≤2恒成立,故B 正确;对于C ,因为|ab |≤2,所以log 2|a |+log 2|b |=log 2|ab |≤log 22=1,故C 正确;对于D ,因为a 2+b 2=4,a ∈R ,b ∈R ,且ab ≠0,令a =b =2,此时1|a |+1|b |=2>1,故D 错误.故选:BC .22.(2022·广东佛山·高三阶段练习)九月伊始,佛山市某中学社团招新活动开展得如火如茶,小王、小李、小张三位同学计划从篮球社、足球社、羽毛球社三个社团中各自任选一个,每人选择各社团的概率均为13,且每人选择相互独立,则( )A.三人选择社团一样的概率为19B.三人选择社团各不相同的概率为89C.至少有两人选择篮球社的概率为727D.在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为57【答案】ACD【解析】对于A ,三人选择社团一样的事件是都选篮球社的事件、都选足球社的事件、都选羽毛球社的事件的和,它们互斥,三人选择社团一样的概率为3×13 3=19,A 正确;对于B ,三人选择社团各不相同的事件,是小王从3个社团中任选1个,小李从余下两个中任选1个,最后1个社团给小张的事件,共6个不同结果,因此三人选择社团各不相同的概率为6×13 3=29,B 不正确;对于C ,至少有两人选择篮球社的事件是恰有2人选篮球社与3人都选篮球社的事件和,其概率为C 23C 12×13 3+13 3=727,C 正确; 对于D ,令至少有两人选择羽毛球社的事件为A ,由选项C 知,P (A )=727,小王选择羽毛球社的事件为B ,则事件AB 是含小王只有2人择羽毛球社的事件和3人都择羽毛球社的事件和,其概率P (AB )=C 12C 12×13 3+13 3=527,所以在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为P (B |A )=P (AB )P (A )=57,D 正确.故选:ACD23.(2022·广东·东莞四中高三阶段练习)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 分别为BC 、CC1、BB 1的中点,则下列选项正确的是( )A.D 1D ⊥AFB.直线A 1G 与EF 所成角的余弦值为1010C.三棱锥G -AEF 的体积为13D.存在实数λ、μ使得A 1G =λAF +μAE【答案】BD【解析】对于A ,在正方体ABCD -A 1B 1C 1D 1中,DD 1⎳AA 1,易知AA 1与AF 不垂直,故错误;对于B ,在正方体ABCD -A 1B 1C 1D 1中,取B 1C 1的中点H ,连接A 1H ,GH ,如下图,易知GH ⎳EF ,则∠A 1GH 为直线A 1G 与EF 夹角或其补角,∵AB =2,∴GH =EF =2,A 1H =A 1G =5,在△A 1GH 中,cos ∠A 1GH =A 1G 2+GH 2-A 1H 22⋅A 1G ⋅GH=1010,因此,直线A 1G 与EF 所成角的余弦值为1010,故正确;对于C ,根据题意作图如下:易知三棱柱ABG -DCF 的体积V 1=14×2×2×2=2,试卷第2页,共38页三棱锥G -ABE 的体积V 2=13⋅S △ABE ⋅GB =13⋅12⋅AB ⋅BE ⋅GB =13,四棱锥F -AECD 的体积V 3=13⋅S 四边形AECD ⋅FC =13⋅S □ABCD -S △ABE ⋅FC =1,三棱锥G -AEF 的体积V =V 1-V 2-V 3=23,故错误;对于D ,连接D 1F ,D 1A ,作图如下:易知AD 1⎳EF ,则A ,E ,F ,D 1共面,∵A 1G ⎳D 1F ,则A 1G ,AF ,AE 共面,即存在实数λ、μ使得A 1G =λAF +μAE,故正确;故选:BD .24.(2022·广东深圳·高三阶段练习)Farey 数列是这样定义的,对任意给定的一个正整数n ,将分母小于等于n的不可约的真分数按升序排列,并且在第一个分数之前加上01,在最后一个分数之后加上11,这个序列称为n 级Farey 数列,用F n 表示.如F 3 的各项为:01,13,12,23,11,共有5项.则( )A.数列F n 都有奇数个项B.6级Farey 数列F 6 中,中间项为12C.6级Farey 数列F 6 共有11项 D.6级Farey 数列F 6 各项的和为132【答案】BD【解析】1级Farey 数列F 1 各项为:01,11,A 错误;6级Farey 数列F 6 :01,16,15,14,13,25,12,35,23,34,45,56,11,共有13项,中间项为12,各项的和为132,故B 正确,C 错误,D 正确.故选:BD .25.(2022·广东深圳·高三阶段练习)已知函数f x =e x x 2-3x +3 ,则( )A.函数f x 在0,1 上单调递减B.函数f x 恰有一个零点C.当且仅当e <m <3时,方程f x =m 恰有三个实根D.若当x ∈-∞,t (t ∈Z )时,函数f x 的最大值为3,则t 的最大值为1【答案】ACD【解析】函数f x =e x x 2-3x +3 =e x x -32 2+34>0,选项B 错误;f x =e x x x -1 ,x <0或x >1时,f x >0,0<x <1时,f x <0.如图,f x 在-∞,0 ,1,+∞ 单调递增,f x 在0,1 单调递减,选项A 正确;f 0 =3,f 1 =e ,当x 趋近正无穷时,f x 趋近正无穷,当x 趋近负无穷时,f x 趋近0,选项C 正确;如图,当x ∈-∞,t (t ∈Z )时,函数f x 的最大值为3,则一定有t ≥0,而f 2 =e 2>3,所以t (t ∈Z )的最大值为1,选项D 正确.故选:ACD .26.(2022·广东深圳·高三阶段练习)已知圆柱的轴截面的周长为12,圆柱的体积为V ,圆柱的外接球的表面积为S ,则下列结论正确的是( )A.圆柱的外接球的表面积S 有最大值,最大值为36πB.圆柱的外接球的表面积S 有最小值,最小值为18πC.圆柱的体积V 有最大值,最大值为8πD.圆柱的体积V 有最小值,最小值为4π【答案】BC【解析】如图,设圆柱的底面半径为r ,高为h ,圆柱的外接球的半径为R ,由4r +2h =12,得2r +h =6,又2R =4r 2+h 2,0<r <3,圆柱的体积为V =πr 2h =πr 26-2r =2πr 23-r ,则V =6πr 2-r ,当0<r <2时,V >0,当r >2时,V <0,故函数V =2πr 23-r 在0,2 上单调递增,在2,3 上单调递减,所以r =2时,V 取最大值8π,所以0<V ≤8π,圆柱的外接球的表面积S =4πR 2=π4r 2+h 2 =π4r 2+6-2r 2 =4π2r 2-6r +9 ,函数S =4π2r 2-6r +9 在0,32 上单调递减,在32,3 上单调递增,所以r =32时,S 取最小值18π,所以18π≤S <36π.故选:BC .27.(2022·广东·执信中学高三阶段练习)已知双曲线x 2a 2-y 2b2=1a >0,b >0 的一条渐近线方程为x -2y =0,双曲线的左焦点在直线x +y +5=0上,A 、B 分别是双曲线的左、右顶点,点P 为双曲线右支上位于第一象限的动点,PA ,PB 的斜率分别为k 1,k 2,则k 1+k 2的取值可能为( )A.34B.1C.43D.2【答案】CD【解析】根据题意知:b a =12,c =5,故a =2,b =1,双曲线方程为x 24-y 2=1,则A -2,0 ,B 2,0 ,设P x 0,y 0 ,则x 024-y 02=1,x 0>0,y 0>0,k 1+k 2=y 0x 0+2+y 0x 0-2=2x 0y 0x02-4=x 02y 0,根据渐近线方程知:0<y 0x 0<12,故k 1+k 2=x02y 0>1.故选:CD .28.(2022·广东·执信中学高三阶段练习)若f (x )图像上存在两点A ,B 关于原点对称,则点对[A ,B ]称为函数f (x )的“友情点对”(点对[A ,B ]与[B ,A ]视为同一个“友情点对”)若f (x )=x 3e x,x ≥0ax 2,x <0恰有两个“友情试卷第2页,共38页。
2023年新高考数学选填压轴题汇编(六)(解析版)
2023年新高考数学选填压轴题汇编(六)一、单选题1.(2022·福建省福州华侨中学高三阶段练习)函数f x =A sin ωx +π4ω>0 的图象与x 轴的两个相邻交点间的距离为π3,要得到函数g x =A cos ωx 的图象,只需将f x 的图象( )A.向左平移π12个单位 B.向右平移π4个单位C.向左平移π4个单位D.向右平移3π4个单位【答案】A【解析】由题意,函数f x =A sin ωx +π4 ω>0 的图象与x 轴的两个相邻交点间的距离为π3∴ 周期T =2π3,由周期公式:T =2πω∴T =2π3=2πω解得: ω=3∴f x =A sin 3x +π4 =A sin3x +π12要得到g x =A cos3x ,即g x =A cos3x =A sin 3x +π2=A sin3x +π6 由题意,可得f x 向左平移π12个单位可得g x .故选:A .2.(2022·福建省福州屏东中学高三开学考试)若函数f x =e x -a -1 x +1在(0,1)上不单调,则a 的取值范围是( )A.2,e +1B.2,e +1C.-∞,2 ∪e +1,+∞D.-∞,2 ∪e +1,+∞【答案】A【解析】∵f (x )=e x -(a -1)x +1,∴f (x )=e x -a +1,若f (x )在(0,1)上不单调,则f (x )在(0,1)上有变号零点,又∵f (x )单调递增,∴f 0 ∙f 1 <0,即(1-a +1)(e -a +1)<0,解得2<a <e +1.∴a 的取值范围是(2,e +1).故选:A .3.(2022·福建省福州第二中学高三阶段练习)已知圆C :x 2+y 2-10y +21=0与双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线相切,则该双曲线的离心率是A.2B.53C.52D.5【答案】C【解析】由双曲线x 2a 2-y 2b2=1(a >0,b >0),可得其一条渐近线的方程为y =b a x ,即bx -ay =0,又由圆C :x 2+y 2-10y +21=0,可得圆心为C (0,5),半径r =2,则圆心到直线的距离为d =-5a b 2+(-a )2=5a c ,则5a c =2,可得e =c a =52,故选C .4.(2022·福建省福州第一中学高三开学考试)过圆x 2+y 2=64上的动点作圆C :x 2+y 2=16的两条切线,两个切点之间的线段称为切点弦,则圆C 不在任何切点弦上的点形成的区域的面积为( )A.4πB.6πC.8πD.12π【答案】A 【解析】设圆x 2+y 2=64的动点为P m ,n ,过P 作圆C 的切线,切点分别为A ,B ,则过P ,A ,B 的圆是以PO 直径的圆,该圆的方程为:x x -m +y y -n =0.由x 2+y 2=16x x -m +y y -n =0 可得AB 的直线方程为:mx +ny =16.原点到直线mx +ny =16的距离为16 m 2+n 2=1664=2,故圆C 不在任何切点弦上的点形成的区域的面积为4π,故选:A .5.(2022·福建省福州第一中学高三开学考试)某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是A.16π9B.8π9C.16π27D.8π27【答案】A【解析】设圆柱的半径为r ,高为x ,体积为V ,则由题意可得r 2=3-x3,∴x =3-32r ,∴圆柱的体积为V (r )=πr 23-32r (0<r <2),则V (r )=169π∙34r ∙34r ∙3-32r ≤16π9∙34r +34r +3-32r 33=16π9.当且仅当34r =3-32r ,即r =43时等号成立.∴圆柱的最大体积为16π9,故选:A .6.(2022·福建省福州延安中学高三开学考试)已知2sin 2x +cos 2y =1,则sin 2x +cos 2y 的取值范围是( )A.0,12B.12,1C.22,1D.12,22【答案】B【解析】∵2sin 2x +cos 2y =1,∴cos 2y =1-2sin 2x ,∴0≤1-2sin 2x ≤1,∴0≤sin 2x ≤12,又sin 2x +cos 2y =sin 2x +1-2sin 2x =1-sin 2x ∈12,1,∴sin 2x +cos 2y 的取值范围是12,1.故选:B7.(2022·福建·福州十八中高三开学考试)设函数f (x )的定义域为R ,f (x +1)为偶函数,f (x +2)为奇函数,当x ∈[1,2]时,f (x )=ax +b .若f (0)+f (3)=4,则f 92=( )A.-2B.32C.-72D.72【答案】A【解析】因为f (x +1)为偶函数,则f (x +1)的图像关于y 轴对称,所以f (x )关于x =1对称,则f (0)=f (2),试卷第2页,共40页因为f (x +2)为奇函数,则f (x +2)的图像关于原点对称,且f (2)=0,所以f (x )关于(2,0)对称,则f (3)=-f (1),因为当x ∈[1,2]时,f (x )=ax +b ,所以f (1)=a +b ,f (2)=2a +b =0,因为f (0)+f (3)=4,所以f (2)-f (1)=a =4,故f (2)=2a +b =8+b =0⇒b =-8,从而当x ∈[1,2]时,f (x )=4x -8,故f 92 =-f -12 =-f 52 =f 32 =4×32-8=-2.故选:A .8.(2022·福建·闽江学院附中高三开学考试)设函数f x 是奇函数f x x ≠0 的导函数,f -1 =-2.当x >0时,f x >2,则使得f x >2x 成立的x 的取值范围是( )A.-∞,-1 ∪0,1 B.-1,0 ∪1,+∞ C.-∞,-1 ∪1,+∞ D.-1,0 ∪0,1【答案】B【解析】因为当x >0时,f x >2,所以f 'x -2>0,故令g x =f x -2x ,则g 'x =f 'x -2>0,故g x 在0,+∞ 上单调递增.因为f -1 =-2,所以g -1 =f -1 +2=0,又因为f x 为奇函数,所以g x =f x -2x 为奇函数,所以g 1 =0,且在区间-∞,0 上,g x 单调递增.所以使得f x >2x ,即g x >0成立的x 的取值范围是-1,0 ∪1,+∞ .故选:B9.(2022·江苏·常州市平陵高级中学高三开学考试)若函数f x =x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m 的值A.与a 有关,且与b 有关 B.与a 有关,但与b 无关C.与a 无关,且与b 无关 D.与a 无关,但与b 有关【答案】B【解析】因为最值在f (0)=b ,f (1)=1+a +b ,f -a 2 =b -a 24中取,所以最值之差一定与b 无关,选B .10.(2022·江苏·常州市平陵高级中学高三开学考试)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=a ⋅2x +b .若f (0)+f (3)=6,则f log 296 的值是( )A.-12 B.-2 C.2 D.12【答案】B【解析】f (x +1)为奇函数,即其图象关于(0,0)点对称,所以f (x )的图象关于(1,0)点对称,f (x +2)为偶函数,即其图象关于y 轴对称,因此f (x )的图象关于直线x =2对称,所以f (1)=0,f (0)=-f (2),f (3)=f (1),所以f (1)=2a +b =0,f (0)+f (3)=-f (2)=-(4a +b )=6,由此解得a =-3,b =6,所以x ∈[1,2]时,f (x )=-3⋅2x +6,由对称性得f (x +2)=f (2-x )=-f (1-(1-x ))=-f (x ),所以f (x +4)=-f (x +2)=f (x ),f (x )是周期函数,周期为4,6<log 296<7,f (log 296)=f (log 296-4)=f (4-log 296+4)=f log 225696 =f log 283 =-3×83+6=-2,故选:B .11.(2022·江苏·盐城市伍佑中学高三开学考试)已知函数f x =x 2+4a -3 x +3a ,x <0log ax +1 +1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程f x =2-x 恰好有两个不相等的实数解,则a 的取值范围是( )A.12,23 ∪34B.23,34 C.13,23 ∪34D.13,34【答案】C【解析】函数f x 在R 上单调递减,则3-4a 2≥00<a <102+4a -3 ⋅0+3a ≥log a 0+1 +1,解得13≤a ≤34,在同一直角坐标系中,画出函数y =f x 和函数y =2-x 的图象,如图:由图象可知,在0,+∞ 上,f x =2-x 有且仅有一个解,故在-∞,0 上,f x =2-x 有且仅有一个解,当3a >2即a >23时,由x 2+4a -3 x +3a =2-x ,即x 2+4a -2 x +3a -2=0,x <0,则Δ=(4a -2)2-43a -2 =0,解得a =34或1(舍去),当a =34时,方程可化为x +12 2=0,x =-12符合题意;当1≤3a ≤2,即13≤a ≤23时,由图象可知,符合条件,综上:a 的取值范围为13,23 ∪34.故选:C .12.(2022·江苏·盐城市伍佑中学高三开学考试)已知正实数a ,b 满足abe a +ln b +1=0,则( )A.b >1eB.a <1C.ab =1D.e a <1b【答案】D【解析】因为abe a +ln b +1=0,所以ae a =-ln b -1b>0,故ln b +1<0,即0<b <1e,故选项A 错误;若a =1,则eb +ln b +1=0,作出函数y =ln x 与y =-ex -1的图象如图所示:显然有交点,则方程eb +ln b +1=0有解,故选项B 错误;若ab =1,则e a -ln a +1=0,即e a =ln a -1,作出函数y =e x 与y =ln x -1的图象如图所示:显然无交点,则方程e a -ln a +1=0无解,故选项C 错误;因为abe a +ln b +1=0,则ae a +1b =-ln bb=-ln b ⋅e -ln b >ae a ,且-ln b >0,令f x =xe x (x >0),则fx =x +1 e x >0,所以f x在区间,+∞ 上单调递增,所以f -ln b >f a ,即-ln b >a ,因此e a <1b,故选项D 正确.故选:D13.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知函数f x =ln x x 2,若f x <m -1x2在(0,+∞)上恒成立,e =2.71828⋅⋅⋅为自然对数的底数,则实数m 的取值范围是( )试卷第2页,共40页A.m >eB.m >e2C.m >1D.m >e【答案】B【解析】若f x <m -1x 2在(0,+∞)上恒成立,即f x +1x2<m 在(0,+∞)上恒成立,令g (x )=f (x )+1x 2=ln x +1x 2,故只需g (x )max <m 即可,g (x )=1x ⋅x 2-(ln x +1)⋅2xx 4=-2ln x -1x 3,令g(x )=0,得x =e -12,当0<x <e-12时,g(x )>0;当x >e-12时,g (x )<0,所以g (x )在0,e-12上是单调递增,在e -12,+∞ 上是单调递减,所以当g (x )max =g e -12 =e2,所以实数m 的取值范围是m >e2.故选:B .14.(2022·河北省唐县第一中学高三开学考试)定义运算a *b ,a *b ={a b a ≤ba >b,例如1*2=1,则函数y =1*2x 的值域为A.0,1 B.-∞,1 C.1,+∞ D.0,1【答案】D【解析】当1≤2x 时,即x ≥0时,函数y =1*2x =1当1>2x 时,即x <0时,函数y =1*2x =2x ∴f (x )=1,x ≥02x ,x <0由图知,函数y =1*2x 的值域为:(0,1].故选D .15.(2022·重庆·临江中学高三开学考试)已知函数f x =log 3x ,x >03x,x ≤0,若函数g x =f x 2-m +2 f x +2m恰好有5个不同的零点,则实数m 的取值范围是( )A.0,1B.0,1C.1,+∞D.1,+∞【答案】A【解析】画出函数的大致图象,如下图所示:∵函数g x =f x 2-m +2 f x +2m 恰好有5个不同的零点,∴方程f x2-m +2 f x +2m =0有5个根,设t =f (x ),则方程化为t 2-m +2 t +2m =0,易知此方程有两个不等的实根t 1,t 2,结合f (x )的图象可知,t 1∈0,1 ,t 2∈1,+∞ ,令h (t )=t 2-m +2 t +2m ,则由二次函数的根的分布情况得:Δ=(m +2)2-8m >0h (0)>0h (1)≤0,解得:0<m ≤1.故选:A16.(2022·重庆·临江中学高三开学考试)已知定义在(-3,3)上的函数f (x )满足f (x )+e 4x f (-x )=0,f (1)=e 2,f (x )为f (x )的导函数,当x ∈[0,3)时,f (x )>2f (x ),则不等式e 2x f (2-x )<e 4的解集为( )A.(-2,1)B.(1,5)C.(1,+∞)D.(0,1)【答案】B 【解析】令g x =f xe2x ,所以f x =e 2x g x ,因为f x +e 4x f -x =0,所以e 2x ⋅g x +e 4x ⋅e -2x g -x =0,化简得g x +g -x =0,所以g x 是-3,3 上的奇函数;gx =f x e 2x -2e 2x f x e 4x =f x -2f x e 2x,因为当0≤x <3时,f x >2f x ,所以当x ∈0,3 时,g x >0,从而g x 在0,3 上单调递增,又g x 是-3,3 上的奇函数,所以g x 在-3,3 上单调递增;考虑到g 1 =f 1 e 2=e 2e2=1,由e 2x f 2-x <e 4,得e 2x e 22-x g 2-x <e 4,即g 2-x <1=g 1 ,由g x 在-3,3 上单调递增,得-3<2-x <3,2-x <1,解得1<x <5,所以不等式e 2x f 2-x <e 4的解集为1,5 ,故选:B .17.(2022·重庆南开中学高三阶段练习)公元656年,唐代李淳风注《九章》时提到祖暅的开立圆术.祖暅在求球体积时,使用一个原理:“幂势既同,则积不容异”,意思是两个同高的立体,如在等高处的截面积恒相等,则体积相等.上述原理在中国被称为祖暅原理,我们可以应用此原理将一些复杂几何体转化为常见几何体的组合体来计算体积.如图,将双曲线C :y 2-x 2=5与直线x =±2所围成的平面图形绕双曲线的实轴所在直线旋转一周得到几何体Γ,下列平面图形绕其对称轴(虚线所示)旋转一周所得几何体与Γ的体积相同的是( )A.图①,长为6、宽为4的矩形的两端去掉两个弦长为4、半径为3的弓形B.图②,长为25、宽为4的矩形的两端补上两个弦长为4、半径为3的弓形C.图③,长为6、宽为4的矩形的两端去掉两个底边长为4、腰长为3的等腰三角形D.图④,长为25、宽为4的矩形的两端补上两个底边长为4、腰长为3的等腰三角形【答案】B【解析】由y 2-x 2=5x =2得:y =±3,则当y =t 5<t <3 与C 相交于两点时,内圆半径r =t 2-5,则在该位置旋转一周所得圆环面积为4π-t2-5 π=9-t 2 π;将所有图形均以矩形的中心为原点,以对称轴为y 轴建立平面直角坐标系,试卷第2页,共40页对于③,双曲线实轴长为25,③中y 轴的最短距离为6-232-22=6-25,不合题意,③错误;对于④,几何体Γ母线长为6,④中y 轴的最长距离为25+232-22=45,不合题意,④错误;对于①,在y 轴的最短距离为6-2×3-32-22 =25,母线长为6,与几何体Γ吻合;当y =t 5<t <3 与①中图形相交时,两交点之间距离为232-3+5-t 2,此时圆环面积为4π-32+3+5-t 2 π=-t 2+23+5 t -14-25 π,不合题意,①错误对于②,在y 轴的最长距离为25+2×3-32-22 =6,矩形高为25,与几何体Γ吻合;当y =t 5<t <3 与②中图形相交时,两交点之间距离为232-t 2=29-t 2,此时圆面积为9-t 2 π,与圆环面积相同,满足题意,②正确.故选:B .18.(2022·辽宁·高三开学考试)已知函数f x 满足:f 1 =14,4f x f y =f x +y +f x -y x ,y ∈R ,则2022k =0f (k )= ( )A.12B.14C.-14D.-12【答案】A【解析】4f x f y =f x +y +f x -y x ,y ∈R ,令x =1,y =0得:4f 1 f 0 =2f 1 ,因为f 1 =14,所以f 0 =12,令x =n ,y =1得:4f n f 1 =f n +1 +f n -1 ,即f n =f n +1 +f n -1 ,则f n +1 =f n +2 +f n ,上面两式子联立得:f n +2 =-f n -1 ,所以f n -1 =-f n -4 ,故f n +2 =f n -4 ,故f x 是以6为周期的函数,且f 0 +f 1 +f 2 +f 3 +f 4 +f 5 =f 0 +f 1 +f 2 -f 0 -f 1 -f 2 =0,所以2022k =0f (k )= 3375k =0f (k )+f 2022 =0+ f 2022 =f 0 =12故选:A19.(2022·辽宁·沈阳市第四中学高三阶段练习)已知△ABC ,I 是其内心,内角A ,B ,C 所对的边分别a ,b ,c ,则( )A.AI =13(AB +AC )B.AI =cAB a +bACaC.AI =bAB a +b +c +cAC a +b +cD.AI =cAB a +b +bACa +c 【答案】C【解析】延长AI ,BI ,CI ,分别交BC ,AC ,AB 于D ,E ,F .内心是三角形三个内角的角平分线的交点.在三角形ABD 和三角形ACD 中,由正弦定理得:BD sin 12∠BAC =c sin ∠ADB ,CD sin 12∠BAC =bsin ∠ADC ,由于sin ∠ADB =sin ∠ADC ,所以BD c =CD b ,BD CD =c b ,BD BD +CD =c b +c ,BD a =c b +c ,BD =acb +c,同理可得c BD =AI DI ,c BD +c =AI DI +AI =AIAD ,AI =c ⋅AD BD +c =c ac b +c+c ⋅AD =b +c a +b +c ⋅AD .所以AD =AB +BD =AB +c b +c BC =AB +c b +c AC -AB=b b +c AB +c b +c AC,则AI =b +c a +b +c ⋅AD =b +c a +b +c ⋅b b +c AB +c b +c AC =b a +b +c AB +ca +b +c AC .故选:C 20.(2022·辽宁·东北育才学校高三阶段练习)已知不等式x ln x +(x +1)k <2x ln2的解集中仅有2个整数,则实数k 的取值范围是( )A.0,34ln 43 B.34ln 43,23ln2C.23ln2,+∞D.34ln 43,23ln2【答案】D【解析】由x ln x +x (k -ln4)+k <0可得:k (x +1)<x ln4-x ln x ,设f (x )=k (x +1),g (x )=x ln4-x ln x ,g (x )=ln4-ln x -1,x ∈0,4e时,g (x )>0,g (x )单调递增,x ∈4e ,+∞ 时,g (x )<0,g (x )单调递减,则当x =4e时函数g x 取得最大值,如示意图:由图可知,当k ≤0时,整数解超过了2个,不满足题意;当k >0时,需满足f 2 <g 2 f 3 ≥g 3 得:34ln 43≤k <23ln2.故选择:D .21.(2022·辽宁·东北育才学校高三阶段练习)若α,β∈0,π2,且(1+cos2α)(1+sin β)=sin2αcos β,则下列结论正确的是( )A.α+β=π2B.α+β2=π2C.2α-β=π2D.α-β=π2【答案】C【解析】∵α,β∈0,π2,∴cos α≠0.由(1+cos2α)(1+sin β)=sin2αcos β,可得2cos 2α(1+sin β)=2sin αcos αcos β,即cos α(1+sin β)=sin αcos β.∴cos α=sin αcos β-cos αsin β=sin α-β ,∴sin α-β =sin π2-α.∵α,β∈0,π2 ,∴-π2<α-β<π2,且0<π2-α<π2.由于函数y =sin x 在x ∈-π2,π2 上单调递增,∴α-β=π2-α,即2α-β=π2.故选:C .二、多选题22.(2022·福建省福州华侨中学高三阶段练习)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后,在落潮时返回海洋.一艘货船的吃水深度(船底到水面的距离)为4m .安全条例规定至少要有2.25m 的安全间隙(船底到海底的距离),下表给出了某港口在某试卷第2页,共40页季节每天几个时刻的水深.时刻水深/m 时刻水深/m 时刻水深/m 0:00 5.09:00 2.518:00 5.03:007.512:00 5.021:00 2.56:005.015:007.524:005.0若选用一个三角函数f x 来近似描述这个港口的水深与时间的函数关系,则下列说法中正确的有( )A.f x =2.5cos π6x+5 B.f x =2.5sin π6x+5C.该货船在2:00至4:00期间可以进港 D.该货船在13:00至17:00期间可以进港【答案】BCD【解析】依据表格中数据知,可设函数为f x =A sin ωx +k ,由已知数据求得A =2.5,k =5,周期T =12,所以ω=2πT =π6﹐所以有f x =2.5sin π6x +5,选项A 错误;选项B 正确;由于船进港水深至少要6.25,所以2.5sin π6x +5≥6.25,得sin π6x ≥12,又0≤x ≤24⇒0≤π6x ≤4π,则有π6≤π6x ≤5π6或13π6≤π6x ≤17π6,从而有1≤x ≤5或13≤x ≤17,选项C ,D 都正确.故选:BCD23.(2022·福建省福州屏东中学高三开学考试)已知函数f x =3sin 2x +φ -π2<φ<π2 的图像关于直线x =π3对称,则( )A.函数f x +π12 为奇函数B.函数f x 在π3,π2上单调递增C.函数f x 的图像向右平移a a >0 个单位长度得到的函数图像关于x =π6对称,则a 的最小值是π3D.若方程f x =a 在π6,2π3 上有2个不同实根x 1,x 2,则x 1-x 2 的最大值为π2【答案】AC【解析】因为函数f x =3sin 2x +φ -π2<φ<π2 的图像关于直线x =π3对称,所以,2×π3+φ=π2+k π,k ∈Z ,解得φ=-π6+k π,k ∈Z ,因为-π2<φ<π2,所以φ=-π6,即f x =3sin 2x -π6,所以,对于A 选项,函数f x +π12 =3sin2x ,是奇函数,故正确;对于B 选项,当x ∈π3,π2 时,2x -π6∈π2,5π6,由于函数y =sin x 在π2,5π6 上单调递减,所以函数f x 在π3,π2 上单调递减,故错误;对于C 选项,函数f x 的图像向右平移a a >0 个单位长度得到的函数图像对应的解析式为g x =3sin 2x -2a -π6,若g x 图像关于x =π6对称,则2×π6-2a -π6=π2+k π,k ∈Z ,解得a =-π6+k π2,k ∈Z ,由于a >0,故a 的最小值是π3,故正确;对于D 选项,当x ∈π6,2π3时,2x -π6∈π6,7π6,故结合正弦函数的性质可知,若方程f x =a 在π6,2π3上有2个不同实根x 1,x 2,不妨设x 1<x 2,则x 1-x 2 取得最大值时满足2x 1-π6=π6且2x 2-π6=5π6,所以,x 1-x 2 的最大值为π3,故错误.故选:AC 24.(2022·福建省福州屏东中学高三开学考试)已知定义在R 上的奇函数f x 图象连续不断,且满足f x +2 =f x ,则以下结论成立的是( )A.函数f x 的周期T =2B.f 2019 =f 2020 =0C.点1,0 是函数y =f x 图象的一个对称中心D.f x 在-2,2 上有4个零点【答案】ABC【解析】定义在R 上的奇函数f (x )图象连续不断,且满足f (x +2)=f (x ),所以函数的周期为2,所以A 正确;f (-1+2)=f (-1),即f (1)=f (-1)=-f (1),所以f (1)=f (-1)=0,所以f (2019)=f (1)=0,f (2020)=f (0)=0,所以B 正确;f x +2 =f x =-f -x ⇒f x +2 +f -x =0⇒f x 图象关于1,0 对称,所以C 正确;f (x )在[-2,2]上有f (-2)=f (-1)=f (0)=f (1)=f (2)=0,有5个零点,所以D 不正确;故选:ABC .25.(2022·福建省福州第二中学高三阶段练习)已知函数f (x )=-x 2-2x ,x <0f (x -2),x ≥0,以下结论正确的是( )A.f (-3)+f (2019)=-3B.f x 在区间4,5 上是增函数C.若方程f (x )=kx +1恰有3个实根,则k ∈-12,-14D.若函数y =f (x )-b 在(-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则6i =1x i f x i 的取值范围是0,6【答案】BCD【解析】函数f (x )的图象如图所示:对A ,f (-3)=-9+6=-3,f (2019)=f (1)=f (-1)=1,所以f (-3)+f (2019)=-2,故A 错误;对B ,由图象可知f x 在区间4,5 上是增函数,故B 正确;对C ,由图象可知k ∈-12,-14,直线f (x )=kx +1与函数图象恰有3个交点,故C 正确;对D ,由图象可得,当函数y =f (x )-b 在(-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则0<b <1,所以当b →0时,6i =1x i f x i →0;当b →1时,6i =1x i f x i →6,所以6i =1x i f x i 的取值范围是0,6 ,故D 正确.故选:BCD .26.(2022·福建省福州第二中学高三阶段练习)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A.0<x 0<1eB.x 0>1eC.f (x 0)+2x 0<0D.f (x 0)+2x 0>0【答案】AD试卷第2页,共40页【解析】函数f (x )=x ln x +x 2,(x >0),∴f (x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f x 0 =0,即∴ln x 0+1+2x 0=0,∴f 1e =2e >0,当x >1e时,f x >0∵x →0,f (x )→-∞,∴0<x 0<1e,即A 选项正确,B 选项不正确;f x 0 +2x 0=x 0ln x 0+x 20+2x 0=x 0ln x 0+x 0+2 =x 01-x 0 >0,即D 正确,C 不正确.故答案为:AD .27.(2022·福建省福州第一中学高三开学考试)设函数f x =sinπxx 2-x +54,则下列结论正确的是( )A.f x 的最大值为1B.f x ≤4xC.曲线y =f x 存在对称轴D.曲线y =f x 存在对称中心【答案】ABC【解析】A :因为x 2-x +54=x -12 2+1≥1,sinπx ≤1,所以sinπx ≤x 2-x +54⇒sinπx x 2-x +54≤1⇒f (x )≤1,当且仅当x =12时,f x =1故A 正确;B :f x ≤4x 等价于sinπx ≤4x 3-x 2+54x ,设g x =x -sin x ,x ∈0,+∞ ,g (x )=1-cos x ≥0,所以函数g (x )=x -sin x 在x ∈[0,+∞)时单调递增,因此有g (x )≥g (0)=0-sin0=0,即x ≥sin x ,x ∈0,+∞ ,而设函数h (x )=x -sin x ,h (-x )=-x -sin (-x ) =x -sin x =h (x ),所以h (x )=x -sin x 是实数集上的偶函数,因此有x ≥sin x ,即πx ≥sinπx ,4x x 2-x +54 ≥4x ×1=4x ,f x ≤πx x 2-x +54≤πx ≤4x ,故B 正确;C :因为f 12+x -f 12-x =sinπ12+x 12+x -12 2+1-sinπ12-x 12-x -12 2+1=cosπx -cosπx x 2+1=0,所以曲线y =f x 关于直线x =12对称,故C 正确;D :设曲线y =f x 存在对称点,设为(a ,b ),则有f (a +x )+f (a -x )=2b ,当x =0时,则有2f (a )=2b ⇒f (a )=b ,当x =a 时,则有f (2a )=2b ⇒2f (a )=f (2a ),即sin2a π(2a )2-2a +54=2⋅sin a πa 2-a +54⇒2sin a πcos a π(2a )2-2a +54=2⋅sin a πa 2-a +54,因此有sin a π=0,所以a 为整数,b =f a =sin a πa 2-a +54=0,令x =12,f a +12 +f a -12=0,而f a +12 +f a -12 =sinπa +12 a +12-12 2+1+sinπa -12a -12-12 2+1=cos a πa 2+1-cos a π(a -1)2+1,显然f a +12 +f a -12=0不恒成立,故D 不正确.故选:ABC .28.(2022·福建省福州第一中学高三开学考试)甲箱中有5个红球,2个白球和3个黑球;乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以A 1,A 2,A 3表示由甲箱中取出的是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论正确的是( )A.P B =25B.P B |A 1 =511C.事件B 与事件A 1不相互独立D.A 1,A 2,A 3两两互斥【答案】BD 【解析】P A 1 =510=12,P A 2 =210=15,P A 3 =310,又P B |A 1 =511,P B |A 2 =411,P B |A 3 =411,故B 正确.故P (B )=P B |A 1 P A 1 +P B |A 2 P A 2 +P B |A 3 P A 2=511×12+411×15+411×310=922,故A 错误.P B P A 1 =922×12=944,P BA 1 =P B |A 1 P A 1 =522,故P B P A 1 ≠P BA 1 ,所以事件B 与事件A 1不相互独立,根据互斥事件的定义可得A 1,A 2,A 3两两互斥,故选:BD .29.(2022·福建·福州十八中高三开学考试)已知函数f (x )=sin (ωx +φ)(0<ω<10,0<φ<π)的部分图象如图所示,则下列结论正确的是( )A.ω=2B.ω=3C.f (x )在5π12,11π12上单调递增D.f (x )图像关于直线x =2π3对称【答案】AC【解析】由图可知: x =0,y =32;可得:ω×0+φ=2π3+2k π,k ∈Z ,所以φ=2π3+2k π,k ∈Z 又0<φ<π,所以φ=2π3;由x =π6,y =0,可得π6ω+2π3=π+2k π,k ∈Z ,所以ω=2+12k ,k ∈Z又0<ω<10,可得ω=2,所以A 选项正确,B 选项错误;所以函数的解析式为:f (x )=sin 2x +2π3 ,则f (x )在R 上的增区间满足:-π2+2k π≤2x +2π3≤π2+2k π,k ∈Z解得增区间为-7π12+k π,-π12+k π,k ∈Z ,所以当k =1时,函数f (x )的单调增区间为5π12,11π12,所以C 选项正确;当x =2π3时,f 2π3 =sin2π=0≠±1,所以直线x =2π3不是f (x )的对称轴,所以D 选项不正确;故选:AC .30.(2022·福建·闽江学院附中高三开学考试)关于函数f (x )=sin |x |+|sin x |,下列叙述正确的是( )A.f (x )是偶函数B.f (x )在区间π2,π单调递增C.f (x )的最大值为2 D.f (x )在[-π,π]有4个零点【答案】AC【解析】f (-x )=sin -x +sin (-x ) =sin x +sin x =f (x ),f (x )是偶函数,A 正确;x ∈π2,π 时,f (x )=sin x +sin x =2sin x ,单调递减,B 错误;试卷第2页,共40页f (x )=sin x +sin x ≤1+1=2,且f π2=2,因此C 正确;在[-π,π]上,-π<x <0时,f (x )=sin (-x )+(-sin x )=-2sin x >0,0<x <π时,f (x )=sin x +sin x =2sin x >0,f (x )的零点只有π,0,-π共三个,D 错.故选:AC .31.(2022·江苏·常州市平陵高级中学高三开学考试)已知关于x 的不等式a (x -1)(x +3)+2>0的解集是x 1,x 2 ,其中x 1<x 2,则下列结论中正确的是( )A.x 1+x 2+2=0 B.-3<x 1<x 2<1C.x 1-x 2 >4D.x 1x 2+3<0【答案】ACD【解析】由题设,a (x -1)(x +3)+2=ax 2+2ax -3a +2>0的解集为x 1,x 2 ,∴a <0,则x 1+x 2=-2x 1x 2=2a-3<0,∴x 1+x 2+2=0,x 1x 2+3=2a<0,则A 、D 正确;原不等式可化为f (x )=a (x -1)(x +3)>-2的解集为x 1,x 2 ,而f(x )的零点分别为-3,1且开口向下,又x 1<x 2,如下图示,∴由图知:x 1<-3<1<x 2,x 1-x 2 >4,故B 错误,C 正确.故选:ACD .32.(2022·江苏·盐城市伍佑中学高三开学考试)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,f (x )+f (x +6)=0,且对任意的x 1,x 2∈[-3,0],当x 1≠x 2时,都有x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1),则以下判断正确的是( )A.函数f (x )是偶函数B.函数f (x )在[-9,-6]上单调递增C.x =2是函数f (x +1)的对称轴D.函数f (x )的最小正周期是12【答案】BCD【解析】因为定义在R 上的函数f (x ) 满足f (x )+f (-x )=0,即f (-x )=-f (x ),故函数f (x )是奇函数,故A 错误;因为f (x )+f (x +6)=0,故f (x +6)=-f (x ),而f (-x )=-f (x ),所以f (x +6)=f (-x ),即f (x )的图象关于x =3对称,则x =2是函数f (x +1)的对称轴,故C 正确;因为f (x +6)=f (-x ),所以f (x +12)=-f (x +6)=f (x ),故12是函数f (x )的周期;对任意的x 1,x 2∈[-3,0] ,当x 1≠x 2 时,都有x 1f (x 1)+x 2f (x 2)<x 1f (x 2)+x 2f (x 1) ,即(x 1-x 2)⋅[f (x 1)-f (x 2)]<0,故x ∈[-3,0]时,f (x )单调递减,又因为f (x )为奇函数,所以x ∈[0,3]时,f (x )单调递减,又因为f (x )的图象关于x =3对称,故x ∈[3,6]时,f (x )单调递增,因为12是函数f (x )的周期,故函数f (x )在[-9,-6] 单调性与x ∈[3,6]时的单调性相同,故函数f (x )在[-9,-6]上单调递增,故B 正确,作出函数f (x )的大致图象如图示:结合图象可得知12是函数f (x )的最小正周期,D 正确;故选:BCD33.(2022·江苏·盐城市伍佑中学高三开学考试)已知函数f (x )=ln (x +1)x,下列选项正确的是( )A.函数f (x )在(-1,0)上为减函数,在(0,+∞)上为增函数B.当x 1>x 2>0时,f (x 1)x 22>f (x 2)x 21C.若方程f (|x |)=a 有2个不相等的解,则a 的取值范围为(0,+∞)D.1+12+⋯+1n -1 ln2≤ln n ,n ≥2且n ∈N +【答案】BD【解析】对于选项A :f x =ln x +1 x ,x ∈-1,0 ∪0,+∞ .则f x =x -x +1 ln x +1x +1 x2,令g x =x -x +1 ln x +1 ,x ∈-1,0 ∪0,+∞ ,则g x =-ln x +1 ,当x ∈-1,0 时,g x >0,g x 单调递增;当x ∈0,+∞ 时,g x <0,g x 单调递减.所以对任意x ∈-1,0 ∪0,+∞ ,g x <g 0 =0,即f x <0,所以f x 在-1,0 ,0,+∞ 都是减函数,故A 错误;对于选项B :令h x =x 2f x =x ln x +1 ,x ∈0,+∞ ,则h x =x +x +1 ln x +1x +1,当x ∈0,+∞ 时,h x >0,h x 单调递增,所以当x 1>x 2>0时,h x 1 >h x 2 ,即x 12f x 1 >x 22f x 2 ,所以f x 1 x 22>f x 2 x 12,故B 正确;对于选项C :因为y =f x 是偶函数,所以“方程f x =a 有2个不相等的解”等价于“方程f x =a 在0,+∞ 上有1个解”.由A 可知,f x 在0,+∞ 上单调递减,且x →0时,f x →1;x →+∞时,f x →0,所以,当0<a <1时,方程f x =a 在0,+∞ 上有1个解,即f x =a 有2个不相等的解,故C 错误;对于选项D :由A 知,f x 在0,12 上单调递减,则对任意x ∈0,12 ,f x ≥f 12 =2ln 32=ln 94>ln2,即ln x +1 x >ln2,所以当n ≥2时,ln 1n+1 1n>ln2,即1n ln2<ln n +1n.所以ln2=ln2,12ln2<ln 32,13ln2<ln 43,⋯,1n -1ln2<ln nn -1,以上式子相加得ln2+12ln2+13ln2+⋯+1n -1ln2≤ln2+ln 32+ln 43+⋯+ln n n -1,即1+12+13+⋯+1n -1 ln2≤ln n (n =2时,等号成立),故D 正确.故选:BD .34.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知函数f x =A cos ωx +φ (A >0,ω>0,0<φ<π)的图象的一个最高点为-π12,3 ,与之相邻的一个对称中心为π6,0 ,将f x 的图象向右平移π6个单位长度得到函数g x 的图象,则( )A.g x 为偶函数B.g x 的一个单调递增区间为-5π12,π12试卷第2页,共40页C.g x 为奇函数D.g x 在0,π2上只有一个零点【答案】BD 【解析】由题意,可得T 4=π6--π12 =π4,所以T =π,可得w =2πT=2,所以f x =3cos (2x +φ),因为f -π12 =3cos 2×-π12 +φ =3,所以φ-π6=2k π,k ∈Z ,因为0<φ<π,所以φ=π6,即f x =3cos 2x +π6 ,所以g x =3cos 2x -π6 +π6 =3cos 2x -π6 ,可得函数g x 为非奇非偶函数,令-π+2k π≤2x -π6≤2k π,k ∈Z ,可得-5π12+k π≤x ≤π12+k π,k ∈Z ,当k =0时,函数g x 的一个单调递增区间为-5π12,π12;由2x -π6=π2+k π,,k ∈Z ,解得x =π3+k π,k ∈Z ,所以函数g x 在0,π2上只有一个零点.故选:BD35.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)已知f x 为函数f x 的导函数,若x 2f x +xf x =ln x ,f 1 =12,则下列结论错误的是( )A.xf x 在0,+∞ 上单调递增B.xf x 在0,+∞ 上单调递减C.xf x 在0,+∞ 上有极大值12D.xf x 在0,+∞ 上有极小值12【答案】ABC【解析】由x 2f x +xf x =ln x ,可知x >0,则xf x +f x =ln x x ,即xf x =ln xx.设g x =xf x ,则由g x =ln xx>0得x >1,由g x <0得0<x <1,所以g x =xf x 在1,+∞ 上单调递增,在0,1 上单调递减,所以当x =1时,函数g x =xf x 取得极小值g 1 =f 1 =12.故选:ABC .36.(2022·重庆·临江中学高三开学考试)若4x -4y <5-x -5-y ,则下列关系正确的是( )A.x <yB.y -3>x -3C.x >yD.13 y <3-x【答案】AD【解析】由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f x =4x -5-x ,则f x <f y .因为g x =4x ,h x =-5-x 在R 上都是增函数,所以f x 在R 上是增函数,所以x <y ,故A 正确;因为G x =x -3在0,+∞ 和-∞,0 上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y =13 x 在R 上是减函数,且x <y ,所以13 y <13 x ,即13y<3-x ,故D 正确.故选:AD .37.(2022·重庆·临江中学高三开学考试)已知函数f x 的定义域是0,+∞ ,且f xy =f x +f y ,当x >1时,f x<0,f 2 =-1,则下列说法正确的是( )A.f 1 =0B.函数f x 在0,+∞ 上是减函数C.f 12022 +f 12021 +⋅⋅⋅+f 13 +f 12+f 2 +f 3 +⋅⋅⋅+f 2021 +f 2022 =2022D.不等式f 1x -f x -3 ≥2的解集为4,+∞【答案】ABD【解析】对于A ,令x =y =1 ,得f 1 =f 1 +f 1 =2f 1 ,所以f 1 =0,故A 正确;对于B ,令y =1x >0,得f 1 =f x +f 1x =0,所以f 1x=-f x ,任取x 1,x 2∈0,+∞ ,且x 1<x 2,则f x 2 -f x 1 =f x 2 +f 1x 1 =f x 2x 1,因为x 2x 1>1,所以f x 2x 1<0,所以f x 2 <f x 1 ,所以f x 在0,+∞ 上是减函数,故B 正确;对于C ,f 12022 +f 12021 +⋅⋅⋅+f 13 +f 12+f 2 +f 3 +⋅⋅⋅+f 2021 +f 2022 =f 12022×2022 +f 12021×2021 +⋅⋅⋅+f 13×3 +f 12×2 =f 1 +f 1+⋅⋅⋅+f 1 +f 1 =0,故C 错误;对于D ,因为f 2 =-1,且f 1x =-f x ,所以f 12=-f 2 =1,所以f 14 =f 12 +f 12 =2,所以f 1x -f x -3 ≥2等价于f 1x +f 1x -3≥f 14 ,又f x 在0,+∞ 上是减函数,且f xy =f x +f y ,所以1x x -3 ≤141x >01x -3>0,解得x ≥4,故D 正确,故选:ABD .38.(2022·重庆南开中学高三阶段练习)在棱长为3的正方体ABCD -A 1B 1C 1D 1中,点P 在棱DC 上运动(不与顶点重合),则点B 到平面AD 1P 的距离可以是( )A.2B.3C.2 D.5【答案】CD【解析】以D 为原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系,则D (0,0,0),A (3,0,0),B (3,3,0),D 1(0,0,3),设P (0,t ,0),所以AP =-3,t ,0 ,AD 1 =-3,0,3 ,AB =(0,3,0),设n 1=x 1,y 1,z 1 为平面AD 1P 的法向量,则有: n 1 ⋅AP=-3x 1+ty 1=0n 1 ⋅AD 1 =-3x 1+3z 1=0,令y 1=3,可得n=(t ,3,t ),试卷第2页,共40页则点B 到平面AD 1P 的距离为d =AB ⋅nn=92t 2+9,因为0<t <3,所以距离的范围是(3,3).故选:CD .39.(2022·重庆南开中学高三阶段练习)已知a >b >1,则( )A.a ln b >b ln aB.e 1a-1b<a bC.a >e1-1bD.若b m =b +n ,则a m >a +n【答案】BC【解析】因为a >b >1,所以a ln b >b ln a ⇔ln b b>ln aa ,设函数f (x )=ln x x (x >1),f (x )=1-ln xx 2,当x ∈(1,e )时,f (x )>0,函数f (x )单调递增,当x ∈(e ,+∞)时,f (x )<0,函数f (x )单调递减,所以A 选项错误;因为a >b >1,所以由e 1a-1b<a b ⇔1a -1b <ln a -ln b ⇔ln a -1a >ln b -1b,设函数g (x )=ln x -1x ,g (x )=1x +1x 2,当x ∈(0,+∞)时,g(x )>0,函数g (x )单调递增,所以B 选项正确;因为a >e 1-1b ⇔ln a >1-1b ,设函数h (a )=ln a -1-1a ,所以h (a )=a -1a 2,当a ∈1,+∞ 时,h (a )>0,函数h (a )单调递增,当a ∈0,1 时,h (a )<0,函数h (a )单调递减,所以h (a )>h (1)=0,即ln a -1-1a >0⇒ln a >1-1a,因为a >b >1,所以1a <1b ⇒1-1a >1-1b ,因此ln a >1-1a >1-1b,所以C 选项正确.令b =2,m =0,则有n =-1,又令a =3,所以a m =a 0=1,a +n =2,显然不成立,所以D 选项错误,故选:BC40.(2022·辽宁·高三开学考试)双曲线C 的两个焦点为F 1,F 2,以C 的实轴为直径的圆记为D ,过F 1作D 的切线与C 交于M ,N 两点,且cos ∠F 1NF 2=35,则C 的离心率为( )A.52B.32C.132D.172【答案】AC【解析】方法一(几何法,双曲线定义的应用)情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过F 1作圆D 的切线切点为B ,所以OB ⊥F 1N ,因为cos ∠F 1NF 2=35>0,所以N 在双曲线的左支,OB =a ,OF 1 =c , F 1B =b ,设∠F 1NF 2=α,由即cos α=35,则sin α=45,NA =32a ,NF 2 =52aNF 2 -NF 1 =2a52a -32a +2b =2a ,2b =a ,∴e =52选A 情况二若M 、N 在双曲线的两支,因为cos ∠F 1NF 2=35>0,所以N 在双曲线的右支,所以OB =a ,OF 1 =c ,F 1B =b ,设∠F 1NF 2=α,由cos ∠F 1NF 2=35,即cos α=35,则sin α=45,NA =32a ,NF 2 =52aNF 2 -NF 1 =2a 32a +2b -52a =2a ,所以2b =3a ,即b a =32,所以双曲线的离心率e =c a =1+b 2a2=132选C方法二(答案回代法)A 选项e =52特值双曲线x 24-y 2=1,∴F 1-5,0 ,F 25,0 ,过F 1且与圆相切的一条直线为y =2x +5 ,∵两交点都在左支,∴N -655,-255 ,∴NF 2 =5,NF 1 =1,F 1F 2 =25,则cos ∠F 1NF 2=35,C 选项e =132特值双曲线x 24-y 29=1,∴F 1-13,0 ,F 213,0 ,过F 1且与圆相切的一条直线为y =23x +13 ,∵两交点在左右两支,N 在右支,∴N 141313,181313 ,∴NF 2 =5,NF 1 =9,F 1F 2 =213,则cos ∠F 1NF 2=35,解法三:依题意不妨设双曲线焦点在x 轴,设过F 1作圆D 的切线切点为G ,若M ,N 分别在左右支,因为OG ⊥NF 1,且cos ∠F 1NF 2=35>0,所以N 在双曲线的右支,又OG =a ,OF 1 =c ,GF 1 =b ,设∠F 1NF 2=α,∠F 2F 1N =β,在△F 1NF 2中,有NF 2 sin β=NF 1 sin α+β=2csin α,故NF 1 -NF 2 sin α+β -sin β=2c sin α即a sin α+β -sin β=c sin α,试卷第2页,共40页所以a sin αcos β+cos αsin β-sin β=csin α,而cos α=35,sin β=a c ,cos β=b c ,故sin α=45,代入整理得到2b =3a ,即b a =32,所以双曲线的离心率e =c a =1+b 2a 2=132若M ,N 均在左支上,同理有NF 2sin β=NF 1sin α+β=2c sin α,其中β为钝角,故cos β=-bc,故NF 2 -NF 1 sin β-sin α+β=2c sin α即a sin β-sin αcos β-cos αsin β=c sin α,代入cos α=35,sin β=a c ,sin α=45,整理得到:a 4b +2a=14,故a =2b ,故e =1+b a 2=52,故选:AC .41.(2022·辽宁·沈阳市第四中学高三阶段练习)将以下四个方程e x =a -x 、x 2=a -x (x >0)、x =a -x 、ln x =a -x 的正数解分别记为x 1,x 2,x 3,x 4,则以下判断一定正确的有( )A.x 1<x 2<x 3<x 4 B.x 1+x 2+x 3+x 4=2aC.x 3-x 1=x 4-x 2D.x 1x 4=x 2x 3【答案】BC【解析】画出y =e x ,y =x 2x >0 ,y =x ,y =ln x ,y =a -x 的图象如下图所示,y =x y =a -x ⇒x =y =a 2,由图可知x 1,x 4关于x =a 2对称,x 2,x 3关于x =a2对称,所以x 1+x 4=a ,x 2+x 3=a ,则x 1+x 2+x 3+x 4=2a ,x 1-x 2+x 4-x 3=0,x 3-x 1=x 4-x 2,所以BC 选项正确.当a =2时,x 1+x 4=x 2+x 3=2且x 2=x 3=1,x 1<x 2=x 3<x 4所以A 选项不正确,对于D 选项,x 1x 4<x 1+x 422=1=x 2x 3,所以D 选项不正确.故选:BC42.(2022·辽宁·沈阳市第四中学高三阶段练习)已知函数f (x )在R 上有定义,记f (x )为函数f (x )的导函数,又f (2x -1)是奇函数,则以下判断一定正确的有( )A.f 4x -2 是奇函数 B.f x -1 +f 3x -1 是奇函数C.f 4x 2-2 是偶函数 D.f (-5x -1)是偶函数【答案】BCD【解析】若f x =x +1,则f 2x -1 =2x 为奇函数,而f 4x -2 =4x -1为非奇非偶函数,所以A 选项错误.由于f 2x -1 是奇函数,所以f -2x -1 =-f 2x -1 ,对于函数f x -1 +f 3x -1 ,f -x -1 +f -3x -1 =-f x -1 -f 3x -1 =-f x -1 +f 3x -1 ,所以f x -1 +f 3x -1 是奇函数,B 选项正确.对于函数f 4x 2-2 ,f 4-x 2-2 =f 4x 2-2 ,所以函数f 4x 2-2 是偶函数,C 选项正确.对于D 选项,先证明奇函数的导数是偶函数:若f x 是定义在R 上的奇函数,则f -x =-f x ,两边求导得f -x =-f x ,即-f -x =-f x ,即f -x =f x ,所以奇函数的导数是偶函数.然后证明f -5x -1 为奇函数:由于f 5x -1 =-f -5x -1 ,所以f -5x -1 为奇函数,所以f (-5x -1)是偶函数,D 选项正确.故选:BCD43.(2022·辽宁·东北育才学校高三阶段练习)已知函数f x 的定义域为-∞,0 ∪0,+∞ ,图象关于y 轴对称,导函数为f x ,且当x <0时,f x >f xx,设a >1,则下列大小关系正确的是( )A.a +1 f 4aa +1 >2a f 2a B.f 2a >a f 2aC.4af a +1 a +1>a +1 f 4a a +1D.2f 2a <a +1 f 4a a +1 【答案】AD【解析】当x <0时,fx >f x x ,即f x -f x x =xf x -f x x>0,所以xf (x )-f (x )<0,构造函数g x =f x x ,则g(x )=xf (x )-f (x )x 2<0,∴当x <0时,g x 单调递减,又由题意可得f x 是偶函数,∴g x 是奇函数,则当x >0时,g x 也单调递减.对于A ,∵a >1,∴0<4a a +1<4a 2a=2a ,∴g 4aa +1 >g 2a ,即f 4a a +1 4a a +1>f 2a 2a ,∴a +1 f 4a a +1 >2a f 2a ,故A 正确;对于B ,∵a >1,∴2a >2a >0,∴g 2a <g 2a ,即f 2a2a <f 2a 2a,可得f 2a <a f 2a ,故B 错误;对于C ,∵a >1,a +1-4a a +1=a -1 2a +1>0,即a +1>4a a +1>0,∴g a +1 <g 4aa +1 ,即f a +1 a +1<f 4a a +1 4a a +1,∴4af a +1 a +1<a +1 f 4aa +1,故C 错误;对于D ,∵a >1,2a -4a a +1=2a 2+2a -4a a +1=2a a -1 a +1>0,∴2a >4aa +1>0,g 2a <g 4a a +1 ,即f 2a 2a <f 4a a +1 4a a +1,∴2f 2a <a +1 f 4a a +1 ,故D 正确.故选:AD .44.(2022·辽宁·东北育才学校高三阶段练习)已知函数f x =sin ωx +φ ω>0,φ∈R 在区间7π12,5π6上单调,且满足f 7π12=-f 3π4 有下列结论正确的有( )A.f 2π3 =0B.若f 5π6-x =f x ,则函数f x 的最小正周期为π;试卷第2页,共40页。
2023年新高考数学选填压轴题汇编(三)(解析版)
2023年新高考地区数学选填压轴题汇编(三)一、单选题1.(2022·湖北·宜昌市夷陵中学模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 与抛物线C 2:y 2=2px p >0 有公共焦点F ,过F 作双曲线一条渐近线的垂线,垂足为点A ,延长FA 与抛物线C 2相交于点B ,若点A 为线段FB 的中点,双曲线C 1的离心率为e ,则e 2=( )A.3+12B.5+12C.5+13D.5+23【答案】B 【解析】根据题意,作图如下:因为双曲线C 1和抛物线C 2共焦点,故可得a 2+b 2=p 24,又F c ,0 到y =b a x 的距离d =bca 2+b 2=b ,即AF =b ,又A 为BF 中点,则BF =2b ,设点B x ,y ,则2b =x +p 2,解得x =2b -p 2;由a 2+b 2=p 24可得OA =a ,则由等面积可知:12×BF ×OA =12×OF ×y ,解得y =4abp,则B 2b -p 2,4abp ,则x A =b ,y A =2ab p ,又点A 在渐近线y =b a x 上,即b 2a =2abp,即2a 2=pb ,又p 2=4a 2+4b 2,联立得a 4-a 2b 2-b 4=0,即b 2a 2-a 2b 2+1=0,解得b 2a2=5-12,故e 2=1+b 2a2=5+12.故选:B .2.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f (x )是定义在R 上的奇函数,若对任意的x 1,x 2∈0,+∞) ,且x 1≠x 2,都有x 1f x 1 -x 2f x 2x 1-x 2<0成立,则不等式mf m -2m -1 f 2m -1 >0的解集为( )A.13,1 B.(-∞,1)C.1,∞D.-∞,13∪1,+∞ 【答案】D【解析】∵函数f (x )是定义在R 上的奇函数∴g x =xf x 为定义在R 上的偶函数又∵x 1f x 1 -x 2f x 2 x 1-x 2<0∴g x =xf x 在0,+∞) 上递减,则g x 在-∞,0 上递增mf m -2m -1 f 2m -1 >0即mf m >2m -1 f 2m -1则m <2m -1 解得:m ∈-∞,13∪1,+∞ .故选:D .3.(2022·湖北·黄冈中学模拟预测)十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ⋅0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是( )A.sin30∘ B.sin33∘ C.sin36∘ D.sin39∘【答案】B【解析】(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+-1 n -1x 2n -22n -2 !+⋯所以cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1=sin 90∘-180∘π ,由于90∘-180∘π 与33∘最接近,故选:B 4.(2022·湖北·黄冈中学模拟预测)某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( )A.288B.336C.576D.1680【答案】B【解析】解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24种,第二步,排黑车,若白车选AF ,则黑车有BE ,BG ,BH ,CE ,CH ,DE ,DG 共7种选择,黑车是不相同的,故黑车的停法有2×7=14种,根据分步计数原理,共有24×14=336种,故选:B5.(2022·山东·模拟预测)已知函数f (x )=xe x -2a (ln x +x )有两个零点,则a 的最小整数值为( )A.0 B.1C.2D.3【答案】C【解析】f (x )=xe x -2a (ln x +x )=e x +ln x -2a (ln x +x ),设t =x +ln x (x >0),t =1+1x>0,即函数在0,+∞ 上单调递增,易得t ∈R ,于是问题等价于函数g t =e t -2at 在R 上有两个零点,g t =e t -2a ,若a ≤0,则g t >0,函数g t 在R 上单调递增,至多有1个零点,不合题意,舍去;若a >0,则x ∈-∞,ln2a 时,g t <0,g t 单调递减,x ∈ln2a ,+∞ 时,g t >0,g t 单调递增.因为函数g t 在R 上有两个零点,所以g t min =g ln2a =2a 1-ln2a <0⇒a >e2,而g 0 =1>0,限定t >1 ,记φt =e t -t ,φ t =e t -1>0,即φt 在1,+∞ 上单调递增,于是φt =e t -t >φ1 =试卷第1页,共3页e -1>0⇒e t>t ,则t >2时 ,e t2>t 2⇒e t>t 24,此时g t >t 24-2at =t 4t -8a ,因为a >e 2,所以8a>4e >1,于是t >8a 时,g t >0.综上:当a >e2时,有两个交点,a 的最小整数值为2.故选:C .6.(2022·山东·模拟预测)已知函数f (x )=A sin (ωx +φ)(ω>0,0<φ<π)为偶函数,在0,π3单调递减,且在该区间上没有零点,则ω的取值范围为( )A.32,2 B.1,32C.32,52D.0,32【答案】D【解析】因为函数为偶函数,且在0,π3 单调递减,所以φ=π2+k πk ∈Z ,而0<φ<π,则φ=π2,于是f (x )=A cos ωx (ω>0),函数在0,π3 单调递减,且在该区间上没有零点,所以0<π3ω≤π2⇒ω∈0,32 .故选:D .7.(2022·江苏·南京市雨花台中学模拟预测)直线x -y +1=0经过椭圆x 2a 2+y 2b2=1a >b >0 的左焦点F ,交椭圆于A 、B 两点,交y 轴于C 点,若FC=2AC ,则该椭圆的离心率是( )A.10-22B.3-12C.22-2D.2-1【答案】A【解析】由题意可知,点F -c ,0 在直线x -y +1=0上,即1-c =0,可得c =1,直线x -y +1=0交y 轴于点C 0,1 ,设点A m ,n ,FC=1,1 ,AC =-m ,1-n ,由FC =2AC 可得-2m =121-n =1 ,解得m =-12n =12,椭圆x 2a 2+y 2b2=1a >b >0 的右焦点为E 1,0 ,则AE =1+12 2+0-12 2=102,又AF =-1+12 2+0-12 2=22,∴2a =AE +AF =10+22,因此,该椭圆的离心率为e =2c 2a =210+22=410+2=410-2 8=10-22.故选:A .8.(2022·江苏·南京市雨花台中学模拟预测)已知△OAB ,OA =1,OB =2,OA ⋅OB=-1,过点O 作OD 垂直AB 于点D ,点E 满足OE =12ED ,则EO ⋅EA的值为( )A.-328B.-121C.-29D.-221【答案】D【解析】由题意,作出图形,如图,∵OA =1,OB =2,OA ⋅OB=-1∴OA ⋅OB =1×2cos ∠AOB =2cos ∠AOB =-1,∴cos ∠AOB =-12,由∠AOB ∈0,π 可得∠AOB =2π3,∴AB =OA 2+OB 2-2⋅OA ⋅OB ⋅cos ∠AOB =7,又S △AOB =12⋅OA ⋅OB ⋅sin ∠AOB =12⋅OD ⋅AB =32,则OD =37,∴EO ⋅EA =-OE ⋅ED +DA =-2OE 2=-29⋅OD 2=-29×37=-221.故选:D .9.(2022·江苏·南京市雨花台中学模拟预测)若函数f x =e x -2x 图象在点x 0,f x 0 处的切线方程为y =kx +b ,则k -b 的最小值为( )A.-2 B.-2+1eC.-1eD.-2-1e【答案】D【解析】由f x =e x -2x 求导得:f (x )=e x -2,于是得f (x 0)=e x 0-2,函数f (x )=e x -2x 图象在点(x 0,f (x 0))处的切线方程为y -(e x 0-2x 0)=(e x 0-2)(x -x 0),整理得:y =(e x 0-2)x +(1-x 0)e x 0,从而得k =e x 0-2,b =(1-x 0)e x 0,k -b =x 0e x 0-2,令g (x )=xe x -2,则g (x )=(x +1)e x ,当x <-1时,g (x )<0,当x >-1时,g (x )>0,于是得g (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,则g (x )min =g (-1)=-2-1e,所以k -b 的最小值为-2-1e.故选:D10.(2023·江苏·南京市第一中学模拟预测)已知定义域是R 的函数f x 满足:∀x ∈R ,f 4+x +f -x =0,f 1+x 为偶函数,f 1 =1,则f 2023 =( )A.1 B.-1C.2D.-3【答案】B【解析】因为f 1+x 为偶函数,所以f x 的图象关于直线x =1对称,所以f 2-x =f x ,又由f 4+x +f -x =0,得f 4+x =-f -x ,所以f 8+x =-f -4-x =-f 6+x ,所以f x +2 =-f x ,所以f x +4 =f x ,故f x 的周期为4,所以f 2023 =f 3 =-f 1 =-1.故选:B .11.(2022·湖南·长沙一中高三阶段练习)蜂巢是由工蜂分泌蜂蜡建成的,从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是109∘28 ,这样的设计含有深刻的数学原理.我著名数学家华罗庚曾专门研究蜂巢的结构,著有《谈谈与蜂房结构有关的数学问题》一书.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF -A B C D E F 的三个顶点试卷第1页,共3页A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M -ABF ,O -BCD ,N -DEF ,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则( )A.tan θ=33tan54∘44 B.sin θ=33tan54∘44 C.cos θ=33tan54∘44D.tan θ=3tan54∘44 【答案】C【解析】先证明一个结论:如图,△ABC 在平面α内的射影为△ABC ,C -AB -C 的平面角为θ,θ∈0,π2 ,则cos θ=S △ABCS △ABC.证明:如图,在平面β内作CE ⊥AB ,垂足为E ,连接EC ,因为△ABC 在平面α内的射影为△ABC ,故CC ⊥α,因为AB ⊂α,故CC ⊥AB ,因为CE ∩AB =E ,故AB ⊥平面ECC .因为EC ⊂平面ECC ,故C E ⊥AB ,所以∠CEC 为二面角的平面角,所以∠CEC =θ.在直角三角形CEC 中,cos ∠CEC =cos θ=ECEC=S △ABCS △ABC .由题设中的第二图可得:cos θ=S △DBCS △DBO.设正六边形的边长为a ,则S △DBC =12a 2×32=34a 2,如图,在△DBO 中,取BD 的中点为W ,连接OW ,则OW ⊥BD ,且BD =3a ,∠BOD =109°28 ,故OW =32a ×1tan54°44,故S △DBO =12×3a ×32a ×1tan54°44 =34a 2×1tan54°44 ,故cos θ=33tan54°44 .故选:C .12.(2022·湖南·长沙市明德中学高三开学考试)已知2021ln a =a +m ,2021ln b =b +m ,其中a ≠b ,若ab <λ恒成立,则实数λ的取值范围为( )A.2021e 2,+∞ B.20212,+∞C.20212,+∞D.2021e 2,+∞【答案】C【解析】令f (x )=ln x -12021x ,则f (x )=1x -12021=2021-x2021x,∴当x ∈(0,2021)时,f (x )>0,当x ∈(2021,+∞)时,f (x )<0,∵f (2021)>0,∴设0<a <2021<b ,则ba=t (t >1),两式相减,得2021ln b a =b -a ,则2021ln t =a (t -1),∴a =2021ln t t -1,b =at =2021t ln tt -1,∴ab =20212⋅t (ln t )2(t -1)2,令g (t )=t (ln t )2-(t -1)2,∴g (t )=(ln t )2+2ln t -2t +2,令h (t )=(ln t )2+2ln t -2t +2,则h (t )=2t(ln t +1-t ),令m (t )=ln t +1-t ,则m (t )=1t-1<0,∴函数m (t )在(1,+∞)上单调递减,∴m (t )<m (1)=0,即h (t )<0,∴h (t )<h 1 =0,∴g (t )<0,∴函数g (t )在(1,+∞)上单调递减,∴g (t )<g 1 =0,∴t (ln t )2-(t -1)2<0,∴t (ln t )2(t -1)2<1,∴ab <20212,∴实数λ的取值范围为20212,+∞ ,故选:C .13.(2022·湖南·长沙市明德中学高三开学考试)己知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A =AB ,F 1B ⋅F 2B=0,则C 的离心率为( )A.2B.5C.3+1D.5+1【答案】A 【解析】如下图示,因为F 1A =AB ,F 1B⋅F 2B =0,O 是F 1F 2中点,所以A 是F 1B 中点且F 1B ⊥F 2B ,则OA ⊥F 1B ,OF 1=OB =c ,因为直线OA 是双曲线x 2a 2-y 2b2=1的渐近线,所以k OA =-b a ,k F 1B =a b ,直线F 1B 的方程为y =ab (x +c ),联立y =a b (x +c )y =b ax,解得B a 2c b 2-a 2,abc b 2-a 2 ,则|OB |2=a 4c 2b 2-a 2 2+试卷第1页,共3页a 2b 2c 2b 2-a 22=c 2,整理得b 2=3a 2,因为c 2-a 2=b 2,所以4a 2=c 2,e =ca=2.故选:A14.(2022·湖南·长沙市明德中学高三开学考试)已知函数f x =cos 2ωx 2+32sin ωx -12ω>0,x ∈R .若函数f x 在区间π,2π 内没有零点,则ω的取值范围是A.0,512 B.0,512 ∪56,1112 C.0,56D.0,512 ∪56,1112【答案】D【解析】 (1)ωπ+π6,2ωπ+π6 ⊆(2k π,2k π+π),k ∈Z ,则{ωx +π6≥2k π2ωπ+π6≤2k π+π ,则{ω≥2k -16ω≤k +512,取k =0 ,∵ω>0, ∴0<k ≤512;(2)ωπ+π6,2ωπ+π6 ⊆(2k π+π,2k π+2π),k ∈Z ,则{ωπ+π6≥2k π+π2ωπ+π6≤2k π+2π ,解得:{ω≥2k +56ω≤k +1112,取k=0 ,∴56≤k ≤1112;综上可知:k 的取值范围是0,512 ∪56,1112,选D .15.(2022·湖南·高三开学考试)已知a =2,b =513,c =(2+e )1e ,则a ,b ,c 的大小关系为( )A.b <c <aB.c <b <aC.b <a <cD.c <a <b【答案】A【解析】由题意,可得a =(2+2)12,b =(2+3)13,c =(2+e )1e ,所以令f x =1x ⋅ln 2+x ,(x >0),则fx =x x +2-ln 2+xx 2,令g x =x x +2-ln 2+x ,(x >0),则g x =-x(x +2)2<0,所以g x 在0,+∞ 上单调递减,g x <g 0 =0,所以f x <0恒成立,所以f x 在0,+∞ 上单调递减,因为2<e <3,所以f 2 >f e >f 3 ,即12ln 2+2 >1e ln 2+e >13ln 2+3 ,所以ln (2+2)12>ln (2+e )1e>ln (2+3)13,所以412>(2+e )1e>513,即b <c <a .故选:A .16.(2022·湖北·高三开学考试)已知a ,b ,c 均为不等于1的正实数,且ln c =a ln b ,ln a =b ln c ,则a ,b ,c 的大小关系是( )A.c >a >b B.b >c >aC.a >b >cD.a >c >b【答案】D【解析】∵ln c =a ln b ,ln a =b ln c 且a 、b 、c 均为不等于1的正实数,则ln c与ln b同号,ln c与ln a同号,从而ln a、ln b、ln c同号.①若a、b、c∈0,1,则ln a、ln b、ln c均为负数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b;②若a、b、c∈1,+∞,则ln a、ln b、ln c均为正数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b.综上所述,a>c>b.故选:D.17.(2022·湖北·襄阳五中高三开学考试)设f x 是定义在R上的连续的函数f x 的导函数,f x -f x +2e x<0(e为自然对数的底数),且f2 =4e2,则不等式f x >2xe x的解集为( )A.-2,0∪2,+∞B.e,+∞C.2,+∞D.-∞,-2∪2,+∞【答案】C【解析】设g x =f xe x-2x,则g x =f x -f xe x-2=f x -f x -2e xe x,∵f x -f x +2e x<0,∴g x >0,函数g x 在R上单调递增,又f2 =4e2,∴g2 =f2e2-4=0,由f x >2xe x,可得f xe x-2x>0,即g x >0=g2 ,又函数g x 在R上单调递增,所以x>2,即不等式f x >2xe x的解集为2,+∞.故选:C.18.(2022·湖北·襄阳五中高三开学考试)已知实数α,β满足αeα-3=1,βlnβ-1=e4,其中e是自然对数的底数,则αβ的值为( )A.e3B.2e3C.2e4D.e4【答案】D【解析】因为αeα-3=1,所以αeα=e3,所以α+lnα=3.因为βlnβ-1=e4,所以lnβ+ln lnβ-1=4.联立α+lnα-3=0lnβ-1+ln lnβ-1-3=0 ,所以α与lnβ-1是关于x的方程x+ln x-3=0的两根.构造函数f x =x+ln x-3,该函数的定义域为0,+∞,且该函数为增函数,由于fα =f lnβ-1=0,所以α=lnβ-1,又α+lnα-3=0,所以lnβ-1+lnα-3=0,即lnαβ=4,解得αβ=e4.故选:D.19.(2022·湖北·应城市第一高级中学高三开学考试)已知F c,0(其中c>0)是双曲线x2a2-y2b2=1a>0,b>0的焦点.圆x2+y2-2cx+b2=0与双曲线的一条渐近线l交于A、B两点.已知l的倾斜角为30°.则tan∠AFB=( )A.-2B.-3C.-22D.-23试卷第1页,共3页【答案】C 【解析】如图所示:x 2+y 2-2cx +b 2=0,化为x -c 2+y 2=c 2-b 2=a 2,因为渐近线l 的倾斜角为30°,所以tan30∘=b a =33,圆心F c ,0 到直线y =bax 的距离为:d =bca1+b a2=b ,又AF =BF =a ,所以cos 12∠AFB =b a =33,sin 12∠AFB =63,则tan 12∠AFB =2,所以tan ∠AFB =2tan 12∠AFB1-tan 212∠AFB=2×21-2 2=-22,故选:C20.(2022·湖北·应城市第一高级中学高三开学考试)设函数f x =sin x -1 +e x -1-e 1-x -x +3,则满足f x +f 3-2x <6的x 的取值范围是( )A.3,+∞ B.1,+∞ C.-∞,3 D.-∞,1【答案】B【解析】假设g x =sin x +e x -e -x -x ,x ∈R ,所以g -x =sin -x +e -x -e x +x ,所以g x +g -x =0,所以g x 为奇函数,而f x =sin x -1 +e x -1-e 1-x -x -1 +3是g x 向右平移1个单位长度,向上平移3个单位长度,所以f x 的对称中心为1,3 ,所以6=f x +f 2-x ,由f x =sin x -1 +e x -1-e 1-x -x +4求导得f x =cos x -1 +e x -1+e 1-x -1=e x -1+1ex -1+cos x -1 -1因为e x -1+1e x -1≥2e x -1⋅1e x -1=2,当且仅当e x -1=1e x -1即x =1,取等号,所以f x ≥0,所以f x 在R 上单调递增,因为f x +f 3-2x <6=f x +f 2-x 得f 3-2x <f 2-x 所以3-2x <2-x ,解得x >1,故选:B 二、多选题21.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f x =log 2x ,(0<x <2)x 2-8x +13,x ≥2,若f x =a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A.0<a <1B.x 1+2x 2∈22,92C.x 1+x 2+x 3+x 4∈10,212D.2x 1+x 2∈22,3【答案】ACD【解析】在同一坐标系中作出函数y =f x ,y =a 的图象,如图所示:由图象知:若f x =a 有四个不同的实数解,则0<a <1,故A 正确;因为log 2x 1 =log 2x 2 ,即-log 2x 1=log 2x 2,则1x 1=x 2,所以x 1+2x 2=1x 2+2x 2,1<x 2<2,因为y =1x 2+2x 2在1,2 上递增,所以1x 2+2x 2∈3,92,故B 错误;因为x 1+x 2=1x 2+x 2,1<x 2<2,y =1x 2+x 2在1,2 上递增,所以1x 2+x 2∈2,52,而x 3+x 4=8,所以x 1+x 2+x 3+x 4∈10,212 ,故C 正确;因为2x 1+x 2=2x 2+x 2,1<x 2<2,y =1x 2+2x 2在1,2 上递减,在2,2 上递增,则2x 2+x 2∈[22,3),故D 正确;故选:ACD22.(2022·湖北·宜昌市夷陵中学模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则( )A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是5【答案】ABC【解析】A 选项,底面正方形AA 1D 1D 的面积不变,P 到平面AA 1D 1D 的距离为正方体棱长,故四棱锥P -AA 1D 1D 的体积不变,A 选项正确;B 选项,D 1P 与A 1C 1所成角即D 1P 与A C 所成角,当P 在端点A ,C 时,所成角最小,为π3,当P 在AC 中点时,所成角最大,为π2,故B 选项正确;C 选项,由于P 在正方体表面,P 的轨迹为对角线AB 1,AD 1,以及以A 1为圆心2为半径的14圆弧如图,试卷第1页,共3页故P 的轨迹长度为π+42,C 正确;D 选项,FP 所在的平面为如图所示正六边形,故FP 的最小值为6,D 选项错误.故选:ABC .23.(2022·湖北·黄冈中学模拟预测)已知正数x ,y ,z 满足3x =4y =12z ,则( )A.1x +1y =1zB.6z <3x <4yC.xy <4z 2D.x +y >4z【答案】ABD【解析】设3x =4y =12z =t ,t >1,则x =log 3t ,y =log 4t ,z =log 12t ,所以1x +1y =1log 3t +1log 4t =log t 3+log t 4=log t 12=1z,A 正确;因为6z3x =2log 12t log 3t =2log t 3log t 12=log 129<1,则6z <3x ,因为3x4y =3log 3t 4log 4t =3log t 44log t 3=log t 64log t 81=log 8164<1,则3x <4y ,所以6z <3x <4y ,B 正确;因为x +y -4z =log 3t +log 4t -4log 12t =1log t 3+1log t 4-4log t 12=log t 3+log t 4log t 3log t 4-4log t 3+log t 4=log t 3-log t 42log t 3log t 4log t 3+log t 4 >0,则x +y >4z ,D 正确.因为1z =1x +1y =x +y xy ,则xy z =x +y >4z ,所以xy >4z 2,C 错误.故选:ABD .24.(2022·湖北·黄冈中学模拟预测)高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德,牛顿并列为世界三大数学家,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如[-2.1]=-3,[2.1]=2.则下列说法正确的是( )A.函数y =x -[x ]在区间[k ,k +1)(k ∈Z )上单调递增B.若函数f (x )=sin xe x -e -x,则y =[f (x )]的值域为{0}C.若函数f (x )=|1+sin2x -1-sin2x |,则y =[f (x )]的值域为{0,1}D.x ∈R ,x ≥[x ]+1【答案】AC【解析】对于A ,x ∈[k ,k +1),k ∈Z ,有[x ]=k ,则函数y =x -[x ]=x -k 在[k ,k +1)上单调递增,A 正确;对于B ,f 3π2=sin 3π2e 3π2-e -3π2=-1e 3π2-e-3π2∈(-1,0),则f 3π2=-1,B 不正确;对于C ,f (x )=(1+sin2x -1-sin2x )2=2-21-sin 22x =2-2|cos2x |,当0≤|cos2x |≤12时,1≤2-2|cos2x |≤2,1≤f (x )≤2,有[f (x )]=1,当12<|cos2x |≤1时,0≤2-2|cos2x |<1,0≤f (x )<1,有[f (x )]=0,y =[f (x )]的值域为{0,1},C 正确;对于D ,当x =2时,[x ]+1=3,有2<[2]+1,D 不正确.故选:AC25.(2022·湖北·黄冈中学模拟预测)华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.在混沌理论中,函数的周期点是一个关键概念,定义如下:设f (x )是定义在R 上的函数,对于x ∈R ,令x n =f (x n -1)(n =1,2,3,⋯),若存在正整数k 使得x k =x 0,且当0<j <k 时,x j ≠x 0,则称x 0是f (x )的一个周期为k 的周期点.若f (x )=2x ,x <122(1-x ),x ≥12,下列各值是f (x )周期为1的周期点的有( )A.0 B.13 C.23D.1【答案】AC【解析】A :x 0=0时,x 1=f 0 =0,周期为1,故A 正确;B :x 0=13时,x 1=f 13 =23,x 2=f 23 =23,x 3=⋯=x n =23,所以13不是f x 的周期点.故B 错误;C :x 0=23时,x 1=x 2=⋯=x n =23,周期为1,故C 正确;D :x 0=1时,x 1=f 1 =0,∴1不是f x 周期为1的周期点,故D 错误.故选:AC .26.(2022·湖北·黄冈中学模拟预测)在数列a n 中,对于任意的n ∈N *都有a n >0,且a 2n +1-a n +1=a n ,则下列结论正确的是( )A.对于任意的n ≥2,都有a n >1B.对于任意的a 1>0,数列a n 不可能为常数列C.若0<a 1<2,则数列a n 为递增数列D.若a 1>2,则当n ≥2时,2<a n <a 1【答案】ACD 【解析】A :由a n +1=a n a n +1+1,对∀n ∈N *有a n >0,则a n +1=an a n +1+1>1,即任意n ≥2都有a n >1,正确;B :由a n +1(a n +1-1)=a n ,若a n 为常数列且a n >0,则a n =2满足a 1>0,错误;C :由an a n +1=a n +1-1且n ∈N *,当1<a n +1<2时0<an a n +1<1,此时a 1=a 2(a 2-1)∈(0,2)且a 1<a 2,数列a n 递增;当a n +1>2时an a n +1>1,此时a 1=a 2(a 2-1)>a 2>2,数列a n 递减;所以0<a 1<2时数列a n 为递增数列,正确;试卷第1页,共3页D:由C分析知:a1>2时a n+1>2且数列a n递减,即n≥2时2<a n<a1,正确.故选:ACD27.(2022·山东·模拟预测)已知点P在棱长为2的正方体ABCD-A1B1C1D1的表面上运动,点Q是CD的中点,点P满足PQ⊥AC1,下列结论正确的是( )A.点P的轨迹的周长为32B.点P的轨迹的周长为62C.三棱锥P-BCQ的体积的最大值为43D.三棱锥P-BCQ的体积的最大值为23【答案】BD【解析】取BC的中点为E,取BB1的中点为F,取A1B1的中点为G,取A1D1的中点为H,取DD1的中点为M,分别连接QE,EF,FG,GH,HM,MQ,由AC1⊥QE,AC1⊥EF,且QE∩EF=E,所以AC1⊥平面EFGHMQ,由题意可得P的轨迹为正六边形EFGHMQ,其中|QE|=|EF|=2,所以点P的轨迹的周长为62,所以A不正确,B正确;当点P在线段HG上运动时,此时点P到平面BCQ的距离取得最大值,此时V P-BCQ有最大值,最大值为V max=13×12×2×1×2=23,所以C不正确,D正确.故选:BD28.(2022·山东·模拟预测)正弦信号是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名,很多复杂的信号都可以通过多个正弦信号叠加得到,因而正弦信号在实际中作为典型信号或测试信号而获得广泛应用已知某个声音信号的波形可表示为f(x)=2sin x+sin2x,则下列叙述不正确的是( )A.f(x)在[0,2π)内有5个零点B.f(x)的最大值为3C.(2π,0)是f(x)的一个对称中心D.当x∈0,π2时,f(x)单调递增【答案】ABD【解析】对于A,由f(x)=2sin x+sin2x=2sin x(1+cos x),令f(x)=0,则sin x=0或cos x=-1,易知f(x)在[0,2π)上有2个零点,A错误.对于B,因为2sin x≤2,sin2x≤1,由于等号不能同时成立,所以f(x)<3,B错误.对于C,易知f(x)为奇函数,函数关于原点对称,又周期为2π,故(2π,0)是f(x)的一个对称中心.对于D,f (x)=2cos x+2cos2x=2(2cos x-1)(cos x+1),因为cos x+1≥0,所以2cos x-1>0时,即:x∈2kπ-π3,2kπ+π3(k∈Z)时,f(x)单调递增,x∈2kπ+π3,2kπ+5π3(k∈Z)时,f(x)单调递减,故D错误.故选:ABD29.(2022·山东·模拟预测)已知函数f(x)=e x,x≥0-x2-4x,x<0,方程f2(x)-t⋅f(x)=0有四个实数根x1,x2,x3,x4,且满足x1<x2<x3<x4,下列说法正确的是( )A.x1x4∈(-6ln2,0]B.x1+x2+x3+x4的取值范围为[-8,-8+2ln2)C.t的取值范围为[1,4)D.x2x3的最大值为4【答案】BC【解析】f2(x)-t⋅f(x)=0⇒f(x)[f(x)-t]=0⇒f(x)=0或f(x)=t,作出y=f(x)的图象,当f(x)=0时,x1=-4,有一个实根;当t=1时,有三个实数根,∴共四个实根,满足题意;当t=4时,f(x)=t只有两个实数根,所以共三个实根,不满足题意,此时与y=e x的交点坐标为(2ln2,4).要使原方程有四个实根,等价于f(x)=t有三个实根,等价于y=f(x)与y=t图像有三个交点,故t∈[1,4),x4∈[0,2ln2),所以x1x4∈(-8ln2,0],故A错误,C正确;又因为x2+x3=-4,所以x1+x2+x3+x4=-8+x4的取值范围为[-8,-8+2ln2)),B正确;因为x2+x3=-4,x2<x3<0,所以x2x3=-x2⋅-x3<-x2+x322=4,故D错误.故选:BC.30.(2022·江苏·南京市雨花台中学模拟预测)阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C:y=x2上两个不同点A,B横坐标分别为x1,x2,以A,B为切点的切线交于P点.则关于阿基米德三角形PAB的说法正确的有( )A.若AB过抛物线的焦点,则P点一定在抛物线的准线上B.若阿基米德三角形PAB为正三角形,则其面积为334C.若阿基米德三角形PAB为直角三角形,则其面积有最小值14D.一般情况下,阿基米德三角形PAB的面积S=|x1-x2|24【答案】ABC【解析】由题意可知:直线AB一定存在斜率,所以设直线AB的方程为:y=kx+m,由题意可知:点A(x1,x21),B(x2,x22),不妨设x1<0<x2,由y=x2⇒y =2x,所以直线切线PA,PB的方程分别为:y-x21=2x1(x-x1),y-x22=2x2(x-x2),两方程联立得:y-x21=2x1(x-x1) y-x22=2x2(x-x2),解得:x=x1+x22 y=x1x2,所以P点坐标为:x1+x22,x1x2,试卷第1页,共3页直线AB 的方程与抛物线方程联立得:y =kx +m y =x 2⇒x 2-kx -m =0⇒x 1+x 2=k ,x 1x 2=-m .A :抛物线C :y =x 2的焦点坐标为0,14 ,准线方程为 y =-14,因为AB 过抛物线的焦点,所以m =14,而x 1x 2=-m =-14,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有|PA |=|PB |,即x 1+x 22-x 1 2+(x 1x 2-x 21)2=x 1+x 22-x 2 2+(x 1x 2-x 22)2,因为 x 1≠x 2,所以化简得:x 1=-x 2,此时A (x 1,x 21),B (-x 1,x 21), P 点坐标为:(0,-x 21),因为阿基米德三角形PAB 为正三角形,所以有|PA |=|AB |,所以(0-x 1)2+(-x 21-x 21)2=-2x 1⇒x 1=-32,因此正三角形PAB 的边长为3,所以正三角形PAB 的面积为12×3×3⋅sin60°=12×3×3×32=334,故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA ⊥PB 时,所以k PA ⋅k PB =-1⇒x 1+x 22-x 1x 1x 2-x 21⋅x 1+x 22-x 2x 1x 2-x 22=-1⇒x 1x 2=-14,直线AB 的方程为:y =kx +14所以P 点坐标为:k 2,-14 ,点 P 到直线AB 的距离为:k 2⋅k +-14 ×(-1)+14 k 2+(-1)2=12k 2+1,|AB |=(x 1-x 2)2+(x 21-x 22)2=(x 1-x 2)2[1+(x 1+x 2)2]=[(x 1+x 2)2-4x 1x 2][1+(x 1+x 2)2],因为x 1+x 2=k ,x 1x 2=-14,所以 AB =(k 2+1)(1+k 2)=1+k 2,因此直角PAB 的面积为:12×12⋅k 2+1⋅(k 2+1)=14(k 2+1)3≥14,当且仅当k =0时,取等号,显然其面积有最小值14,故本说法正确;D :因为x 1+x 2=k ,x 1x 2=-m ,所以|AB |=(x 1-x 2)2+(x 21-x 22)2=(x 1-x 2)2[1+(x 1+x 2)2]=x 1-x 2 k 2+1,点P 到直线AB 的距离为:x 1+x 22⋅k +(-1)⋅x 1⋅x 2+m k 2+(-1)2=x 1+x 22⋅(x 1+x 2)+(-1)⋅x 1⋅x 2-(x 1x 2)k 2+(-1)2=12⋅(x 1-x 2)2k 2+1,所以阿基米德三角形PAB 的面积S =12⋅x 1-x 2 ⋅k 2+1⋅12⋅(x 1-x 2)2k 2+1=x 1-x 2 34,故本选项说法不正确.故选:ABC31.(2023·江苏·南京市第一中学模拟预测)已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A.x 2f x 1 <x 1f x 2B.x 1+f x 1 <x 2+f x 2C.f x 1 -f x 2 x 1-x 2<0D.当ln x >-1时,x 1f x 1 +x 2f x 2 >2x 2f x 1 【答案】AD【解析】 对于A 选项,因为令g x =f (x )x=ln x ,在0,+∞ 上是增函数,所以当0<x 1<x 2时,g x 1 <g x 2 ,所以f (x 1)x 1<f (x 2)x 2,即x 2f x 1 <x 1f x 2 .故A 选项正确;对于B 选项,因为令g x =f x +x =x ln x +x ,所以g ′x =ln x +2,所以x ∈e -2,+∞ 时,g ′x >0,g x 单调递增,x ∈0,e -2 时,g ′x <0,g x 单调递减.所以x 1+f x 1 与x 2+f x 2 无法比较大小.故B 选项错误;对于C 选项,令f ′x =ln x +1,所以x ∈0,1e时,f ′x <0,f x 在0,1e 单调递减,x ∈1e ,+∞ 时,f ′x >0,f x 在1e ,+∞ 单调递增,所以当0<x 1<x 2<1e 时,f x 1 >f x 2 ,故f (x 1)-f (x 2)x 1-x 2<0成立,当1e <x 1<x 2时,f x 1 <f x 2 ,f (x 1)-f (x 2)x 1-x 2>0.故C 选项错误;对于D 选项,由C 选项知,当ln x >-1时,f x 单调递增,又因为A 正确,x 2f x 1 <x 1f x 2 成立,所以x 1⋅f x 1 +x 2⋅f x 2 -2x 2f x 1 >x 1⋅f x 1 +x 2⋅f x 2 -x 2f x 1 -x 1f x 2 =x 1f x 1 -f x 2 +x 2f x 2 -f x 1 =x 1-x 2 f x 1 -f x 2 >0,故D 选项正确.故选:AD .32.(2023·江苏·南京市第一中学模拟预测)已知a ,b 为正实数,且ab =32a +b -42,则2a +b 的取值可以为( )A.1 B.4C.9D.32【答案】BD【解析】因为a ,b 为正实数,ab =32a +b -42,所以32a +b -42=ab =2ab 2≤2a +b22,当且仅当2a =b 时等号成立,即32a +b -42≤2a +b22,所以2a +b -622a +b +16≥0,所以2a +b ≥42或2a +b ≤22,因为a ,b 为正实数,ab =32a +b -42,所以32a +b -42>0,所以2a +b ≥42或423<2a +b ≤22.所以2a +b ≥32或329<2a +b ≤8.故选:BD .33.(2023·江苏·南京市第一中学模拟预测)下列不等式正确的是( )A.log 23<log 49B.log 23<lg15C.log 812>log 1215D.log 812>log 636【答案】CD【解析】选项A :log 23=log 2232=log 49,故不正确;设f x =log 2x 3x (x ≥1),因为x ≥1,所以f x =ln 3x ln 2x=3ln 2x 3x -2ln 3x2x ln 22x=试卷第1页,共3页ln 2x -ln 3xx ln 22x <0,所以f x 在[1,+∞)上单调递减,所以选项B :f 1 =log 23>log 1015=lg15=f 5 ,故不正确;选项C :f 4 =log 812>f 5 =log 1015>log 1215,故正确;选项D :f 4 =log 812>f 18 =log 3654=log 636,故正确,故选:CD .34.(2022·湖南·长沙一中高三阶段练习)已知函数f (x )=x ln (1+x ),则( )A.f (x )在(0,+∞)单调递增B.f (x )有两个零点C.曲线y =f (x )在点-12,f -12处切线的斜率为-1-ln2D.f (x )是偶函数【答案】AC【解析】由f (x )=x ln (1+x )知函数的定义域为(-1,+∞),f (x )=ln (1+x )+x1+x,当x ∈(0,+∞)时,ln (1+x )>0,x1+x>0,∴f (x )>0,故f (x )在(0,+∞)单调递增,A 正确;由f (0)=0,当-1<x <0时,ln (1+x )<0,f (x )=x ln (1+x )>0,当ln (1+x )>0,f (x )>0,所以f (x )只有0一个零点,B 错误;令x =-12,f -12 =ln 12-1=-ln2-1,故曲线y =f (x )在点-12,f -12 处切线的斜率为-1-ln2,C 正确;由函数的定义域为(-1,+∞),不关于原点对称知,f (x )不是偶函数,D 错误.故选:AC35.(2022·湖南·长沙一中高三阶段练习)已知函数f x =x ln x ,x >00,x =012f x +1 ,x <0,则下列说法正确的有( )A.当x ∈-3,-2 时,f x =18x +3 ln x +3B.若不等式f x -mx -m <0至少有3个正整数解,则m >ln3C.过点A -e -2,0 作函数y =f x x >0 图象的切线有且只有一条D.设实数a >0,若对任意的x ≥e ,不等式f x ≥a x e ax 恒成立,则a 的最大值是e【答案】ACD【解析】对于A :当x ∈-3,-2 ,∴x +3∈0,1 ,f x +3 =x +3 ln x +3 ,∵f x =18f x +3 ,∴f x =18x +3 ln x +3 ,A 正确;对于B :f x <mx +m ,画出y 1=f x 与y 2=mx +m 的图象,根据函数的图象,要想至少有3个正整数解,要满足f 3 <3m +m ,∴m >34ln3,故B 错;对于C :设切点T x 0,y 0 则k AT =f x 0 ,∴x 0ln x 0x 0+1e2=ln x 0+1,即e 2x 0+ln x 0+1=0,设h x =e 2x +ln x +1,当x >0时,h x >0,∴h x 是单调递增函数,∴h x =0最多只有一个根,又h 1e 2 =e 2⋅1e 2+ln 1e2+1=0,∴x 0=1e 2,由f x 0 =-1得切线方程是x +y +1e2=0,故C 正确;对于D .:由题意e ln x ⋅ln x ≥a xe ax .设g x =x ⋅e x x >0 ,则g x =x +1 e x >0,于是g x 在0,+∞ 上是增函数.因为a x >0,ln x >0,所以ax≤ln x ,即a ≤x ln x 对任意的x ≥e 恒成立,因此只需a ≤x ln x min .设f x =x ln x x ≥e ,f x =ln x +1>0x ≥e ,所以f x 在e ,+∞ 上为增函数,所以f x min =f (e )=e ,所以a ≤e ,即a 的最大值是e ,选项D 正确;故选:ACD .36.(2022·湖南·长沙市明德中学高三开学考试)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线C :y 2=2px (p >0),O 为坐标原点,一条平行于x 轴的光线l 1从点M (5,2)射入,经过C 上的点A 反射后,再经C 上另一点B 反射后,沿直线l 2射出,经过点N .下列说法正确的是( )A.若p =2,则|AB |=4 B.若p =2,则MB 平分∠ABN C.若p =4,则|AB |=8D.若p =4,延长AO 交直线x =-2于点D ,则D ,B ,N 三点共线【答案】ABD【解析】若p =2,则抛物线C :y 2=4x ,A (1,2),C 的焦点为F (1,0),直线AF 的方程为:x =1,可得B (1,-2),|AB |=4,选项A 正确;p =2时,因为|AM |=5-1=4=|AB |,所以∠A MB =∠ABM ,又AM ∥BN ,所以∠A MB =∠MB N ,所以MB 平分∠ABN ,选项B 正确;若p =4,则抛物线C :y 2=8x ,A 12,2 ,C 的焦点为F (2,0),直线AF 的方程为y =-43(x -2),联立抛物线方程求解可得B (8,-8),所以|AB |=252,选项C 不正确;若p =4,则抛物线C :y 2=8x ,A 12,2,延长AO 交直线x =-2于点D ,则D (-2,-8),由C 选项可知B试卷第1页,共3页(8,-8),所以D,B,N三点共线,故D正确.故选:ABD.37.(2022·湖南·长沙市明德中学高三开学考试)已知a>1,x1,x2,x3为函数f(x)=a x-x2的零点,x1<x2<x3,下列结论中正确的是( )A.x1>-1B.x1+x2<0C.若2x2=x1+x3,则x3x2=2+1 D.a的取值范围是1,e2e【答案】ACD【解析】∵a>1,f-1=a-1-1=1a-1<0,f0 =a0-0=1>0 ,∴-1<x1<0 ,故A正确;当0≤x≤1 时,1≤a x≤a,0≤x2≤1 ,f x 必无零点,故x2>1 ,∴x1+x2>0 ,故B错误;当2x2=x1+x3 时,即a x1=x21a x2=x22a x3=x23,两边取对数得x1=2log a-x1x2=2log a x2x3=2log a x3,4log a x2=2log a-x1+2log a x3 ,x22=-x1x3 ,联立方程x22=-x1x32x2=x1+x3解得x23-2x2x3-x22=0 ,由于x2>0,x3>0 ,x3x2=2+1 ,故C正确;考虑f x 在第一象限有两个零点:即方程a x=x2 有两个不同的解,两边取自然对数得x ln a=2ln x 有两个不同的解,设函数g x =x ln a-2ln x ,g x =ln a-2x=ln a x-2ln ax ,则x=x0=2ln a 时,g x =0 ,当x>x0 时,g x >0 ,当x<x0 时,g x <0 ,所以g min x =g x0=2-2ln2ln a,要使得g x 有两个零点,则必须g x0<0,即ln2ln a>1 ,解得a<e2e ,故D正确;故选:ACD.38.(2022·湖北·高三开学考试)关于函数f x =ae x+sin x,x∈-π,π,下列结论中正确的有( )A.当a=-1时,f x 的图象与x轴相切B.若f x 在-π,π上有且只有一个零点,则满足条件的a的值有3个C.存在a ,使得f x 存在三个极值点D.当a =1时,f x 存在唯一极小值点x 0,且-1<f x 0 <0【答案】BCD【解析】对于A ,f (x )=-e x +sin x ,f (x )=-e x +cos x =0,即e x =cos x ,由函数y =e x 、y =cos x 的图像可知方程有两个根:x 1∈-π2,0 ,x 2=0,f (x 2)=-1,f (x 1)=sin x 1-e x 1<0,即斜率为0的切线其切点不在x 轴上,故A 错误;对于B ,f (x )=0⇔a =-sin x e x ,令g (x )=-sin xex ,g (x )=sin x -cos x ex ,x ∈-π,-3π4 、x ∈π4,π ,g (x )>0,g (x )单调递增,x ∈-3π4,π4 ,g (x )单调递减,g (-π)=0,g -3π4 =22e 3π4,g π4 =-22e π4,g (π)=0,结合图像可知满足f (x )=0⇔a =-sin xex 在-π,π 上有且只有一个零点的a 的值有3个:0,22e3π4,-22e π4,故B 正确;对于C ,f (x )=ae x +cos x =0⇔a =-cos xex =h (x ),h (x )=2sin x +π4ex ,可知x ∈-π,-π4 ,h (x )<0,h (x )单调递减,x ∈-π4,3π4 ,h (x )>0,h (x )单调递增, x ∈3π4,π ,h (x )<0,h (x )单调递减,h (-π)=e π,h -π4 =-2e π42,h 3π4 =22e 3π4,h (π)=1e π,故a ∈1e π,22e 3π4时,a =-cos xe x =h (x )有三个实数根,f x 存在三个极值点,故C 正确;对于D ,f (x )=e x +cos x =0⇔e x =-cos x ,由图像可知此方程有唯一实根x 0,因为e 3π2>2,所以1e 3π2<12,1e 3π4<22,f -3π4 =1e3π4-22<0,x 0∈-3π4,-π2 ,f (x 0)=e x 0+sin x 0=sin x 0-cos x 0=2sin x 0-π4,可知-1<f (x 0)<0,故D 正确.故选:BCD .39.(2022·湖北·襄阳五中高三开学考试)已知函数f x =x x -1,x <15ln x x ,x ≥1,下列选项正确的是( )A.函数f x 的单调减区间为-∞,1 、e ,+∞B.函数f x 的值域为-∞,1C.若关于x 的方程f 2x -a f x =0有3个不相等的实数根,则实数a 的取值范围是5e ,+∞ D.若关于x 的方程f 2x -a f x =0有5个不相等的实数根,则实数a 的取值范围是1,5e 【答案】ACD试卷第1页,共3页【解析】对于A 选项,当x <1时,f x =x x -1,则f x =-1x -12<0,当x ≥1时,f x =5ln xx ,则f x =51-ln x x2,由f x <0可得x >e ,所以,函数f x 的单调减区间为-∞,1 、e ,+∞ ,A 对;对于B 选项,当x <1时,f x =1+1x -1<1,当x ≥1时,0≤f x =5ln x x ≤f e =5e,因此,函数f x 的值域为-∞,5e,B 错;对于CD 选项,作出函数f x 的图像如下图所示:若a ≤0,由f 2x -a f x =0可得f x =0,则方程f x =0只有两个不等的实根;若a >0,由f 2x -a f x =0可得f x =0或f x =a 或f x =-a ,由图可知,方程f x =0有2个不等的实根,方程f x =-a 只有一个实根,若关于x 的方程f 2x -a f x =0有3个不相等的实数根,则a >5e,C 对;若关于x 的方程f 2x -a f x =0有5个不相等的实数根,则1≤a <5e,D 对.故选:ACD .40.(2022·湖北·应城市第一高级中学高三开学考试)已知函数f (x )=sin 4x +π3 +cos 4x -π6,则下列结论正确的是( )A.f (x )的最大值为2B.f (x )在-π8,π12上单调递增C.f (x )在[0,π]上有4个零点D.把f (x )的图象向右平移π12个单位长度,得到的图象关于直线x =-π8对称【答案】ACD【解析】因为f (x )=sin π2+4x -π6+cos 4x -π6 =2cos 4x -π6,所以A 正确;当x ∈-π8,π12 时,4x -π6∈-2π3,π6 ,函数f (x )=2cos 4x -π6 在-π8,π12上先增后减,无单调性,故B 不正确;令2cos 4x -π6 =0,得4x -π6=π2+k π,k ∈Z ,故x =π6+k π4,k ∈Z ,因为x ∈[0,π],所以k =0,1,2,3,故C 正确;把f (x )=2cos 4x -π6 的图象向右平移π12个单位长度,得到y =2cos 4x -π12 -π6=。
2023-2024学年高考数学专项复习——压轴题(附答案)
决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
高考数学选填压轴题练习与答案
高考数学选填压轴题练习与答案一.选择题(共25小题)1.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),若b n=a n cos2nπ3,且数列{b n}的前n项和为S n,则S11=()A.64B.80C.﹣64D.﹣80【解答】解:数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),则a n+1n+1=a nn+1,可得数列{a nn}是首项为1、公差为1的等差数列,即有a nn=n,即为a n=n2,则b n=a n cos2nπ3=n2cos2nπ3,则S11=−12(12+22+42+52+72+82+102+112)+(32+62+92)=−12(12+22﹣32﹣32+42+52﹣62﹣62﹣72+82﹣92﹣92+102+112)=−12×(5+23+41+59)=﹣64.故选:C.2.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(π6+x)=﹣f(π6−x),f(π2+x)=f(π2−x),下列四个结论:①φ=π4;②ω=92+3k(k∈N);③f(−π2)=0;④直线x=−π3是f(x)图象的一条对称轴.其中所有正确结论的编号是()A.①②B.①③C.②④D.③④【解答】解:函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2),f(x)图象的一条对称轴是直线x=π2,所以f(π2+x)=f(π2−x),由f (x )的一个零点为π6, 所以f (π6+x )=﹣f (π6−x ),整理得T 4+k ⋅T 2=π2−π6=π3, 所以T =4π3(1+2k), 故ω=2πT=32+3k (k ∈Z ),故②错误;当k =1时,f (x )=sin (92x +φ), 把(π6,0)代入关系式,得到sin (3π4+φ)=0,由于0<φ<π2,所以φ=π4,故①正确;对于f (−π3)=sin (92⋅π3+π4)≠±1,故④错误; f (−π2)=sin[92⋅(−π2)+π4]=sin (﹣2π)=0,故③正确. 故选:B .3.已知四面体ABCD 的四个顶点都在以AB 为直径的球R 面上,且BC =CD =DB =2,若四面体ABCD 的体积是4√23,则这个球面的面积是( )A .16πB .323πC .4πD .763π【解答】解:由题意,几何体的直观图如图, 四面体ABCD 的体积是4√23,可得O 到平面BCD 的距离为h ,13×√34×22×2ℎ=4√23,解得h =2√63, 所以外接球的半径为R =OB =OD =OC =OA =(2√63)(23√32=2,所以外接球的表面积为:4π×22=16π. 故选:A .4.已知函数f (x )={log 2x ,x >114x +1,x ≤1,g (x )=f (x )﹣kx ,若函数g (x )有两个零点,则k 的取值范围是( ) A .(0,14]B .(0,1eln2) C .[0,1e)D .[14,1eln2)【解答】解:函数f (x )={log 2x ,x >114x +1,x ≤1,作出f (x )的图象与y =kx 图象有两个交点,(如图)设y =kx 与y =log 2x 的切点为(x 0,y 0), 可得{y 0=kx 0y 0=log 2x 01k =x 0ln2,解得x 0=e ,∴相切时的斜率k =1eln2.故得f (x )的图象与y =kx 图象有两个交点时,14≤k <1eln2. 故选:D .5.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,椭圆E 上一点P (2,1)关于原点的对称点为Q ,若△PQF 的周长为4√2+2√5.则离心率e =( )A.√32B.√22C.√33D.√23【解答】解:∵P与Q关于原点对称,则Q(﹣2,﹣1),∴|PQ|=2√12+22=2√5,又三角形PQF的周长为|QP|+|PF|+|QF|=4√2+2√5,∴|PF|+|QF|=4√2,设椭圆的右焦点为M,则由椭圆的性质可得|PF|=|QM|,∴|QM|+|QF|=2a=4√2,得a=2√2,将点P代入椭圆方程可得:48+1b2=1,解得b=√2,∴c=√a2−b2=√6.则离心率e=ca =√62√2=√32.故选:A.6.对于函数y=f(x)与y=g(x),若存在x0,使f(x0)=g(﹣x0),则称M(x0,f(x0)),N(﹣x0,g(﹣x0))是函数f(x)与g(x)图象的一对“隐对称点”.已知函数f(x)=m(x+1),g(x)=lnxx,函数f(x)与g(x)的图象恰好存在两对“隐对称点”,则实数m的取值范围为()A.(﹣1,0)B.(﹣∞,﹣1)C.(0,1)∪(1,+∞)D.(﹣∞,﹣1)∪(﹣1,0)【解答】解:∵f(x)=m(x+1)恒过定点(﹣1,0),f(x)关于y轴对称的图象的函数解析式为y=﹣m(x﹣1)依题意可得,y=﹣m(x﹣1)与g(x)=lnxx有2个交点,由g(x)=lnxx ,得g′(x)=1−lnxx2,当0<x<e时,h′(x)>0,函数g(x)单调递增,当x>e时,g′(x)<0,函数g(x)单调递减,而y=﹣m(x﹣1)恒过定点(1,0),作出函数g(x)=lnxx的图象如图,当直线y=﹣m(x﹣1)与g(x)=lnxx切于(1,0)时,由导数的几何意义可得,﹣m=1−ln112=1,则要使y =﹣m (x ﹣1)与g (x )=lnx x有2个交点,则﹣m >0且﹣m ≠1,∴实数m 的取值范围为(﹣∞,﹣1)∪(﹣1,0). 故选:D .7.已知函数f (x )={|xlnx|,x >0|x(x +1)|,x ⩽0,关于x 的方程f 2(x )+tf (x )+1=0(t ∈R )有8个不同的实数根,则t 的取值范围是( ) A .(−1e −e ,+∞) B .(−2e ,−12)∪(﹣∞,−1e −e )C .(﹣∞,−174)D .(2,+∞)∪(﹣∞,−174)【解答】解:当x >0时,f (x )=|xlnx |,令F (x )=xlnx ,F ′(x )=lnx +1, 令F ′(x )=lnx +1=0,解得x =1e,F (1e)=−1e,f (1e)=1e,故当x >0时,函数f (x )在(0,1e )上单调递增,在(1e ,1)上单调递减,在(1,+∞)上单调递增; 当x <0时,可得函数f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,−12)上单调递增,在(−12,0)上单调递减.又f (−12)=14,f (1e )=1e ,故刻画出函数f (x )的大致图象如图:令m =f (x ),则已知方程可化为m 2+tm +1=0.观察图象可知,当m >1e 时,只有2个交点;当m =1e 时,有3个交点;当14<m <1e 时,有4个交点; 当0<m <14时,有6个交点.要想满足题意,则只需使得方程m 2+tm +1=0在(14,1e )上存在两个不同实数根,或在(1e ,+∞)和(0,14)上各有1个根,方程m 2+tm +1=0的两根之积为1, 令g (m )=m 2+tm +1,由题意,{g(14)<0g(4)<0,解得t <−174,即t 的取值范围是(﹣∞,−174).故选:C .8.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 是正方体棱上一点,若满足|PB |+|PC 1|=d 的点P 的个数为4.则d 的取值范围为( ) A .(√2,2)B .(√2,2√2)C .[2,1+√3)D .(1+√3,2√2)【解答】解:点P 分别在BB 1,BC ,CC 1,B 1C 1上运动时,m 的取值范围是[√2,2], 当点P 分别在C 1D 1,AB 上运动时,m 的取值范围是[√2,1+√3], 当点P 分别在棱A 1B 1,CD 上运动时,m 的取值范围是[2,2√2],当P 分别在棱A 1D 1,DD 1,AD ,AA 1上运动时,m 的取值范围是[√4+2√2,2√2], 由结合图形可知,点P 在正方体的每一条棱上运动时, 它所在的位置与m 的值是一一对应的, 当|PB |+|PC 1|=d 的点P 的个数为4, 则d 的取值范围为[2,1+√3), 故选:C .9.已知不相等的两个正实数x ,y 满足x 2﹣y =4(log 2y ﹣log 4x ),则下列不等式中不可能成立的是( )A.x<y<1B.y<x<1C.1<x<y D.1<y<x【解答】解:由已知x2﹣y=4(log2y﹣log4x),因为2log4x=log2x,所以原式可变形为x2+2log2x=y+4log2y,令f(x)=x2+2log2x,g(x)=x+4log2x,函数f(x)与g(x)均为(0,+∞)上的增函数,且f(x)=g(y),且f(1)=g(1),当x>1时,f(x)>1,g(y)>1,y>1,当x<1时,f(x)<1,g(y)<1,y<1,要比较x与y的大小,只需比较g(x)与g(y)的大小,g(x)﹣g(y)=g(x)﹣f(x)=x+4log2x﹣x2﹣2log2x=x﹣x2+2log2x,设h(x)=x﹣x2+2log2x(x>0),则h'(x)=1−2x+2xln2,故h'(x)在(0,+∞)上单调递减,又h'(1)=−1+2ln2>0,h'(2)=−3+1ln2<0,则存在x0∈(1,2)使得h'(x)=0,所以当x∈(0,x0)时,h'(x)>0,当x∈(x0,+∞)时,h'(x)<0,又因为h(1)=0,h(x0)>h(1)=0,h(4)=﹣12+4=﹣8<0,所以当x<1时,h(x)<0,当x>1时,h(x)正负不确定,故当x<1,y<1时,h(x)<0,所以g(x)<g(y)<g(1),故x<y<1,当x>1,y>1时,h(x)正负不定,所以g(x)与g(y)的正负不定,所以x>y>1,x=y>1,y>x>1均有可能,即选项A,C,D均有可能,选项B不可能.故选:B.10.正实数a,b,c满足a+2﹣a=2,b+3b=3,c+log4c=4,则实数a,b,c之间的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a【解答】解:c+log4c=4⇒log4c=4﹣c,即c 为函数y =log 4x 与y =4﹣x 的图象交点的横坐标; b +3b =3⇒1+3b =4﹣b ,即b 为函数y =1+3x 与y =4﹣x 的图象交点的横坐标; a +2﹣a =2⇒2+12a =4−a ,即a 为函数y =2+12x 与y =4﹣x 的图象交点的横坐标; 在同一坐标系中画出图象,可得b <a <c . 故选:A .11.《九章算术》是我国古代数学经典名著,堪与欧几里得《几何原本》相媲美的数学名著,在《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”.已知某鳖臑A ﹣BCD 的外接球半径为1,则该鳖臑A ﹣BCD 的体积最大值为( ) A .49√3B .427√3C .94√3D .316√3【解答】解:四个面都是直角三角形的四面体称为“鳖臑”.如图:某鳖臑A ﹣BCD 的外接球半径为1,可知CD =2,设AB =a ,BC =b ,AD =c , 所以a 2+b 2+c 2=4,可得4=a 2+b 2+c 2≥3√(abc)23,所以abc ≤√4333=8√39.当且仅当a =b =c =2√33时,取等号.该鳖臑A ﹣BCD 的体积:13×12abc ≤16×8√39=4√327. 故选:B .12.已知抛物线y=x2+mx﹣2与x轴交于A,B两点,点C的坐标为(3,1),圆Q过A,B,C三点,当实数m变化时,存在一条定直线l被圆Q截得的弦长为定值,则此定直线l方程为()A.x﹣3y=0B.3x﹣y+1=0C.√3x﹣y﹣1=0D.x−√3y=0【解答】解:y=x2+mx﹣2与x轴交于A,B,设两点A(x1,0),B(x2,0),设圆Q的方程为x2+y2+Dx+Ey+F=0,取y=0,可得x2+Dx+F=0.则方程x2+Dx+F=0与方程x2+mx﹣2=0等价,则D=m,F=﹣2,则圆的方程为x2+y2+mx+Ey﹣2=0.∵圆Q过C(3,1),∴10+3m+E﹣2=0,即E=﹣8﹣3m,得圆Q的方程为x2+y2+mx﹣(8+3m)y﹣2=0,即x2+y2﹣8y﹣2+m(x﹣3y)=0,由圆系方程可知,圆x2+y2﹣8y﹣2+m(x﹣3y)=0经过圆x2+y2﹣8y﹣2=0与直线x﹣3y=0的交点,则圆Q被直线x﹣3y=0所截弦长为定值.故选:A.+alnx+e2≥ax恒成立(e为自然对数的底数),则正实数a的取值范围是13.对任意x>0,若不等式e xx()A.(0,e]B.(0,e2]C.[2e ,e]D.[2e,e2]【解答】解:不等式e xx +alnx+e2≥ax可化为e xx−a(x﹣lnx)+e2≥0,即e xx−aln e xx+e2≥0;设t=e xx,其中x>0;由e x≥ex知t≥e,所以f(t)=t﹣alnt+e2(t≥e),只需证明f(t)的最小值f(t)min≥0即可;对函数f(t)求导数,得f′(t)=1−at =t−at(t≥e),①当0<a≤e时,f′(t)≥0恒成立,f(t)是[e,+∞)上的单调增函数,所以f(t)的最小值是f(t)min=f(e)=e﹣alne+e2≥0,解得a≤e2+e;又0<a≤e,所以a的取值范围是(0,e].②当a>e时,f(t)在[e,a)上单调递减,在(a,+∞)上单调递增,所以f(t)的最小值是f(t)min=f(a)=a﹣alna+e2≥0;设g(a)=a﹣alna+e2,其中a>e,则g′(a)=1﹣lna﹣1=﹣lna<0,所以g(a)在(e,+∞)上是单调减函数;g(e2)=e2﹣e2lne2+e2=0,所以g(a)≥0时,a≤e2;由a>e知,a的取值范围是(e,e2];综上知,正实数a的取值范围是(0,e2].故选:B.14.已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P是其右支上第一象限内的一点,直线PO,PF2分别交该双曲线左、右支于另两点A,B,若|PF1|=2|PF2|,且∠AF2B=60°,则该双曲线的离心率是()A.√3B.√2C.2√33D.√52【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,由|PF1|=2|PF2|,可得|PF2|=2a,|PF1|=4a,结合双曲线性质可以得到|PO|=|AO|,而|F1O|=|F2O|,结合四边形对角线平分,可得四边形PF1AF2为平行四边形,结合∠AF2B=60°,得∠F1AF2=60°,对三角形F1AF2,用余弦定理,得到|AF1|2+|AF2|2﹣|F1F2|2=2|AF1|•|AF2|•cos∠F1PF2,由|PF1|=2|PF2|,可得|AF1|=2a,|AF2|=4a,|F1F2|=2c,代入上式子中,得到3a2=c2,∴e=ca=√3,故选:A.15.如图,双曲线F:x2a2−y2b2=1(a>0,b>0)以梯形ABCD的顶点A,D为焦点,且经过点B,C,其中AB∥CD,∠BAD=60°,|CD|=4|AB|,则F的离心率为()A.3√34B.√3C.65D.5√36【解答】解:如图,不妨设|AB|=1,|CD|=4,则|BD|=1+2a,|AC|=4+2a,在△ABD中,由余弦定理得1+4c2﹣2•1•2c•cos60°=(1+2a)2,①在△ACD中,由余弦定理得16+4c2﹣2•4•2c•cos120°=(4+2a)2,②②﹣①得,15+10c=12a+15,则e=ca =65.故选:C.16.已知定义R在上的函数f(x),其导函数为f'(x),若f(x)=f(﹣x)﹣2sin x.且当x≥0时,f'(x)+cos x>0,则不等式f(x+π2)>f(x)+sin x﹣cos x的解集为()A.(﹣∞,π2)B.(π2,+∞)C.(﹣∞,﹣π4)D.(﹣π4,+∞)【解答】解:令g(x)=f(x)+sin x,则g(﹣x)=f(﹣x)+sin(﹣x)=f(﹣x)﹣sin x,又f(x)=f(﹣x)﹣2sin x,∴f(x)+sin x=f(﹣x)﹣sin x,故g(﹣x)=g(x),∴g(x)为定义在R上的偶函数;当x≥0时,g′(x)=f′(x)+cos x>0,∴g(x)在[0,+∞)上单调递增,又∵g(x)为偶函数,故g(x)在(﹣∞,0]上单调递减,由f(x+π2)+cosx=f(x+π2)+sin(x+π2)>f(x)+sinx得g(x+π2)>g(x),∴|x+π2|>|x|,解得x>−π4,∴不等式的解集为(−π4,+∞).故选:D.17.已知双曲线C:x2a2−y2b2=1(a>0,b>0),过C的右焦点F作垂直于渐近线的直线l交两渐近线于A,B两点,A,B两点分别在一、四象限,若|AF||BF|=513,则双曲线C的离心率为()A.1312B.√133C.√135D.√13【解答】解:由题意知:双曲线的右焦点F(c,0),渐近线方程为y=±bax,即bx±ay=0,如下图所示:由点到直线距离公式可知:|F A |=√a 2+b 2=b ,又∵c 2=a 2+b 2,∴|OA |=a ,∵|AF||BF|=513,∴|BF |=135b ,设∠AOF =α,由双曲线对称性可知∠AOB =2α, 而tan α=ba ,tan2α=|AB||OA|=18b 5a,由正切二倍角公式可知:tan2α=2tanα1−tan 2α=2×b a 1−(b a)2=2ab a 2−b 2,即2ab a 2−b2=18b 5a,化简可得:4a 2=9b 2, 由双曲线离心率公式可知:e =c a=√1+b 2a2=√1+49=√133. 故选:B .18.数学中一般用min {a ,b }表示a ,b 中的较小值.关于函数f(x)=min{sinx +√3cosx ,sinx −√3cosx}有如下四个命题:①f (x )的最小正周期为π; ②f (x )的图象关于直线x =3π2对称;③f (x )的值域为[﹣2,2];④f (x )在区间(−π6,π4)上单调递增. 其中是真命题的是( ) A .②④B .①②C .①③D .③④【解答】解:令g(x)=sinx +√3cosx =2sin(x +π3),ℎ(x)=sinx −√3cosx =2sin(x −π3), 则f (x )=min {g (x ),h (x )}={g(x),g(x)⩽ℎ(x)ℎ(x),g(x)>ℎ(x)={2sin(x +π3),π2+2kπ⩽x ⩽3π2+2kπ2sin(x −π3),−π2+2kπ<x <π2+2kπ,(k ∈Z),如图所示:由图知:则f (x )的最小正周期为2π,故①错误; f (x )的图象关于直线x =3π2对称,故②正确;f (x )的值域为[﹣2,1],故③错误;f (x )在区间(−π6,π4)上单调递增,故④正确. 故选:A .19.四棱锥P ﹣ABCD 中,底面ABCD 为矩形,体积为163,若P A ⊥平面ABCD ,且P A =2,则四棱锥P ﹣ABCD的外接球体积的最小值是( ) A .160√53π B .256πC .125πD .20√53π【解答】解:底面为矩形的四棱锥P ﹣ABCD 的体积为163,若P A ⊥平面ABCD ,且P A =2, 可得底面面积为:8,设AB =a ,BC =b ,则ab =8,四棱锥的外接球就是扩展的长方体的外接球,PC 就是外接球的直径,可得:2R =√a 2+b 2+22≥√4+2ab =√4+2×8=2√5,当且仅当a =b =2√2,取等号,R ≥√5. 外接球的体积的最小值为:4π3×(√5)3=20√5π3.故选:D .20.已知函数f (x )={|log 2x|(x >0)2x 2+4x +1(x ≤0),若函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则x 1+x 2﹣x 3x 4的值是( ) A .﹣4B .﹣3C .﹣2D .﹣1【解答】解:作出f (x )的函数图象如图所示:因为函数F (x )=f (x )﹣b 有四个不同的零点x 1,x 2,x 3,x 4, 即y =f (x )与y =b 有四个不同的交点, 由图象知 x 1+x 2=﹣2×42×2=−2,由﹣log 2x 3=log 2x 4,得:log 2x 3+log 2x 4=0,得:x 3x 4=1, ∴x 1+x 2﹣x 3x 4=﹣3, 故选:B .21.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为( )A .512√6729π B .16√23π C .32√627π D .128√281π【解答】解:由题意可得每个三角形面积为S =12×4×2√3=4√3,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为√16−(4√33)2=4√63,故四面体的体积为13×4√3×4√63=16√23,∵该六面体的体积是正四面体的2倍, ∴六面体的体积是32√23, 由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥, 设丸子的半径为R ,则32√23=6×13×4√3×R ,解得R =4√69,∴丸子的体积的最大值为V max =4π3R 3=4π3×(4√69)3=512√6729π. 故选:A .22.已知函数f (x )=e x ﹣aln (ax ﹣a )+a (a >0),若关于x 的不等式f (x )>0恒成立,则实数a 的取值范围为( ) A .(0,e 2]B .(0,e 2)C .[1,e 2]D .(1,e 2)【解答】解:∵f (x )=e x ﹣aln (ax ﹣a )+a >0(a >0)恒成立, ∴e xa >ln(x −1)+lna −1, ∴e x ﹣lna+x ﹣lna >ln (x ﹣1)+x ﹣1, ∴e x﹣lna+x ﹣lna >e ln(x ﹣1)+ln (x ﹣1).令g (x )=e x +x ,易得g (x )在(1,+∞)上单调递增, ∴x ﹣lna >ln (x ﹣1),∴﹣lna >ln (x ﹣1)﹣x . ∵ln (x ﹣1)﹣x ≤x ﹣2﹣x =﹣2, ∴﹣lna >﹣2,∴0<a <e 2, ∴实数a 的取值范围为(0,e 2). 故选:B .23.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若c cos A +a cos C =2,AC 边上的高为√3,则∠ABC 的最大值为( ) A .π6B .π3C .π2D .2π3【解答】解:因为c cos A +a cos C =2, 所以由余弦定理可得c •b 2+c 2−a 22bc+a •a 2+b 2−c 22ab=2,整理可得b =2,因为AC 边上的高为√3, 所以12×2×√3=12acsinB , 所以ac =2√3sinB, 因为cos B =a 2+c 2−b 22ac≥2ac−b 22ac=1−2ac,当且仅当a =c 时取等号,所以cos B ≥1−√33sinB , 即3cos B +√3sin B ≥3, 所以2√3sin (B +π3)≥3,所以sin (B +π3)≥√32, 因为B ∈(0,π),所以B +π3∈(π3,4π3), 所以B +π3∈(π3,2π3],所以B ∈(0,π3], 则∠ABC 的最大值为π3. 故选:B .24.在平面直角坐标系xOy 中,若抛物线C :y 2=2px (p >0)的焦点为F ,直线x =3与抛物线C 交于A ,B 两点,|AF |=4,圆E 为△F AB 的外接圆,直线OM 与圆E 切于点M ,点N 在圆E 上,则OM →⋅ON →的取值范围是( ) A .[−6325,9]B .[﹣3,21]C .[6325,21]D .[3,27]【解答】解:抛物线C :y 2=2px (p >0)的焦点F (p2,0),准线方程为x =−p2, 设A (3,√6p ),所以|AF |=3+p2=4,解得p =2, 所以抛物线的方程为y 2=4x ,A (3,2√3),B (3,﹣2√3),F (1,0), 所以直线AF 的方程为y =√3(x ﹣1), 设圆心坐标为(x 0,0), 所以(x 0﹣1)2=(3﹣x 0)2+12, 解得x 0=5,即E (5,0), ∴圆的方程为(x ﹣5)2+y 2=16,不妨设y M >0,设直线OM 的方程为y =kx ,则k >0, 根据√1+k2=4,解得k =43, 由{y =43x(x −5)2+y 2=16,解得M (95,125), 设N (4cos θ+5,4sin θ), 所以OM →•ON →=365cos θ+485sin θ+9=125(3cos θ+4sin θ)+9,因为3cos θ+4sin θ=5sin (θ+φ)∈[﹣5,5], 所以OM →•ON →∈[﹣3,21]. 故选:B .25.已知双曲线x 24−y 25=1的右焦点为F ,点M 在双曲线上且在第一象限,若线段MF 的中点在以原点O为圆心,|OF |为半径的圆上,则直线MF 的斜率是( ) A .−√35B .−5√117C .5√117D .√35【解答】解:如图所示,设线段MF 的中点为H ,连接OH ,设双曲线的右焦点为F,连接MF.双曲线的左焦点为F′,连接MF′,则OH∥MF′.又|OH|=|OF|=c=3,|FH|=12|MF|=12(2a﹣2c)=a﹣c=1.设∠HFO=α,在△OHF中,tanα=√32−(12)212=√35,∴直线MF的斜率是−√35.故选:A.二.多选题(共7小题)26.下列结论正确的是()A.存在这样的四面体ABCD,四个面都是直角三角形B.存在这样的四面体ABCD,∠BAC=∠CAD=∠DAB=∠BCD=90°C.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=90°D.存在不共面的四点A、B、C、D,使∠ABC=∠BCD=∠CDA=∠DAB=90°【解答】解:对于A,在长方体ABCD﹣A1B1C1D1中,四面体A1﹣ABC的四个面都是直角三角形,所以选项A正确;对于B ,三个直角均以A 为顶点,那么△BCD 为锐角三角形,故选项B 错误;对于C ,存在不共面的四点A 、B 、C 、D ,使∠ABC =∠BCD =∠CDA =90°,如图所示,故选项C 正确;对于D ,若∠ABC =∠BCD =∠CDA =∠DAB =90°,则A ,B ,C ,D 四点共面,故选项D 错误. 故选:AC .27.已知函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),则下列说法正确的是( ) A .若a =﹣1,则f (x )是(0,12)上的减函数B .若0<a <1,则f (x )有两个零点C .若a =1,则f (x )≥0D .若a >1,则曲线y =f (x )上存在相异两点M ,N 处的切线平行 【解答】解:函数f (x )=x 2﹣ax ﹣lnx (a ∈R ),对于A ,当a =﹣1,f (x )=x 2+x ﹣lnx (x >0),f ′(x )=2x +1−1x在(0,+∞)上单调递增,又f ′(12)=0,故当x ∈(0,12)时,f ′(x )<0,则f (x )是(0,12)上的减函数,故A 正确; 对于B ,若f (x )=0,则x 2﹣ax ﹣lnx =0,故a =x −lnx x(x >0),令g (x )=x −lnx x(x >0),则g ′(x )=1−1−lnx x 2=x 2+lnx−1x 2,再令h (x )=x 2+lnx ﹣1(x >0),显然,h (x )在(0,+∞)上单调递增,又h (1)=0,所以,当x ∈(0,1)时,h (x )<0,即g ′(x )<0,则g (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h (x )>0,即g ′(x )>0,则g (x )在(1,+∞)上单调递增, 故g (x )min =g (1)=1,要使f (x )有零点,则a ≥1,故B 错误;对于C ,当a =1时,f (x )=x 2﹣x ﹣lnx (x >0),f ′(x )=2x ﹣1−1x 在(0,+∞)上单调递增,又f ′(1)=0,故当x ∈(0,1)时,f ′(x )<0,则f (x )是在(0,1)上单调递减;当x ∈(1,+∞)时,f ′(x )>0,则f (x )在(1,+∞)上单调递增,故f (x )≥f (1)=0,故C 正确;对于D ,由于f ′(x )=2x ﹣a −1x (x >0),若曲线y =f (x )上存在相异两点M (x 1,f (x 1)),N (x 2,f (x 2))处的切线平行, 则f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2), 即2x 1﹣a −1x 1=2x 2﹣a −1x 2,即2x 1−1x 1=2x 2−1x 2,也就是f ′(x )=2x ﹣a −1x =0有两异根,即a =2x −1x (x >0)有两个交点.令t (x )=2x −1x (x >0),则t (x )在(0,+∞)上单调递增,当t →0+时,t (x )→﹣∞;当t →+∞时,t (x )→+∞,故y =a 与t (x )=2x −1x (x >0)只有一个交点,故D 错误. 综上所述,AC 正确, 故选:AC .28.已知无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项,则下列结论正确的是( ) A .d 的最大值是6 B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{a n }中的项【解答】解:∵无穷等差数列{a n }的公差d ∈N *,且5,17,23是{a n }中的三项, ∴设{17−5=12=md 23−17=6=nd ,解得d =6m−n ,∴d 的最大值为6,故A 正确; ∵a 1≤5,d ∈N *,∴2a 2﹣a 8=a 1﹣5d ≤0,故B 正确;∵d =6m−n ,∴当m ﹣n =2时,d =3,数列可能为5,8,11,14,17,20,23,…,故C 错误; ∵137=23+19×6,∴137一定是等差数列{a n }中的项,故D 正确. 故选:ABD .29.已知函数f (x )=(sin x +cos x )|sin x ﹣cos x |,下列说法正确的是( ) A .f (x )是周期函数B .f (x )在区间[−π2,π2]上是增函数 C .若|f (x 1)|+|f (x 2)|=2,则x 1+x 2=kπ2(k ∈Z )D .函数g (x )=f (x )+1在区间[0,2π]上有且仅有1个零点【解答】解:f (x )=(sin x +cos x )|sin x ﹣cos x |={cos 2x −sin 2x ,sinx <cosx sin 2x −cos 2x ,sinx ≥cosx ={cos2x ,sinx <cosx−cos2x ,sinx ≥cosx .其图象如图:由图可知,f (x )是周期为2π的周期函数,故A 正确; f (x )在区间[−π2,π2]上不是单调函数,故B 错误;若|f (x 1)|+|f (x 2)|=2,由|f (x 1)|≤1,|f (x 2)|≤1,则只有|f (x 1)|=|f (x 2)|=1,即x 1,x 2只能是函数的最值点的横坐标, 可得x 1+x 2=kπ2(k ∈Z ),故C 正确;函数g (x )=f (x )+1的图象是把y =f (x )的图象向上平移1个单位得到的,则在区间[0,2π]上有且仅有2个零点,故D 错误. ∴说法正确的是AC . 故选:AC .30.已知F 1,F 2是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,过F 1作倾斜角为π3的直线分别交y 轴、双曲线右支于点M 、点P ,且|PM |=|MF 1|,下列判断正确的是( )A.E的渐近线方程为y=±√2x B.|MF2|=12|PF1|C.E的离心率等于2+√3D.∠F1PF2=π6【解答】解:如右图,由|PM|=|MF1|,可得M为PF1的中点,又O为F1F2的中点,可得OM∥PF2,∠PF2F1=90°,∠PF1F2=60°,∠F1PF2=30°,|MF2|=12|PF1|,故B正确,D正确;设|F1F2|=2c,则|PF1|=2ccos60°=4c,|PF2|=2c tan60°=2√3c,则2a=|PF1|﹣|PF2|=(4﹣2√3)c,可得e=ca =(4−2√3)c=2+√3,ba=√c2a2−1=√6+4√3,则双曲线的渐近线方程为y=±bax即为y=±√6+4√3x.故C正确,A错误.故选:BCD.31.已知函数f(x)=e x﹣cos x,x∈R,下列判断正确的是()A.f(x)在(﹣2π,−32π)单调递增B.f(x)在(﹣π,0)有2个极值点C.f(x)在(﹣2π,−π2)仅有1个极小值D.当﹣4π≤x≤﹣2π时,f(x)≤1【解答】解:函数f(x)=e x﹣cos x,则f′(x)=e x+sin x,对于A,当x∈(﹣2π,−32π)时,f′(x)>0,所以f(x)单调递增,故A正确;对于B,函数f′(x)=e x+sin x的零点,即为方程f′(x)=0的根,作出函数y=﹣sin x与函数y=e x的大致图象,如图所示:由图象可知,当x∈(﹣π,0)时,函数y=﹣sin x与函数y=e x有两个交点,则方程f′(x)=0有两个实根,所以f(x)在(﹣π,0)有2个极值点,故B正确;对于C,由图象可得,函数y=﹣sin x与函数y=e x在(﹣2π,−π2)上只有一个交点,则方程f′(x)=0只有一个实数根x0,且在(﹣2π,x0)上,f′(x)>0,f(x)单调递增,在(x0,−π2)上,f′(x)<0,f(x)单调递减,所以f(x)在x=x0处取得极大值,故C错误;对于D,当x=﹣3π时,f(x)=e﹣3π+1>1,故D错误.故选:AB.32.随着高三毕业日期的逐渐临近,有n(n≥2)个同学组成的学习小组,每人写了一个祝福的卡片准备送给其他同学,小组长收齐所有卡片后让每个人从中随机抽一张作为祝福卡片,则()A.当n=4时,每个人抽到的卡片都不是自己的概率为38B.当n=5时,恰有一人抽到自己的卡片的概率为340C.甲和乙恰好互换了卡片的概率为1n−1−1nD.记n个同学都拿到其他同学的卡片的抽法数为a n,则a n+2=(n+1)(a n+a n+1)n∈N*【解答】解:考虑n+1个同学时的情况,若n+1个同学都拿到其他同学的卡片,则第n+2个同学可以与其中任何一个交换卡片,若n+1个同学只有一个拿到自己的卡片,则第n+2个同学必须与该同学交换卡片,∴a n+2=(n+1)a n+1+(n+1)a n,故D正确;a n+2﹣(n+2)a n+1=﹣[a n+1﹣(n+1)a n],∵a1=0,a2=1,∴a n﹣na n﹣1=(﹣1)n,∴a n=n!⋅∑n i=2(−1)ii!,代入数据可得a4=9,∴当n=4时,每个人抽到的卡片都不是自己的概率为a44!=38,故A正确;当n=5时,恰有一人抽到自己的卡片的概率为5a45!=38,故B错误;甲和乙恰好互换了卡片的概率为(n−2)!n!=1n−1−1n,故C正确.故选:ACD.三.填空题(共18小题)33.已知矩形ABCD中,AB=2,BC=√3,E是CD边的中点.现以AE为折痕将△ADE折起,当三棱锥D﹣ABE的体积最大时,该三棱锥外接球的表面积为16π3.【解答】解:由题意,当平面ADE⊥平面ABE时,三棱锥D﹣ABE的高最大值,此时体积最大.∵△ADE是直角三角形,∴三棱锥D﹣ABE换成B﹣ADE∴底面△ADE外接圆半径r=12AE=1,垂直面△ABE是边长为2等边三角形,可得AE边上的高h=√3;设球心与圆心距离为d,球半径为R,R2=r2+d2……①√3−d=R⋯⋯②由①②解得R=√3;三棱锥外接球的表面积S=4πR2=16π3;故答案为:16π3.34.由正三棱锥S﹣ABC截得的三棱台ABC﹣A1B1C1的各顶点都在球O的球面上,若AB=6,三棱台ABC ﹣A1B1C1的高为2,且球心O在平面ABC与平面A1B1C1之间(不在两平面上),则AB1的取值范围为(2√6,6).【解答】解:该三棱台的横截面如图所示,因为△ABC为正三角形,且AB=6,=2√3,则AH=√3又GH=2,球心O在GH上,A,A1都在球面上,故OA=OA1,设OH=h,A1G=m,则由△A1GO和△AOH均为直角三角形,所以m2+(2﹣h)2=h2+12,解得m2=8+4h,由图可知,h∈(0,2),m∈(0,2√3),综上可得,m∈(2√2,2√3),又A1B1=√3A1G,所以A1B1∈(2√6,6),即AB1的取值范围为(2√6,6).故答案为:(2√6,6).35.设数列a1,a2,a3,a4各项互不相同,且a i∈{1,2,3,4}(i=1,2,3,4).若下列四个关系①a1=1;②a2≠1;③a3=2;④a4≠4中恰有一个正确,则(10a1+a2)﹣(10a3+a4)的最大值是18.【解答】解:若①正确,则②一定正确,因此不符合题意;若②正确,此时令a4=4,a3=1,a1=3,a2=2,则有(10a1+a2)﹣(10a3+a4)的最大值为18;若③正确,此时a4=4,a2=1,a1=3,a3=2,则有(10a1+a2)﹣(10a3+a4)的最大值为7;若④正确,此时a4=2,a3=3,a1=4,a2=1,则有(10a1+a2)﹣(10a3+a4)的最大值为9.综上可得,(10a1+a2)﹣(10a3+a4)的最大值为18.故答案为:1836.设抛物线C1:y=x2﹣2x+2和C2:y=﹣x2+ax+b在它们的一个交点处的切线互相垂直,则C2过定点(1,3).2【解答】解:∵y=x2﹣2x+2,∴y'=2x﹣2,∵y=﹣x2+ax+b,∴y'=﹣2x+a,设交点为(x0,y0),∵它们在一个交点处切线互相垂直,∴(2x0﹣2)(﹣2x0+a)=﹣1,即4x02﹣(2a+4)x0+2a﹣1=0,①由交点分别代入二次函数式,整理得,2x02﹣(2+a)x0+2﹣b=0,即4x02﹣(4+2a)x0+4﹣2b=0,②由①②整理得2a﹣1﹣4+2b=0,即a+b=52,所以C2:y=﹣x2+ax+52−a,令x=1,可得y=32,则C2过定点(1,32),故答案为:(1,32),37.在三棱锥A﹣BCD中,AB=AC=BC=BD=CD=6,AD=9,则三棱锥A﹣BCD外接球O的表面积为84π.【解答】解:如图所示:取BC的中点E,连接AE,DE,取AD的中点F,连接EF,因为AB=AC=BC=BD=CD=6,所以AE⊥BC,DE⊥BC,且三角形ABC和三角形BCD都是正三角形,所以AE=DE=3√3,即三角形ADE为等腰三角形,所以EF⊥AD,且EF平分∠AED,不妨设三角形BCD的外接圆圆心为O′,且O′在DE上,所以EO′=13ED=√3,设外接球的球心为O,半径为R,则OA=OD=R,利用面面垂直可证得平面AED⊥平面BCD,又平面AED∩平面BCD=ED,则球心O必在三角形AED中,又OA=OD=R,所以O在∠AED的角平分线EF上,连接OO′,则OO′⊥平面BCD,即OO′⊥ED,在三角形AED中,由余弦定理可得:cos∠AED=AE2+ED2−AD22AE⋅ED =−12,所以∠AED=120°,所以∠FED=12∠AED=60°,在Rt△EOO′中,tan∠FED=OO′EO′=√3=√3,所以OO′=3,在Rt△OO′D中,OD=R,O′D=2√3,所以R2=OO′2+O′D2=21,所以球O的表面积为S=4πR2=84π,故答案为:84π.38.如图,在三棱锥A﹣BCD中,BC=CD=BD=2√2,AB=AC=AD=2a,若该三棱锥的侧面积是底面积的√3倍,则该三棱锥外接球的表面积为12π.【解答】解:取BC边的中点E,连结AE,如图所示,△BCD外接圆的圆心为F,三棱锥A﹣BCD外接球的球心为O,因为AB=AC且点E为BC的中点,所以AE=√4a2−2,=3√2×√4a2−2=6√2a2−1,由此可知该三棱锥的侧面积S侧底面△BCD的面积为2√3,所以6√2a2−1=√3×2√3,解得a=1,设三棱锥A﹣BCD外接球半径为R,OF=x,因为AB=AC=AD=2,所以点A在底面BCD上的射影为点F,因为AB<BC,故三棱锥外接球球心O在直线AF的延长线上,BF为△BCD外接圆的半径,所以BF=2√6,3)2=4①,在Rt△ABF中,由勾股定理可得(R−x)2+(2√63)=R2②,在Rt△OBF中,由勾股定理可得x2+(2√63,由①②解得R=√3,x=√33所以外接球的表面积S =4πR 2=12π. 故答案为:12π.39.在△ABC 中,点M ,N 是线段BC 上的两点,|MA →|=|MB →|=|MC →|=1,MA →⋅MN →=12,则MA →⋅NA →= 12 ,|NA →|的取值范围是 (12,1] .【解答】解:根据题意,画出大致图形如下:结合题意及图形, 可知MA →•MN →+MA →•NA →=MA →•(MN →+NA →) =MA →•MA →=|MA →|2 =1,∵MA →⋅MN →=12, ∴MA →⋅NA →=1−12=12,又∵12=MA →⋅NA →=|MA →|•|NA →|•cos <MA →,NA →>=|NA →|•cos <MA →,NA →>, ∴|NA →|=12cos <MA →,NA →>,由题意可知点N 在线段BC 上,假设点N 与点B 重合,则12=MA →⋅MN →=MA →•MB →=|MA →|•|MB →|•cos <MA →,MB →>=cos <MA →,MB →>, 即cos ∠BMA =12,∴∠BMA =π3或2π3,∴∠BAM =π3或π6,即cos <MA →,NA →>=12或√32, 假设点N 与点C 重合,则12=MA →⋅MN →=MA →•MC →=|MA →|•|MC →|•cos <MA →,MC →>=cos <MA →,MC →>,此时cos <MA →,NA →>=12或√32, 综合可得,12≤cos <MA →,NA →><1, ∴1≤2cos <MA →,NA →><2, ∴12<12cos <MA →,NA →>≤1,即12<|NA →|≤1, 故答案为:12;(12,1].40.已知一圆锥纸盒母线长为6,其轴截面为正三角形,在纸盒内放置一个棱长为a 的正方体,若正方体可在纸盒内任意转动,则a 的最大值为 2 .【解答】解:由于正方体可在圆锥内任意转动,故当正方体棱长a 最大时,正方体外接球为圆锥内切球, 设圆心为P ,半径为r ,轴截面上球与圆锥母线切点为Q ,SO ⊥AB ,SO 平分AB , 由△SAB 为正三角形,SA =SB =AB =6,OA =OB =3, 因为PB 为∠SAB 的角平分线,所以∠PBA =30°,PO =OB tan30°=√3=r ,由正方体外接球直径与正方体之间的关系可得,2R =√3a , 又正方体外接球为圆锥内切球,所以√3a =2r =2√3,故a =2, 所以a 的最大值为2. 故答案为:2.41.若数列{a n}满足递推公式a n+2=a n+1+a n(n∈N*),且a1=a2,a2020=2021,则a1+a3+a5+…+a2019=2021.【解答】解:∵a1=a2,a n+2=a n+1+a n(n∈N*),且a2020=2021,∴a1+a3+a5+…+a2019=a2+a3+a5+…+a2019=a4+a5+…+a2019=…=a2018+a2019=a2020=2021,故答案为:2021.42.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC中,角A =60°,以AB、BC、AC为边向外作三个等边三角形,其外接圆圆心依次为O1、O2、O3,若三角形O1O2O3的面积为√32,则三角形ABC的周长最小值为3√2.【解答】解:由题意知△O1O2O3为等边三角形,设边长为m,则S△O1O2O3=12m2sin60°=√34m2=√32,解得|O1O2|=m=√2;设BC=a,AC=b,AB=c,如图所示:在△O1AO2中,∠O1AB=∠O1BA=30°,由∠BAC =60°,所以∠O 1AO 2=120°, 在等腰△BO 1A 中,ABO 1A=sin120°sin30°,解得O 1A =√3,同理得O 3A =√3,在△O 1AO 2中,由余弦定理得O 1O 32=O 1A 2+O 3A 2﹣2O 1A •O 3A •cos120°, 即2=c 23+b 23−2•bc 3•(−12),即b 2+c 2+bc =6,在△ABC 中,由余弦定理知, a 2=b 2+c 2﹣2bc cos A =b 2+c 2﹣bc , ∴a =√(b 2+c 2+bc)−2bc =√6−2bc , 又∵(b +c )2=b 2+c 2+bc +bc =6+bc , ∴b +c =√6+bc ,∴△ABC 的周长为a +b +c =√6−2bc +√6+bc , 又∵b 2+c 2≥2bc , ∴b 2+c 2+bc =6≥3bc , ∴bc ≤2.令f (x )=√6−2x +√6+x (0<x ≤2), 则f ′(x )=√6−2x2√6+x ,当f ′(x )<0时,有√6−2x2√6+x0,解得x >3,∴f (x )在(0,2]上单调递减, ∴当x =2时取得最小值,f (2)=3√2. ∴a +b +c ≥3√2,即△ABC 的周长最小值为3√2. 故答案为:3√2.43.设函数f (x )的定义域为D ,若存在x 0∈D ,使得f (x 0+1)=f (x 0)+f (1),则称x 0为函数f (x )的“可拆点”.若函数f(x)=log 2a1+x 2在(0,+∞)上存在“可拆点”,则正实数a 的取值范围为 [3−√5,2) . 【解答】解:由已知可得函数f (x )有“可拆点”, 则log 2(a1+x 2)+log 2(a2)=log 2(a1+(1+x)2)成立,即a1+(1+x)2=a1+x2⋅a2,整理可得:(2﹣a)x2﹣2ax+2﹣2a=0,从而问题转化为方程(2﹣a)x2﹣2ax+2﹣2a=0在区间(0,+∞)上有解,设h(x)=(2﹣a)x2﹣2ax+2﹣2a,由已知可得a>0,则当a>2且x>0时,h(x)<0,方程h(x)=0无解,不满足题意,当a=2时,方程h(x)=0的根为−12,不满足题意,当0<a<2时,函数h(x)的图象的对称轴为x=a2−a>0,要使方程h(x)=0在区间(0,+∞)上有解,只需△=4a2﹣4(2﹣a)(2﹣2a)≥0,解得3−√5≤a≤3+√5,所以3−√5≤a<2,故实数a的取值范围为:[3−√5,2).故答案为:[3−√5,2).44.在棱长为√2的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于√312.【解答】解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又AC=√2AB=2,所以HC=HG=13D1C=13AC⋅√32=√33,所以点Q的轨迹所组成的图形的面积S=12CH⋅HG⋅sin120°=√312.故答案为:√312.45.已知F1,F2分别为双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点,过点F2作圆x2+y2=a2的切线交双曲线左支于点M,且∠F1MF2=60°,则该双曲线的渐近线方程为y=±(1+√33)x.【解答】解:设切点为A,过F1作F1B⊥MF2,垂足为B,由题意可得|OA|=a,|OF2|=c,|AF2|=√c2−a2=b,由OA为△BF1F2的中位线,可得|BF1|=2a,|BF2|=2b,又∠F1MF2=60°,可得|MF1|=|BF1|sin60°=√3,|MB|=√3|MF2|=|MB|+|BF2|=√32b,又|MF2|﹣|MF1|=√3+2b√3=2a,所以b=(1+√33)a,所以双曲线的渐近线方程为y=±(1+√33)x.故答案为:y=±(1+√33)x.46.已知函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,现有以下四个命题:①f(x)﹣g(x)是奇函数;②函数f(x)的图象与函数g(x)的图象关于原点中心对称;③对任意x∈R,恒有f(x)≥g(x);④函数f(x)与函数h(x)的最小值相同其中正确命题的序号是③④.【解答】解:函数f(x)=xe x,g(x)=xe x,h(x)=xlnx,对于①,令F(x)=f(x)﹣g(x)=x•e x﹣x•e﹣x,由于F(﹣x)=F(x)故函数F(x)为偶函数,故①错误;对于②,函数f(﹣x)=﹣x•e﹣x≠﹣f(x),所以函数f(x)不为奇函数,函数g(﹣x)=−xe−x=−x⋅e x≠−g(x),所以函数g(x)不为奇函数,故②错误;对于③,当x=0时,f(x)=g(x)=0,当x>0时,e2x>1,得到e x>1e x,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),当x<0时,e2x<1,整理得e x<1e x ,两边同乘以x得到x⋅e x>xe x,即f(x)>g(x),故③正确;对于④,f′(x)=(1+x)•e x,令f′(x)<0,得到x<﹣1,f′(x)>0,得到x>﹣1,所以函数f(x)的最小值为f(﹣1)=−e−1=−1e.h′(x)=1+lnx(x>0),令h ′(x )<0,解得0<x <1e , 令h ′(x )>0,解得x >1e ,所以函数h (x )的最小值为h (1e )=1e ⋅ln 1e =−1e =f(−1),故④正确; 故选:③④.47.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin A +2sin B =2cos A sin C ,a +b =3√2,△ABC 的面积是√3,则边长c = √14 . 【解答】解:∵sin A +2sin B =2cos A sin C , ∴sin A +2sin (A +C )=2cos A sin C , 即sin A +2sin A cos C +2cos A sin C =2cos A sin C , 即sin A +2sin A cos C =0, ∵sin A ≠0,∴cos C =−12,则C =120°, ∵△ABC 的面积是S =12ab ×√32=√3,∴ab =4,则c 2=a 2+b 2﹣2ab ×(−12)=(a +b )2﹣ab =18﹣4=14, 则c =√14, 故答案为:√14.48.抛物线C :y 2=2px (p >0)的焦点为F ,其准线与x 轴的交点为A ,如果在直线x +y +4=0上存在点M ,使得∠FMA =90°,则实数p 的取值范围是 [4√2,+∞) . 【解答】解:由题意可得F (p2,0),A (−p2,0),∵M 在直线x +y +4=0上,设点M (x ,﹣x ﹣4), ∴AM →=(x +p2,﹣x ﹣4),FM →=(x −p2,﹣x ﹣4),又∠FMA =90°,∴AM →•FM →=(x +p 2)(x −p2)+(﹣x ﹣4)2=0, 即2x 2+8x +16−p24=0,∴△=82﹣4×2×(16−p24)=2p2﹣64≥0,解得p ≤﹣4√2或p ≥4√2, 又p >0,∴p 的取值范围是[4√2,+∞). 故答案为:[4√2,+∞). 49.已知F 1,F 2是双曲线C 1:x 2a2−y 2b 2=1(a >0,b >0)与椭圆C 2:x 225+y 29=1的公共焦点,点P ,Q 分别是曲线C 1,C 2在第一、第三象限的交点,四边形PF 1QF 2的面积为6√6,设双曲线C 1与椭圆C 2的离心率依次为e 1,e 2,则e 1+e 2=2√10+45.【解答】解:由题意可得a 2+b 2=16,根据双曲线C 1与椭圆C 2的对称性可得△PF 1F 2的面积为3√6, 设P (x 0,y 0),(x 0,y 0>0),则{12⋅8⋅y 0=3√6x 0225+y 029=1,解得x 0=5√104,y 0=3√64, 代入双曲线的方程结合b 2=16﹣a 2,可得a 4﹣35a 2+250=0,结合0<a <c =4,解得a =√10, 双曲线的离心率为e 1=c a=√10=2√105, 而椭圆的离心率e 2=45, ∴e 1+e 2=2√10+45. 故答案为:2√10+45.50.一个球被平面截下的一部分叫做球缺,截面叫做球缺的底面,垂直于截面的直径被截下的线段长叫做球缺的高,球缺的体积公式为V =π3(3R −ℎ)ℎ2,其中R 为球的半径,h 为球缺的高.若一球与一棱长为。
2024全国数学高考压轴题(数列选择题)附答案
2024全国数学高考压轴题(数列)一、单选题1.若数列{b n }、{c n }均为严格增数列 且对任意正整数n 都存在正整数m 使得b m ∈[c n ,c n+1] 则称数列{b n }为数列{c n }的“M 数列”.已知数列{a n }的前n 项和为S n 则下列选项中为假命题的是( )A .存在等差数列{a n } 使得{a n }是{S n }的“M 数列”B .存在等比数列{a n } 使得{a n }是{S n }的“M 数列”C .存在等差数列{a n } 使得{S n }是{a n }的“M 数列”D .存在等比数列{a n } 使得{S n }是{a n }的“M 数列”2.已知函数f(x)及其导函数f ′(x)的定义域均为R 记g(x)=f ′(x).若f(x +3)为奇函数 g(32+2x)为偶函数 且g(0)=−3 g(1)=2 则∑g 2023i=1(i)=( ) A .670B .672C .674D .6763.我们知道按照一定顺序排列的数字可以构成数列 那么按照一定顺序排列的函数可以构成函数列.设无穷函数列{f n (x)}(n ∈N +)的通项公式为f n (x)=n 2+2nx+x 2+1(n+x)(n+1)x ∈(0,1) 记E n 为f n (x)的值域 E =U n=1+∞E n 为所有E n 的并集 则E 为( )A .(56,109)B .(1,109)C .(56,54)D .(1,54)4.已知等比数列{x n }的公比q >−12则( )A .若|x 1+x 2+⋅⋅⋅+x 100|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|<10B .若|x 1+x 2+⋅⋅⋅+x 100|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 100|>10C .若|x 1+x 2+⋅⋅⋅+x 101|<1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|<10D .若|x 1+x 2+⋅⋅⋅+x 101|>1 则√|x 1|+√|x 2|+⋅⋅⋅+√|x 101|>105.已知数列{a n } {b n }满足a 1=2 b 1=12 {a n+1=b n +1an b n+1=a n +1bn,,,n ,∈,N ∗ 则下列选项错误的是( ) A .a 2b 2=14B .a 50⋅b 50<112C .a 50+b 50=52√a 50⋅b 50D .|a 50−b 50|≤156.已知数列{a n }满足:a 1=2 a n+1=13(√a n +2a n )(n ∈N ∗).记数列{a n }的前n 项和为S n 则( )A .12<S 10<14B .14<S 10<16C .16<S 10<18D .18<S 10<207.已知数列 {a n } 满足: a 1=100,a n+1=a n +1an则( )A .√200+10000<a 101<√200.01+10000B .√200.01+10000<a 101<√200.1+10000C .√200.1+10000<a 101<√201+10000D .√201+10000<a 101<√210+100008.已知数列 {a n } 满足 a 1=a(a >0) √a n+1a n =a n +1 给出下列三个结论:①不存在 a 使得数列 {a n } 单调递减;②对任意的a 不等式 a n+2+a n <2a n+1 对所有的 n ∈N ∗ 恒成立;③当 a =1 时 存在常数 C 使得 a n <2n +C 对所有的 n ∈N ∗ 都成立.其中正确的是( ) A .①②B .②③C .①③D .①②③9.已知F 为抛物线y 2=4x 的焦点 点P n (x n ,y n )(n =1,2,3,⋯)在抛物线上.若|P n+1F|−|P n F|=1 则( ) A .{x n }是等差数列 B .{x n }是等比数列 C .{y n }是等差数列D .{y n }是等比数列10.已知数列 11 21 12 31 22 13 41 32 23 14… 其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数 并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数 并且从大到小排列 依次类推.此数列第n 项记为 a n 则满足 a n =5 且 n ≥20 的n 的最小值为( ) A .47B .48C .57D .5811.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n ,B n ,C n 所对的边分别为a n ,b n ,c n 面积为S n .若b 1=4,c 1=3,b n+12=a n+12+c n 23,c n+12=a n+12+b n 23则下列选项错误的是( )A .{S 2n }是递增数列B .{S 2n−1}是递减数列C .数列{b n −c n }存在最大项D .数列{b n −c n }存在最小项12.已知数列{a n }的各项都是正数 a n+12−a n+1=a n (n ∈N ∗).记b n =(−1)n−1a n −1数列{b n }的前n 项和为S n 给出下列四个命题:①若数列{a n }各项单调递增 则首项a 1∈(0,2)②若数列{a n }各项单调递减 则首项a 1∈(2,+∞)③若数列{a n }各项单调递增 当a 1=32时 S 2022>2④若数列{a n }各项单调递增 当a 1=23时S2022<−5则以下说法正确的个数()A.4B.3C.2D.113.已知正项数列{a n}对任意的正整数m、n都有2a m+n≤a2m+a2n则下列结论可能成立的是()A.a nm+a mn=a mn B.na m+ma n=a m+n C.a m+a n+2=a mn D.2a m⋅a n=a m+n14.古希腊哲学家芝诺提出了如下悖论:一个人以恒定的速度径直从A点走向B点要先走完总路程的三分之一再走完剩下路程的三分之一如此下去会产生无限个“剩下的路程” 因此他有无限个“剩下路程的三分之一”要走这个人永远走不到终点.另一方面我们可以从上述第一段“三分之一的路程”开始通过分别计算他在每一个“三分之一距离”上行进的时间并将它们逐个累加不难推理出这个人行进的总时间不会超过一个恒定的实数.记等比数列{a n}的首项a1=13公比为q 前n项和为S n则造成上述悖论的原理是()A.q=16,∃t∈R,∀n∈N ∗,Sn<t B.q=13,∃t∈R,∀n∈N∗,S n<tC.q=12,∃t∈R,∀n∈N ∗,Sn<t D.q=23,∃t∈R,∀n∈N∗,S n<t15.已知sinx,siny,sinz依次组成严格递增的等差数列则下列结论错误的是()A.tanx,tany,tanz依次可组成等差数列B.cosx,cosy,cosz依次可组成等差数列C.cosx,cosz,cosy依次可组成等差数列D.cosz,cosx,cosy依次可组成等差数列16.记U={1,2,⋯,100}.对数列{a n}(n∈N∗)和U的子集T 若T=∅定义S T=0;若T={t1,t2,⋯,t k}定义S T=a t1+a t2+⋯+a tk.则以下结论正确的是()A.若{a n}(n∈N∗)满足a n=2n−1,T={1,2,4,8}则S T=15B.若{a n}(n∈N∗)满足a n=2n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T< a kC.若{a n}(n∈N∗)满足a n=3n−1则对任意正整数k(1≤k≤100),T⊆{1,2,⋯,k},S T≥a k+1D .若{a n }(n ∈N ∗)满足a n =3n−1 且C ⊆U ,D ⊆U ,S C ≥S D 则S C +S C∩D ≥2S D17.已知数列 {a n }、{b n }、{c n } 满足 a 1=b 1=c 1=1,c n =a n+1−a n ,c n+2=bn+1b n ⋅c n (n ∈N ∗),S n =1b 2+1b 3+⋯+1b n (n ≥2),T n =1a 3−3+1a 4−4+⋯+1a n −n (n ≥3) 则下列有可能成立的是( )A .若 {a n } 为等比数列 则 a 20222>b 2022B .若 {c n } 为递增的等差数列 则 S 2022<T 2022C .若 {a n } 为等比数列 则 a 20222<b 2022D .若 {c n } 为递增的等差数列 则 S 2022>T 202218.已知数列{a n }满足a 1=1 a n =a n−1+4(√a n−1+1√an−1)(n ∈N ∗,n ≥2) S n 为数列{1a n }的前n 项和 则( ) A .73<S 2022<83B .2<S 2022<73C .53<S 2022<2 D .1<S 2022<5319.已知数列{a n }满足a n ⋅a n+1⋅a n+2=−1(n ∈N ∗),a 1=−3 若{a n }的前n 项积的最大值为3 则a 2的取值范围为( ) A .[−1,0)∪(0,1] B .[−1,0)C .(0,1]D .(−∞,−1)∪(1,+∞)20.已知正项数列{a n }的前n 项和为S n (a n +1)2=4S n 记b n =S n ⋅sin nπ2+S n+1⋅sin (n+1)π2若数列{b n }的前n 项和为T n 则T 100=( ) A .-400B .-200C .200D .40021.设S n 是等差数列{a n }的前n 项和 a 2=−7 S 5=2a 1 当|S n |取得最小值时 n =( )A .10B .9C .8D .722.已知数列{a n }中 a 2+a 4+a 6=285 na n =(n −1)a n+1+101(n ∈N ∗) 当数列{a n a n+1a n+2}(n ∈N ∗)的前n 项和取得最大值时 n 的值为( ) A .53B .49C .49或53D .49或5123.定义在R 上的函数序列{f n (x)}满足f n (x)<1nf n ′(x)(f n ′(x)为f n (x)的导函数) 且∀x ∈N ∗ 都有f n (0)=n .若存在x 0>0 使得数列{f n (x 0)}是首项和公比均为q 的等比数列 则下列关系式一定成立的是( ).A .0<q <2√2e x 0B .0<q <√33e x 0C .q >2√2e x 0D .q >√33e x 024.已知数列{a n }的前n 项和为S n 满足a 1=1 a 2=2 a n =a n−1⋅a n+1(n ≥2) 则( )A .a 1:a 2:a 3=a 6:a 7:a 8B .a n :a n+1:a n+2=1:2:2C .S 6 S 12 S 18成等差数列D .S 6n S 12n S 18n 成等比数列25.已知S n 为数列{a n }的前n 项和 且a 1=1 a n+1+a n =3×2n 则S 100=( )A .2100−3B .2100−2C .2101−3D .2101−226.已知 {a n } 为等比数列 {a n } 的前n 项和为 S n 前n 项积为 T n 则下列选项中正确的是( )A .若 S 2022>S 2021 则数列 {a n } 单调递增B .若 T 2022>T 2021 则数列 {a n } 单调递增C .若数列 {S n } 单调递增 则 a 2022≥a 2021D .若数列 {T n } 单调递增 则 a 2022≥a 2021二、多选题27.“冰雹猜想”也称为“角谷猜想” 是指对于任意一个正整数x 如果x 是奇数㩆乘以3再加1 如果x 是偶数就除以2 这样经过若干次操作后的结果必为1 犹如冰雹掉落的过程.参照“冰雹猜想” 提出了如下问题:设k ∈N ∗ 各项均为正整数的数列{a n }满足a 1=1 a n+1={a n2,a n 为偶数,a n +k ,a n 为奇数,则( )A .当k =5时 a 5=4B .当n >5时 a n ≠1C .当k 为奇数时 a n ≤2kD .当k 为偶数时 {a n }是递增数列28.已知数列{a n } a 2=12且满足a n+1a n 2=a n −a n+1 n ∈N ∗ 则( ) A .a 4−a 1=1929B .a n 的最大值为1C .a n+1≥1n+1D .√a 1+√a 2+√a 3+⋅⋅⋅+√a 35>1029.已知数列{a n }的前n 项和为S n a 1=1 且4a n ⋅a n+1=a n −3a n+1(n =1 2 …) 则( )A .3a n+1<a nB .a 5=1243C .ln(1an )<n +1D .1≤S n <171430.如图 已知正方体ABCD −A 1B 1C 1D 1顶点处有一质点Q 点Q 每次会随机地沿一条棱向相邻的某个顶点移动 且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处 记点Q 移动n 次后仍在底面ABCD 上的概率为P n 则下列说法正确的是( )A .P 2=59B .P n+1=23P n +13C .点Q 移动4次后恰好位于点C 1的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为12(13)10+1231.已知数列{a n } {b n } 有a n+1=a n −b n b n+1=b n −a n n ∈N ∗ 则( )A .若存在m >1 a m =b m 则a 1=b 1B .若a 1≠b 1 则存在大于2的正整数n 使得a n =0C .若a 1=a a 2=b 且a ≠b 则b 2022=−b ×22020D .若a 1=−1 a 2=−3 则关于x 的方程2a 3+(2a 3+1)cosx +2cos2x +cos3x =0的所有实数根可构成一个等差数列32.已知△A n B n C n (n =1,2,3,⋯)是直角三角形 A n 是直角 内角A n 、B n 、C n 所对的边分别为a n 、b n 、c n 面积为S n 若b 1=4 c 1=3 b n+12=a n+12+c n 23 c n+12=a n+12+b n 23则( ) A .{S 2n }是递增数列 B .{S 2n−1}是递减数列 C .{b n −c n }存在最大项D .{b n −c n }存在最小项33.已知S n 是数列{a n }的前n 项和 且S n+1=−S n +n 2 则下列选项中正确的是( ).A .a n +a n+1=2n −1(n ≥2)B .a n+2−a n =2C .若a 1=0 则S 100=4950D .若数列{a n }单调递增 则a 1的取值范围是(−14,13)三、填空题34.已知n ∈N ∗ 将数列{2n −1}与数列{n 2−1}的公共项从小到大排列得到新数列{a n } 则1a 1+1a 2+⋯+1a 10= .35.若函数f(x)的定义域为(0,+∞) 且f(x)+f(y)=f(xy) f(a n )=n +f(n) 则∑f ni=1(a i i )= .36.在数列{a n }中 a 1=1 a n+1=a n +1an(n∈N ∗) 若t ∈Z 则当|a 7−t|取得最小值时 整数t 的值为 .37.已知函数f(x)满足f(x −2)=f(x +2),0≤x <4时 f(x)=√4−(x −2)2 g(x)=f(x)−k n x(n ∈N ∗,k n >0).若函数g(x)的图像与x 轴恰好有2n +1个不同的交点 则k 12+k 22+⋅⋅⋅+k n 2= .38.已知复数z =1+i 对于数列{a n } 定义P n =a 1+2a 2+⋅⋅⋅+2n−1a n n为{a n }的“优值”.若某数列{a n}的“优值”P n =|z|2n 则数列{a n }的通项公式a n = ;若不等式a n 2−a n +4≥(−1)nkn 对于∀n ∈N ∗恒成立 则k 的取值范围是 .39.数列{a n }是公比为q(q ≠1)的等比数列 S n 为其前n 项和. 已知a 1⋅a 3=16 S3q=12 给出下列四个结论: ①q <0 ;②若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是3; ③若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最大 则m 的一个可能值是4; ④若存在m 使得a 1,a 2,⋅⋅⋅,a m 的乘积最小 则m 的值只能是2. 其中所有正确结论的序号是 .40.如图 某荷塘里浮萍的面积y (单位:m 2)与时间t (单位:月)满足关系式:y =a t lna (a 为常数) 记y =f(t)(t ≥0).给出下列四个结论:①设a n=f(n)(n∈N∗)则数列{a n}是等比数列;②存在唯一的实数t0∈(1,2)使得f(2)−f(1)=f′(t0)成立其中f′(t)是f(t)的导函数;③常数a∈(1,2);④记浮萍蔓延到2m23m26m2所经过的时间分别为t1t2t3则t1+t2>t3.其中所有正确结论的序号是.41.在现实世界很多信息的传播演化是相互影响的.选用正实数数列{a n}{b n}分别表示两组信息的传输链上每个节点处的信息强度数列模型:a n+1=2a n+b n,b n+1=a n+2b n(n=1,2⋯)描述了这两组信息在互相影响之下的传播演化过程.若两组信息的初始信息强度满足a1>b1则在该模型中关于两组信息给出如下结论:①∀n∈N∗,a n>b n;②∀n∈N∗,a n+1>a n,b n+1>b n;③∃k∈N∗使得当n>k时总有|a nb n−1|<10−10④∃k∈N∗使得当n>k时总有|a n+1a n−2|<10−10.其中所有正确结论的序号是答案解析部分1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】A10.【答案】C11.【答案】B12.【答案】B13.【答案】D14.【答案】D15.【答案】B16.【答案】D17.【答案】B18.【答案】D19.【答案】A20.【答案】C21.【答案】C22.【答案】D23.【答案】D24.【答案】C25.【答案】D26.【答案】D27.【答案】A,C,D28.【答案】B,C,D29.【答案】A,D30.【答案】A,C,D 31.【答案】A,C,D 32.【答案】A,C,D 33.【答案】A,C 34.【答案】102135.【答案】n(n+1)236.【答案】4 37.【答案】n 4(n+1) 38.【答案】n+1;[−163,5] 39.【答案】①②③ 40.【答案】①②④ 41.【答案】①②③。
高考数学复习:三角函数选择题压轴题
高考数学复习:三角函数选择题压轴题一、单选题1.设函数()()()2sin 10f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间3,44ππ⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .816,33⎡⎫⎪⎢⎣⎭B .164,3⎡⎫⎪⎢⎣⎭C .204,3⎡⎫⎪⎢⎣⎭D .820,33⎡⎫⎪⎢⎣⎭2.函数()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭的最大值为( )A.1BC.D .33.将函数()cos f x x =的图象先向右平移56π个单位长度,再把所得函数图象的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3,22ππ⎛⎫⎪⎝⎭上没有零点,则ω的取值范围是( ) A .2280,,939⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦B .80,9⎛⎤ ⎥⎝⎦C .280,,199⎛⎫⎡⎤⋃ ⎪⎢⎥⎝⎭⎣⎦D .(]0,1 4.已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭D.⎫⎪⎪⎝⎭5.已知函数()f x 在()0,1恒有()()2xf x f x '>,其中()f x '为函数()f x 的导数,若α,β为锐角三角形两个内角,则( )A .22sin (sin )sin (sin )f f βααβ>B .22cos (sin )sin (cos )f f βααβ>C .22cos (cos )cos (cos )f f βααβ>D .22sin (cos )sin (cos )f f βααβ>6.已知函数()sin (0,)=->∈f x x x x ωωωR 的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论,其中所有正确结论的序号是( ) ①函数()g x 是奇函数 ②()g x 的图象关于直线6x π=对称③()g x 在,33ππ⎡⎤-⎢⎥⎣⎦上是增函数 ④当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[]0,2 A .①③B .③④C .②D .②③④7.若1tan 23=α,则()5πsin 12sin 3παα⎛⎫+- ⎪⎝⎭=-( ) A .13-B .3-C .13D .38.已知函数1()sin (sin cos )2f x x x x ωωω=+-()0ω>在区间(0,)π上恰有1个最大值点和1个最小值点,则ω的取值范围是( ) A .711,88⎛⎫⎪⎝⎭B .711,88⎛⎤⎥⎝⎦C .79,88⎛⎤⎥⎝⎦D .79,88⎛⎫⎪⎝⎭9.已知函数()sin()(0,)2f x A x A πωϕϕ=+><的图像如图所示,且()f x 的图像关于点()0,0x 对称,则0x 的最小值为( )A .23π B .6π C .3π D .56π 10.函数①()sin cos f x x x =+,②()sin cos f x x x =,③21()cos 42f x x π⎛⎫=+- ⎪⎝⎭中,周期是π且为奇函数的所有函数的序号是( ) A .①② B .②C .③D .②③11.已知()22ππα∈-,,1cos()65πα+=,则sin(2)3πα+=( )A B C D .25-12.已知函数()()cos 03f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在区间(),2ππ上不存在零点,则ω的取值范围是( )A .70,12⎛⎤ ⎥⎝⎦B .1170,,12612⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .117,,112612⎛⎫⎛⎤ ⎪ ⎥⎝⎭⎝⎦D .17,1212⎡⎤⎢⎥⎣⎦13.函数()1cos 2f x x x x π⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭的图象可能为( ) A . B .C .D .14.若函数()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调,且在0,3π⎛⎫⎪⎝⎭上存在极值点,则ω的取值范围是( ) A .1,23⎛⎤ ⎥⎝⎦B .1,22⎛⎤⎥⎝⎦C .17,26⎛⎤⎥⎝⎦D .70,6⎛⎤ ⎥⎝⎦15.在ABC 中,3AB =,5BC =,D 为BC 边上一点,且满足32BD DC =,此时23ADC ∠=π,则AC 边长等于( )AB .72C .4D 16.已知函数()cos f x x ω=(0>ω),将()f x 的图像向右平移3ωπ个单位得到函数()g x 的图像,点A ,B ,C 是()f x 与()g x 图像的连续相邻三个交点,若ABC 是钝角三角形,则ω的取值范围为( )A .⎛⎫ ⎪ ⎪⎝⎭B .⎛⎫⎪ ⎪⎝⎭C .,⎫+∞⎪⎪⎝⎭D .,⎫+∞⎪⎪⎝⎭17.已知函数()()cos 0f x x x ωωω=->满足()()124f x f x -=,且12x x -的最小值为2π,则8f π⎛⎫⎪⎝⎭的值为( )A .2B .1CD .218.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、C 、B 成等差数列,角C 的角平分线交AB 于点D ,且CD =3a b =,则c 的值为( )A .3B .72C .3D .19.已知ABC 中,D 、E 分别是线段BC 、AC 的中点,AD 与BE 交于点O ,且90BOC ∠=°,若2BC =,则ABC 周长的最大值为( )A .2+B .2C .2+D .2+20.若0.212021a =,2021sin 5b π=,2021log 0.21c =,则( ) A .c a b << B .b a c << C .b c a <<D .c b a <<21.如图,已知A ,B 分别是半径为2的圆C 上的两点,且45ACB ∠=︒,P 为劣弧AB 上一个异于A ,B 的一点,过点P 分别作PM CA ⊥,PN CB ⊥,垂足分别为M ,N ,则MN 的长为( )A BC .2D .3222.如图,D 是ABC 外一点,若90ABC ∠=︒,tan DAB ∠=,5AB =,7AD =,105CDB ∠=°,则CD =( )A .B .4C .D .823.已知()()()2sin 0f x x ωϕω+>=同时满足以下条件: ①当()()124f x f x -=时,12x x -最小值为2π; ②71212f x f x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭; ③()04f f π⎛⎫>⎪⎝⎭. 若()f x a =在[]0,π有2个不同实根m ,n ,且3m n π-≥,则实数a 的取值范围为( )A .⎡⎣B .[)0,1 C .(D .[)1,1-24.已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><的图象如图所示,且()f x 的图象关于点0(,0)x对称,则0x 的最小值为( ) A .23π B .56π C .3π D .6π25.设函数()sin()1,0,0,2f x A x A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的最大值为2,其图象相邻两个对称中心之间的距离为2π,且()f x 的图象关于直线12x π=对称,则下列判断正确的是( ) A .函数()y f x =在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 B .函数()y f x =的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .函数()y f x =的图象关于直线512x π=-对称 D .要得到sin 21y x =+的图象,只需将()f x 图象向右平移3π个单位26.若sin170tan10λ︒+︒=λ的值为( )AB .2 C D 27.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列条件使得ABC 无法唯一确定的是( ) A .3,15,25a B C ==︒=︒ B .3,4,40a b C ===︒ C .3,4,40a b A ===︒ D .3,4,40a b B ===︒28.已知,42ππθ⎛⎫∈⎪⎝⎭,且4sin 45πθ⎛⎫+= ⎪⎝⎭,则tan θ=( )A .7B .43C .17D .12529.已知1x ,2x ,是函数()()()tan 0,0f x x ωϕωϕπ=-><<的两个零点,且12x x -的最小值为3π,若将函数()f x 的图象向左平移12π个单位长度后得到的图象关于原点对称,则ϕ的最大值为( ) A .34πB .4π C .78π D .8π 30.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且cos 2cos()a b A c c A C =++,则B 的大小为( ) A .6π B .3πC .23π D .56π 31.函数0,0()sin ,0ln x f x x x x x=⎧⎪=-⎨≠⎪⎩的部分图像大致为( )A .B .C .D .二、多选题:32.知函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭,则下述结论中正确的是( )A .若()f x 在[]0,2π有且仅有4个零点,则()f x 在[]0,2π有且仅有2个极小值点 B .若()f x 在[]0,2π有且仅有4个零点,则()f x 在20,15π⎛⎫⎪⎝⎭上单调递增 C .若()f x 在[]0,2π有且仅有4个零点,则ω的范是1519,88⎡⎫⎪⎢⎣⎭D .若()f x 的图象关于4x π=对称,且在5,1836ππ⎛⎫⎪⎝⎭单调,则ω的最大值为933.已知函数()2sin sin 2f x x x =+-,则下列结论正确的有( ) A .函数()f x 的最小正周期为π B .函数()f x 在[],ππ-上有2个零点C .函数()f x 的图象关于(π对称D .函数()f x 的最小值为34.将函数()()πcos 02f x x ωω⎛⎫=-> ⎪⎝⎭的图象向右平移π2个单位长度后得到函数()g x 的图象,且()01g =-,则下列说法正确的是( )A .()g x 为奇函数B .π02g ⎛⎫-= ⎪⎝⎭C .当5ω=时,()g x 在()0,π上有4个极值点D .若()g x 在π0,5⎡⎤⎢⎥⎣⎦上单调递增,则ω的最大值为535.已知函数()2sin cos 1f x x x +=-,则( ) A .()f x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增 B .直线2x π=是()f x 图象的一条对称轴C .方程()1f x =在[]0,π上有三个实根D .()f x 的最小值为1-36.函数()sin 24f x x π⎛⎫=+⎪⎝⎭,则( ) A .函数()y f x =的图象可由函数sin 2y x =的图象向右平移4π个单位得到B .函数()y f x =的图象关于直线8x π=轴对称C .函数()y f x =的图象关于点,08π⎛⎫- ⎪⎝⎭中心对称D .函数2()y x f x =+在08π⎛⎫⎪⎝⎭,上为增函数37.已知函数()()()sin 0,0,0πf x A x B A ωϕωϕ=++>><<的部分自变量、函数值如下表所示,下列结论正确的是( ).A .函数解析式为()5π3sin 226f x x ⎛⎫ ⎝=⎪⎭++ B .函数()f x 图象的一条对称轴为2π3x =- C .5π,012⎛⎫-⎪⎝⎭是函数()f x 图象的一个对称中心 D .函数()f x 的图象左平移π12个单位,再向下移2个单位所得的函数为奇函数 38.如图,某校测绘兴趣小组为测量河对岸直塔AB (A 为塔顶,B 为塔底)的高度,选取与B 在同一水平面内的两点C 与D (B ,C ,D 不在同一直线上),测得CD s =.测绘兴趣小组利用测角仪可测得的角有:,,,,,ACB ACD BCD ADB ADC BDC ∠∠∠∠∠∠,则根据下列各组中的测量数据可计算出塔AB 的高度的是( )A .,,,s ACB BCD BDC ∠∠∠ B .,,,s ACB BCD ACD ∠∠∠ C .,,,s ACB ACD ADC ∠∠∠D .,,,s ACB BCD ADC ∠∠∠39.已知定义在R 上的奇函数,满足(2)()0f x f x -+=,当(0,1]x ∈时,2()log f x x =-,若函数()()tan()F x f x x π=-,在区间[1,]m -上有10个零点,则m 的取值可以是( )A .3.8B .3.9C .4D .4.140.已知函数()()()sin 0,0,πf x A x A ωϕωϕ=+>><的部分图像如图所示,将函数()f x 的图像上所有点的横坐标变为原来的23,纵坐标不变,再将所得函数图像向右平移π6个单位长度,得到函数()g x 的图像,则下列关于函数()g x 的说法正确的是( ).A .()g x 的最小正周期为2π3B .()g x 在区间ππ,93⎡⎤⎢⎥⎣⎦上单调递增C .()g x 的图像关于直线4π9x =对称 D .()g x 的图像关于点π,09⎛⎫⎪⎝⎭成中心对称 41.将函数()2πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π6个单位长度后得到函数()g x 的图象,则下列说法正确的是( )A .π4g ⎛⎫⎪⎝⎭B .π,06⎛⎫⎪⎝⎭是函数()g x 图象的一个对称中心 C .函数()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增D .函数()g x 在ππ,63⎡⎤-⎢⎥⎣⎦上的值域是,22⎡-⎢⎣⎦42.如图是函数()cos y x ωϕ=+的部分图象,则()cos x ωϕ+=( )A .sin 26xB .cos 23x π⎛⎫-+⎪⎝⎭ C .cos 26x π⎛⎫+⎪⎝⎭D .2sin 23x π⎛⎫+⎪⎝⎭43.如图,函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象经过点,012π⎛⎫-⎪⎝⎭和5,012π⎛⎫⎪⎝⎭,则( ) A .1ω= B .6π=ϕ C .函数()f x 的图象关于直线23x π=对称 D .若6,65f πα⎛⎫-= ⎪⎝⎭则223sin cos 5αα-=44.已知函数()22sin cos f x x x x =+,则下列结论中正确的是( )A .()f x 的图象是由y= 2sin2x 的图象向左移3π个单位得到的 B .()f x 在,03π⎡⎤-⎢⎥⎣⎦上单调递增 C .()f x 的对称中心的坐标是(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭D .函数()()g x f x =[]0,10内共有8个零点 45.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有4个零点,则( ). A .()f x 在0,5π⎛⎫⎪⎝⎭单调递增B .ω的取值范围是1912,105⎡⎫⎪⎢⎣⎭C .()f x 在(0,2)π有2个极小值点D .()f x 在(0,2)π有3个极大值点46.已知函数()|sin 2|cos2f x x x =+,则( )A .()()f x f x π=+B .()f x 的最小值为C .()f x 的图象关于8x π=对称D .()f x 在,82ππ⎛⎫⎪⎝⎭上单调递减47.已知函数()()sin 22sin cos 644f x x x x x πππ⎛⎫⎛⎫⎛⎫=--++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R ,现给出下列四个命题,其中正确的是( )A .函数()f x 的最小正周期为2πB .函数()f xC .函数()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增D .将函数()f x 的图象向左平移512π个单位长度,得到的函数解析式为()()2g x x = 48.已知函数22()(sin cos )2cos f x x x x =++,则( ) A .()f x 的最小正周期是πB .()f x 的图像可由函数()22g x x =+的图像向左平移8π个单位而得到 C .4x π=是()f x 的一条对称轴D .()f x 的一个对称中心是,08π⎛⎫- ⎪⎝⎭三角函数选择压轴题答案一、单选题1.设函数()()()2sin 10f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间3,44ππ⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .816,33⎡⎫⎪⎢⎣⎭B .164,3⎡⎫⎪⎢⎣⎭C .204,3⎡⎫⎪⎢⎣⎭D .820,33⎡⎫⎪⎢⎣⎭【答案】B【分析】t x ωϕ=+,只需要研究1sin 2t 的根的情况,借助于sin y t =和12y =的图像,根据交点情况,列不等式组,解出ω的取值范围. 【解析】令()0f x =,则()1sin 2x ωϕ+=,令t x ωϕ=+,则1sin 2t ,则问题转化为sin y t =在区间3,44ππωϕωϕ⎡⎤++⎢⎥⎣⎦上至少有两个,至少有三个t ,使得1sin 2t ,求ω的取值范围. 作出sin y t =和12y =的图像,观察交点个数,可知使得1sin 2t的最短区间长度为2π,最长长度为223ππ+,由题意列不等式的:3222443πππωϕωϕππ⎛⎫⎛⎫≤+-+<+ ⎪ ⎪⎝⎭⎝⎭,解得:1643ω≤<.故选B .【点睛】研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t x ωϕ=+),转化为研究sin y t =的图像和性质较为方便.2.函数()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭的最大值为( )A .1BC .D .3【答案】B【分析】利用诱导公式及二倍角公式可得()2sin sin 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,令4x πθ=+,将函数转化为()2sin sin 2fθθθ=+,利用导数研究函数的单调性,即可求出函数的最值,即可得解;【解析】∵()2sin cos 24f x x x π⎛⎫=++ ⎪⎝⎭, ∴()2sin sin 22sin 2sin cos 44444f x x x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++=++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,令4x πθ=+, 则()2sin 2sin cos 2sin sin 2fθθθθθθ=+=+,则()()222cos 2cos 222cos 12cos 4cos 2cos 2f θθθθθθθ'=+=-+=+-,令()0f θ'=,得cos 1θ=-或1cos 2θ=, 当11cos 2θ-<<时,()0f θ'<;1cos 12θ<<时()0f θ'>,∴当1cos 2θ=时,()f θ取得最大值,此时sin 2θ=,∴()max 1222222f x =⨯+⨯=,故选B .【点睛】本题考查三角恒等变换及三角函数的性质的应用,解答的关键是利用导数研究函数的单调性从而求出函数的最值.3.将函数()cos f x x =的图象先向右平移56π个单位长度,再把所得函数图象的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3,22ππ⎛⎫⎪⎝⎭上没有零点,则ω的取值范围是( ) A .2280,,939⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦B .80,9⎛⎤ ⎥⎝⎦C .280,,199⎛⎫⎡⎤⋃ ⎪⎢⎥⎝⎭⎣⎦D .(]0,1【答案】A【分析】根据图象变换求出()g x 的解析式,利用周期缩小ω的范围,再从反面求解可得结果. 【解析】将函数()cos f x x =的图象先向右平移56π个单位长度,得到5cos()6y x π=-的图象, 再把所得函数图象的横坐标变为原来的1(0)ωω>倍,纵坐标不变,得到函数5()cos 6g x x πω⎛⎫=- ⎪⎝⎭(0)>ω,周期2T πω=,∵函数()g x 在3,22ππ⎛⎫⎪⎝⎭上没有零点,∴3222T ππ-≤,得2T π≥,得22ππω≥,得01ω<≤, 假设函数()g x 在3,22ππ⎛⎫⎪⎝⎭上有零点, 令()0g x =,得562x k ππωπ-=+,k Z ∈,得43k x ππωω=+,k Z ∈, 则43232k ππππωω<+<,得8282933k k ω+<<+,k Z ∈, 又01ω<≤,∴2293ω<<或819ω<≤,又函数()g x 在3,22ππ⎛⎫⎪⎝⎭上有零点,且01ω<≤,∴209ω<≤或2839ω≤≤,故选A . 【点睛】关键点点睛:求出函数()g x 的解析式,利用间接法求解是解决本题的关键.4.已知函数()()cos 1,0,2log ,0,a x x f x x x π⎧⎛⎫-≥⎪ ⎪=⎝⎭⎨⎪--<⎩(0a >且1a ≠),若函数图象上关于原点对称的点至少有3对,则实数a 的取值范围是( ).A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭D.⎫⎪⎪⎝⎭【答案】A【分析】由于log )(0)(-=-<a y x x 关于原点对称得函数为log (0)a y x x =>,由题意可得,cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像在0x >的交点至少有3对,结合函数图象,列出满足要求的不等式,即可得出结果.【解析】log )(0)(-=-<a y x x 关于原点对称得函数为log (0)a y x x =>. ∴cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像在0x >的交点至少有3对,可知()0,1a ∈,如图所示,当6x =时,log 62a >-,则0a <<,故实数a 的取值范围为0,6⎛ ⎝⎭,故选A . 【点睛】本题考查函数的对称性,难点在于将问题转换为cos 12y x π⎛⎫=-⎪⎝⎭与log a y x =的图像在0x >的交点至少有3对,考查了运算求解能力和逻辑推理能力,属于难题.5.已知函数()f x 在()0,1恒有()()2xf x f x '>,其中()f x '为函数()f x 的导数,若α,β为锐角三角形两个内角,则( )A .22sin (sin )sin (sin )f f βααβ>B .22cos (sin )sin (cos )f f βααβ>C .22cos (cos )cos (cos )f f βααβ>D .22sin (cos )sin (cos )f f βααβ>【答案】B【分析】构造函数()()2()01f x g x x x =<<,求导可知函数()g x 在()0,1 上为增函数,由已知条件可知022ππβα<-<<,即0cos sin 1βα<<<,再根据函数()g x 在()0,1上的单调性即可得解.【解析】设()()2()01f x g x x x =<<,则()()()()()243220x f x x f x x f x f x g x x x''⋅-⋅⋅-⋅'==>∴函数()g x 在()0,1上单调递增.α, β为锐角三角形两个内角,则2παβ+>∴022ππβα<-<<,由正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增. 则0cos sin sin 12πββα⎛⎫<=-<<⎪⎝⎭∴()()cos sin g g βα<,即()()22cos sin cos sin f f βαβα<∴()()22sincos cos sin f f αββα⋅<⋅,故选B .【点睛】本题考查利用导数研究函数的单调性,同时也涉及了三角函数的变换及其性质,考查构造思想及转化思想,考查化简变形能力及逻辑推理能力,属于中档题.6.已知函数()sin (0,)=->∈f x x x x ωωωR 的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论,其中所有正确结论的序号是( ) ①函数()g x 是奇函数 ②()g x 的图象关于直线6x π=对称③()g x 在,33ππ⎡⎤-⎢⎥⎣⎦上是增函数 ④当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域是[]0,2 A .①③ B .③④C .②D .②③④【答案】C【分析】先根据辅助角公式化简()f x ,然后利用已知条件求解出ω的值,再根据图象的变换求解出()g x 的解析式;①根据()g x 解析式判断奇偶性;②根据6g π⎛⎫⎪⎝⎭的值判断对称性;③采用整体替换的方法判断单调性;④利用换元法的思想求解出值域.【解析】∵()sin 2sin 3f x x x x πωωω⎛⎫=-=-⎪⎝⎭,又()y f x =的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,∴2222T ππω==,∴2ω=,∴()2sin 23f x x π⎛⎫=- ⎪⎝⎭,∴()f x 向左平移3π个单位得到2sin 23y x π⎛⎫=+ ⎪⎝⎭,2sin 23y x π⎛⎫=+ ⎪⎝⎭横坐标伸长到原来2倍得到()2sin 3g x x π⎛⎫=+ ⎪⎝⎭,①()2sin 3g x x π⎛⎫=+⎪⎝⎭为非奇非偶函数,故错误; ②()max 2sin 2663g g x πππ⎛⎫⎛⎫=+==⎪ ⎪⎝⎭⎝⎭,∴6x π=是()g x 的一条对称轴,故正确; ③∵,33x ππ⎡⎤∈-⎢⎥⎣⎦,∴20,33x ππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,又∵2sin y t =在20,3π⎡⎤⎢⎥⎣⎦上先增后减,∴()g x 在,33ππ⎡⎤-⎢⎥⎣⎦上不是增函数,故错误; ④当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,,362x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, ∴()max 2sin22g x π==,此时6x π=;()min 2sin16g x π==,此时6x π=-,∴()g x 的值域为[]1,2,故错误;故选C .【点睛】思路点睛:求解形如()sin y A ωx φ=+的函数在指定区间上的值域或最值的一般步骤如下: (1)先确定t x ωϕ=+这个整体的范围;(2)分析sin y A t =在(1)中范围下的取值情况;(3)根据取值情况确定出值域或最值,并分析对应的x 的取值.7.若1tan 23=α,则()5πsin 12sin 3παα⎛⎫+- ⎪⎝⎭=-( ) A .13-B .3-C .13D .3【答案】A【分析】先根据诱导公式化简得()5πsin 1cos 12sin 3πsin αααα⎛⎫+- ⎪-⎝⎭=-,再结合半角公式整理得()5πsin 1cos 112tan sin 3πsin 23ααααα⎛⎫+- ⎪-⎝⎭==-=--. 【解析】由诱导公式化简整理得:()5πsin 1cos 12sin 3πsin αααα⎛⎫+- ⎪-⎝⎭=-, 由于2cos 12sin,sin 2sincos222ααααα=-=,∴()25πsin 12sin cos 1122tan sin 3πsin 232sin cos 22αααααααα⎛⎫+-- ⎪-⎝⎭===-=--⋅,故选A . 【点睛】题考查诱导公式化简,半角公式,同角三角函数关系,考查运算求解能力,本题解题的关键在于寻找α与2α之间的关系,从半角公式入手化简整理.考生需要对恒等变换的相关公式熟记. 8.已知函数1()sin (sin cos )2f x x x x ωωω=+-()0ω>在区间(0,)π上恰有1个最大值点和1个最小值点,则ω的取值范围是( ) A .711,88⎛⎫⎪⎝⎭B .711,88⎛⎤⎥⎝⎦C .79,88⎛⎤⎥⎝⎦D .79,88⎛⎫⎪⎝⎭【答案】B【分析】化简得到()224f x x πω⎛⎫=- ⎪⎝⎭,根据最值点,得352242πππωπ<-≤,解得答案.【解析】11cos 2sin 21()sin (sin cos )2222224x x f x x x x x ωωπωωωω-⎛⎫=+-=+-=- ⎪⎝⎭, ()0,x π∈,()20,2x ωωπ∴∈,2,2444x πππωωπ⎛⎫∴-∈-- ⎪⎝⎭()f x 在 (0,)π上恰有1个最大值点和1个最小值点,352242πππωπ∴<-≤,解得71188ω<≤.故选B .【点睛】方法点睛:本题考查了根据三角函数的最值求参数,研究三角函数的性质基本思想是将函数转化为()sin (0,0)y A x B A ωϕω=++>>的形式,热后应用整体思想来研究其相关性质,考查学生的逻辑推理与运算能力,属于一般题.9.已知函数()sin()(0,)2f x A x A πωϕϕ=+><的图像如图所示,且()f x 的图像关于点()0,0x 对称,则0x 的最小值为( )A .23π B .6π C .3π D .56π 【答案】B【分析】先由函数图像求出函数()2sin 6f x x π⎛⎫=+ ⎪⎝⎭,再根据函数关于()0,0x 对称求出06x k ππ=-,从而当0k =时,0x 取得最小值为6π. 【解析】由题可知4112,2363A T πππ⎛⎫==⨯-= ⎪⎝⎭,21Tπω∴==, 则()()2sin ,2sin 233f x x f ππϕϕ⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,232k ππϕπ∴+=+, 又2πϕ<,6πϕ∴=,()2sin 6f x x π⎛⎫∴=+⎪⎝⎭,由()f x 的图像关于点()0,0x 对称,可得0066x k x k ππππ+=∴=-,,∴当0k =时,0x 取得最小值为6π,故选B . 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 10.函数①()sin cos f x x x =+,②()sin cos f x x x =,③21()cos 42f x x π⎛⎫=+- ⎪⎝⎭中,周期是π且为奇函数的所有函数的序号是( ) A .①② B .②C .③D .②③【答案】D【解析】对于①()sin cos f x x x =+,()4f x x π⎛⎫=+ ⎪⎝⎭,周期为π,但不是奇函数;对于②()sin cos f x x x =,1()sin 22f x x =,周期为22T ππ==; 又()()11()sin 2=sin 222f x x x f x =-=---,故()sin cos f x x x =符合题意; 对于③21()cos 42f x x π⎛⎫=+- ⎪⎝⎭,211()cos cos 2sin 24222f x x =x =x ππ⎛⎫⎛⎫=+-+- ⎪ ⎪⎝⎭⎝⎭, 由②推导过程可知:21()cos 42f x x π⎛⎫=+- ⎪⎝⎭周期是π且为奇函数,符合题意,故选D .【点睛】三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题:(1) 求周期用2T πω=;(2)判断奇偶性,一般用()()f x f x =-或()()f x f x =-.11.已知()22ππα∈-,,1cos()65πα+=,则sin(2)3πα+=( )A B C D .25-【答案】C 【解析】由,22ππα⎛⎫∈-⎪⎝⎭,可得2,633πππα⎛⎫+∈- ⎪⎝⎭,又11cos cos 6523ππα⎛⎫+=<= ⎪⎝⎭,2,633πππα⎛⎫∴+∈ ⎪⎝⎭,sin 6πα⎛⎫∴+== ⎪⎝⎭,sin 22sin cos 36625πππααα⎛⎫⎛⎫⎛⎫∴+=++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C . 【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)根据条件选择合适的公式进行计算. 12.已知函数()()cos 03f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在区间(),2ππ上不存在零点,则ω的取值范围是( ) A .70,12⎛⎤⎥⎝⎦B .1170,,12612⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦C .117,,112612⎛⎫⎛⎤⎪ ⎥⎝⎭⎝⎦ D .17,1212⎡⎤⎢⎥⎣⎦ 【答案】B【分析】由()f x 在区间(),2ππ上不存在零点,计算出01ω<≤,再计算出函数()f x 的零点为()6k x k Z ππωω=+∈,根据零点所在的范围,判断出ω的取值范围. 【解析】函数()f x 的最小正周期为2T πω=,由函数()cos 3f x x πω⎛⎫=+⎪⎝⎭在(),2ππ上不存在零点,可得22T ππ≥-,∴01ω<≤,函数()f x 的零点为()32x k k Z ππωπ+=+∈,即()6k x k Z ππωω=+∈,若()26k k Z ππππωω<+<∈,则()126k k Z ωω<+<∈,∴()6161126k k k Z ω++<<∈,∵01ω<≤,∴0,1k =,当0k =时,得11126ω<<,当1k =时,得77126ω<<, 又01ω<≤,∴7112ω<≤. ∵函数()f x 在(),2ππ上不存在零点,∴在(]0,1内去掉上述范围,得符合条件的ω取值范围为1170,,12612⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦,故选B . 【点睛】三角函数求ω的范围:①利用周期求ω的范围:利用周期公式,借助于平移或诱导公式即可解决;②已知值域求ω的范围:运用整体思想,将值域问题转化为基本函数sin y x =上结合推行即可解决;③已知零点情况求ω的范围.13.函数()1cos 2f x x x x π⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭的图象可能为( ) A . B .C .D .【答案】A【分析】求出函数()f x 的定义域,分析函数()f x 的奇偶性及其在()0,1上的函数值符号,结合排除法可得出合适的选项. 【解析】函数()1cos 2f x x x x π⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭的定义域为{}0x x ≠, ()()11cos cos 22x x f x x x f x x x ππ⎛⎫⎛⎫⎛⎫⎛⎫-=---=--=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,函数()f x 为奇函数,排除BC 选项;当01x <<时,2110x x x x--=<,022x ππ<<,则cos 02x π⎛⎫> ⎪⎝⎭,∴()0f x <,排除D 选项.故选A .【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象. 14.若函数()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调,且在0,3π⎛⎫⎪⎝⎭上存在极值点,则ω的取值范围是( )A .1,23⎛⎤ ⎥⎝⎦B .1,22⎛⎤⎥⎝⎦C .17,26⎛⎤⎥⎝⎦D .70,6⎛⎤ ⎥⎝⎦【答案】C【分析】依据函数在,2ππ⎛⎫⎪⎝⎭上单调,可知2ω≤,计算出函数的对称轴,然后根据函数在所给区间存在极值点可知76ππω≥,最后计算可知结果. 【解析】∵()f x 在,2ππ⎛⎫⎪⎝⎭上单调,∴T π≥,则2ππω≥,由此可得2ω≤. ∵当32x k ππωπ+=+,即()6k x k Z ππω+=∈时,函数取得极值,欲满足在0,3π⎛⎫ ⎪⎝⎭上存在极值点,∵周期T π≥,故在0,3π⎛⎫⎪⎝⎭上有且只有一个极值,故第一个极值点63x ππω=<,得12ω>.又第二个极值点776122x πππω=≥>, 要使()f x 在,2ππ⎛⎫⎪⎝⎭上单调,必须76ππω≥,得76ω≤.综上可得,ω的取值范围是17,26⎛⎤ ⎥⎝⎦.故选C .【点睛】思路点点睛:第一步:先根据函数在所给区间单调判断ω;第二步:计算对称轴;第三步:依据函数在所给区间存在极值点可得63ππω<,76ππω≥即可. 15.在ABC 中,3AB =,5BC =,D 为BC 边上一点,且满足32BD DC =,此时23ADC ∠=π,则AC 边长等于( )AB .72C .4D【答案】D【分析】本题首先可以结合题意绘出图像,然后根据32BD DC =求出BD 、DC 长,再然后在ABD △中通过余弦定理求出AD ,最后在ADC 中通过余弦定理即可求出AC 长. 【解析】如图,结合题意绘出图像,∵5BC =,32BD DC =,∴3BD =,2DC =,∵23ADC ∠=π,∴3ADB π∠=,在ABD △中,2222cos AD BD AB AD BD ADB ,即222133232ADAD ,解得3AD =或0(舍去),3AD =, 在ADC 中,2222cos AD DC AC AD DC ADC ,即2221322322AC ,解得AC =D .【点睛】关键点点睛:本题考查解三角形相关问题的求解,主要考查余弦定理解三角形,考查的公式为2222cos a b c ab C +-=,考查计算能力,是中档题.16.已知函数()cos f x x ω=(0>ω),将()f x 的图像向右平移3ωπ个单位得到函数()g x 的图像,点A ,B ,C 是()f x 与()g x 图像的连续相邻三个交点,若ABC 是钝角三角形,则ω的取值范围为( )A .0,2⎛⎫⎪ ⎪⎝⎭B .0,3⎛⎫⎪ ⎪⎝⎭C .,3⎛⎫+∞ ⎪⎪⎝⎭D .,2⎛⎫+∞ ⎪⎪⎝⎭【答案】B【分析】先由平移变换得到()cos 3g x x πω⎛⎫=-⎪⎝⎭,在同一坐标系中作出两个函数图像,设D 为AC 的中点,由cos cos 3x x πωω⎛⎫=-⎪⎝⎭,cos x ω=,然后根据ABC 为钝角三角形,只须4ACB π∠<,由tan 1BDACB DC∠=<求解. 【解析】由题意得,()cos 3g x x πω⎛⎫=-⎪⎝⎭,作出两个函数图像,如图:A ,B ,C 为连续三交点,(不妨设B 在x 轴下方),D 为AC 的中点, 由对称性,则ABC 是以B 为顶角的等腰三角形,2AC T πω==,由cos cos 3x x πωω⎛⎫=-⎪⎝⎭,整理得cos x x ωω=,解得tan x ω=,则cos 2x ω=±,即2C B y y =-=,∴2B BD y ==ABC 为钝角三角形,则4ACB π∠<,∴tan 1BD ACB DC ∠==<,解得0ω<<,故选B . 【点睛】关键点点睛:本题关键是将ABC 为钝角三角形,转化为4ACB π∠<,利用tan 1BDACB DC∠=<而得解.17.已知函数()()cos 0f x x x ωωω=->满足()()124f x f x -=,且12x x -的最小值为2π,则8f π⎛⎫⎪⎝⎭的值为( )A B .1 C D .2【答案】A【分析】化简函数()f x 的解析式,由题意可知,12x x -的最小值为2T,可求得ω的值,进而可计算出8f π⎛⎫⎪⎝⎭的值.【解析】()()cos 2sin 06f x x x x πωωωω⎛⎫=-=-> ⎪⎝⎭,则()max 2f x =,()min 2f x =-,且()()()()12max min 4f x f x f x f x -==-, 设函数()f x 的最小正周期为T ,则1222T x x π-==,2T ππω∴==,可得2ω=, ()2cos2f x x x ∴=-,因此,cos 844f πππ⎛⎫=-= ⎪⎝⎭.故选A .【点睛】方法点睛:求三角函数周期的方法: (1)定义法:利用周期函数的定义求解;(2)公式法:对形如()sin y A ωx φ=+或()cos y A x ωϕ=+(A 、ω、ϕ为常数,0A ≠,0ω≠)的函数,周期2T ωπ=;(3)图象法:通过观察函数的图象求其周期.18.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、C 、B 成等差数列,角C 的角平分线交AB 于点D,且CD =3a b =,则c 的值为( )A .3B .72C.3D.【答案】C【解析】∵CD 是ACB ∠平分线,∴3BD BC a DA AC b ===,34BD c =,14AD c =, 角A 、C 、B 成等差数列,∴2A B C +=,而A B C π++=,∴3C π=,在BCD △中.2222cos BD BC CD BC CD BCD =+-⋅∠,即22293233166c a a a a π=+-=+-, DCA △中中,2222cos DA CD CA CD CA DCA =+-⋅∠,即22213cos 33166c b b b π=+-=+-,由222293316133163a a c b b c a b ⎧-+=⎪⎪⎪-+=⎨⎪=⎪⎪⎩,解得443a b c ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩.故选C .【点睛】方法点睛:本题考查余弦定理解三角形,解题方法是由等差数列得出6C π=,由角平分线得6ACD BCD π∠=∠=,同时由解平分线定理得3BDAD=,然后在两个三角形中应用余弦定理求解. 19.已知ABC 中,D 、E 分别是线段BC 、AC 的中点,AD 与BE 交于点O ,且90BOC ∠=°,若2BC =,则ABC 周长的最大值为( )A .2+B .2C .2+D .2+【答案】A【分析】推导出O 为ABC 的重心,可得出3AD =,利用平面向量加法的平行四边形法则可得出2AD AB AC =+,利用平面向量数量积的运算性质结合余弦定理可得出224022AB AC =+,利用基本不等式可求得+AB AC 的最大值,即可得解.【解析】在ABC 中,D 、E 分别是线段BC 、AC 的中点,AD 与BE 交于点O ,则O 为ABC 的重心,∵90BOC ∠=°,故112OD BC ==,则33AD OD ==. ()()111222AD AB BD AB BC AB AC AB AB AC =+=+=+-=+,2AD AB AC ∴=+,∴()222242AD AB ACAB AC AB AC =+=++⋅,即2222222242cos 22AB AC BC AD AB AC AB AC BAC AB AC AB AC AB AC +-=++⋅⋅∠=++⋅⋅⋅ 2222222224AB AC BC AB AC =+-=+-,∴()()22222222240222AB AC AB AC AB ACABAC AB AC AB AC =+=+++≥++⋅=+,AB AC ∴+≤,当且仅当AB AC ==因此,ABC 周长的最大值为2.故选A .【点睛】方法点睛:求三角形周长的最值是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解. 20.若0.212021a =,2021sin 5b π=,2021log 0.21c =,则( ) A .c a b << B .b a c << C .b c a <<D .c b a <<【答案】D【解析】由题得20212021log 0.21log 10c =<=,0.210202120211a =>=,2021sinsin(404)sin (0,1)555b ππππ==+=∈,∴a b c >>.故选D . 21.如图,已知A ,B 分别是半径为2的圆C 上的两点,且45ACB ∠=︒,P 为劣弧AB 上一个异于A ,B 的一点,过点P 分别作PM CA ⊥,PN CB ⊥,垂足分别为M ,N ,则MN 的长为( )A .2BC .2D .32【答案】B【分析】∵PM CA ⊥,PN CB ⊥可知,MN 为四边形PMCN 的外接圆的一条弦,且外接圆直径为PC =2,故联想到正弦定理来解题.【解析】∵PM CA ⊥,PN CB ⊥,∴P ,N ,M ,C 四点在以PC 为直径的圆上.由题意可知2PC =,∴MNC 外接圆的直径为2,则由正弦定理可得2sin 45MN=°.故选B .22.如图,D 是ABC 外一点,若90ABC ∠=︒,tan DAB ∠=,5AB =,7AD =,105CDB ∠=°,则CD =( )A .B .4C .D .8【答案】C【分析】由tan DAB ∠=得1cos 7BAD ∠=,在ABD △中结合正余弦定理求解即可.【解析】由tan DAB ∠=得1cos 7BAD ∠=.在ABD △中,由余弦定理得8BD ===, ∴2222225871cos 22582AB BD AD ABD AB BD +-+-∠===⋅⨯⨯,则60ABD ∠=︒.∵90ABC ∠=︒,∴30CBD ∠=︒.在BCD △中,1803010545BCD ∠=--=°°°°,∴由正弦定理得sin 8sin 30sin sin 45BD CBD CD BCD ∠===∠°°,故选C .【点睛】方法点睛:用正、余弦定理解决平面多边形问题时,应把多边形分割为多个三角形,通过各个三角形之间的关系解决问题.23.已知()()()2sin 0f x x ωϕω+>=同时满足以下条件: ①当()()124f x f x -=时,12x x -最小值为2π; ②71212f x f x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭; ③()04f f π⎛⎫>⎪⎝⎭. 若()f x a =在[]0,π有2个不同实根m ,n ,且3m n π-≥,则实数a 的取值范围为( )A .⎡⎣B .[)0,1 C .(D .[)1,1-【答案】D【解析】函数()()2sin f x x ωϕ=+满足,当()()124f x f x -=时,12x x -最小值为1222ππω⨯=, ∴2ω=,函数()()2sin 2f x x ϕ=+. ∵71212f x f x ππ⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,故()f x 的图象关于直线3x π=对称,故有232k ππϕπ⨯+=+,即6k ϕπ=π-,k Z ∈. 又()04f f π⎛⎫>⎪⎝⎭,即2sin 2sin 2cos 2πϕϕϕ⎛⎫>+= ⎪⎝⎭,即sin cos ϕϕ>,故56πϕ=, 函数()52sin 26x x f π⎛⎫+⎝=⎪⎭. ()f x a =在[] 0,π有2个不同实根m ,n ,且3m n π-≥,根据5552,2666x ππππ⎡⎤+∈+⎢⎥⎣⎦, 7112sin2sin 166ππ==-,552sin 2sin 22sin 21666πππππ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,∴11a -≤<,故选D . 【点睛】思路点睛:该题考查的是有关三角函数的问题,解题思路如下: (1)由条件①确定ω的值;(2)由条件②确定出函数图象的一条对称轴,结合条件③求得ϕ的值;(3)得到函数的解析式之后利用函数值相等的条件,结合自变量的范围和限制条件,求得参数a 的取值范围.24.已知函数π()sin()(0,0,||)2f x A x A ωϕωϕ=+>><的图象如图所示,且()f x 的图象关于点0(,0)x 对称,则0x 的最小值为( )A .23π B .56π C .3π D .6π 【答案】D【解析】由图可知2A =,又函数()sin()f x A x ωϕ=+过点(0,1)和,23π⎛⎫⎪⎝⎭,2sin 12sin 23ϕπωϕ=⎧⎪∴⎨⎛⎫+= ⎪⎪⎝⎭⎩, 又0,||2πωϕ><,6πϕ∴=,16,k k Z ω=+∈,结合图像可知31134632T πππ=-=,则2T π=,故21T πω==,()2sin 6f x x π⎛⎫∴=+ ⎪⎝⎭,令,6x k k Z ππ+=∈,解得,6x k k Z ππ=-+∈,即函数()f x 的对称中心为,06k ππ⎛⎫-+ ⎪⎝⎭k Z ∈,令0k =时,6x π=-,故0x 的最小值为6π.故选D . 【点睛】思路点睛:求()0,0()y Asin x B A ωϕω+=+>>解析式的步骤 (1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=. (2)求ω,确定函数的周期T ,则2Tπω=. (3)求φ,常用方法如下:代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.25.设函数()sin()1,0,0,2f x A x A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的最大值为2,其图象相邻两个对称中心之间的距离为2π,且()f x 的图象关于直线12x π=对称,则下列判断正确的是()A .函数()y f x =在,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 B .函数()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称 C .函数()y f x =的图象关于直线512x π=-对称 D .要得到sin 21y x =+的图象,只需将()f x 图象向右平移3π个单位 【答案】C【分析】依题意可求得A ,ω,ϕ,从而可求得()f x 的解析式,从而可以对函数的单调区间、对称中心、对称轴、平移一一判断. 【解析】由已知:3A =,2ω=,3πϕ=,∴()3sin(2)13f x x π=++,令3222232k x k πππππ+++,得7()1212k x k k Z ππππ++∈,故选项A 错误; 根据函数()f x 的解析式可知对称中心的纵坐标一定是1,故选项B 错误; 令2()32x k k Z πππ+=+∈,解得()122k x k Z ππ=+∈,当1k =-时,符合题意,故选项C 正确; 对于选项D ,需将()f x 图象向右平移6π个单位才能得到sin 21y x =+,故选项D 错误.故选C . 【点睛】解决本题的关键是要求出()sin()1f x A x ωϕ=++的解析式,然后要对单调性、对称性以及平移很熟悉.26.若sin170tan10λ︒+︒=λ的值为( )A B .2 C .3D .3【答案】D【解析】依题意,sin10sin10cos10λ︒︒+=︒sin10cos10cos10︒︒+︒=︒,sin10︒cos10cos10︒︒=︒,()202cos10sin 30sin10cos302sin 20︒︒︒=︒︒=-︒2=,则λ=D . 27.在ABC 中,角,,A B C 所对的边分别为,,a b c ,下列条件使得ABC 无法唯一确定的是( )A .3,15,25aBC ==︒=︒ B .3,4,40a b C ===︒ C .3,4,40a b A ===︒D .3,4,40a b B ===︒【答案】C【分析】对于A :用正弦定理判断;对于B :先由余弦定理,再用正弦定理可以求出角A 、B ,进行判断; 对于C :由正弦定理4sin 40sin =3B ⨯,根据大边对大角,这样的角B 有2个,进行判断;. 对于D :由正弦定理计算3sin 40sin =4A ⨯,由大边对大角,这样的角A 有1个,进行判断. 【解析】对于A :∵3,15,25aBC ==︒=︒,∴A =140°,由正弦定理得:sin sin sin a b cA B C==, ∴33sin sin15,sin =sin 25sin sin140sin sin140a ab Bc C A A =⨯=⨯=⨯⨯, ∴ABC 唯一确定;故A 正确. 对于B :∵3,4,40a b C ===︒,由余弦定理,可得:222cos40=2524cos40c a b ab =+--,由正弦定理:sin sin sin a b c A B C ==,有:3424cos 40sin sin sin 40A B==,可以求出角A 、B ,∴ABC 唯一确定;故B 正确. 对于C :∵3,4,40a b A ===︒,由正弦定理:sin sin sin a b cA B C ==,有:34sin 40sin B=, ∴4sin 40sin =3B ⨯, ∵3,4,a b ==∴a b <∴40A B =<,这样的角B 有2个,∴ABC 不唯一,故C 错误. 对于D :∵3,4,40a b B ===︒,由正弦定理:sin sin sin a b cA B C ==,有:34sin sin 40A =, ∴3sin 40sin =4A ⨯,∵3,4,a b ==∴a b <∴40AB <=,这样的角A 有唯一一个,∴角C 唯一,∴ABC 唯一,故D 正确,故选C .【点睛】判断三角形解的个数的方法:(1)画图法:以已知角的对边为半径画弧,通过与邻边的交点个数判断解的个数:。
2024年新高考一卷数学压轴题
2024年新高考一卷数学压轴题一、设函数f(x) = ax3 + bx2 + cx + d,若f(x)在x=1和x=2处取得极值,且f(1) = 1,f(2) = 4,则a的取值范围是:A. (-∞, -1) ∪ (1, +∞)B. (-1, 0) ∪ (0, 1)C. (-∞, -2) ∪ (2, +∞)D. (-2, 0) ∪ (0, 2)(答案)A解析:本题考查函数极值的应用,通过求导得到极值条件,结合给定的函数值,可以解出a 的取值范围。
二、在三角形ABC中,角A,B,C的对边分别为a,b,c,若a = 2,b = 3,cosC = -1/2,则三角形ABC的面积是:A. 3√3/2B. 3√3C. 3/2D. 3(答案)B解析:本题考查余弦定理和三角形面积公式的应用,通过余弦定理求出c的值,再结合三角形面积公式求出面积。
三、设等差数列{an}的前n项和为Sn,若a1 = 1,S3 = -3,则S_n / (2n) 的最大值是:A. 1/2B. 1/4C. 1/8D. 1/16(答案)C解析:本题考查等差数列和等比数列的性质,通过等差数列的求和公式求出Sn,再结合等比数列的性质求出S_n / (2n)的最大值。
四、在平面直角坐标系xOy中,直线l: x + y - 1 = 0与圆C: x2 + y2 - 2x - 2y + 1 = 0交于A,B两点,则线段AB的长度是:A. √2B. 2C. √6D. 2√2(答案)A解析:本题考查直线与圆的位置关系,通过求出圆心到直线的距离,再结合圆的半径和勾股定理求出线段AB的长度。
五、设函数f(x) = ex - ax - 1,若f(x) ≥ 0在R上恒成立,则a的取值范围是:A. [0, 1]B. (0, 1]C. [1, +∞)D. (1, +∞)(答案)B解析:本题考查函数单调性和最值的应用,通过求导判断函数的单调性,再结合函数的最值求出a的取值范围。
全国卷Ⅰ2024年高考数学压轴卷理含解析
(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。
2024年新高考数学选填压轴题汇编二(解析版)
2024年新高考数学选填压轴题汇编(二)一、单选题1.(2023·广东东莞·高三校考阶段练习)已知a=e0.1,b=1110,c=101.9,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b【答案】C【解析】由ln a=ln e0.1=0.1,ln b=ln 1110=ln1.1,则ln a-ln b=0.1-ln1.1=0.1-ln1+0.1,令f x =x-ln1+x,f x =1-11+x=x1+x,当x∈0,+∞时,f x >0,则f x 单调递增,即f0.1>f0 =0,故0.1-ln1.1>0,可得ln a>ln b,即a>b;由b10=111010=1+0.110=1+C1100.1+C2100.12+⋯+C10100.110=1+10×0.1+C2100.12+⋯+C10100.110=2+C2100.12+⋯+C10100.110>2,且c10=1.9<2,则b10>c10,即b>c.综上,a>b>c.故选:C.2.(2023·广东梅州·高三梅州市梅江区梅州中学校考阶段练习)已知数列a n的前n项和为S n,且a1=4,a n +a n+1=4n+2n∈N*,则使得S n>2023成立的n的最小值为()A.32B.33C.44D.45【答案】D【解析】a n+a n+1=4n+2①,当n≥2时,a n-1+a n=4n-1+2②,两式相减得a n+1-a n-1=4,当n为奇数时,a n为等差数列,首项为4,公差为4,所以a n=4+4n-12=2n+2,a n+a n+1=4n+2中,令n=1得a1+a2=6,故a2=6-4=2,故当n为偶数时,a n为等差数列,首项为2,公差为4,所以a n=2+4n2-1=2n-2,所以当n为奇数时,S n=a1+a3+⋯+a n+a2+a4+⋯+a n-1=n+124+2n+2+n-122+2n-42=n2+n+2,当n为偶数时,S n=a1+a3+⋯+a n-1+a2+a4+⋯+a n=n24+2n+n22+2n-22=n2+n,当n为奇数时,令n2+n+2>2023,解得n≥45,当n为偶数时,令n2+n>2023,解得n≥46,所以S n>2023成立的n的最小值为45.故选:D3.(2023·广东·高三统考阶段练习)数列a n满足a n+1=2a n-14a n+2,且a1=1,则数列a n的前2024项的和S2024=()A.-2536B.-2538C.-17716D.-17718【答案】C【解析】由题意知:a1=1,a2=2-14+2=16,a3=2×16-14×16+2=-14,a4=2×-14-14×-14+2=-32,a5=2×-32-14×-32+2=1,.....,易知数列a n是周期为4的数列,S2024=506×1+16-14-32=-17716.故选:C.4.(2023·广东·高三统考阶段练习)已知a,b,c均大于1,满足2a-1a-1=2+log2a,3b-2b-1=3+log3b,4c-3c-1=4+log4c,则下列不等式成立的是()A.c<b<aB.a<b<cC.a<c<bD.c<a<b 【答案】B【解析】∵2a-1a-1=2+log2a⇒1a-1=log2a,3b-2 b-1=3+log3b⇒1b-1=log3b,4c-3 c-1=4+log4c⇒1c-1=log4c,∴考虑y=1x-1x>1和y=log m x m=2,3,4的图象相交,在同一平面直角坐标系中画出y=log2x、y=log3x、y=log4x与y=1x-1x>1的图象如下:根据图象可知a<b<c.故选:B.5.(2023·广东佛山·高三校考阶段练习)已知函数f(x)=x2-8x+8,x≥02x+4,x<0.若互不相等的实根x1,x2,x3满足f x1=f x2=f x3,则x1+x2+x3的范围是()A.(2,8)B.(-8,4)C.(-6,0)D.(-6,8)【答案】A【解析】根据函数的解析式可得如下图象若互不相等的实根x 1,x 2,x 3满足f x 1 =f x 2 =f x 3 ,根据图象可得x 2与x 3关于x =4,则x 2+x 3=8,当2x 1+4=-8时,则x 1=-6是满足题意的x 1的最小值,且x 1满足-6<x 1<0,则x 1+x 2+x 3的范围是(2,8).故选:A .6.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知函数f x 的定义域为R ,设f x 的导数是f x ,且f x ⋅f x +sin x >0恒成立,则()A.f π2<f -π2 B.f π2>f -π2 C.f π2 <f -π2D.f π2 >f -π2 【答案】D【解析】设g x =f 2x -2cos x ,则g x =2f x ⋅f x +2sin x >0,故y =g x 在定义域R 上是增函数,所以g π2 >g -π2,即f 2π2 >f 2-π2 ,所以f π2 >f -π2 .故选:D .7.(2023·湖南长沙·高三湖南师大附中校考阶段练习)若正三棱锥P -ABC 满足AB +AC +AP=1,则其体积的最大值为()A.172B.184C.196D.1108【答案】C【解析】设正三棱锥的底边长为a ,侧棱长为b ,1=AB +AC +AP 2=AB 2+AC 2+AP 2+2AB ⋅AC +2AC ⋅AP +2AB ⋅AP ,=a 2+a 2+b 2+a 2+2ab ⋅b 2+a 2-b 22ab +2ab ⋅b 2+a 2-b 22ab=5a 2+b 2⇒b 2=1-5a 2,设该三棱锥的高为h ,由正弦定理可知:AO =12⋅a sin π3=33a ,所以h =PO =b 2-13a 2,又V P -ABC =13⋅S △ABC ⋅h =13⋅34a 2⋅b 2-13a 2=1123a 4-16a 6.由3a 4-16a 6>0⇒0<a <34设f x =3x 4-16x 60<x <34,f x =12x 3-96x 5=12x 31-8x 2 ,当x ∈0,24 时,fx >0,f x 单调递增,当x ∈24,34时,fx <0,f x 单调递减,y =f x 在0,34 上存在唯一的极大值点x =24,且在x =24时取得最大值为164.故正三棱锥P -ABC 体积的最大值为196,故选:C 8.(2023·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是A.0,18B.0,14 ∪58,1C.0,58D.0,18 ∪14,58【答案】D【解析】由题设有f (x )=1-cos 2ωx +12sin ωx -12=22sin ωx -π4,令f x =0,则有ωx -π4=k π,k ∈Z 即x =k π+π4ω,k ∈Z .因为f (x )在区间(π,2π)内没有零点,故存在整数k ,使得k π+π4ω≤π<2π<k π+5π4ω,即ω≥k +14ω≤k 2+58,因为ω>0,所以k ≥-1且k +14≤k 2+58,故k =-1或k =0,所以0<ω≤18或14≤ω≤58,故选:D .9.(2023·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=x 2-x 2-a2x -4 在区间-∞,-2 ,3,+∞ 上都单调递增,则实数a 的取值范围是()A.0<a ≤23 B.0<a ≤4C.0<a ≤43D.0<a ≤83【答案】D【解析】设g (x )=x 2-a 2x -4,其判别式Δ=a 24+16>0,∴函数g (x )一定有两个零点,设g (x )的两个零点为x 1,x 2且x 1<x 2,由x 2-a2x -4=0,得x 1=a2-a 24+162,x 2=a2+a 24+162,∴f (x )=a 2x +4,x <x 12x 2-a 2x -4,x 1≤x ≤x 2a 2x +4,x >x 2,①当a ≤0时,f (x )在-∞,x 1 上单调递减或为常函数,从而f (x )在-∞,-2 不可能单调递增,故a >0;②当a >0时,g -2 =a >0,故x 1>-2,则-2<x 1<0,∵f (x )在-∞,x 1 上单调递增,∴f (x )在-∞,-2 上也单调递增,g (3)=-32a -1<0,3<x 2,由f (x )在a 8,x 2和x 2,+∞ 上都单调递增,且函数的图象是连续的,∴f (x )在a 8,+∞ 上单调递增,欲使f (x )在3,+∞ 上单调递增,只需a8≤3,得a ≤83,综上:实数a 的范围是0<a ≤83.故选:D .10.(2023·湖南益阳·高三统考阶段练习)若m >0,双曲线C 1:x 2m -y 22=1与双曲线C 2:x 28-y 2m=1的离心率分别为e 1,e 2,则()A.e 1e 2的最小值为94B.e 1e 2的最小值为32C.e 1e 2的最大值为94D.e 1e 2的最大值为32【答案】B【解析】由题意可得e 21=m +2m ,e 22=8+m 8,则e 1e 2 2=m +2m ⋅8+m 8=54+2m +m8,由基本不等式,e 1e 2 2=54+2m +m 8≥54+214=94,即e 1e 2≥32,当且仅当2m =m 8,即m =4时等号成立,故e 1e 2的最小值为32.故选:B .11.(2023·湖南益阳·高三统考阶段练习)给定事件A ,B ,C ,且P C >0,则下列结论:①若P A >0,P B>0且A ,B 互斥,则A ,B 不可能相互独立;②若P A C +P B C =1,则A ,B 互为对立事件;③若P ABC =P A P B P C ,则A ,B ,C 两两独立;④若P AB=P A -P A P B ,则A ,B 相互独立.其中正确的结论有()A.1个 B.2个C.3个D.4个【答案】B【解析】对于①,若A ,B 互斥,则P AB =0,又P A P B >0,∴P AB ≠P A P B ,∴A ,B 不相互独立,①正确;对于②,∵P A C +P B C =P AC P C +P BCP C=1,∴P AC +P BC =P C ;扔一枚骰子,记事件A 为“点数大于两点”;事件B 为“点数大于五点”;事件C 为“点数大于一点”,则P AC =P A =46=23,P BC =P B =16,P C =56,满足P AC +P BC =P C ,但A ,B 不是对立事件,②错误;对于③,扔一枚骰子,记事件A 为“点数大于两点”;事件B 为“点数大于五点”;事件C 为“点数大于六点”,则P A =46=23,P B =16,P C =0,P ABC =0,P AB =P B =16,满足P ABC =P A P B P C ,此时P AB ≠P A P B ,∴事件A ,B 不相互独立,③错误;对于④,∵A =AB ∪AB ,事件AB 与AB 互斥,∴P A =P AB +P AB,又P AB=P A -P A P B ,∴P A -P AB =P A -P A P B ,即P AB =P A P B ,∴事件A ,B 相互独立,④正确.故选:B .12.(2023·湖南永州·高三校联考开学考试)已知函数f x =x 3+3x 2+x +1,设数列a n 的通项公式为a n =-2n +9,则f a 1 +f a 2 +⋯+f a 9 =()A.36B.24C.20D.18【答案】D【解析】f x =x 3+3x 2+x +1=x +1 3-2x +1 +2,所以曲线f x 的对称中心为-1,2 ,即f x +f -2-x =4,因为a n =-2n +9,易知数列a n 为等差数列,a 5=-1,a 1+a 9=a 2+a 8=a 3+a 7=a 4+a 6=2a 5=-2,所以f a 1 +f a 9 =f a 2 +f a 8=f a 3 +f a 7 =f a 4 +f a 6 =4,所以f a 1 +f a 2 +⋯+f a 9 =4×4+2=18.故选:D .13.(2023·湖南长沙·高三长郡中学校联考阶段练习)在矩形ABCD 中,AB =3,AD =4,现将△ABD 沿BD 折起成△A 1BD ,折起过程中,当A 1B ⊥CD 时,四面体A 1BCD 体积为()A.2B.372C.37D.972【答案】B【解析】由题可知A 1B ⊥A 1D ,A 1B ⊥CD ,又A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD ,故A 1B ⊥平面A 1CD ,又A 1C ⊂平面A 1CD ,所以A 1B ⊥A 1C ,即此时△A 1BC 为直角三角形,因为A 1B =CD =3,AD =BC =4,所以A 1C =7,又BC ⊥CD ,A 1B ∩BC =B ,A 1B ,BC ⊂平面A 1BC ,所以CD ⊥平面A 1BC ,所以四面体A 1BCD 的体积为13×3×12×3×7=372.故选:B .14.(2023·湖南长沙·高三长郡中学校联考阶段练习)在三角形ABC 中,AB ⋅AC =0,BC=6,AO=12AB +AC ,BA 在BC 上的投影向量为56BC ,则AO ⋅BC =()A.-12 B.-6C.12D.18【答案】A【解析】由题意,∠BAC =90°,O 为BC 中点,由BA 在BC 上的投影向量为BA cos B ⋅BCBC=56BC,即BAcos B BC=56,又BC =6,所以BA ⋅BC =BA BC cos B =56BC2=30,所以AO ⋅BC =BO -BA ⋅BC =BO ⋅BC -BA ⋅BC=3×6-30=-12.故选:A .15.(2023·湖南株洲·高三株洲二中校考开学考试)如图,在xOy 平面上有一系列点P 1x 1,y 1 ,P 2x 2,y 2 ,⋯,P nx n ,y n ⋯,对每个正整数n ,点P n 位于函数y =x 2x ≥0 的图像上,以点P n 为圆心的⊙P n 都与x 轴相切,且⊙P n 与⊙P n +1外切.若x 1=1,且x n +1<x n n ∈N * ,T n =x n x n +1,T n 的前n 项之和为S n ,则S 20=()A.3940B.4041C.8041D.2041【答案】D【解析】因为⊙P n 与⊙P n +1外切,且都与x 轴相切,所以x n -x n +12+y n -y n +1 2=y n +y n +1,即x n -x n +1 2+y n -y n +1 2=y n +y n +1 2,所以x n -x n +1 2=4y n y n +1=4x 2n x 2n +1,因为x n +1<x n n ∈N * ,所以x n -x n +1=2x n x n +1,所以1x n +1-1x n=2,所以数列1x n 为等差数列,首项1x 1=1,公差d =2,所以1x n=1+n -1 ×2=2n -1,所以x n =12n -1n ∈N * ,所以T n =x n x n +1=12n -1×12n +1=12n -1-12n +1 ×12,所以S n =12×1-13+13-15+⋯+12n -1-12n +1 =12×1-12n +1 =n2n +1n ∈N *所以S 20=2020×2+1=2041,故选:D16.(2023·湖南株洲·高三株洲二中校考开学考试)已知定义在R 上的可导函数f x 满足xf x +f x <xf x ,若y =f x -3 -1e是奇函数,则不等式xf x +3e x +2>0的解集是()A.-∞,-2B.-∞,-3C.-2,+∞D.-3,+∞【答案】B【解析】构造函数g x =x ⋅f x e x ,依题意可知g x =f x +xf x -xf x e x<0,所以g x 在R 上单调递减.由于y =f x -3 -1e是奇函数,所以当x =0时,y =f -3 -1e =0,所以f -3 =1e ,所以g -3 =-3⋅f -3e -3=-3⋅1e e-3=-3e 2,由xf x +3e x +2>0得e x g x +3e x +2>0,即g x >-3e 2=g -3 ,所以x <-3,故不等式的解集为-∞,-3 .故选:B17.(2023·湖南·高三临澧县第一中学校联考开学考试)已知圆台O 1O 2的上底面圆O 1的半径为2,下底面圆O 2的半径为6,圆台的体积为104π,且它的两个底面圆周都在球O 的球面上,则OO 1OO 2=( ).A.3B.4C.15D.17【答案】D【解析】设圆台的高为h ,依题意V =134π+36π+12π h =104π,解得h =6.设O 1O =x ,则22+x 2=62+6-x 2,解得x =173,故OO 1OO 2=1736-173=17.故选:D .18.(2023·湖南·高三临澧县第一中学校联考开学考试)已知sin α-β =13,则当函数f x =79sin x -sin 2α-2β cos x 取得最小值时,sin x =( ).A.-79B.-19C.19D.79【答案】A【解析】依题意,cos 2α-β =1-2sin 2a -β =79,所以f x =sin x cos 2α-2β -cos x sin 2α-2β=sin x -2α-β ,当x -2α-β =-π2+2k πk ∈Z ,即x =2α-β -π2+2k πk ∈Z ,f x 取最小值,此时sin x =-cos 2α-β =-79,故选:A .19.(2023·湖南衡阳·高三衡阳市八中校考开学考试)已知函数f x =4ex 21+ln2x,则不等式f x >e 2x 的解集是()A.0,1B.12e ,14C.1e ,1D.12e ,12【答案】D【解析】不等式4ex 21+ln2x >e 2x 可整理为2ex 1+ln2x >e 2x 2x ,令g x =e xx,定义域为0,+∞ ,则原不等式可看成g 1+ln2x >g 2x ,g x =e x x -1 x 2,令g x >0,解得x >1,令gx <0,解得0<x <1,所以g x 在0,1 上单调递减,1,+∞ 上单调递增,令h x =1+ln2x -2x ,则h x =1x -2=1-2x x ,令h x >0,则0<x <12,令h x <0,则x >12,所以h x 在0,12 上单调递增,12,+∞ 上单调递减,且h 12 =0,所以h x ≤0,即1+ln2x -2x ≤0,即1+ln2x ≤2x ,当0<x <12时,1+ln2x <1,2x <1,所以1+ln2x <2x0<1+ln2x <10<2x <1,解得12e <x <12;当x >12时,1+ln2x >1,2x >1,所以1+ln2x >2x ,不成立;综上可得,不等式f x >e 2x 的解集为12e ,12.故选:D .二、多选题20.(2023·广东东莞·高三校考阶段练习)已知四面体ABCD 的所有棱长均为2,则下列结论正确的是()A.异面直线AC 与BD 所成角为60°B.点A 到平面BCD 的距离为263C.四面体ABCD 的外接球体积为6πD.动点P 在平面BCD 上,且AP 与AC 所成角为60°,则点P 的轨迹是椭圆【答案】BC【解析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC ,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误.取BD 中点E ,连接AE ,CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF =AB 2-BF 2=236,即点A 到平面BCD 的距离为263,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径,因为V A -BCD =13S △BCD ⋅AF =4×13S △BCD ⋅OF ,所以AF =4OF ,即OF =66,AO =62,所以四面体ABCD 的外接球体积V =43πR 3=43πOA 3=6π,故C 正确;建系如图:A 0,0,263 ,C 0,233,0 ,设P (x ,y ,0),则AP =x ,y ,-263 ,AC =0,233,-263 因为AP ⋅AC =AP AC cos60°,所以233y +249=x 2+y 2+83×129+247×12,即233y +83=x 2+y 2+83,平方化简可得:x 2-y 23-3239y -409-0,可知点P 的轨迹为双曲线,故D 错误.故选:BC .21.(2023·广东梅州·高三梅州市梅江区梅州中学校考阶段练习)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;⋯;第n n ∈N * 次得到数列1,x 1,x 2,x 3,⋯,x k ,2;⋯记a n =1+x 1+x 2+⋯+x k +2,数列a n 的前n 项为S n ,则()A.k +1=2n B.a n +1=3a n -3C.a n =32n 2+3n D.S n =343n +1+2n -3 【答案】ABD【解析】由题意可知,第1次得到数列1,3,2,此时k =1第2次得到数列1,4,3,5,2,此时k =3第3次得到数列1, 5,4,7,3,8,5,7,2,此时k =7第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k =15第n 次得到数列1,x 1,x 2,x 3,⋯,x k ,2此时k =2n -1所以k +1=2n ,故A 项正确;结合A 项中列出的数列可得:a 1=3+3a 2=3+3+9a 3=3+3+9+27a 4=3+3+9+27+81 ⇒a n =3+31+32+⋯+3n (n ∈N *)用等比数列求和可得a n =3+33n -12则a n +1=3+33n +1-1 2=3+3n +2-32=3n +22+32又3a n -3=33+33n -1 2-3=9+3n +22-92-3=3n +22+32所以a n +1=3a n -3,故B 项正确;由B 项分析可知a n =3+33n -1 2=323n +1即a n ≠32n 2+3n ,故C 项错误.S n =a 1+a 2+a 3+⋯+a n=322+332+⋯+3n +12 +32n =321-3n 1-32+32n=3n +24+3n 2-94=343n +1+2n -3 ,故D 项正确.故选:ABD .22.(2023·广东·高三统考阶段练习)已知O 为坐标原点,F 为抛物线E :y 2=2x 的焦点,过点P (2,0)的直线交E 于A ,B 两点,直线AF ,BF 分别交E 于C ,D ,则()A.E 的准线方程为x =-12B.∠AOB =90°C.FA +FB 的最小值为4D.AC +2BD 的最小值为3+3664【答案】ABD【解析】对于A ,由题意p =1,所以E 的准线方程为x =-12,故A 正确:对于B ,设A y 212,y 1 ,B y 222,y 2,设直线AB :x =my +2,与抛物线联立可得y 2-2my -4=0,Δ>0⇒m ∈R ,y 1y 2=-4,所以OA ⋅OB =y 1y 24y 1y 2+4 =0,所以∠AOB =90°,故B 正确;对于C ,FA +FB =y 21+y 222+1≥y 1y 2 +1=5>4,故C 错误;对于D ,设直线AC :x =ty +12,与抛物线联立可得y 2-2ty -1=0,Δ>0⇒t ∈R ,y 1y C =-1,同理y 2y D =-1,所以y C =-1y 1,y D =-1y 2,所以x C =y 2C2=12⋅1y 21,x D =y 2D 2=12⋅1y 22所以AC =x A +x C +1=1+12y 21+1y 21 ,BD =x B +x D +1=1+12y 22+1y 22,y 1y 2=-4,所以AC +2BD =3+916y 21+332y 21≥3+3664,当且仅当y 21=2663时等号成立,故D 正确.故选:ABD .23.(2023·广东·高三统考阶段练习)已知函数f x =ae x -x 2+x ln x -ax ,则()A.当a =0时,f x 单调递减 B.当a =1时,f x >0C.若f x 有且仅有一个零点,则a ≤1 D.若f x ≥0,则a ≥1e -1【答案】ABD【解析】当a =0时,f x =x ln x -x 2,f x =1+ln x -2x x >0 ,设g x =1+ln x -2x ,则g x =1x -2=1-2xx,当x ∈0,12 时,g x >0,f x 单调递增,当x ∈12,+∞ 时,g x <0,f x 单调递减,当x =12时,f x 取得最大值,因为f 12 =1+ln 12-2×12=-ln2<0,所以fx <0,f x 单调递减,故A 正确;当a =1时,f x =e x +x ln x -x 2=x e x -ln x -(x -ln x )-1t =m x =x -ln x ,则m x =1-1x =x -1x,当x ∈0,1 时,m x <0,m x 单调递减,当x ∈(1,+∞)时,m x >0,m x 单调递增,当x =1时,m x 取得最小值,m 1 =1,所以t =m x ≥1.设h (t )=e t -t -1,h (t )=e t -1,因为t ≥1,所以h (t )=e t -1≥e -1>0,h (t )单调递增,所以h (t )≥h 1 =e -2>0,所以f x =e x +x ln x -x 2=x e x -ln x -(x -ln x )-1 =xh m (x ) >0,故B 正确;f x =x ae x -ln x -(x -ln x )-a ,若f x =0,则ae x -ln x -(x -ln x )-a =0,设t =m x =x -ln x ≥1,即a =te t -1,设F (t )=t e t -1,则F(t )=(1-t )e t -1e t -12,因为t ≥1,所以(1-t )e t -1<0,F (t )<0,F (t )单调递减,若f x 有且仅有一个零点,则t =1,此时a =1e -1,故C 错误;若f x ≥0,则ae t -t -a ≥0,即a ≥te t -1=F t ,因为F t 单调递减,所以a ≥F (1)=1e -1,故D 正确.故选:ABD .24.(2023·广东佛山·高三校考阶段练习)我们知道,函数y =f (x )的图象关系坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数. 有同学发现可以将其推广为:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )-b 为奇函数. 现在已知,函数f (x )=x 3+mx 2+nx +2的图像关于点(2,0)对称,则()A.f (2)=0B.f (1)=3C.对任意x ∈R ,有f (2+x )+f (2-x )=0D.存在非零实数x 0,使f 2+x 0 -f 2-x 0 =0【答案】ACD【解析】由题意,因为函数f (x )=x 3+mx 2+nx +2的图像关于点(2,0)对称,所以函数y =f x +2 为奇函数,所以f x +2 +f -x +2 =0,故C 正确;又y =f x +2 =x 3+m +6 x 2+12+4m +n x +4m +2n +10,则f x +2 +f -x +2 =2m +6 x 2+24m +2n +10 =0,所以m +6=04m +2n +10=0,解得m =-6n =7 ,所以f x =x 3-6x 2+7x +2,f x +2 =x 3-5x ,则f 2 =0,f 1 =4,故A 正确,B 错误;令f 2+x -f 2-x =0,则2x 3-10x =0,解得x =0或±5,所以存在非零实数x 0,使f 2+x 0 -f 2-x 0 =0,故D 正确.故选:ACD .25.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知函数f x =sin ωx +φ ω>0 满足f x 0 =f x 0+1 =22,且f x 在x 0,x 0+1 上有最大值,无最小值,则下列结论正确的是()A.f x 0+12 =1B.若x 0=0,则f x =sin πx +π4 C.f x 的最小正周期为4 D.f x 在0,2024 上的零点个数最少为1012个【答案】AC【解析】A ,由题意f x 在x 0,x 0+1 的区间中点处取得最大值,即f x 0+12=1,正确;B ,假设若x 0=0,则f x =sin πx +π4成立,由A 知f 12 =1,而f 12=sin π2+π4 =22≠1,故假设不成立,则错误;C ,f x 0 =f x 0+1 =22,且f x 在x 0,x 0+1 上有最大值,无最小值,令ωx 0+φ=2k π+π4,ωx 0+1 +φ=2k π+3π4,k ∈Z ,则两式相减,得ω=π2,即函数的最小正周期T =2πω=4,故正确;D ,因为T =4,所以函数f x 在区间0,2024 上的长度恰好为506个周期,当f 0 =0,即φ=k π,k ∈Z 时,f x 在区间0,2024 上的零点个数至少为506×2-1=1011个,故错误.故选:AC .26.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知直线y =a 与曲线y =xe x相交于A ,B 两点,与曲线y =ln xx相交于B ,C 两点,A ,B ,C 的横坐标分别为x 1,x 2,x 3.则()A.x 2=ae x 2B.x 2=ln x 1C.x 3=ex 2D.x 1+x 3>2x 2【答案】ACD 【解析】设f x =x e x ,得fx =1-x ex ,令f x =0,可得x =1,当x <1时,f x >0,则函数f x 单调递增,当x >1时,f x <0,则函数f x 单调递减,则当x =1时,f x 有极大值,即最大值f x max =f 1 =1e.设g x =ln x x ,得g x =1-ln xx2,令g x =0,则x =e ,当x <e 时,g x >0,则函数g x 单调递增,当x >e 时,g x <0,则函数g x 单调递减,则当x =e 时,g x 有极大值,即最大值g x max =f e =1e,从而可得0<x 1<1<x 2<e <x 3.由x 2ex 2=a ,得x 2=ae x2,故A 正确;由x 1e x 1=ln x 2x 2,得x 1e x 1=ln x 2e ln x 2,即f x 1 =f ln x 2 ,又0<x 1<1<x 2<e ,得0<ln x 2<1,又f x 在0,1 上单调递增,则x 1=ln x 2,故B 错误;由x 2e x 2=ln x 3x 3,得ln e x2ex 2=ln x 3x 3,即g e x 2=g x 3 .又1<x 2<e <x 3,得e x 2>e ,又g x 在e ,+∞ 上单调递减,则e x 2=x 3,故C 正确;由前面知x 1=ln x 2,e x 2=x 3,得x 1x 3=e x2ln x 2,又由x 2ex 2=ln x 2x 2=a ,得e x2=x 2a ,ln x 2=ax 2,则x 1x 3=x 22,x 1+x 3>2x 1x 3=2x 2.故D 正确.故选:ACD .27.(2023·湖南长沙·高三长郡中学校考阶段练习)由两个全等的正四棱台组合而得到的几何体1如图1,沿着BB 1和DD 1分别作上底面的垂面,垂面经过棱EP ,PH ,HQ ,QE 的中点F ,G ,M ,N ,则两个垂面之间的几何体2如图2所示,若EN =AB =EA =2,则()A.BB 1=22B.FG ⎳ACC.BD ⊥平面BFB 1GD.几何体2的表面积为163+8【答案】ABC【解析】将几何体1与几何体2合并在一起,连接BB 1,FG ,PQ ,EH ,AC ,BD ,记FG ∩PQ =K ,易得K ∈BB 1,对于A ,因为在正四棱台ABCD -EPHQ 中,AB ⎳EP ,F 是EP 的中点,所以AB ⎳EF ,又N 是EQ 的中点,EN =2,所以EQ =4,则EP =4,EF =2,又AB =2,所以AB =EF ,所以四边形ABFE 是平行四边形,则BF =AE =2,同理:B 1F =B 1G =BG =2,所以四形边B 1FBG 是边长为2菱形,在边长为4的正方形EPHQ 中,HE =42,因为F ,G 是EP ,PH 的中点,所以FG ⎳EH ,FG =12EH =22,所以BB 1=222-2222=22,故A 正确;对于B ,因为在正四棱台ABCD -EPHQ 中,面ABCD ⎳面EPHQ ,又面AEHC ∩面ABCD =AC ,面AEHC ∩面EPHQ =EH ,所以AC ⎳EH ,又FG ⎳EH ,所以FG ⎳AC ,故B 正确;对于C ,在四边形EPHQ 中,由比例易得PK =14PQ =2,由对称性可知BK =12B 1B =2,而PB =2,所以PK 2+BK 2=PB 2,则PK ⊥BK ,即PQ ⊥BK ,而由选项B 同理可证BD ⎳PQ ,所以BD ⊥BK ,因为在正方形ABCD 中,BD ⊥AC ,而FG ⎳AC ,所以BD ⊥FG ,因为BK ∩FG =K ,BK ,FG ⊂面BFB 1G ,所以BD ⊥面BFB 1G ,对于D ,由选项A 易知四边形BGB 1F 是边长为2的正方形,上下底面也是边长为2的正方形,四边形ABFE 是边长为2的菱形,其高为22-4-222=3,所以几何体2是由4个边长为2正方形和8个上述菱形组合而成,所以其表面积为4×22+8×2×3=16+163,故D 错误.故选:ABC .28.(2023·湖南长沙·高三长郡中学校考阶段练习)已知随机变量ξ~B (2n ,p ),n ∈N *,n ≥2,0<p <1,记f (t )=P (ξ=t ),其中t ∈N ,t ≤2n ,则()A.2nt =0f (t ) =1 B.2nt =0tf (t ) =2npC.n t =0f (2t )<12<nt =1f (2t -1) D.若np =6,则f (t )≤f (12)【答案】ABD【解析】对于A ,2nt =0f (t )=2nt =0P (ξ=t )=1,所以A 正确;对于B ,因为2nt =0t f (t )=E (ξ)=2np ,所以B 正确;对于C ,当p =q =12时,n t =0f (2t )=nt =1f (2t -1)=12,所以C 错误;对于D ,因为(2n +1)p =12+p ,所以当t =12时,f (t )最大,所以D 正确;证明如下:若ξ~B (n ,p ),则P (ξ=k )P (ξ=k -1)=C k n p k(1-p )n -k C k -1n p k -1(1-p )n -k +1=(n -k +1)pk (1-p ),若P (ξ=k )>P (ξ=k -1),则(n -k +1)pk (1-p )>1,解得k <(n +1)p ,故当k <(n +1)p 时,P (ξ=k )单调递增,当k >(n +1)p 时,P (ξ=k )单调递减,即当(n +1)p 为整数时,k =(n +1)p 或k =(n +1)p -1时,P (ξ=k )取得最大值,当(n +1)p 不为整数,k 为(n +1)p 的整数部分时,P (ξ=k )取得最大值.故选:ABD .29.(2023·湖南长沙·高三长郡中学校考阶段练习)已知ab ≠0,函数f x =e ax +x 2+bx ,则()A.对任意a ,b ,f x 存在唯一极值点B.对任意a ,b ,曲线y =f x 过原点的切线有两条C.当a +b =-2时,f x 存在零点D.当a +b >0时,f x 的最小值为1【答案】ABD【解析】对于A ,由已知ab ≠0,函数f x =e ax +x 2+bx ,可得f x =ae ax +2x +b ,令g x =ae ax +2x +b ,∴g x =a 2e ax +2>0,则g x 即f x =ae ax +2x +b 在R 上单调递增,令f x =ae ax +2x +b =0,则ae ax =-2x -b ,当a >0时,作出函数y =ae ax ,y =-2x -b 的大致图象如图:当a <0时,作出函数y =ae ax ,y =-2x -b 的大致图象如图:可知y =ae ax ,y =-2x -b 的图象总有一个交点,即f x =ae ax +2x +b =0总有一个根x 0,当x <x 0时,f x <0;当x >x 0时,f x >0,此时f x 存在唯一极小值点,A 正确;对于B ,由于f 0 =1,故原点不在曲线f x =e ax +x 2+bx 上,且f x =ae ax +2x +b ,设切点为(m ,n ),n =e am+m 2+bm ,则fm =ae am+2m +b =n m =e am +m 2+bm m,即ae am+m=e amm,即eam(am-1)+m2=0,令h(m)=e am(am-1)+m2,h (m)=ae am(am-1)+ae am+2m=m(a2e am+2),当m<0时,h (m)<0,h(m)在(-∞,0)上单调递减,当m>0时,h (m)>0,h(m)在(0,+∞)上单调递增,故h(m)min=h(0)=-1,当m→-∞时,e am(am-1)的值趋近于0,m2趋近于无穷大,故h(m)趋近于正无穷大,当m→+∞时,e am(am-1)的值趋近于正无穷大,m2趋近于无穷大,故h(m)趋近于正无穷大,故h(m)在(-∞,0)和(0,+∞)上各有一个零点,即e am(am-1)+m2=0有两个解,故对任意a,b,曲线y=f x 过原点的切线有两条,B正确;对于C,当a+b=-2时,b=-2-a,f x =e ax+x2-(a+2)x,故f x =ae ax+2x-a-2,该函数为R上单调增函数,f 0 =-2<0,f 1 =ae a-a=a(e a-1)>0,故∃s∈(0,1),使得f s =0,即e as=-2as+1+2a,结合A的分析可知,f(x)的极小值也即最小值为f(s)=e as+s2-(a+2)s=-2as+1+2a+s2-(a+2)s,令m(s)=-2as+1+2a+s2-(a+2)s,则m s =2s-a+2a+2,且为增函数,当a<0时,m (0)=-a+2a+2≥22-2>0,当且仅当a=-2时取等号,故当s>0时,m s >m 0 >0,则f(s)在(0,1)上单调递增,故f(s)>f(0)=2a+1,令a=-3,则f(0)=2a+1=13>0,∴f(s)>f(0)>0,此时f(x)的最小值为f(s)>0,f x 无零点,C错误;对于D,当a+b>0时,f x为偶函数,考虑x>0视情况;此时f x=f(x)=e ax+x2+bx,(x>0),f (x)=ae ax+2x+b,结合A的分析可知f (x)=ae ax+2x+b在R上单调递增,f (0)=a+b>0,故x>0时,f (x)>f (0)>0,则f(x)在(0,+∞)上单调递增,故f(x)在(-∞,0)上单调递减,f x为偶函数,故f xmin=f(0)=1,D正确,故选:ABD30.(2023·湖南益阳·高三统考阶段练习)已知函数f x =e x-1,x≥0x2+2x,x<0,则()A.f x 有两个零点B.直线y=x与f x 的图象有两个交点C.直线y=12与f x 的图象有四个交点D.存在两点a,b,-2-a,ba>0,b>0同时在f x 的图象上【答案】ABD【解析】画出f x 的图象,如下:A 选项,f x 有两个零点,即-2和0,A 正确;B 选项,当x ≥0时,f x =e x -1,则f x =e x ,令f x =e x =1,解得x =0,又f 0 =0,故y =e x -1在x =0的切线方程为y =x ,令m x =e x -1-x ,x >0,则m x =e x -1>0,故m x =e x -1-x 在0,+∞ 上单调递增,故m x >m 0 =0,即e x -1>x 在0,+∞ 上恒成立,故y =e x -1在x ∈0,+∞ 上与y =x 只有一个交点,当x <0时,f x =x 2+2x ,联立y =x ,可得x 2+2x =x ,解得x =-1或0(舍去),结合函数图象,可知直线y =x 与f x 的图象有两个交点,B 正确;C 选项,在同一坐标系内画出f x 与直线y =12的图象,可知直线y =12与f x 的图象有2个交点,C 错误;D 选项,点a ,b ,-2-a ,b a >0,b >0 是关于x =-1对称的两点,因为a >0,b >0,故a ,b 是位于第一象限的点,-2-a ,b 位于第二象限,-2-a ,b 在f x =x2+2x ,x <-2上,要想满足a ,b 同时在f x 的图象上,只需g x =x 2+2x ,x >0与h x =e x -1,x >0在第一象限内有交点,因为g 1 =3,h 1 =e -1,故g 1 >h 1 ,又g 3 =15,h 3 =e 3-1,故g 3 <h 3 ,两函数均在0,+∞ 单调递增,故一定存在x 0∈1,3 ,使得g x 0 =h x 0 ,D 正确.故选:ABD31.(2023·湖南益阳·高三统考阶段练习)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别是线段A 1B ,B 1D 1上的点,则下列结论正确的是()A.三棱锥P -CB 1D 1的体积是43B.线段PQ 的长的取值范围是233,23C.若P ,Q 分别是线段A 1B ,B 1D 1的中点,则PQ 与平面AC 所成的角为π6D.若P ,Q 分别是线段A 1B ,B 1D 1的中点,则PQ 与直线AC 所成的角为π3【答案】AC【解析】建立如图所示空间直角坐标系:因为棱长为2,所以A 2,0,0 ,B (2,2,0),C (0,2,0),A (2,0,2),D (0,0,2),A B =(0,2,-2),DC =(0,2,-2),AC =(-2,2,0),对于A ,∵A B =(0,2,-2),D C =(0,2,-2),∴A B =D C,则A B ⎳D C,所以A B ⎳D C ,又A B ⊄平面CB D ,D C ⊂平面CB D ,所以A B ⎳平面CB D ,又点P ∈A B ,故点P 到平面CB D 的距离等价于点B 到平面CB D 的距离,所以V P -CB 1D 1=V B -CB 1D 1=V D 1-BCB 1=13×2×2=43,故A 正确;对于B ,设P (2,m ,2-m ),Q (n ,n ,2),m ,n ∈[0,2]则PQ =n -22+n -m 2+m 2=2m 2+2n 2-2mn -2n +4=2m -n 2 2+32n -232+103,故m =n2n =23及m =13n =23时,PQ min =103=303≠233,故B 错误;对于C ,若P ,Q 分别是线段A 1B ,B 1D 1的中点,则P (2,1,1),Q (1,1,2),PQ =(-1,0,1),取平面AC 的法向量n=(0,0,1),设θ为PQ 与平面AC 所成的角,则sin θ=cos PQ , n =PQ ⋅nPQ n=12=22,所以θ=π4,即PQ 与平面AC 所成的角为π4,故C 错误;对于D ,若P ,Q 分别是线段A 1B ,B 1D 1的中点,则P (2,1,1),Q (1,1,2),PQ =(-1,0,1),则PQ ⋅AC =(-1,0,1)⋅(-2,2,0)=2,则cos PQ ,AC =PQ ⋅ACPQ AC=22×22=12,则PQ ,AC =π3,即PQ 与直线AC 所成的角为π3,故D 正确.故选:AD .32.(2023·湖南永州·高三校联考开学考试)已知函数f x =x 3-3x ,x <02x-2,x ≥0,若关于x 的方程f 2x -2a +1 f x +a2+a =0有6个不同的实根,则实数a 可能的取值有()A.-12B.12C.34D.2【答案】BC【解析】当x <0时,f x =x 3-3x ,则f x =3x 2-3=3x -1 x +1 ,当x ∈-∞,-1 时,f x >0,f x 单调递增,当x ∈-1,0 时,f x <0,f x 单调递减,作出f x 的图象,如图所示,f 2x -2a +1 f x +a 2+a =f x -a f x -a -1 =0,即f x =a 与f x =a +1共六个不等实根,由图可知f x =2时,x =-1或x =2,即f x =2有两个根,若使f x =a 与f x =a +1共六个不等实根,只需满足0<a <20<a +1<2 ,即0<a <1.故选:BC .33.(2023·湖南长沙·高三长郡中学校联考阶段练习)若数列a n 中任意连续三项a i ,a i +1,a i +2,均满足a i -a i +2 a i +2-a i +1 >0,则称数列a n 为跳跃数列.则下列结论正确的是()A.等比数列:1,-13,19,-127,181,⋯是跳跃数列B.数列a n 的通项公式为a n =cos n π2n ∈N *,数列a n 是跳跃数列C.等差数列不可能是跳跃数列D.等比数列是跳跃数列的充要条件是该等比数列的公比q ∈-1,0 【答案】ACD【解析】对于选项A ,由跳跃数列定义知,等比数列:1,-13,19,-127,181,⋯是跳跃数列,故A 正确;对于选项B ,数列的前三项为a 1=0,a 2=-1,a 3=0,不符合跳跃数列的定义,故B 错误;对于选项C ,当等差数列公差d >0时,它是单调递增数列;公差d <0时,它是单调递减数列;公差d =0时,它是常数列,所以等差数列不可能是跳跃数列,故C 正确;对于选项D ,等比数列a n 是跳跃数列,则a i -a i +2 a i +2-a i +1 =a 2i 1-q 2 q 2-q >0,整理得q +1 q (q -1)2<0,即-1<q <0,若比数列a n 的公比-1<q <0,则q +1 q (q -1)2<0,可得a i -a i +2 a i +2-a i +1 =a 2i 1-q 2 q 2-q >0,所以等比数列a n 是跳跃数列,故D 正确.故选:ACD .34.(2023·湖南长沙·高三长郡中学校联考阶段练习)已知函数f x 的定义域为R ,函数f x 的图象关于点1,0 对称,且满足f x +3 =f 1-x ,则下列结论正确的是()A.函数f x +1 是奇函数B.函数f x 的图象关于y 轴对称C.函数f x 是最小正周期为2的周期函数D.若函数g x 满足g x +f x +3 =2,则2024k =1g k =4048【答案】ABD【解析】因为函数f x 的图象关于点1,0 对称,所以f x +1 =-f 1-x ,所以函数f x +1 是奇函数,故A 正确;因为f x +1 =-f 1-x ,所以f x +2 =-f -x ,又f x +3 =f 1-x ,所以f x +3 =-f x +1 ,所以f x +2 =-f x ,所以f -x =f x ,所以f x 为偶函数.故B 正确;因为f x +4 =-f x +2 =f x ,所以f x 是最小正周期为4的周期函数,故C 错误;因为g x +f x +3 =2,所以g x =2-f x +3 ,那么g x +4 =2-f x +7 =2-f x +3 =g x ,所以g x 也是周期为4的函数,g 1 +g 2 +g 3 +g 4 =2-f 4 +2-f 5 +2-f 6 +2-f 7 =8-f 4 +f 5 +f 6 +f 7 ,因为f x +2 =-f x ,所以f 4 +f 6 =0,f 5 +f 7 =0,所以g 1 +g 2 +g 3 +g 4 =8,所以2024i =1g k =506g 1 +g 2 +g 3 +g 4 =4048,故D 正确.故选:ABD .35.(2023·湖南株洲·高三校考阶段练习)如图,在正方体ABCD -A 1B 1C 1D 1中,AD =4,点E ,F 分别为A 1B 1,BC 的中点,点P 满足AP =λAD +μAA 1,λ∈0,1,μ∈ 0,1 ,则下列说法正确的是()A.若λ+μ=1,则四面体PEFD 1的体积为定值B.若λ=12,μ=14,则C 1P ⊥平面EFD 1C.平面EFD 1截正方体ABCD -A 1B 1C 1D 1所得的截面的周长为5+42+35D.若λ=1,μ=0,则四面体PEFD 1外接球的表面积为344π9【答案】BD【解析】如图1,取AB 的中点G ,连接DG ,易得D 1E ∥DG ,取CD 的中点H ,连接BH ,易得BH ∥DG ,再取CH 的中点M ,连接FM ,D 1M ,则FM ∥BH ,所以FM ∥D 1E ,则FM 是平面EFD 1与正方体底面ABCD 的交线,延长MF ,与AB 的延长线交于N ,连接EN ,交BB 1于P ,则BB 1=3BP ,且五边形D 1EPFM 即平面EFD 1交正方体ABCD -A 1B 1C 1D 1的截面,由F 是BC 中点且BN ⎳CM 得BN =CM =12CH =12B 1E ,又由BN ⎳B 1E 得BP =12B 1P =13BB 1,从而可计算得ED 1=25,D 1M =5,MF =5,EP =103,PF =2133,所以平面EFD 1截正方体ABCD -A 1B 1C 1D 1所得的截面的周长为253+2133+35,故C 错误.对于A ,因为AP =λAD +μAA 1 ,λ+μ=1,所以P ,D ,A 1三点共线,所以点P 在A 1D 上,因为A 1D 与平面EFD 1不平行,所以四面体PEFD 1的体积不为定值,A 错误.对于B ,如图2,以A 为原点,分别以AB ,AD ,AA 1所在直线为x ,y ,z 轴建立空间直角坐标系,则AP =12AD+14AA 1 =0,2,1 ,C 1P =C 1A +AP =-4,-2,-3 ,D 1E =2,-4,0 ,EF =2,2,-4 ,则C 1P ⋅D 1E =0,C 1P ⋅EF =0,C 1P是平面EFD 1的一个法向量,所以C 1P ⊥平面EFD 1,故B 正确.对于D ,若λ=1,μ=0,则点P 即点D .易知EG ⎳DD 1,DD 1⊥D 1E (由DD 1⊥平面A 1B 1C 1D 1可得),同理EG ⊥D 1E ,即四边形EGDD 1是矩形,则四面体PEFD 1的外接球与四棱锥F -ED 1DG 的外接球相同,在△GFD 中,GF =22,GD =25,FD =25,在图3四棱锥F -DD 1EG 中,取U 是GF 中点,则DU ⊥GF ,△DGF 的外心T 在DU 上,sin ∠DGU =(25)2-(2)225=31010,则△GFD 外接圆的半径为DT =2531010×12=523,设DE ∩GD 1=S ,取GD 中点Q ,连接QT ,QS ,则QT ⊥GD ,同样由DD 1⊥平面DGF ,QT ⊂平面DGF ,得DD 1⊥QT ,而DG 与DD 1是平面DD 1EG 内两相交直线,因此有TQ ⊥平面DD 1EG ,同理可证SQ ⊥平面DGF ,得SQ ⊥QT ,作矩形SQTO ,可得OT =SQ =12DD 1=2,OS ⊥平面DD 1EG ,OT ⊥平面DGF ,从而知O 是四棱锥F -ED 1DG 的外接球的球心,所以四面体PEFD 1外接球的半径R =OD =DT 2+OT 2=5232+22=863,即四面体PEFD 1外接球的表面积为344π9,D 正确.故选:BD .36.(2023·湖南株洲·高三株洲二中校考开学考试)已知数列a n 满足a 1=1,a n +1=2a n ln a n +1 +1,则下列说法正确的有()A.2a 3a 1+a 2<5 B.a n +1-a 2n ≤a 2n +1C.若n ≥2,则34≤ni =11a i +1<1D.ni =1ln a i +1 ≤2n -1 ln2【答案】BCD【解析】a 2=2a 1ln a 1+1 +1=3,a 3=2a 2ln a 2+1 +1=6ln3+7,则2a 3-5a 1+a 2 =12ln3-6>0,又a 1+a 2>0,所以2a 3a 1+a 2>5,A 不正确.令函数f x =x -ln x -1,则f x =1-1x,则f x 在0,1 上单调递减,在1,+∞ 上单调递增,f x ≥f 1 =0,即x ≥ln x +1,又易得a n 是递增数列,a n ≥a 1=1,故a n ≥ln a n +1,所以a n +1≤2a 2n +1,B 正确.易知a n 是递增数列,所以a n ≥a 1=1,则ln a n +1≥1,a n +1=2a n ln a n +1 +1≥2a n +1,则a n +1+1≥2a n +1 ,即a n +1+1a n +1≥2,所以a n +1a n -1+1⋅a n -1+1a n -2+1⋯⋯⋅a 2a 1≥2n -1,即a n +1≥2n -1a 1+1 =2n ,所以1a n +1≤12n,所以ni =11a i +1≤12+122+⋯+12n =121-12n1-12=1-12n<1,而当n ≥2时,则有ni =11a i +1≥1a 1+1+1a 2+1=34,C 正确.令函数g x =2ln x -x +1x ,则gx =2x -1-1x 2=-x 2+2x -1x 2≤0,所以g x 在0,+∞ 上单调递减,所以当x ≥1时,g x ≤g 1 =0,则ln x ≤12x -1x,所以a n +1≤2a n 12a n -1a n+1+1=a 2n +2a n ,a n +1+1≤a n +1 2,ln a n +1+1 ln a n +1 ≤2,ln a n +1 ln a n -1+1⋅ln a n -1+1 ln a n -2+1 ⋅⋯⋅ln a 2+1ln a 1+1≤2n -1,ln a n +1 ≤2n -1ln a 1+1 =2n -1ln2,所以∑ni =1ln a i +1 ≤(1+2+⋯+2n -1 ln2=2n -1 ln2,D 正确.故选:BCD .37.(2023·湖南·高三临澧县第一中学校联考开学考试)已知函数f x ,g x 是定义在R 上的非常数函数,f x +1 的图象关于原点对称,且f x +g 1-x =4,f x +1 +g x -2 =4,则( ).A.f x 为奇函数 B.f x 为偶函数C.2024k =1f k =0D.2024k =1g k =8096【答案】BCD【解析】因为f x +1 的图象关于原点对称,故f 1+x +f 1-x =0,即f x +f 2-x =0①,f x +1 +g x -2 =4中,用3-x 代替x 得f 4-x +g 1-x =4,而f x +g 1-x =4,故f 4-x +g 1-x =4f x +g 1-x =4,两式相减可得f x =f 4-x ,即f x +2 =f 2-x ②,由①②可得f x =-f x +2 =f x +4 ③,故f x 的周期为4,所以f -x =f 4-x =f x ,故f x 为偶函数,因为f x 不是常数函数,所以f x 不是奇函数,故A 错误,B 正确.由①可得,f x +f x -2 =0,故f 1 +f 3 =0,f 2 +f 4 =0,于是2024k =1f k =506f 1 +f 2 +f 3 +f 4 =0,故C 正确.由f x +g 1-x =4可得f 1-x +g 1-1+x =4,即f 1-x +g x =4,因为f x 为偶函数,且f x =-f x -2 ,所以f -x =-f x -2 ,f 1-x =-f -1+x -2 =。
高考压轴高等数学试卷
一、选择题(每题5分,共50分)1. 下列函数中,定义域为实数集R的是()A. f(x) = x² + 1B. f(x) = 1/xC. f(x) = √(x - 2)D. f(x) = |x|2. 函数f(x) = e^(2x)的导数为()A. f'(x) = 2e^(2x)B. f'(x) = e^(2x)C. f'(x) = 4e^(2x)D. f'(x) = 2xe^(2x)3. 若lim(x→0) (f(x) - f(0))/(x - 0) = 2,则f'(0)等于()A. 2B. -2C. 0D. 不存在4. 函数y = x^3 - 3x + 1在x = 0处的切线方程为()A. y = 1B. y = xC. y = x + 1D. y = -x5. 下列极限计算正确的是()A. lim(x→∞) (1 + 1/x)^x = eB. lim(x→0) x / (sin x) = 1C. lim(x→0) (1 - cos x) / x = 1/2D. lim(x→0) (e^x - 1) / x = 16. 若函数f(x) = x²lnx在区间[1, 2]上单调递增,则f'(x)在区间[1, 2]上的符号为()A. 恒正B. 恒负C. 先正后负D. 先负后正7. 函数y = sin(3x)的周期为()A. π/3B. 2π/3C. πD. 2π8. 已知函数f(x) = x² + 2x + 1,则f(x)的极值点为()A. x = -1B. x = 0C. x = 1D. x = -29. 下列级数收敛的是()A. ∑(n=1 to ∞) 1/nB. ∑(n=1 to ∞) (-1)^n/nC. ∑(n=1 to ∞) n^2D. ∑(n=1 to ∞) 1/n²10. 曲线y = e^(-x)在x = 0处的切线斜率为()A. 1B. -1C. 0D. 不存在二、填空题(每题5分,共50分)1. 函数f(x) = x³ - 3x² + 2x在x = 1处的二阶导数为__________。
2023年新高考数学选填压轴题汇编(十三)(解析版)
2023年新高考数学选填压轴题汇编(十三)一、单选题1.(2022·广东·盐田高中高三阶段练习)若sin10°=3tan10°-1 ⋅sin α-20° ,则sin 2α+50° =( )A.18B.-18C.-78D.78【答案】D【解析】∵sin10∘=3tan10∘-1 ⋅sin α-20∘ ,,∴sin10∘=3sin10∘-cos10∘cos10∘⋅sin α-20∘ =232sin10∘-12cos10∘ cos10∘⋅sin α-20∘ =2sin (-20∘)cos10∘⋅sin α-20∘ ∴sin10∘cos10∘=-2sin20∘⋅sin α-20∘,∴sin α-20∘ =sin10∘cos10∘-2sin20∘=12sin20∘-2sin20∘=-14则sin 2α+50∘ =sin 2α-40∘+90∘ =cos 2α-20∘=1-2sin 2α-20∘ =1-2×14 2=78故选:D 2.(2022·广东·盐田高中高三阶段练习)已知a >0,若对任意的x ∈12,+∞ ,不等式12e ax -ln (2x )a≥0恒成立,则实数a 的取值范围是( )A.2e ,+∞ B.1e ,+∞C.[1,+∞)D.12e ,+∞【答案】A【解析】因为a >0,不等式12e ax -ln (2x )a ≥0恒成立,即12e ax ≥ln (2x )a成立,即ae ax ≥2ln (2x ),进而转化为axe ax ≥2x ln (2x )=e ln (2x )⋅ln (2x )恒成立.令g (x )=xe x ,则g (x )=(x +1)e x ,当x >0时,g (x )>0,所以g (x )在(0,+∞)上单调递增,则不等式12e ax-ln (2x )a≥0恒成立等价于g (ax )≥g (ln (2x ))恒成立.因为a >0,x ∈12,+∞ ,所以ax >0,ln (2x )>0,所以ax ≥ln2x 对任意的x ∈12,+∞ 恒成立,所以a 2≥ln (2x )2x恒成立.设h (t )=ln t t (t >1),可得h (t )=1-ln tt2.当1<t <e 时,h (t )>0,h (t )单调递增;当t >e 时,h (t )<0,h (t )单调递减.所以当t =e 时,函数h (t )取得最大值,最大值为h (e )=1e ,此时2x =e ,所以a 2≥1e,解得a ≥2e ,即实数a 的取值范围是2e ,+∞ .故选:A3.(2022·湖南省桃源县第一中学高三阶段练习)已知x >0,y >0,且e x =x 2+ln y ,则( )A.x 2<ln eyB.y >eC.y 2>e xD.x 2≤e 2-1【答案】BC【解析】对于A ,由x 2=e 2-ln y ,则需证e x -ln y <ln e y,e x-ln y <ln e -ln y ,e x <1,显然不成立,故A 错误;对于B ,令f x =e x -x 2,f x =e x -2x ,令g x =f x ,g x =e x -2,令g x =0,解得x =ln2,可得下表:x 0,ln2 ln2ln2,+∞g x -0+f x↙极小值↗则f x min =f =2-ln2 2>0,即f x 单调递增,当x >0时,f x >f 0 =1,由e x -x 2=ln y ,则ln y >1,即y >e ,故B 正确;对于C ,由B 的证明过程,易知C 正确;对于D ,由x 2≤e 2-1,则e x -x 2≥e x -e 2+1,易知h x =e x -e 2+1单调递增,无最大值,故D 错误.故选:BC .4.(2022·湖南长沙同升湖实验学校高三阶段练习)已知函数f x =x ln x -2x ,x >0x 2+32x ,x ≤0的图像上有且仅有四个不同的点关于直线y =-1的对称点在y =kx -1的图像上,则实数k 的取值范围是( )A.12,1B.12,34C.13,1D.12,2【答案】A【解析】可求得直线y =kx -1关于直线y =-1的对称直线为y =mx -1m =-k ,当x >0时,f x =x ln x -2x ,f 'x =ln x -1,当x =e 时,f 'x =0,则当x ∈0,e 时,f 'x <0,f x 单减,当x ∈e ,+∞ 时,f 'x >0,f x 单增;当x ≤0时,f x =x 2+32x ,f 'x =2x +32,当x =-34,f 'x =0,当x <-34时,f x 单减,当-34<x <0时,f x 单增;根据题意画出函数大致图像,如图:当y =mx -1与f x =x 2+32x (x ≤0)相切时,得Δ=0,解得m =-12;当y =mx -1与f x =x ln x -2x (x >0)相切时,满足y =x lnx -2x y =mx -1m =ln x -1,解得x =1,m =-1,结合图像可知m ∈-1,-12,即-k ∈-1,-12,k ∈12,1 故选:A5.(2022·湖南长沙同升湖实验学校高三阶段练习)定义在R 上的函数f (x )满足:f (x -2)的对称轴为x =2,f (x +1)=4f (x ),(f (x )≠0),且f (x )在区间(1,2)上单调递增,已知α,β是钝角三角形中的两锐角,则f (sin α)和f (cos β)的大小关系是( )A.f sin α >f cos β B.f sin α <f cos βC.f sin α =f cos βD.以上情况均有可能【答案】A【解析】由题意知f x -2 的对称轴为x =2,可得y =f x 的对称轴为x =0,即有f -x =f x ,函数f x 为偶函数,又f (x +1)=4f (x ),(f (x )≠0),即f x f x +1 =4,可得f x +1 f x +2 =4,即为f x +2 =f x , 即2为函数的f (x )的周期,f (x )在区间(1,2)上单调递增,所以f x 在区间-1,0 上单调递增,可得f x 在0,1 上递减,由α,β是钝角三角形中两锐角,可得α+β<π2,即有0<α<π2-β<π2,则0<sin α<sin π2-β <1,即为0<sin α<cos β<1,则f sin α >f cos β ,故选:A .6.(2022·湖南·周南中学高三阶段练习)在正方体ABCD -A 1B 1C 1D 1中,AB =3,点E 是线段AB 上靠近点A 的三等分点,在三角形A 1BD 内有一动点P (包括边界),则PA +PE 的最小值是( )A.2 B.22C.3D.33【答案】C【解析】以D 为坐标原点,DA ,DC ,DD 1为x ,y ,z 轴,可建立如图所示的空间直角坐标系,则A 13,0,3 ,B 3,3,0 ,D 0,0,0 ,A 3,0,0 ,E 3,1,0 ,∴DB=3,3,0 ,DA 1 =3,0,3 ,AA 1 =0,0,3 ,设A 关于平面A 1BD 的对称点为A x ,y ,z ,则A A 1 =3-x ,-y ,3-z ,AA =x -3,y ,z ,设平面A 1BD 的法向量n=a ,b ,c ,则DB ⋅n=3a +3b =0DA 1 ⋅n =3a +3c =0 ,令a =1,解得:b =-1,c =-1,∴n =1,-1,-1 ,∴A 与A 到平面A 1BD 的距离d =AA 1 ⋅nn =3=AA 1 ⋅n n=-x +y +z3,又AA ⎳n ,∴x -3=-y =-z ,∴x =1,y =2,z =2,∴A 1,2,2 ,∴PA +PE =PA +PE ≥A E =4+1+4=3(当且仅当A ,P ,E 三点共线时取等号),即PA +PE 的最小值为3.故选:C .7.(2022·湖南·长沙一中高三阶段练习)截角八面体是由正四面体经过适当的截角,即截去正四面体的四个顶点处的小棱锥所得的八面体. 如图所示,有一个所有棱长均为a 的截角八面体石材,现将此石材切削、打磨、加工成球,则加工后球的最大表面积为( )A.πa 2B.32πa 2C.53πa 2 D.83πa 2【答案】B【解析】如图,补全正四面体,则正四面体的棱长为3a ,由正四面体的对称性,正四面体的内切球心、外接球心与截角八面体的内切球心重合,记为O ,O 在底面的投影为O 1,则MO 1⊥平面QPN ,正四面体的内切球半径R =OO 1,外接球半径r =OM =OP ,正四面体M -QPN 底面上的高h =MO 1,由相似性易得正四面体M -ABC 底面上的高为13h ,由正三角形的性质,易得△QPN 的高h 1=3a2-32a 2=332a ,则PO 1=23h 1=3a ,则在Rt △MPO 1中,h =MO 1=MP 2-PO 12=3a2-3a 2=6a ,PO 2=OO 12+PO 12⇒6a -R 2=R 2+3a 2,解得R =64a ,平面ABC 到平面QPN 的距离为h -13h =263a ,所以O 到平面ABC的距离为263a -R =5612a >R ,故截角八面体的内切球半径亦为R ,则截角八面体的内切球的表面积为S =4πR 2=3πa 22,故选:B .8.(2022·湖南·长沙一中高三阶段练习)设a =cos π11-π11,b =π11-sin π11,c =tan π11-π11,则( )A.b <c <a B.c <b <aC.c <a <bD.a <b <c【答案】A【解析】a -b =cosπ11+sin π11-2×π11,令f (x )=cos x +sin x -2x ,0<x <π6,则f(x )=-sin x +cos x -2<0,所以f (x )在0,π6 上单调递减,又f (0)=1>0,f π6 =32+12-π3=3+33-2π6>0,所以f π11 =a -b =cos π11+sin π11-2×π11>0,即a >b ;a -c =cos π11-tan π11=cos π11-sin π11cos π11=cos 2π11-sin π11cosπ11,令g (x )=cos 2x -sin x ,0<x <π6,则g (x )=-2cos x sin x -cos x <0,所以g (x )在0,π6 上单调递减,g (0)=1,g π6 =34-12>0,所以g π11 =cos 2π11-sin π11>0,所以a -c =cos π11-tan π11=cos π11-sin π11cos π11=cos 2π11-sin π11cosπ11>0,所以a>c;c-b=tanπ11+sinπ11-2×π11,令h(x)=tan x+sin x-2x,0<x<π6,h (x)=1cos2x +cos x-2=cos3x-2cos2x+1cos2x=cos3x-2cos2x+1cos2x=(cos x-1)(cos2x-cos x-1)cos2x再令t=cos2x-cos x-1=cos x-1 22-54,0<x<π6,从而可得-23+14<t=cos2x-cos x-1<-1,所以h (x)=(cos x-1)(cos2x-cos x-1)cos2x>0,因此h(x)在0,π6上单调递增,又h(0)=0,所以h(x)>0,所以hπ11>0,故c>b.所以a>c>b.故选:A9.(2022·湖南岳阳·高三阶段练习)已知直三棱柱ABC-A1B1C1中,AB=AA1=2,BC=3AC,当该三棱柱体积最大时,其外接球的体积为( )A.282127π B.323π C.2053π D.2879π【答案】C【解析】因为三棱柱ABC-A1B1C1为直三棱柱,所以,AA1⊥平面ABC所以,要使三棱柱的体积最大,则△ABC面积最大,因为S△ABC=12BC⋅AC⋅sin∠ACB,令AC=x因为BC=3AC,所以S△ABC=32x2⋅sin∠ACB,在△ABC中,cos∠ACB=AC2+BC2-AB22AC⋅BC=4x2-423x2,所以,sin2∠ACB=1-16(x2-1)212x4=-4x4+32x2-1612x4,所以,(S△ABC)2=34x4⋅sin2∠ACB=34⋅-x4+8x2-43=-x2-42+124≤3,所以,当x2=4,即AC=2时,(S△ABC)2取得最大值3,所以,当AC=2时,S△ABC取得最大值3,此时△ABC为等腰三角形,AB=AC=2,BC=23,所以,cos∠BAC=AB2+AC2-BC22AB⋅AC=4+4-122×2×2=-12,∠BAC∈0,π,所以∠BAC=2π3,所以,由正弦定理得△ABC外接圆的半径r满足23sin2π3=4=2r,即r=2,所以,直三棱柱ABC-A1B1C1外接球的半径R2=r2+AA122=5,即R=5,所以,直三棱柱ABC-A1B1C1外接球的体积为4π3R3=2053π.故选:C10.(2022·湖北·高三阶段练习)设a=54ln54,b=15e15,c=14,则( )A.a <b <cB.b <c <aC.a <c <bD.b <a <c【答案】B【解析】设函数f x =1-x e x -1,x ∈0,1 ,则f x =-xe x <0,所以f x 在0,1 上单调递减,因此f 15 =1-15 e 15-1<f 0 =0,则15e 15<14,即b <c .当x ∈0,1 时,由f x =1-x e x -1<0,得0<e x <11-x,因此x <ln 11-x ,15<ln 54,则14<54ln 54,即c <a ,故b <c <a .故选:B 11.(2022·湖北·高三阶段练习)设函数f x =2sin 12x +φ -10≤φ≤π2在0,5π 内恰有3个零点,则φ的取值范围是( )A.0,π3∪5π12B.0,π4∪π3,π2C.0,π6∪5π12D.0,π6∪π3,π2【答案】D【解析】∵f x =0,即sin 12x +φ=12,∴12x +φ=π6+2k π或12x +φ=5π6+2k π,k ∈Z ,∴x =π3-2φ+4k π或x =5π3-2φ+4k π,k ∈Z ,∵0≤φ≤π2,即0≤2φ≤π,∴当k <0时,x =π3-2φ+4k π<π3-2φ-4π=-11π3-2φ<0且x =5π3-2φ+4k π<5π3-2φ-4π=-7π3-2φ<0,即所有根都小于零,当k ≥2时,x =π3-2φ+4k π≥π3-2φ+8π>8π-2φ>5π且x =5π3-2φ+4k π≥5π3-2φ+8π>8π-2φ>5π,即所有根都大于5π,综上:k =0,1,即f x 在0,5π 内的三个零点为π3-2φ,5π3-2φ,π3-2φ+4π,5π3-2φ+4π中的三个.由于上述4个值是依次从小到大排列,且5π3-2φ≥5π3-π>0,π3-2φ+4π≤π3+4π<5π故有两种情况,分别为:π3-2φ≥05π3-2φ+4π>5π,解得φ≤π6φ<π3,故0≤φ≤π6,或π3-2φ<05π3-2φ+4π≤5π,解得φ>π6φ≥π3,故π3≤φ≤π2,故0≤φ≤π6或π3≤φ≤π2,即φ∈0,π6 ∪π3,π2.故选:D .12.(2022·湖北·高三阶段练习)直线y =k 与两条曲线f x =x ex 和g x =ln xx 共有三个不同的交点,并且从左到右三个交点的横坐标依次是x 1、x 2、x 3,则下列关系式正确的是( )A.x 2=x 1+x 3B.2x 2=x 1+x 3C.x 2=x 1x 3D.x 22=x 1x 3【答案】D【解析】当x e x =ln x x 时,则有x 2e x =ln x ,设函数h (x )=x2e x (x >0),则h (x )=x (2-x )e x,当0<x <2时,h (x )>0,h (x )单调递增,当x >2时,h (x )<0,h (x )单调递减,而h (0)=0,而h (x )max =h (2)=4e2<12,12=ln e <ln2,如下图所示:因此曲线y =ln x ,y =x 2e x 的交点只有一个,因此曲线f x =x ex 和g x =ln xx 只有一个交点,f x =x e x ⇒f x =1-xe x,当x <1时,f (x )>0,f (x )单调递增,当x >1时,f (x )<0,f (x )单调递减,且当x →+∞时,y →0,且f (0)=0,图象如下图所示,g x =ln x x ⇒g (x )=1-ln xx 2,当0<x <e 时,g (x )>0,g (x )单调递增,当x >e 时,g (x )<0,g (x )单调递减,且当x →+∞时,y →0,当x →0时,y →-∞,图象如下图所示,当直线y =k 经过曲线f x =x ex 和g x =ln xx 唯一的公共点时,直线与两条曲线恰好有三个不同的交点,如上图所示,则有0<x 1<1<x 2<e <x 3,且x 1e x 1=x 2ex 2=ln x 2x 2=ln x 3x 3,①对上式同构可得:ln e x 1e x 1=ln e x2ex 2=ln x 2x 2=ln x 3x 3,∵0<e x 1,x 2<e 且函数g x =ln xx 在0,e 单调递增,∴e x 1=x 2,x 1=ln x 2②又∵e x 2,x 3>e ,且函数g x =ln xx在e ,+∞ 上单调递减,∴e x 2=x 3③由方程②③可得:x 1⋅x 3=ln x 2⋅e x 2,再结合方程①可得:x 22=x 1x 3.故选:D13.(2022·湖北·恩施土家族苗族高中高三阶段练习)已知f (x )满足f (x )=-4x 2-8x ,x ≤012f (x -2),x >0,若在区间(-1,3)内,关于x 的方程f (x )=kx +k (k ∈R )有4个根,则实数k 的取值范围是A.0<k ≤14或k =8-215 B.0<k ≤14C.0<k ≤8-215 D.0<k <14【答案】A【解析】∵f (x )满足f (x )=-4x 2-8x ,x ≤012f (x -2),x >0,可得:当x ≤0时,f (x )=-4x 2-8x 故-2<x ≤0时,f (x )=-4x 2-8x∵令0<x ≤2时,则-2<x -2≤0根据f (x )=12f (x -2),∴可得f (x )=12f (x -2)=12-4x -2 2-8x -2=-2x 2-2x =-2x -1 2+2∵当2<x ≤4时,则0<x -2≤2可得f (x )=12f (x -2),∴可得f (x )=12f (x -2)=-x -2 2-2x -2 =-x -3 2+1即2<x ≤3,f (x )=-x -3 2+1即f (x )=-4x 2-8x ,-1<x ≤0-2x -1 2+2,0<x ≤2-x -3 2+1,2<x ≤3令y =kx +k ,化简可得y =k x +1 故y =k x +1 恒过点-1,0在同一坐标系画出y =k x +1 和函数f (x )的图象①当y =k x +1 和函数f (x )相交时∵f (3)=1当y =k x +1 过点3,1 ,可得k =14根据图象可知当0<k ≤14时,区间(-1,3)内,y =k x +1 和函数f (x )相交且有4交点.即f (x )=kx +k (k ∈R )有4个根②当y =k x +1 和函数f (x )在2,3 上相切时设y =k x +1 和函数f (x )在2,3 上相切的切点为x 0,y 0 .当2<x ≤3,f (x )=-x -3 2+1=-x 2+6x -8f (x )=-2x +6∴f (x 0)=-2x 0+6=k ,又∵y =k x +1 恒过点-1,0 ,可得k =y 0x 0+1∴-2x 0+6=y 0x 0+1=-x 20+6x 0-8x 0+1x 20+2x 0-14=0解得:x 0=-1±15,故x 0=-1+15f (x 0)=-2x 0+6=k ,可得k =8-215综上所述,f (x )=kx +k (k ∈R )有4个根,则实数k 的取值范围:0<k ≤14或k =8-215故选:A .14.(2022·湖北·恩施土家族苗族高中高三阶段练习)如图是半径为1,圆心角为π4的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记∠POC =α,矩形ABCD 的面积最大值为( )A.2-12B.2+12C.22D.3-22【答案】A【解析】BC =OC sin α=sin α,显然△ODA 是等腰直角三角形,故OA =DA =BC ,AB =OB -OA =OC cos α-BC =cos α-sin α,故矩形的面积S =(cos α-sin α)sin α,α∈0,π4,根据二倍角公式,辅助角公式化简得:S =cos αsin α-sin 2α=sin2α2-1-cos2α2=22sin 2α+π4 -12,根据α∈0,π4 可得2α+π4∈π4,3π4 ,故2α+π4=π2,即α=π8时,矩形面积取到最大值2-12.故选:A 15.(2022·湖北·高三阶段练习)已知函数f x =-x 3+21+ex ,若f m 2-3 +f (1-m )>2,则实数m 的取值范围是( )A.(-1,2)B.1-172,1+172C.(-∞,-1)∪(2,+∞)D.-∞,1-172 ∪1+172,+∞ 【答案】A【解析】令g (x )=f (x )-1=-x 3+21+e x -1=-x 3+1-e x 1+e x ,g (-x )=-(-x )3+1-e -x 1+e -x =x 3+e x -11+e x=-g (x ),故g (x )为奇函数.由函数单调性的性质可知g (x )在R 上单调递减.因为f m 2-3 +f (1-m )>2,所以g m 2-3 +1+g (1-m )+1>2,即g m 2-3 >-g (1-m )=g (m -1),所以m 2-3<m -1,解得-1<m <2.故选:A16.(2022·湖北·高三阶段练习)对于某一集合A ,若满足a 、b 、c ∈A ,任取a 、b 、c ∈A 都有“a 、b 、c 为某一三角形的三边长”,则称集合A 为“三角集”,下列集合中为三角集的是( )A.{x |x 是△ABC 的高的长度} B.x x -1x -2≤0C.x x -1 +x -3 =2D.x y =log 23x -2【答案】B【解析】对于A :当等腰三角形的顶角∠BAC 无限小时,且底边上的高AD 比较大,BE ⊥AC ,CF ⊥AB ,如下图所示:显然BE +CF <AD ,故BE 、CF 、AD 不满足三角形的三边,故选项A 错误;对于B :由x -1x -2≤0,即x -1 x -2 ≤0x -2≠0 ,解得1≤x <2,任取x 1,x 2且x 1≥x 2,则 2≤x 1+x 2<4,0≤x 1-x 2<1,又1≤x 3<2,所以x 1-x 2<x 3<x 1+x 2,即选项B 成立;对于C :因为x -1 +x -3 =2,当x ≤1时,-x -1 -x -3 =2,解得x =1;当x ≥3时,x -1 +x -3 =2,解得x =3;当1<x <3时x -1 -x -3 =2,即2=2恒成立,所以1<x <3;综上可得1≤x ≤3,即x x -1 +x -3 =2 =x |1≤x ≤3 ,令a =b =1,c =3,显然a +b <c ,不满足a ,b ,c 为某一三角形的三边长,故选项C 错误;对于D :因为log 2(3x -2),所以3x -2>0,解得x >23,所以x y =log 23x -2 =x x >23,令a =b =1,c =3,显然a +b <c ,不满足a ,b ,c 为某一三角形的三边长,故选项D 错误.故选:B 二、多选题17.(2022·广东·盐田高中高三阶段练习)已知函数f x =x ln x -ax ,则( )A.当a ≤0或a =1e 时,f x 有且仅有一个零点B.当a ≤0或a =12时,f x 有且仅有一个极值点C.若f x 为单调递减函数,则a >12D.若f x 与x 轴相切,则a =1e 【答案】AD【解析】令f x =0可得x ln x -ax =0,化简可得ln xx=a ,设h (x )=ln x x ,则h (x )=1-ln xx 2,当x >e ,h (x )<0,函数h (x )在e ,+∞ 单调递减,当0<x <e ,h (x )>0,函数h (x )在0,e 单调递增,又h (1)=0,h (e )=1e ,由此可得函数h (x )=ln xx 图像如下:所以当a ≤0或a =1e 时,ln xx =a 有且仅有一个零点所以当a ≤0或a =1e时,f x 有且仅有一个零点,A 对,函数f x =x ln x -ax 的定义域为0,+∞ ,f x =ln x -2ax +1,若f x 与x 轴相切,设f x 与x 轴相切相切与点(x 0,0),则f x 0 =0,f x 0 =0,所以ln x 0-ax 0=0,ln x 0-2ax 0+1=0所以x 0=e ,a =1e,故D 正确;若f x 为单调递减函数,则f x ≤0在0,+∞ 上恒成立,所以ln x +12x≤a 在0,+∞ 上恒成立,设g (x )=ln x +12x ,则g (x )=-ln x2x 2,当x >1时,g (x )<0,函数g (x )=ln x +12x单调递减,当0<x <1时,g (x )>0,函数g (x )=ln x +12x单调递增,且g (1)=12,g 1e =0,当x >1e时,g (x )>0,由此可得函数g (x )=ln x +12x的图像如下:所以若f x 为单调递减函数,则a ≥12,C 错,所以当a =12时,函数f (x )在0,+∞ 上没有极值点,B 错,故选:AD .18.(2022·广东·盐田高中高三阶段练习)设函数f x =2sin ωx +π3,ω>0,下列说法正确的是( )A.当ω=2时,f x 的图象关于直线x =π12对称B.当ω=π时,f x 的图象关于点-43,0 成中心对称C.当ω=12时,f x 在0,π2 上单调递增D.若f x 在0,π 上的最小值为-2,则ω的取值范围为ω≥76【答案】ABD【解析】当ω=2时,f x =2sin 2x +π3 ,2×π12+π3=π2,所以f x 的图象关于直线x =π12对称,A 选项正确;当ω=π时,f x =2sin πx +π3 ,2sin π×-43 +π3 =0,所以f x 的图象关于点-43,0 成中心对称,B 选项正确;当ω=12时,f x =2sin 12x +π3 ,当x ∈0,π2 时,12x +π3∈π3,7π12,y =sin x 在π3,7π12 上不单调递增,C 选项错误;若f x 在0,π 上的最小值为-2,由x ∈0,π ,得ωx +π3∈π3,ω+13 π ,sin ωx +π3可取得-1,所以ω+13 π≥32π,解得ω≥76,D 选项正确.故选:ABD .19.(2022·湖南省桃源县第一中学高三阶段练习)已知过点A a ,0 作曲线y =1+x e x 的切线有且仅有1条,则a 的可能取值为( )A.-5 B.-3 C.-1 D.1【答案】AC【解析】由已知得y =2+x e x ,则切线斜率k =2+x 0 e x 0,切线方程为y -1+x 0 e x 0=2+x 0 e x0x -x 0 ,直线过点A a ,0 ,则-1+x 0 e x 0=2+x 0 e x 0a -x 0 ,化简得x 20+1-a x 0-2a -1=0,切线有且仅有1条,即Δ=a -1 2+42a +1 =0,化简得a 2+6a +5=0,即a +1 a +5 =0,解得a =-1或a =-5.故选:AC .20.(2022·湖南省桃源县第一中学高三阶段练习)定义:μ=cos 2θ1-θ0 +cos 2θ2-θ0 +⋯+cos 2θn -θ0 n为集合A =θ1,θ2,⋯,θn 相对常数θ0的“余弦方差”.若θ∈0,π2 ,则集合A =π3,0相对θ的“余弦方差”的取值可能为( )A.38B.12C.34D.45【答案】ABC【解析】依题意μ=cos 2π3-θ0 +cos 20-θ02=cos π3cos θ0+sin π3sin θ0 2+cos 2θ02=12cos θ0+32sin θ0 2+cos 2θ02=14cos 2θ0+32cos θ0sin θ0+34sin 2θ0+cos 2θ2=12cos 2θ0+32cos θ0sin θ0+342=14cos2θ0+34sin2θ0+12=1412cos2θ0+32sin2θ0 +12=14sin 2θ0+π6 +12,因为θ0∈0,π2 ,所以2θ0+π6∈π6,7π6 ,所以sin 2θ0+π6 ∈-12,1 ,所以μ∈38,34;故选:ABC21.(2022·湖南长沙同升湖实验学校高三阶段练习)已知函数f x =sin cos x +cos sin x ,其中x 表示不超过实数x 的最大整数,下列关于f x 结论正确的是A.f π2=cos1 B.f x 的一个周期是2πC.f x 在0,π 上单调递减 D.f x 的最大值大于2【答案】ABD【解析】由f x =sin cos x +cos sin x ,对于A ,f π2=sin0+cos1=cos1,故A 正确;对于B ,因为f x +2π =sin cos x +2π +cos sin x +2π=sin cos x +cos sin x =f x ,所以f x 的一个周期是2π,故B 正确;对于C ,当x ∈0,π2时,0<sin x <1,0<cos x <1,所以sin x =cos x =0,所以f x =sin cos x +cos sin x =sin0+cos0=1,故C 错误;对于D ,f 0 =sin cos0 +cos sin0=sin1+cos0=sin1+1>22+1>2,故D 正确;故选:ABD22.(2022·湖南长沙同升湖实验学校高三阶段练习)已知函数f (x )=x +2a ,x <0x 2-ax ,x ≥0,若关于x 的方程f (f (x ))=0有8个不同的实根,则a 的值可能为.A.-6 B.8C.9D.12【答案】CD【解析】当a ≤0时, f (x )=0仅x =0一根,故f (f (x ))=0有8个不同的实根不可能成立.当a >0时, 画出图象,当f (f (x ))=0时, f 1(x )=-2a ,f 2(x )=0,f 3(x )=a又f (f (x ))=0有8个不同的实根,故f 1(x )=-2a 有三根,且y =x 2-ax =x -a 2 2-a 24.故-2a >-a24⇒a >8.又f 2(x )=0有三根, f 3(x )=a 有两根,且满足a <2a ⇒a >0.综上可知,a >8.故选:CD23.(2022·湖南·周南中学高三阶段练习)若函数f x =ln x +a x 2-2x +1 (a ∈R )存在两个极值点x 1,x 2x 1<x 2 ,则( )A.函数f x 至少有一个零点B.a <0或a >2C.0<x 1<12 D.f x 1 +f x 2 >1-2ln2【答案】ACD【解析】对于A ,f x =ln x +a x 2-2x +1 =ln x +a (x -1)2f (1)=ln1+a (1-1)2=0 ,∴x =1 是f (x ) 的一个零点,故A 正确对于B ,f(x )=1x +a (2x -2)=2ax 2-2ax +1x∵f (x ) 存在两个极值点x 1,x 2(x 1<x 2) ,∴2ax 2-2ax +1=0 有两个不相等的实数根,即f (x ) 有两个变号零点x 1>0,x 2>0∴Δ>0 ,即(-2a )2-4×2a ×1=4a 2-8a =4a (a -2)>0 ,∴a >2或a <0又x 1>0,x 2>0,∴x 1+x 2=1>0x 1x 2=12a>0,解得a >0综上,a >2 ,故B 错误对于C ,由B 选项可得,x 1+x 2=1 ,∴x 2=1-x 1 ,∴1-x 1>x 1 ,∴0<x 1<12故C 正确对于D ,f (x 1)+f (x 2)=ln x 1+a (x 21-2x 1+1)+ln x 2+a (x 22-2x 2+1)=ln x 1x 2+a [x 21+x 22-2(x 1+x 2)+2]将x 1+x 2=1,x 1x 2=12a 代入上式f (x 1)+f (x 2)=ln 12a +a 12-2×12a -2×1+2 =-ln2a +a 1-1a =-ln2-ln a +a -1=a -ln a -ln2-1令h (a )=a -ln a -ln2-1(a >2)h (a )=1-1a =a -1a>0有h (a ) 在(2,+∞) 上单调递增,∴h (a )>h (2)=2-ln2-ln2-1=1-2ln2 ,故D 正确故选:ACD24.(2022·湖南·长沙一中高三阶段练习)设定义在R 上的函数f (x )与g (x )的导函数分别为f (x )和g (x ),若g (x )-f (3-x )=2,f (x )=g (x -1),且g (x +2)为奇函数,则下列说法中一定正确的是( )A.函数g (x )的图象关于x =1对称 B.f (2)+f (4)=4C.2023k =1g (k )=0D.2023k =1f (k )=-4046【答案】AC【解析】因为f (x )=g (x -1), 则f (x )+a =g (x -1)+b ,因为 g (x )-f (3-x )=2,所以g (x )=f (3-x )+2,用3-x 去替x ,所以有f (x )=g (3-x )-2,所以有g (3-x )-2+a =g (x -1)+b ,取 x =2 代入得到 g (1)-2+a =g (1)+b 则 a -2=b ,故g (3-x )=g (x -1),用x +1换x ,可得g (2-x )=g (x ),函数g (x )的图象关于x =1对称,故A 正确;g (x +2)在R 上为奇函数, 则 g (x +2)过(0,0), 图像向右移动两个单位得到g (x )过(2,0),故g (x )图像关于(2,0)对称,g (2)=0;g (x +2)=-g (-x +2),而g (2-x )=g (x ),所以有g (x +2)=-g (x ),则 g (x ) 的周期 T =4;又因为g (x )图像关于(2,0)对称,g (2)=0;函数g (x )的图象关于x =1对称,,故g (1)=-g (3),g (2)=g (4)=0,2023k =1g (k )=g (1)+g (2)+⋯+g (2023)=g (1)+g (2)+g (3)=0,故C 正确.f (x )=g (3-x )-2, 是由 g (x ) 的图像移动变化而来, 故 f (x ) 周期也为 4 ,因为 g (1)=-g (3),g (2)=g (4)=0,所以 f (2)=g (1)-2,f (4)=g (-1)-2=g (-1+4)-2=g (3)-2,所以f (2)+f (4)=g (1)-2+g (3)-2=-4,故B 错误;f (x )=g (3-x )-2,f (x )周期为 4 , f (1)=g (2)-2=-2,f (2)=g (1)-2,f (3)=g (0)-2=-2,f (4)=g (-1)-2=g (-1+4)-2=g (3)-2故2023k =1f (k )=f (1)+f (2)+⋯+f (2023)=505×(-8)+f (1)+f (2)+f (3)=-4046+g (1),由于g (1)的值未知,g (1)不一定为0,所以无法判断2023k =1f (k )的值为-4046,故D 错误;故选:AC .25.(2022·湖南岳阳·高三阶段练习)在直四棱柱中ABCD -A 1B 1C 1D 1中,∠BAD =60∘,AB =AD =AA 1=2,P 为CC 1中点,点Q 满足DQ =λDC +μDD 1,λ∈0,1,μ∈ 0,1 .下列结论正确的是( )A.若λ+μ=1,则四面体A1BPQ 的体积为定值.B.若AQ ∥平面A 1BP ,则AQ 的最小值为 5.C.若△A 1BQ 的外心为M ,则A 1B ⋅A 1M为定值2.D.若A 1Q =7,则点Q 的轨迹长度为23π.【答案】ABD【解析】对于A ,因为DQ =λDC +μDD 1 ,λ∈0,1,μ∈ 0,1 ,λ+μ=1,所以Q ,C ,D 1三点共线,所以点Q 在CD 1,因为CD 1∥A 1B ,CD 1⊄平面A 1BP ,A 1B ⊂平面A 1BP ,所以CD 1∥平面A 1BP ,所以点Q 到平面A 1BP 的距离为定值,因为△A 1BP 的面积为定值,所以四面体A 1BPQ 的体积为定值,所以A 正确,对于B ,取DD 1,DC 的中点分别为M ,N ,连接AM ,MN ,AN ,则AM ∥BP ,因为AM ⊄平面A 1BP ,BP ⊂平面A1BP ,所以AM ∥平面A 1BP ,因为MN ∥CD 1,A 1B ∥CD 1,所以MN ∥A 1B ,因为MN ⊄平面A 1BP ,A 1B ⊂平面A 1BP ,MN ∥平面A 1BP ,因为MN ∩AM =M ,MN ,AM ⊂平面AMN ,所以平面AMN ∥平面A 1BP ,因为AQ ⊂平面AMN ,所以AQ 平面A 1BP ,所以当AQ ⊥MN 时,AQ 最小,因为∠BAD =60∘,AB =AD =AA 1=2,所以AM =5,MN =2,AN =AD 2+DN 2-2AD ⋅DN cos120°=4+1-2×2×1×-12=7,所以AM 2+MN 2=AN 2,所以Q ,M 重合,所以AQ 的最小值为5,所以B 正确,对于C ,若△A 1BQ 的外心为M ,过M 作MH ⊥A 1B 于H ,因为A 1B =22+22=22,所以A 1B ⋅A 1M =12A 1B 2=4,所以C 错误,对于D ,过A 1作A 1O ⊥C 1D 1于点O ,因为则可得DD 1⊥平面A 1B 1C 1D 1,A 1O ⊂平面A 1B 1C 1D 1,所以DD 1⊥A 1O ,因为C 1D 1∩DD 1=D 1,C 1D 1,DD 1⊂平面DD 1C 1C ,所以A 1O ⊥平面DD 1C 1C ,OD 1=A1D 1cos π3=1,在DD 1,D 1C 1上取点A 3,A 2,使得D 1A 3=3,D 1A 2=1,则A 1A 3=A 1A 2=7,OA 3=OA 2=7-3=2,所以若A 1Q =7,则Q 在以O 为圆心,2为半径的圆弧A 2A 3上运动,因为D 1O =1,D 1A 3=3,所以∠A 3OA 2=π3,则圆弧A 2A 3等于2π3,所以D 正确,故选:ABD26.(2022·湖北·高三阶段练习)已知函数f x =3x 2-1 2-8x 3-a ,则( )A.f x 的极大值为1-aB.f x 的最小值为-5-aC.当f x 的零点个数最多时,a 的取值范围为2027,1D.不等式f x ≤-a 的解的最大值与最小值之差小于1.2【答案】ACD【解析】因为f x =3x 2-1 2-8x 3-a ,所以f x =23x 2-1 ×6x -24x 2=12x x -1 3x +1 .当-13<x <0或x >1时,f x >0;当x <-13或0<x <1时,f x <0.即f x 在-∞,-13 和0,1 上单调递减,在-13,0 和1,+∞ 上单调递增,所以函数在x =-13取得极小值,在x =0处取得极大值,在x =1处取得极小值,又f -13 =2027-a ,f 1 =-4-a <f -13,故f x 的极大值为f 0 =1-a ,f x 的最小值为f 1 =-4-a ,故A 正确,B 错误.所以f x 零点个数最多为4,此时f -13 =2027-a <0,f 0 =1-a >0,解得a ∈2027,1 ,C 正确.不等式f x ≤-a ,即3x 2-1 2-8x 3≤0,令g x =3x 2-1 2-8x 3,则g x =23x 2-1 ×6x -24x 2=12x x -1 3x +1 .当-13<x <0或x >1时,g x >0;当x <-13或0<x <1时,g x <0.即g x 在-∞,-13 和0,1 上单调递减,在-13,0 和1,+∞ 上单调递增,所以g x 的函数图象如下所示:因为g 0.2 =0.882-1.6×0.04>0,g 1.4 =4.882-8×1.43>0,则g x ≤0的解的最大值与最小值之差小于1.4-0.2=1.2,即不等式f x ≤-a 的解的最大值与最小值之差小于1.4-0.2=1.2,D 正确.故选:ACD27.(2022·湖北·高三阶段练习)若由函数f x 构造的数列a n 满足a n =f n ,∀n ∈N *,0<a 1+a 2+⋯+a n<1,则称f x 为单位收敛函数.下列四个函数中,为单位收敛函数的是( )A.f x =25x B.f x =2(x +2)2C.f x =13 x +14 xD.f x =lg 1+1x 【答案】BC 【解析】若f x =25x ,则a n =25n,则a 1+a 2+⋯+a 7+a 8=251+12+13+14+15+16+17+18 >251+12+14+14+18+18+18+18=1,故f x =25x 不是单位收敛函数.若f x =2(x +2)2,则a n =2(n +2)2<2n +1 n +2=21n +1-1n +2 ,0<a 1+a 2+⋯+a n =212-13+13-14+⋯+1n +1-1n +2 =212-1n +2<1,故f x =2(x +2)2为单位收敛函数.若f x =13 x +14 x ,则a n =13 n +14n,0<a 1+a 2+⋯+a n =131-131-13n +141-141-14n =121-13n +131-14n <12+13<1,故f x =13 x +14x为单位收敛函数.若f x =lg 1+1x ,则a n =lg 1+1n =lg n +1n=lg n +1 -lg n >0,0<a 1+a 2+⋯+a n =lg2-lg1+lg3-lg2+⋯+lg n +1 -lg n =lg n +1 ,当n >9时,lg n +1 >1,故f x =lg 1+1x不是单位收敛函数.故选:BC .28.(2022·湖北·高三阶段练习)已知函数f x =cos x -2sin x ,以下结论不正确的是( )A.π是函数f x 的一个周期B.函数f x 在0,2π3上单调递减C.函数f x 的值域为-5,1D.函数f x 在-2π,2π 内有6个零点【答案】ABD【解析】对于A:因为f x =cos|x|-2|sin x|,所以f0 =cos0-2|sin0|=1,fπ =cosπ-2sinπ=-1,因为fπ ≠f0 ,所以π不是函数f x 的一个周期,即选项A错误;对于B:当0≤x≤2π3时,f x =cos x-2sin x=555cos x-255sin x=5cos(x+φ),其中cosφ=55,sinφ=255,不妨设φ为锐角,则π3<φ<π2,因为0≤x≤2π3,所以φ≤x+φ≤2π3+φ,因为2π3+φ>π,所以函数f x 在0,2π3无单调性,即选项B错误;对于C:因为2π是函数f(x)的一个周期,可取一个周期[-π,π]上研究值域,当x∈0,π,f(x)=cos x-2sin x=5cos(x+φ),其中cosφ=55,sinφ=255,不妨设φ为锐角,则π3<φ<π2,则φ≤x+φ≤π+φ<3π2,所以5cosπ≤f x ≤5cosφ,即f(x)∈[-5,1];又因为f(x)是偶函数,所以当x∈[-π,0]时,f(x)∈[-5,1],故函数f(x)在R上的值域为[-5,1],故选项C正确;对于D:当x∈[0,π],令f(x)=0,得cos x=2sin x,即tan x=12,只有1个解;当x∈π,2π,令f(x)=0,得cos x=-2sin x,即tan x=-12,只有1个解;所以f(x)在[0,2π]上有2个零点,又因为函数f(x)为偶函数,所以在区间-2π,2π内有4个零点,即选项D错误.故选:ABD.29.(2022·湖北·高三阶段练习)函数f(x)=e kx⋅ln x(k为常数)的图象可能是( )A. B.C.D.【答案】ABC【解析】显然f (x )有唯一零点x =1,故D 错误;f(x )=e kx x(kx ln x +1),(x ln x ) =ln x +1,∴y =x ln x 在0,1e 上单减,1e,+∞ 上单增,∴x ln x ∈-1e ,+∞ ,且x →0时x ln x →0,x →+∞时x ln x →+∞,故当0≤k ≤e 时,f (x )≥0,f (x )单增,选项A 可能;当k >e 时,f (x )存在两个零点0<x 1<1e<x 2<1,f (x )在0,x 1 和x 2,+∞ 上单增,x 1,x 2 上单减,选项B 可能;当k <0时,f (x )存在唯一零点x 0>1,f (x )在0,x 0 上单增,在x 0,+∞ 上单减,选项C 可能.故选:ABC .30.(2022·湖北·恩施土家族苗族高中高三阶段练习)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1]时,f (x )=-x 2+1,则下列结论正确的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上为减函数D.方程f (x )+lg x =0仅有6个实数解【答案】ABD【解析】对于选项A :f (x +1)为偶函数,故f (x +1)=f (-x +1),令x =52得:f 72 =f -52+1 =f -32,又f (x -1)为奇函数,故f (x -1)=-f (-x -1),令x =12得:f -32 =-f 12-1 =-f -12,其中f -12 =-14+1=34,所以f 72=f -32 =-f -12 =-34,故选项A 正确;对于选项B :因为f (x -1)为奇函数,所以f (x )关于-1,0 对称,又f (x +1)为偶函数,则f (x )关于x =1对称,所以f (x )周期为4×2=8,故f (x +7)=f (x -1),所以f (-x +7)=f (-x -1)=-f x -1 =-f x -1+8 =-f x +7 ,从而f (x +7)为奇函数,故选项B 正确;对于选项C :f (x )=-x 2+1在x ∈(-1,0)上单调递增,又f (x )关于-1,0 对称,所以f (x )在-2,0 上单调递增,且f (x )周期为8,故f (x )在(6,8)上单调递增,故选项C 错误;对于选项D :根据题目条件画出f (x )与y =-lg x 的函数图象,如图所示:其中y =-lg x 单调递减且-lg12<-1,所以两函数有6个交点,故方程f (x )+lg x =0仅有6个实数解,故选项D 正确.故选:ABD31.(2022·湖北·恩施土家族苗族高中高三阶段练习)已知函数f x =2x +1+2-1-x -2,x ≤0log 2x ,x >0,若f x 1 =f x 2 =f x 3 =f x 4 ,且x 1<x 2<x 3<x 4,则( )A.x 1+x 2=-1B.x 3x 4=1C.22≤x 3<1<x 4≤2D.0<x 1+x 2+x 3+x 4≤322-2【答案】BCD【解析】当x ≤0时,f x =2x +1+2-1-x -2.设函数g x =2x +2-x -2,则有g -x =g x ,g 0 =0,g x =2x +2-x -2≥22x ×2-x -2=0,故g x 是偶函数,且最小值为0.当x >0时,g x =2x ln2-2-x ln2=2x -2-x ln2>0,所以g x 在0,+∞ 上单调递增,又g x 是偶函数,所以g x 在-∞,0 上单调递减.把g x =2x +2-x -2的图象向左平移一个单位长度,得到函数y =21+x +2-1-x -2的图象,故函数y =21+x +2-1-x -2的图象关于直线x =-1对称,故可得到函数f x 在-∞,0 上的图象.作出函数f x 的大致图象,如图所示.又f 0 =12,故函数f x 的图象与y 轴的交点为0,12.作平行于x 轴的直线y =a ,当0<a ≤12时,直线y =a 与函数f x 的图象有四个交点.数形结合可知x 1+x 2=-2,故A 错误;由f x 3 =f x 4 ,得log 2x 3 =log 2x 4 ,又根据题意知x 3<1<x 4,所以-log 2x 3=log 2x 4,即log 2x 4+log 2x 3=0,即log 2x 3x 4 =0,所以x 3x 4=1,故B 正确;令log 2x 3 =log 2x 4 =12,则log 2x 3=-12,log 2x 4=12,得x 3=22,x 4=2,因此22≤x 3<1<x 4≤2,故C 正确;又1<x 4≤2时,x 1+x 2+x 3+x 4=-2+x 4+1x 4,且函数y =-2+x +1x在1,2 上单调递增,所以0<x 1+x 2+x 3+x 4≤322-2,故D 正确.故选:BCD32.(2022·湖北·高三阶段练习)已知曲线y =ae x 与y =ln x -ln a 的两条公切线l 1,l 2的倾斜角分别为α,β,l 1,l 2交于点Q ,且l 1,l 2的夹角为θ0<θ≤π2,则下列说法正确的是( )A.sin α=cos βB.tan α+tan β≥2C.若tan θ=34,则a 3=2e 3D.点Q 可能在第三象限【答案】ABC【解析】如图,因为y =ae x 与y =ln x -ln a 互为反函数,故两函数的图象关于直线y =x 对称,则l 1,l 2关于y =x 对称,故α+β=π2,sin α=sin π2-β =cos β,故A 正确;由题意,α,β均为锐角,tan α>0,tan β>0,tan α+tan β=tan α+tan π2-α =tan α+1tan α≥2,当且仅当tan α=1,即α=β=π4时取等号,故B 正确;设l 1与两个函数图象分别切于M ,N 两点,∠OQN =θ2,则tan θ=34,即2tan θ21-tan 2θ2=34,解得tan θ2=13或-3(舍去),故k MN =tan θ2+45° =1+131-13=2,对于y =e x ,则y =e x ,令y=e x =2,解得x =ln2,所以切点为ln2,2 ,所以曲线y =e x 的斜率为2的切线方程为y =2x -2ln2+2,故曲线y =ae x =e x +ln a 的斜率为2的切线方程为y =2(x +ln a )-2ln2+2,同理可得y =ln x 的斜率为2的切线方程为y =2x -ln2-1,故曲线y =ln x -ln a 的斜率为2的切线方程为y =2x -ln2-1-ln a ,所以-ln2-1-ln a =2ln a -2ln2+2,则ln a 3=ln2-3,则a 3=2e3,故C 正确;由图可知点Q 必在第一象限,故D 错误.故选:ABC .33.(2022·湖北·高三阶段练习)已知函数f (x )=sin ωx +a cos ωx (a >0,ω>0),f π3=3,且f (x )≤f π6 ,则( )A.tan πω6=33B.a =3C.ω≥1D.f (x )在0,π6上单调递增【答案】AC【解析】f (x )=sin ωx +a cos ωx =a 2+1sin (ωx +φ),sin φ=a a 2+1,cos φ=1a 2+1,因为f (x )在x =π6处取得最大值,所以πω6+φ=2k π+π2,k ∈Z ,即φ=2k π+π2-πω6,k ∈Z ,所以tan φ=tan 2k π+π2-πω6 =tan π2-πω6 =1tan πω6=a ,所以tan πω6 =1a ,因为f π3 =3,所以a 2+1sin πω3+φ =3,即sin πω3+φ =3a 2+1,所以sin πω3+φ =sin πω3+2k π+π2-πω6 =sin π2+πω6 =cos πω6 =3a 2+1,所以sin πω6 =tan πω6 ×cos πω6 =1a 3a 2+1,又sin 2πω6 +cos 2πω6 =1a 3a 2+1 2+3a 2+12=1,解得a 2=3,又a >0,所以a =3,所以sin πω6 =12,tan πω6 =33,故A 正确,B 错误;所以πω6=2k π+π6,k ∈Z ,解得ω=12k +1,k ∈Z ,又ω>0,所以ω≥1,故C 正确;当ω=13时,因为0<x <π6,所以φ<13x +φ<13π6+φ,所以f (x )在0,π6上不单调,故D 错误,故选:AC .三、填空题34.(2022·湖南省桃源县第一中学高三阶段练习)函数f x =sin x +sin x +cos x +cos x 的最大值为______.【答案】22【解析】因为f x 的定义域为R ,f -x =sin -x +sin -x +cos -x +cos -x =sin x +sin x +cos x +cos x =f x 所以f x 为偶函数,当x ≥0时,f x =sin x +sin x +cos x +cos x=22sin x +π4 ,x ∈2k π,π2+2k π 2sin x ,x ∈π2+2k π,π+2k π0,x ∈π+2k π,3π2+2k π 2cos x ,x ∈3π2+2k π,2π+2k π,k ∈Z ,所以当x =π4+2k π,k ∈Z 时,函数取得最大值f π4=22,综上可知函数的最大值22,故答案为:2235.(2022·湖南长沙同升湖实验学校高三阶段练习)已知函数f (x )=ax 2+bx +c (0<2a <b )对任意x ∈R 恒。
2023年新高考数学选填压轴题汇编(八)(解析版)
2023年新高考数学选填压轴题汇编(八)一、单选题1.(2022·湖南·永兴县童星学校高三阶段练习)已知a =65ln1.2,b =0.2e 0.2,c =13,则( )A.a <b <c B.c <b <aC.c <a <bD.a <c <b【答案】A【解析】b =0.2e 0.2=e 0.2ln e 0.2,a =65ln1.2=1.2ln1.2,令f x =x ln x ,则f x =ln x +1,当0<x <1e 时,f x <0,当x >1e时,f x >0,所以函数f x 在0,1e 上递减,在1e,+∞ 上递增,令g x =e x -x -1,则g x =e x-1,当x <0时,g x <0,当x >0时,g x >0,所以函数g x 在-∞,0 上递减,在0,+∞ 上递增,所以g 0.2 >g 0 =0,即e 0.2>1+0.2=1.2>1e,所以f e 0.2 >f 1.2 ,即e 0.2ln e 0.2>1.2ln1.2,所以b >a ,由b =0.2e 0.2,得ln b =ln 0.2e 0.2 =15+ln 15,由c =13,得ln c =ln 13,ln c -ln b =ln 13-ln 15-15=ln 53-15,因为53 5=625×5243>10>e ,所以53>e 15,所以ln 53>15,所以ln c -ln b >0,即ln c >ln b ,所以c >b ,综上所述a <b <c .故选:A .2.(2022·湖南·永兴县童星学校高三阶段练习)已知函数f x =x ,x <0,13x 3-12a +1 x 2+ax ,x ≥0,若方程f x=ax -148恰有3个不同的实根,则实数a 的取值范围为( )A.-∞,2 B.-12,1 C.-12,2 D.12,1 【答案】B【解析】由题,当x <0时,令g x =f x -ax +148=x -ax +148=1-a x +148,根据一次函数性质可得1-a >0⇒a <1,此时有一个根,1-a <0⇒a >1,此时无根;当x ≥0时,令g x =13x 3-12a +1 x 2+ax -ax +148=13x 3-12a +1 x 2+148,求导g x =x 2-a +1 x =x x -a +1 ,令g x =0⇒x 1=0或x 2=a +1,当a +1≤0时,g x 在0,+∞ 上单调递增,故无零点,不满足题意;当a +1>0时,g x 在0,a +1 单调递减,在a +1,+∞ 单调递增,由题,函数f x 恰有3个零点,则说明在当x <0时,有1个零点,在x ≥0时有两个零点,故可知a <1且g a +1 <0,所以g a +1 =13a +1 3-12a +1 a +1 2+148=-16a +1 3+148<0,解得a >-12;综上可得-12<a <1故选:B3.(2022·湖北·荆州中学高三阶段练习)已知tan α,tan β是方程ax 2+bx +c =0a ≠0 的两根,有以下四个命题:甲:tan α+β =-12;乙:tan αtan β=7:3;丙:sin α+β cos α-β =54;丁:tan αtan βtan α+β -tan α+β =5:3.如果其中只有一个假命题,则该命题是( )A.甲 B.乙C.丙D.丁【答案】B【解析】因为tan α,tan β是方程ax 2+bx +c =0a ≠0 的两根,所以tan α+tan β=-ba,tan α⋅tan β=c a,则甲:tan α+β =tan α+tan β1-tan α⋅tan β=-b a1-c a=b c -a =-12;丙:sin α+β cos α-β =sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β=-b a1+ca=-b c +a =54.若乙、丁都是真命题,则tan α+tan β=-53,tan α⋅tan β=73,所以tan α+β =tan α+tan β1-tan α⋅tan β=-b a 1-c a =-531-73=54,sin α+β cos α-β =sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β=-b a 1+c a =-531+73=-12,两个假命题,与题意不符,所以乙、丁一真一假,假设丁是假命题,由丙和甲得a -c =2b ,-5a +c =4b ,所以2a -c =-5a +c ,即7a +3c =0,所以c :a =-7:3,与乙不符,假设不成立;假设乙是假命题,由丙和甲得7a +3c =0,又a -c =2b ,所以3b =5a ,即b :a =5:3与丙相符,假设成立;故假命题是乙,故选:B .4.(2022·湖北·荆州中学高三阶段练习)已知函数f x =ax ln x -x 2+3-a x +1a ∈R ,若f x 存在两个试卷第2页,共42页极值点x1,x2x1<x2,当x2x1取得最小值时,实数a的值为( )A.0B.1C.2D.3【答案】D【解析】由题意可知,f (x)=a ln x-2x+3有两个变号零点,即f (x)=0有两个不同的正根x1,x2x1<x2,不妨令g(x)=f (x),则g (x)=ax-2,当a≤0时,g (x)=ax-2<0,故f (x)=a ln x-2x+3在(0,+∞)上单调递减,此时f (x)最多只有一个零点,不合题意;当a>0时,g (x)>0⇒0<x<a2;g (x)<0⇒x>a2,故f (x)在0,a 2上单调递增,在a2,+∞单调递减,因为f e-3a=a ln e-3a-2e-3a+3=--2e-3a<0,f (1)=1>0,且由对数函数性质可知,当x足够大时,f (x)=a ln x-2x+3<0,所以由零点存在基本定理可知,0<x1<1<x2,因为a ln x1-2x1+3=0,a ln x2-2x2+3=0,所以a=2x1-3ln x1=2x2-3ln x2=2(x1-x2)ln x1x2=2x1x2x1-1ln x2x1,不妨令t=x2x1,由x2>x1>0⇒t>1,从而2x1-32x1ln x1=x2x1-1ln x2x1=t-1ln t=h(t),因为h (t)=ln t+1t-1ln2t,令y=ln t+1t-1,则y =1t-1t2=t-1t2>0,从而y=ln t+1t-1在(1,+∞)单调递增,且y|t=1=0,故对于∀t>1,h (t)>0,即h(t)在(1,+∞)单调递增,从而当t=x2x1取得最小值是,h(t)也取得最小值,即2x1-32x1ln x1取得最小值,不妨令F(x)=2x-32x ln x,x∈(0,1),则F (x)=3ln x-2x+32x2ln2x,令φ(x)=3ln x-2x+3,则φ (x)=3-2xx>0对于x∈(0,1)恒成立,故φ(x)=3ln x-2x+3在(0,1)上单调递增,因为φ(1)=1>0,φ1e =-2e<0,所以存在唯一的x0∈1e,1,使得φ(x0)=3ln x0-2x0+3=0⇔2x0-3ln x0=3,故F (x)<0⇒0<x<x0;F (x)>0⇒x>x0,从而F(x)=2x-32x ln x在(0,x0)上单调递减,在(x0,+∞)单调递增,故F (x )min =F (x 0)=2x 1-32x 1ln x 1min,此时h (t )也取得最小值,即x 0=x 1,故a =2x 0-3ln x 0=2x 1-3ln x 1=3.故选:D .5.(2022·山东·乳山市银滩高级中学高三阶段练习)已知f (x +2)是偶函数,f (x )在-∞,2 上单调递减,f (0)=0,则f (2-3x )>0的解集是( )A.-∞,23 ∪2,+∞ B.23,2C.-23,23D.-∞,-23 ∪23,+∞ 【答案】D【解析】根据题意,f (x +2)是偶函数,则函数f (x )的图象关于直线x =2对称,又由f (x )在-∞,2 上单调递减,则f (x )在2,+∞ 上递增,又由f (0)=0,则f (2-3x )>0⇒f (2-3x )>f (0)⇒|3x |>2,解可得:x <-23或x >23,即不等式的解集为-∞,-23 ∪23,+∞ ;故选:D .6.(2022·山东·乳山市银滩高级中学高三阶段练习)已知a =log 52,b =log 83,c =12,则下列判断正确的是( )A.c <b <a B.b <a <c C.a <c <b D.a <b <c【答案】C【解析】a =log 52<log 55=12=log 822<log 83=b ,即a <c <b .故选:C .7.(2022·山东·栖霞市第一中学高三阶段练习)已知a =log 328,b =π0.02,c =sin1,则a ,b ,c 的大小关系是( )A.c <b <a B.c <a <b C.a <b <c D.a <c <b【答案】D【解析】由题意,a =log 328=log 2523=35=0.6,b =π0.02>π0=1,sin π4<sin1<sin π3⇒22<c <32,则a <c <b .故选:D .8.(2022·山东·济南市天桥区黄河双语实验学校高三阶段练习)已知f x =2x x 2+1,x ≥0-1x ,x <0 ,若函数g x =f x -t 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,则-1x 1+1x 2+1x 3的取值范围是( )A.3,+∞B.2,+∞C.52,+∞D.1,+∞【答案】A试卷第2页,共42页【解析】函数f x =2x x 2+1,x ≥0-1x ,x <0 的图象如图所示,函数g x =f x -t 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,即方程f x =t 有三个不同的实数根x 1,x 2,x 3,由图知t >0,当x >0时,f x =2x x 2+1=2x +1x,∵x +1x≥2x >0 ,∴f x ≤1,当且仅当x =1时取得最大值,当y =1时,x 1=-1,x 2=x 3=1,此时-1x 1+1x 2+1x 3=3,由2x +1x=t 0<t <1 ,可得x 2-2x t +1=0,∴x 2+x 3=2t,x 2x 3=1,∴1x 2+1x 3=2t >2,∴-1x 1+1x 2+1x 3=t +2t,∵0<t <1,∴-1x 1+1x 2+1x 3的取值范围是3,+∞ .故选:A .9.(2022·山东·高密三中高三阶段练习)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=a ⋅2x +b .若f (0)+f (3)=6,则f log 296 的值是( )A.-12 B.-2C.2D.12【答案】B【解析】f (x +1)为奇函数,即其图象关于(0,0)点对称,所以f (x )的图象关于(1,0)点对称,f (x +2)为偶函数,即其图象关于y 轴对称,因此f (x )的图象关于直线x =2对称,所以f (1)=0,f (0)=-f (2),f (3)=f (1),所以f (1)=2a +b =0,f (0)+f (3)=-f (2)=-(4a +b )=6,由此解得a =-3,b =6,所以x ∈[1,2]时,f (x )=-3⋅2x +6,由对称性得f (x +2)=f (2-x )=-f (1-(1-x ))=-f (x ),所以f (x +4)=-f (x +2)=f (x ),f (x )是周期函数,周期为4,6<log 296<7,f (log 296)=f (log 296-4)=f (4-log 296+4)=f log 225696 =f log 283 =-3×83+6=-2,故选:B .10.(2022·福建师大附中高三阶段练习)张衡是中国东汉时期伟大的天文学家、数学家,他曾在数学著作《算罔论》中得出结论:圆周率的平方除以十六约等于八分之五.已知在菱形ABCD 中,AB =BD =23,将△ABD 沿BD 进行翻折,使得AC =26.按张衡的结论,三棱锥A -BCD 外接球的表面积约为( )A.72 B.2410C.2810D.3210【答案】B【解析】如图1,取BD 的中点M ,连接AM ,CM .由AB =AD =BD =23,可得△ABD 为正三角形,且AM =CM =23×32=3,所以cos ∠AMC =32+32-(26)22×3×3=-13,则sin ∠AMC =1--13 2=223,以M 为原点,MC 为x 轴,MD 为y 轴,过点M 且与平面BCD 垂直的直线为z 轴建立空间直角坐标系如图2,则C (3,0,0), A (-1,0,22).设O 为三棱锥A -BCD 的外接球球心,则O 在平面BCD 的投影必为△BCD 的外心,则设O (1,0,h ).由R 2=|OA |2=|OC |2可得22+02+(22-h )2=22+02+h 2,解得h =2,所以R 2=|OC |2=6.由张衡的结论,π216≈58,所以π≈10,则三棱锥A -BCD 的外接球表面积为4πR 2≈2410,故选:B .11.(2022·福建省福州教育学院附属中学高三开学考试)若函数f x =kx -ln x 在区间1,+∞ 上单调递增,则实数k 的取值范围是A.-∞,-2 B.-∞,-1C.2,+∞D.1,+∞【答案】D 【解析】f x =k -1x,∵函数f x =kx -ln x 在区间1,+∞ 单调递增,∴f x ≥0在区间1,+∞ 上恒成立.∴k ≥1x ,而y =1x在区间1,+∞ 上单调递减,∴k ≥1∴k 的取值范围是1,+∞ .故选D .考点:利用导数研究函数的单调性.12.(2022·江苏·沭阳如东中学高三阶段练习)已知圆柱的轴截面是边长为2的正方形,P 为上底面圆的圆心,AB 为下底面圆的直径,E 为下底面圆周上一点,则三棱锥P -ABE 外接球的表面积为( )A.2516π B.254π C.52π D.5π【答案】B【解析】由题,由圆的性质,△ABE 为直角三角形,∠E =90°,如图所示,设外接球半径为R ,底面圆心为Q ,外接球球心为O , 由外接球的定义,OP =OA =OB =OE =R ,易得O 在线段PQ 上, 又圆柱的轴截面是边长为2的正方形,所以底面圆半径AQ =BQ =1,∵PQ ⊥AQ ,则OA 2=OQ 2+AQ 2⇒R 2=2-R 2+12,解得R =54,试卷第2页,共42页∴外接球表面积为4πR 2=25π4.故选:B .13.(2022·江苏·沭阳如东中学高三阶段练习)若a =sin1+tan1,b =2,c =ln4+12,则a ,b ,c 的大小关系为( )A.c <b <a B.c <a <bC.a <b <cD.b <c <a【答案】A【解析】令f x =2ln x +1x -x ,则fx =2x +-1x 2-1=-x 2+2x -1x 2=-x -1 2x 2≤0,则f x 在定义域0,+∞ 上单调递减,所以f 2 <f 1 =0,即2ln2+12-2<0,所以ln4+12<2,即b >c ,令g x =sin x +tan x -2x ,x ∈0,π2 ,则g x =cos x +1cos 2x -2=cos 3x -2cos 2x +1cos 2x ,因为x ∈0,π2 ,所以cos x ∈0,1 ,令h x =x 3-2x 2+1,x ∈0,1 ,则h x =3x 2-4x =x 3x -4 <0,即h x 在0,1 上单调递减,所以h x >h 1 =0,所以g x >0,即g x 在0,π2上单调递增,所以g 1 >g 0 =0,即sin1+tan1-2>0,即sin1+tan1>2,即a >b ,综上可得a >b >c ;故选:A 14.(2022·江苏·常州市第一中学高三开学考试)已知a >0,且a ≠1,函数f (x )=5a x +3a x +1+ln (1+4x 2-2x )(-1≤x ≤1),设函数f (x )的最大值为M ,最小值为N ,则( )A.M +N =8B.M +N =10C.M -N =8D.M -N =10【答案】A 【解析】f (x )=5a x +3a x+1+ln (1+4x 2-2x )(-1≤x ≤1),令g (x )=ln (1+4x 2-2x ),x ∈[-1,1],由g (-x )=ln (1+4x 2+2x )=ln11+4x 2-2x=-ln (1+4x 2-2x )=-g (x ),可知g (-x )=-g (x ),故g (x )函数的图象关于原点对称,设g (x )的最大值是a ,则g (x )的最小值是-a ,由5a x +3a x +1=5-2a x +1,令h (x )=-2a x +1,当0<a <1时,h (x )在[-1,1]递减,所以h (x )的最小值是h (-1)=-2a a +1,h (x )的最大值是h 1 =-2a +1,故h -1 +h 1 =-2,∴f (x )的最大值与最小值的和是10-2=8,当a >1时,h (x )在[-1,1]单调递增,所以h (x )的最大值是h (-1)=-2a a +1,h (x )的最小值是h 1 =-2a +1,故h -1 +h 1 =-2,故函数f (x )的最大值与最小值之和为8,综上:函数f (x )的最大值与最小值之和为8,故选:A .15.(2022·江苏·泗洪县洪翔中学高三阶段练习)不等式ae ax >ln x 在(0,+∞)上恒成立,则实数a 的取值范围是( )A.12e ,+∞B.1e ,+∞C.(1,+∞)D.(e ,+∞)【答案】B【解析】当a ≤0时,不等式ae ax >ln x 在(0,+∞)上恒成立不会成立,故a >0 ,当x ∈(0,1] 时,ln x ≤0 ,此时不等式ae ax >ln x 恒成立;不等式ae ax >ln x 在(1,+∞)上恒成立,即axe ax >x ln x 在(1,+∞)上恒成立,而axe ax >x ln x 即axe ax >ln x ⋅e ln x ,设g (x )=xe x ,g (x )=(x +1)e x ,当x >-1 时,g (x )=(x +1)e x >0,故g (x )=xe x ,(x >-1)是增函数,则axe ax >ln x ⋅e ln x 即g (ax )>g (ln x ),故ax >ln x ,a >ln xx,设h (x )=ln x x ,(x >1),h (x )=1-ln xx 2,当1<x <e 时,h (x )=1-ln xx 2>0, h (x )递增,当x >e 时,h (x )=1-ln xx 2<0, h (x )递减,故h (x )≤h (e )=1e ,则a >1e,综合以上,实数a 的取值范围是a >1e,故选:B 16.(2022·江苏·泗洪县洪翔中学高三阶段练习)已知四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,平面PAB ⊥平面ABCD ,且△PAB 为等边三角形,则该四棱锥的外接球的表面积为( )A.283π B.1123π C.32πD.2563π【答案】B【解析】如图所示,在四棱锥P -ABCD 中,取侧面△PAB 和底面正方形ABCD 的外接圆的圆心分别为O 1,O 2,分别过O 1,O 2作两个平面的垂线交于点O ,则由外接球的性质知,点O 即为该球的球心,取线段AB 的中点E ,连O 1E ,O 2E ,O 2D ,OD ,则四边形O 1EO 2O 为矩形,在等边△PAB 中,可得PE =23,则O 1E =233,即OO 2=233,在正方形ABCD 中,因为AB =4,可得O 2D =22,在直角△OO 2D 中,可得OD 2=OO 22+O 2D 2,即R 2=OO 22+O 2D 2=283,所以四棱锥P -ABCD 外接球的表面积为S =4πR 2=112π3.故选:B .试卷第2页,共42页17.(2022·江苏·淮安市钦工中学高三阶段练习)已知定义在R 上的函数f x 的导函数f x ,且f x <f x<0,则( )A.ef 2 >f 1 ,f 2 >ef 1B.ef 2 >f 1 ,f 2 <ef 1C.ef 2 <f 1 ,f 2 <ef 1D.ef 2 <f 1 ,f 2 >ef 1【答案】D【解析】构造函数g (x )=f (x )e x ⇒g(x )=f (x )-f (x )ex,因为f x <f x ,所以g (x )>0,因此函数g (x )是增函数,于是有g (2)>g (1)⇒f (2)e2>f (1)e ⇒f (2)>ef (1),构造函数h (x )=f (x )⋅e x ⇒h (x )=e x [f (x )+f (x )],因为f x <f x <0,所以h (x )<0,因此h (x )是单调递减函数,于是有h (2)<h (1)⇒e 2f (2)<ef (1)⇒ef (2)<f (1),故选:D18.(2022·江苏·沭阳县潼阳中学高三阶段练习)已知函数f (x )=e x -x -1,x ≤0,-f (-x ),x >0, 则使不等式f (ln x )>-1e 成立的实数x 的取值范围为( )A.0,1eB.1e ,+∞C.(0,e )D.(e ,+∞)【答案】C【解析】因为f (0)=0,x >0时,f (x )=-f (-x ),因此x <0时也有f (x )=-f (-x ),即函数f (x )是奇函数,x ≤0时,f (x )=e x -x -1,f (x )=e x -1≤0,所以f (x )是减函数,所以奇函数f (x )在R 上是减函数,又f (-1)=1e ,所以f (1)=-f (-1)=-1e,不等式f (ln x )>-1e为f (ln x )>f (1),所以ln x <1,0<x <e ,故选:C .19.(2022·江苏·沭阳县潼阳中学高三阶段练习)已知实数a 、b 、c 满足a 2+b 2+c 2=1,则2ab +3c 的最大值为( )A.3 B.134C.2D.5【答案】A【解析】因为1-c 2=a 2+b 2≥2ab ,所以,2ab +3c ≤-c 2+3c +1=-c -32 2+134,因为1-c 2≥0,可得-1≤c ≤1,故当a =b =0c =1 时,2ab +3c 取最大值3.故选:A .二、多选题20.(2022·湖南·永兴县童星学校高三阶段练习)已知函数f x =x ln x -ax ,则( )A.当a ≤0或a =1e 时,f x 有且仅有一个零点B.当a ≤0或a =12时,f x 有且仅有一个极值点C.若f x 为单调递减函数,则a >12D.若f x 与x 轴相切,则a =1e【答案】AD【解析】令f x =0可得x ln x -ax =0,化简可得ln xx=a ,设h (x )=ln x x ,则h (x )=1-ln xx 2,当x >e ,h (x )<0,函数h (x )在e ,+∞ 单调递减,当0<x <e ,h (x )>0,函数h (x )在0,e 单调递增,又h (1)=0,h (e )=1e ,由此可得函数h (x )=ln xx 图像如下:所以当a ≤0或a =1e 时,ln xx =a 有且仅有一个零点所以当a ≤0或a =1e时,f x 有且仅有一个零点,A 对,函数f x =x ln x -ax 的定义域为0,+∞ ,f x =ln x -2ax +1,若f x 与x 轴相切,设f x 与x 轴相切相切与点(x 0,0),则f x 0 =0,f x 0 =0,所以ln x 0-ax 0=0,ln x 0-2ax 0+1=0所以x 0=e ,a =1e,故D 正确;若f x 为单调递减函数,则f x ≤0在0,+∞ 上恒成立,所以ln x +12x≤a 在0,+∞ 上恒成立,设g (x )=ln x +12x ,则g (x )=-ln x2x 2,当x >1时,g (x )<0,函数g (x )=ln x +12x单调递减,当0<x <1时,g (x )>0,函数g (x )=ln x +12x单调递增,且g (1)=12,g 1e =0,当x >1e时,g (x )>0,由此可得函数g (x )=ln x +12x的图像如下:所以若f x 为单调递减函数,则a ≥12,C 错,所以当a =12时,函数f (x )在0,+∞ 上没有极值点,B 错,故选:AD .21.(2022·湖南·永兴县童星学校高三阶段练习)已知函数f (x )=x 2+2x +1,x <0ln x -2 ,x >0,若方程f (x )=k (k ∈R )有四个不同的实数解,它们从小到大依次记为x 1,x 2,x 3,x 4,则( )A.0<k <1 B.x 1+x 2=-1C.e <x 3<e 2D.0<x 1x 2x 3x 4<e 4【答案】ACD【解析】画出函数f (x )与函数y =k 的图像如下:f (x )在-∞,-1 单调递减,值域0,+∞ ;在-1,0 单调递增,值域0,1 ;在0,e 2 单调递减,值域0,+∞ ;在e 2,+∞ 单调递增,值域0,+∞ .试卷第2页,共42页则有x1+x 2=-2,ln x 3-2+ln x 4-2=0,即x 3x 4=e 4.选项B 判断错误;方程f (x )=k (k ∈R )有四个不同的实数解,则有0<k <1.选项A 判断正确;由f (x )在0,e 2 单调递减,值域0,+∞ ,f (e )=ln e -2 =1,f (e 2)=ln e2-2 =0,可知e <x 3<e 2.选项C 判断正确;由x 1<x 2<0<x 3<x 4,可知x 1x 2x 3x 4>0又x 1x 2x 3x 4=e 4x 1x 2=e 4-x 1 -x 2 <e 4-x 1 +-x 2 22=e 4.则有0<x 1x 2x 3x 4<e 4.故选项D 判断正确.故选:ACD22.(2022·湖北·荆州中学高三阶段练习)已知函数f x =2sin x 2+π6,若将函数f x 的图象纵坐标不变,横坐标缩短到原来的14,再向右平移π6个单位长度,得到函数g x 的图象,则( )A.函数g x =2sin 2x -π6 B.函数f x 的周期为4πC.函数g x 在区间π,4π3 上单调递增D.函数f x 的图象的一条对称轴是直线x =-π3【答案】ABC【解析】由题意可知,函数f x 的图象纵坐标不变,横坐标缩短到原来的14后,其解析式为y =2sin 2x +π6 ,y =2sin 2x +π6 向右平移π6个单位长度后,得到g (x )=2sin 2x -π6 +π6 =2sin 2x -π6 ,故A 正确;由周期公式可知,函数f x 的周期为T =2π12=4π,故B 正确;由-π2+2k π≤2x -π6≤π2+2k π⇒-π6+k π≤x ≤π3+k π,k ∈Z ,故g (x )的单调递增区间为-π6+k π,π3+k π ,k ∈Z ,从而函数g x 在区间π,4π3上单调递增,故C 正确;因为f -π3=2sin0=0≠±2,故D 错误.故选:ABC .23.(2022·湖北·荆州中学高三阶段练习)已知奇函数f x 在R 上可导,其导函数为f ′x ,且f 1-x -f 1+x +2x =0恒成立,若f x 在0,1 单调递增,则( )A.f x 在1,2 上单调递减 B.f 0 =0C.f 2022 =2022 D.f 2023 =1【答案】BCD 【解析】方法一:对于A ,若f x =x ,符合题意,故错误,对于B ,因已知奇函数f x 在R 上可导,所以f 0 =0,故正确,对于C 和D ,设g x =f x -x ,则g x 为R 上可导的奇函数,g 0 =0,由题意f 1-x +x -1=f 1+x -1-x ,得g 1-x =g 1+x ,g x 关于直线x =1对称,易得奇函数g x 的一个周期为4,g 2022 =g 2 =g 0 =0,故C 正确,由对称性可知,g x 关于直线x =-1对称,进而可得g -1 =0,(其证明过程见备注)且g x 的一个周期为4,所以g ′2023 =g ′-1 =0,故D 正确.备注:g 1-x =g 1+x ,即-g 1-x =-g 1+x ,所以g -1+x =g -1-x ,等式两边对x 求导得,g ′-1+x =-g ′-1-x ,令x =0,得g ′-1 =-g ′-1 ,所以g -1 =0.方法二:对于A ,若f x =x ,符合题意,故错误,对于B ,因已知奇函数f x 在R 上可导,所以f 0 =0,故正确,对于C ,将f 1-x -f 1+x +2x =0中的x 代换为x +1,得f -x -f 2+x +2x +2=0,所以f x +2 +f x =2x +2,可得f x +4 +f x +2 =2x +6,两式相减得,f x +4 -f x =4,则f 6 -f 2 =4,f 10 -f 6 =4,⋯,f 2022 -f 2018 =4,叠加得f 2022 -f 2 =2020,又由f x +2 +f x =2x +2,得f 2 =-f 0 +2=2,所以f 2022 =f 2 +2020=2022,故正确,对于D ,将f 1-x -f 1+x +2x =0的两边对x 求导,得-f 1-x -f 1+x +2=0,令x =0得,f 1 =1,将-f -x =f x 的两边对x 求导,得f ′-x =f ′x ,所以f -1 =1,将f x +4 -f x =4的两边对x 求导,得f x +4 =f x ,所以f 2023 =f 2019 =⋅⋅⋅=f -1 =1,故正确.故选:BCD24.(2022·山东·乳山市银滩高级中学高三阶段练习)已知函数f x =ln x 2+1+x +x 5+3,函数g x 满足g -x +g x =6.则( )A.f lg7 +f lg17=6B.函数g x 的图象关于点3,0 对称C.若实数a 、b 满足f a +f b >6,则a +b >0D.若函数f x 与g x 图象的交点为x 1,y 1 、x 2,y 2 、x 3,y 3 ,则x 1+y 1+x 2+y 2+x 3+y 3=6【答案】AC【解析】对于A 选项,对任意的x ∈R ,x 2+1+x >x +x ≥0,所以,函数f x =ln x 2+1+x +x 5+3的定义域为R ,f -x +f x =ln x 2+1-x +-x 5+3 +ln x 2+1+x +x 5+3=ln x 2+1-x 2 +6=6,所以,f lg7 +f lg 17=f lg7 +f -lg7 =6,A 对;对于B 选项,因为函数g x 满足g -x +g x =6,故函数g x 的图象关于点0,3 对称,B 错;对于C 选项,对于函数h x =ln x 2+1+x ,该函数的定义域为R ,h -x +h x =ln x 2+1-x +ln x 2+1+x =ln x 2+1-x 2 =0,即h -x =-h x ,所以,函数h x 为奇函数,当x ≥0时,内层函数u =x 2+1+x 为增函数,外层函数y =ln u 为增函数,试卷第2页,共42页所以,函数h x 在0,+∞上为增函数,故函数h x 在-∞,0上也为增函数,因为函数h x 在R上连续,故函数h x 在R上为增函数,又因为函数y=x5+3在R上为增函数,故函数f x 在R上为增函数,因为实数a、b满足f a +f b >6,则f a >6-f b =f-b,可得a>-b,即a+b>0,C对;对于D选项,由上可知,函数f x 与g x 图象都关于点0,3对称,由于函数f x 与g x 图象的交点为x1,y1、x2,y2、x3,y3,不妨设x1<x2<x3,若x2≠0,则函数f x 与g x 图象的交点个数必为偶数,不合乎题意,所以,x2=0,则y2=3,由函数的对称性可知,点x1,y1、x3,y3关于点0,3对称,则x1+x3=0,y1+y3=6,故x1+y1+x2+y2+x3+y3=9,D错.故选:AC.25.(2022·山东·栖霞市第一中学高三阶段练习)已知函数f x =2sinωx+π4(ω>0),则下列说法正确的是( )A.若函数f x 的最小正周期为π,则其图象关于直线x=π8对称B.若函数f x 的最小正周期为π,则其图象关于点π8,0对称C.若函数f x 在区间0,π8上单调递增,则ω的最大值为2D.若函数f x 在0,2π有且仅有5个零点,则ω的取值范围是198≤ω<238【答案】ACD【解析】A选项:∵f x 的最小正周期为π∴ω=2∴fπ8 =2sin2⋅π8+π4=2sinπ2=2,故A正确;B选项:∵f x 的最小正周期为π∴ω=2∴fπ8 =2sin2⋅π8+π4=2sinπ2=2≠0,故B错误;C选项:∵0<x<π8∴π4<ωx+π4<π8ω+π4又函数f x 在0,π8上单调递增∴π8ω+π4≤π2∴ω≤2,故C正确;D选项:∵x∈0,2π∴ωx+π4∈π4,2πω+π4又f x 在0,2π有且仅有5个零点,则5π≤2πω+π4<6π,∴198≤ω<238,故D正确.故选:ACD26.(2022·山东·济南市天桥区黄河双语实验学校高三阶段练习)已知函数f x =ln x-x+1x-1,下列结论成立的是( )A.函数f x 在定义域内无极值B.函数f x 在点A2,f2处的切线方程为y=52x+ln2-8C.函数f x 在定义域内有且仅有一个零点D.函数f x 在定义域内有两个零点x 1,x 2,且x 1⋅x 2=1【答案】ABD【解析】A ,函数f x =ln x -x +1x -1定义域为0,1 ∪1,+∞ ,f x =1x -x -1-x +1 x -1 2=1x +2x -12>0,∴f x 在0,1 和1,+∞ 上单调递增,则函数f x 在定义域内无极值,故A 正确;B ,由f x =1x +2x -1 2,则f 2 =12+22-12=52,又f 2 =ln2-2+12-1=-3+ln2,∴函数f x 在点A 2,f 2 处的切线方程为y +3-ln2=52x -2即y =52x +ln2-8,故B 正确;C ,∵f x 在1,+∞ 上单调递增,又f e =ln e -e +1e -1=1-e +1e -1=-2e -1<0,f e 2 =ln e 2-e 2+1e 2-1=2-e 2+1e 2-1=e 2-3e 2-1>0,所以函数f x 在e ,e 2 存在x 0,使f x 0 =ln x 0-x 0+1x 0-1=0,又1e2<1x 0<1e ,即0<1x 0<1,且f 1x 0 =ln 1x 0-1x 0+11x 0-1=-ln x 0-x 0+1x 0-1=-f x 0 =0,即1x 0为函数f x 的一个零点,所以函数f x 在定义域内有两个零点,故C 错误.D ,由选项C 可得x 1=x 0,x 2=1x 0,所以x 1⋅x 2=1,故D 正确.故选:ABD27.(2022·山东·济南市天桥区黄河双语实验学校高三阶段练习)已知定义在R 上的函数f x 对任意实数x 满足f 2+x =f x ,f 2-x =f x ,且x ∈0,1 时,f x =x 2+1,则下列说法中,正确的是( )A.2是f x 的周期 B.x =-1不是f x 图象的对称轴C. f 2021 =2D.方程f (x )=12x 只有4个实根【答案】AC【解析】A 选项:因为定义在R 上的函数f x 对任意实数x 满足f 2+x =f x ,所以函数f x 是以2为周期的周期函数,故A 选项正确;B 选项:因为f 2-x =f x ,所以函数f x 关于直线x =1对称,又f x 是周期为2周期函数,所以函数f x 关于直线x =-1对称,故B 选项错误;C 选项: f 2021 =f 1 =12+1=2,C 选项正确;D 选项:在同一直角坐标系中分别作出函数y =f x 与y =12x 的图象,如图所示:试卷第2页,共42页由图象可知两函数共有6个不同的交点,则方程f (x )=12x 有6个实根,故D 选项错误;故选:AC .28.(2022·山东·高密三中高三阶段练习)英国数学家贝叶斯在概率论研究方面成就显著,根据贝叶斯统计理论,随机事件A 、B 存在如下关系:P A B =P A P B AP B.某高校有甲、乙两家餐厅,王同学第一天去甲、乙两家餐厅就餐的概率分别为0.4和0.6.如果他第一天去甲餐厅,那么第二天去甲餐厅的概率为0.6;如果第一天去乙餐厅,那么第二天去甲餐厅的概率为0.5,则王同学( )A.第二天去甲餐厅的概率为0.54B.第二天去乙餐厅的概率为0.44C.第二天去了甲餐厅,则第一天去乙餐厅的概率为59D.第二天去了乙餐厅,则第一天去甲餐厅的概率为49【答案】AC【解析】设A 1:第一天去甲餐厅,A 2:第二天去甲餐厅,B 1:第一天去乙餐厅,B 2:第二天去乙餐厅,所以P A 1 =0.4,P B 1 =0.6,P A 2A 1 =0.6,P A 2B 1 =0.5,因为P A 2A 1 =P (A 2)P A 1A 2 P (A 1)=0.6,P A 2B 1 =P (A 2)P B 1A 2P (B 1)=0.5,所以P (A 2)P A 1A 2 =0.24,P (A 2)P B 1A 2 =0.3,所以有P A 2 =P A 1 P A 2A 1 +P B 1 P A 2B 1 =0.4×0.6+0.6×0.5=0.54,因此选项A 正确, P B 2 =1-P A 2 =0.46,因此选项B 不正确;因为P B 1A 2 =0.3P A 2=59,所以选项C 正确;P A 1B 2 =P (A 1)P B 2A 1) P (B 2)=P (A 1)[1-P A 2A 1)] P (B 2)=0.4×(1-0.6)0.46=823,所以选项D 不正确,故选:AC29.(2022·福建师大附中高三阶段练习)已知⊙O 1:x 2+y 2-2mx +2y =0,⊙O 2:x 2+y 2-2x -4my +1=0.则下列说法中,正确的有( )A.若(1,-1)在⊙O 1内,则m ≥0B.当m =1时,⊙O 1与⊙O 2共有两条公切线C.若⊙O 1与⊙O 2存在公共弦,则公共弦所在直线过定点13,16D.∃m ∈R ,使得⊙O 1与⊙O 2公共弦的斜率为12【答案】BC【解析】因为⊙O 1:x 2+y 2-2mx +2y =0,⊙O 2:x 2+y 2-2x -4my +1=0,所以⊙O 1:(x -m )2+(y +1)2=m 2+1,⊙O 2:(x -1)2+(y -2m )2=4m 2,则O 1(m ,-1),r 1=m 2+1,O 2(1,2m ),r 2=2|m |,则m ≠0,由(1,-1)在⊙O 1内,可得12+(-1)2-2m -2<0,即m >0,A 错误;当m =1时,O 1(1,-1),r 1=2,O 2(1,2),r 2=2,所以|O 1O 2|=3∈(2-2,2+2),所以两圆相交,共两条公切线,B 正确;⊙O 1-⊙O 2,得(-2m +2)x +(2+4m )y -1=0,即m (-2x +4y )+(2x +2y -1)=0,令-2x +4y =0,2x +2y -1=0, 解得x =13,y =16,所以定点为13,16 ,C 正确;公共弦所在直线的斜率为2m -22+4m ,令2m -22+4m =12,无解,所以D 错误,故选:BC .30.(2022·福建师大附中高三阶段练习)函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图像如图所示,则下列说法中,正确的有( )A.f (x )的最小正周期T 为πB.f (x )向左平移3π8个单位后得到的新函数是偶函数C.若方程f (x )=1在(0,m )上共有6个根,则这6个根的和为33π8D.f (x )x ∈0,5π4图像上的动点M 到直线2x -y +4=0的距离最小时,M 的横坐标为π4【答案】ABD【解析】因为f (x )经过点5π8,0,所以f 5π8 =2sin 5ωπ8+φ =0,又5π8在f (x )的单调递减区间内,所以5ωπ8+φ=π+2k π(k ∈Z )①;又因为f (x )经过点5π4,1 ,所以f 5π4 =2sin 5ωπ4+φ =1,sin 5ωπ4+φ =22,又x =5π4是f (x )=1在x >5π8时最小的解,所以5ωπ4+φ=9π4+2k π(k ∈Z )②.联立①、②,可得5ωπ8=5π4,即ω=2,代入①,可得φ=-π4+2k π(k ∈Z ),又|φ|<π2,所以φ=-π4,则f(x )=2sin 2x -π4 .f (x )的最小正周期为2π2=π,A 正确.f (x )向左平移3π8个单位后得到的新函数是f (x )=2sin 2x +3π8 -π4 =2sin 2x +π2 =2cos2x ,为偶函数,B 正确.设f (x )=1在(0,m )上的6个根从小到大依次为x 1,x 2,⋯,x 6.令2x -π4=π2,则x =3π8,根据f (x )的对称性,可得x 1+x 22=3π8,则由f (x )的周期性可得x 3+x 42=3π8+T =11π8,x 5+x 62=3π8+2T =19π8,所以6i =1x i =2 3π8+11π8+19π8 =33π4,C 错误.作与l :2x -y +4=0平行的直线,使其与f (x )x ∈0,5π4有公共点,则在运动的过程中,只有当直线与f (x )x ∈0,5π4相切时,直线与l 存在最小距离,也是点M 到直线2x -y +4=0的最小距离,试卷第2页,共42页令f (x )=22cos 2x -π4 =2,则2x -π4=±π4+2k π(k ∈Z ),解得x =k π(k ∈Z )或x =π4+k π(k ∈Z ),又x ∈0,5π4 ,所以x =0,π4,5π4(舍去),又f (0)=-1,令M 1(0,-1),f π4 =1,M 2π4,1 ,则由|1+4|5>π2-1+4 5可得M 1到直线l 的距离大于M 2到直线l 的距离,所以M 到直线2x -y +4=0的距离最小时,M 的横坐标为π4,D 正确故选:ABD .31.(2022·福建师大附中高三阶段练习)公元前300年前后,欧几里得撰写的《几何原本》是最早有关黄金分割的论著,书中描述:把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为“黄金分割比”,把离心率为“黄金分割比”倒数的双曲线叫做“黄金双曲线”.黄金双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的一个顶点为A ,与A 不在y 轴同侧的焦点为F ,E 的一个虚轴端点为B ,PQ 为双曲线任意一条不过原点且斜率存在的弦,M 为PQ 中点.设双曲线E 的离心率为e ,则下列说法中,正确的有( )A.e =5+12B.|OA ||OF |=|OB |2C.k OM ⋅k PQ =eD.若OP ⊥OQ ,则1|OP |2+1|OQ |2=e 恒成立【答案】ABC【解析】由E 为黄金分割双曲线可得a c =ca +c,即a 2+ac =c 2(*),对(*)两边同除以a 2可得e 2-e -1=0,则e =5+12,A 正确;对(*)继续变形得ac =c 2-a 2=b 2,∴|AB |2+|BF |2=a 2+b 2+c 2+b 2=a 2+c 2+2(c 2-a 2)=3c 2-a 2,|AF |2=(a +c )2=a 2+2ac +c 2=3c 2-a 2,∴AB ⊥BF ,所以∠ABF =90∘,又∠AOB =90∘,所以∠BAO =∠FBO ,∠ABO =∠BFO ,所以△AOB ∼△BOF ,所以OA OB =OBOF,所以|OA ||OF |=|OB |2, B 正确;设P (x 1,y 1),Q (x 2,y 2),M (x 0,y 0),将P ,Q 坐标代入双曲线方程可得,x 21a 2-y 21b 2=1x 22a 2-y 22b 2=1,作差后整理可得y 2-y 1x 2-x 1∙y 2+y 1x 2+x 1=b 2a 2,即y 2-y 1x 2-x 1∙y 0x 0=b 2a 2所以k PQ ∙k OM =c 2-a 2a2=e 2-1=5+12,故C 正确;设直线OP :y =kx ,则直线OQ :y =-1kx ,将y =kx 代入双曲线方程b 2x 2-a 2y 2=a 2b 2,可得x 2=a 2b 2b 2-a 2k 2,则y 2=a 2b 2k 2b 2-a 2k 2,∴|OP |2=x 2+y 2=a 2b 2(k 2+1)b 2-a 2k 2,将k 换成-1k 即得|OQ |2=a 2b 2(k 2+1)b 2k 2-a 2,则1|OP |2+1|OQ |2=(b 2-a 2)(k 2+1)a 2b 2(k 2+1)=b 2-a 2a 2b 2=1a 2-1b 2与a ,b 的值有关,故D 错误,故选:ABC .32.(2022·福建省福州教育学院附属中学高三开学考试)知函数f (x )=sin 2x -π3,则下列说法正确的是( )A.函数f x 的最小正周期是π2B.函数f x 增区间是k π2+π6,k π2+5π12(k ∈Z )C.函数f x 是奇函数 D.函数图象关于直线x =2π3对称【答案】ABD【解析】函数y =sin x 的图象如下图:由图可知,函数y =sin x 的最小正周期为π,单调递增区间是k π,k π+π2k ∈Z ,对称轴是x =k π2k ∈Z .f x =sin 2x -π3 ,f (x )的最小正周期是π2,故A 正确;令k π≤2x -π3≤k π+π2得k π2+π6≤x ≤k π2+5π12,所以f (x )的增区间是k π2+π6,k π2+5π12(k ∈Z ),故B 正确;因为f (0)≠0,所以f (x )不是奇函数,故C 错误;令2x -π3=k π2得x =k π4+π6(k ∈Z ),取k =2得对称轴方程为x =2π3,故D 正确.故选:ABD .33.(2022·江苏·沭阳如东中学高三阶段练习)在正方体ABCD -A 1B 1C 1D 1中,点M 、N 分别是棱A 1D 1、AB 的中点,则下列选项中正确的是( ).A.MC ⊥DNB.A 1C 1⎳平面MNCC.异面直线MD 与NC 所成的角的余弦值为15D.平面MNC 截正方体所得的截面是五边形【答案】AD 【解析】以点D 为原点如图建立空间直角坐标系,设正方体的边长为2,则M 1,0,2 ,C 0,2,0 ,N 2,1,0 ,D 0,0,0 ,A 2,0,0因为MC =-1,2,-2 ,DN =2,1,0 ,MC ⋅DN =-2+2=0,所以MC ⊥DN ,故A 正确;因为MC =-1,2,-2 ,MN =1,1,-2 ,设平面MNC 的法向量为n =x ,y ,z所以由MC ⋅n =0,MN ⋅n =0可得-x +2y -2z =0x +y -2z =0,所以可取n=2,4,3 ,因为AC =-2,2,0 ,AC ⋅n =-4+8=8≠0,所以A 1C 1不与平面MNC 平行,故B 错误;因为DM=1,0,2 ,NC =-2,1,0试卷第2页,共42页所以cos DM ,NC=-25⋅5=-25所以异面直线MD 与NC 所成的角的余弦值为25,故C 错误;连接CN ,在D 1C 1上取靠近D 1的四等分点为Q ,则MQ ⎳CN 连接CQ ,在AA 1上取靠近A 1的三等分点为P ,则NP ⎳CQ 所以平面MNC 截正方体所得的截面是五边形CQMPN ,故D 正确故选:AD34.(2022·江苏·沭阳如东中学高三阶段练习)已知函数f x =3x -2x ,x ∈R ,则( )A.f x 在0,+∞ 上单调递增B.存在a ∈R ,使得函数y =f xa x为奇函数C.函数g x =f x +x 有且仅有2个零点 D.任意x ∈R ,f x >-1【答案】ABD【解析】A :f x =3x ln3-2x ln2=2x 32xln3-ln2 因为x ∈0,+∞ ,所以2x >1,32 x >1,因此32 xln3>ln3>ln2,故f x >0,所以f x 在0,+∞ 上单调递增,故A 正确;B :令a =6,则y =62 x -26 x ,令g x =62 x -26x,定义域为R ,关于原点对称,且g -x=62-x -26 -x =26 x -62 x=-g x ,故g x 为奇函数,B 正确C : x =0时,g x =0,x >0时,g x =2x 32 x -1 >0,x <0时,g x =2x 32 x -1<0,所以g x 只有1个零点,C 错误;D :x >0时,f x >0;x =0时,f x =0;x <0时,f x >-2x >-1;D 正确;故选:ABD35.(2022·江苏·常州市第一中学高三开学考试)已知数列{a n }满足a 1=1,a n +1a n =a n +1a n,则( )A.a n +1≥2a nB.a n +1a n是递增数列C.{a n +1-4a n }是递增数列 D.a n ≥n 2-2n +2【答案】ABD【解析】对于A ,因为a n +1=a 2n +1≥1,故a n +1a n =a n +1a n≥2a n ⋅1a n =2,所以a n +1≥2a n ,当且仅当a n =1时取等号,故A 正确;对于B ,由A 可得{a n }为正数数列,且a n +1≥2a n ,则a n +1>a n ,故a n 为递增数列,且a 1=1,根据对勾函数的单调性,a n +1a n =a n +1a n为递增数列,故B 正确;对于C ,由a n +1-4a n =a n -2 2-3,由题意a 1=1,a 2a 1=a 1+1a 1,即a 2=2可知a n +1-4a n 不是递增数列;对于D ,因为a n >1,所以a n +1-a 2n =1<a n +1-a n ,所以a n +1≥n +1,a n ≥n ,所以a n +1=a 2n +1≥n 2+1,即a n ≥(n -1)2+1=n 2-2n +2.故选:ABD36.(2022·江苏·泗洪县洪翔中学高三阶段练习)设正实数a ,b 满足a +b =1,则下列结论正确的是( )A.1a +1b 有最小值4 B.ab 有最小值12C.a +b 有最大值2D.a 2+b 2有最小值12【答案】ACD【解析】A :由题设,1a +1b =1a +1b (a +b )=2+b a +a b≥2+2b a ⋅a b =4,当且仅当a =b =12时等号成立,正确;B :由a ,b >0,则a +b =1≥2ab ,即ab ≤12,当且仅当a =b =12时等号成立,故ab 的最大值为12,错误;C :由a ,b >0,则a +b =1≥(a +b )22,即a +b ≤2,当且仅当a =b =12时等号成立,正确;D :a 2+b 2≥(a +b )22=12,当且仅当a =b =12时等号成立,正确;故选:ACD .37.(2022·江苏·泗洪县洪翔中学高三阶段练习)已知数列a n 满足a 1=1,a n +1=a n2+3a n n ∈N + ,则( )A.1a n +3 为等比数列 B.a n 的通项公式为a n =12n -1-3C.a n 为递增数列D.1a n的前n 项和T n =2n +2-3n -4【答案】AD 【解析】因为1a n +1=2+3a n a n =2a n +3,所以1a n +1+3=21a n+3 ,又1a 1+3=4≠0,所以1a n +3 是以4为首项,2为公比的等比数列,即1a n +3=4×2n -1,所以1a n =2n +1-3,所以a n =12n +1-3,所以a n 为递减数列,1a n 的前n 项和T n =22-3 +23-3 +⋅⋅⋅+2n +1-3 =221+22+⋅⋅⋅+2n -3n =2×2×1-2n 1-2-3n =2n +2-3n -4.故选:AD .38.(2022·江苏·淮安市钦工中学高三阶段练习)已知函数f (x )=xe x ,x <1e x x 3,x ≥1,函数g (x )=xf (x ),下列选项正确的是( )A.点(0,0)是函数f (x )的零点B.∃x 1∈0,1 ,x 2∈(1,3),使f (x 1)>f (x 2)C.函数f (x )的值域为[-e -1,+∞)D.若关于x 的方程[g (x )]2-2ag (x )=0有两个不相等的实数根,则实数a 的取值范围是2e 2,e 28∪e2,+∞【答案】BC【解析】对于选项A ,0是函数f x 的零点,零点不是一个点,所以A 错误;试卷第2页,共42页对于选项B ,当x <1时,f x =x +1 e x ,则当x <-1时,f x <0,f x 单调递减,当-1<x <1时,f x >0,f x 单调递增,所以,当0<x <1时,0<f x <e ;当x >1时,fx =e x x -3 x 4,则当1<x <3时,f x <0,f x 单调递减,当x >3时,f x >0,f x 单调递增,所以,当1<x <3时,e 327<f x <e .综上可得,选项B 正确.对于选项C ,f x min =f -1 =-1e,选项C 正确.结合函数f x 的单调性及图像可得:函数f x 有且只有一个零点0,则g x =xf x 也有且只有一个零点0;所以对于选项D ,关于x 的方程g x 2-2ag x =0有两个不相等的实数根⇔关于x 的方程g x g x -2a =0有两个不相等的实数根⇔关于x 的方程g x -2a =0有一个非零的实数根⇔函数y =g x 的图象与直线y =2a 有一个交点,且x ≠0,则g x =x 2e x ,x <1,e xx 2,x ≥1.当x <1时,g x =e x x x +2 ,当x 变化时,g x ,g x 的变化情况如下:x x <-2-2-2<x <000<x <1g x +0-0+g x增极大值减极小值增极大值g -2 =4e 2,极小值g 0 =0;当x ≥1时,gx =e x x -2 x 3,当x 变化时,g x ,g x 的变化情况如下:x 11<x <22x >2g x -e -0+g xe减极小值增。
2024年高考一卷数学压轴题
2024年高考一卷数学压轴题一、已知函数f(x)=e的x次方-ax在x=1处取得极小值,则a的值为?A. 1B. eC. 1/eD. -e(答案)B。
解析:对函数f(x)求导得f'(x)=e的x次方-a,由于函数在x=1处取得极小值,所以f'(1)=0,即e-a=0,解得a=e。
二、在三角形ABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=-1/2,则三角形ABC的面积为?A. 3/2B. 3根号3/2C. 3D. 3根号3(答案)D。
解析:由于cosC=-1/2,且C为三角形内角,所以C=120度,根据三角形面积公式S=1/2absinC,代入得S=1/2×2×3×sin120度=3根号3/2×2/根号3=3根号3。
三、已知等差数列{an}的前n项和为Sn,且a1=1,S3=6,则a5的值为?A. 5B. 6C. 9D. 10(答案)C。
解析:由等差数列前n项和公式Sn=n/2(a1+an),代入S3=6,a1=1得6=3/2(1+a3),解得a3=3,由等差数列性质得a5=a3+2d=3+2×(3-1)=9。
四、已知向量a=(1,2),向量b=(3,4),向量c=k向量a+向量b,且向量c与向量a垂直,则k的值为?A. -3/4B. -4/3C. 3/4D. 4/3(答案)A。
解析:由向量c=k向量a+向量b得c=(k+3,2k+4),由于向量c与向量a垂直,所以向量c·向量a=0,即(k+3)×1+(2k+4)×2=0,解得k=-3/4。
五、已知函数f(x)=lnx-x+1,g(x)=x2-2x+a,若对任意的x1∈(0,+∞),总存在x2∈[0,2],使得f(x1)=g(x2)成立,则实数a的取值范围为?A. [0,1]B. [1,2]C. [2,3]D. [3,4](答案)D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学压轴选择题_________班______号姓名_________________一、2007年以来广东高考数学压轴选择题的基本情况 1、(2007广东8)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的a b S ∈,,对于有序元素对(a b ,),在S 中有唯一确定的元素*a b 与之对应).若对任意的a b S ∈,,有()**a b a b =,则对任意的a b S ∈,,下列等式中不恒成立的是( ) A .()**a b a a = B .[()]()****a b a a b a = C .()**b b b b =D .()[()]****a b b a b b =2、(2008广东8)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE的延长线与CD 交于点F .若AC =u u u r a ,BD =u u u r b ,则AF =u u u r( )A .1142+a b B .2133+a b C .1124+a b D .1233+a b 3、(2009广东8)已知甲、乙两车由同一起点同时出发,并沿同一路线〈假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( ) A .在1t 时刻,甲车在乙车前面 B .1t 时刻后,甲车在乙车后面 C .在0t 时刻,两车的位置相同 D .0t 时刻后,乙车在甲车前面4、(2010广东8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定。
每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁。
在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。
如果要实现所有不同的闪烁,那么需要的时间至少是 ( )A .1205秒B .1200秒C .1195秒D .1190秒 5、(2011广东)8.,,,,.,,.,,,,,,,.:( )A. T,VB.T,VC. T,V S Z a b S ab S S T V Z T V Z a b c T abc T x y z V xyz V ∀∈∈=∀∈∈∀∈∈U 设是整数集的非空子集如果有则称关于数的乘法是封闭的若是的两个不相交的非空子集且有有则下列结论恒成立的是中至少有一个关于乘法是封闭中至多有一个关于乘法是封闭中有且只有一个关于乘法是封闭D.T,V 中每一个关于乘法是封闭6、(2012广东8)对任意两个非零的平面向量α和β,定义αβαβββ=g o g ;若平面向量,a b r r满足0a b ≥>r r ,a r 与b r 的夹角(0,)4πθ∈,且,a b b a r r r r o o 都在集合}2nn Z ⎧∈⎨⎩中,则a b =r r o ( ) ()A 12 ()B 1 ()C 32 ()D 527、(2013广东8)设整数4n ≥,集合{}1,2,3,,X n =L .令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立,若(),,x y z 和 (),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉ B.(),,y z w S ∈,(),,x y w S ∈ C.(),,y z w S ∉,(),,x y w S ∈ D.(),,y z w S ∉,(),,x y w S ∈三、高考数学压轴选择题的基本类型及策略1、即时定义的新概念题策略:紧跟定义,恰当方法,合情推理,得出结论.例1(2013年福建理10)设S ,T ,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( ) A .*,A N B N ==B .{|13},{|8010}A x x B x x x =-≤≤==-<≤或C .{|01},A x x B R =<<=D .,A Z B Q ==例2(2013年浙江理10)在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=。
设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则A .平面α与平面β垂直 B. 平面α与平面β所成的(锐)二面角为045 C. 平面α与平面β平行 D.平面α与平面β所成的(锐)二面角为060 例3(2013陕西理10.)设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 (A) [-x ] = -[x ] (B) [2x ] = 2[x ] (C) [x +y ]≤[x ]+[y ] (D) [x -y ]≤[x ]-[y ]2、创新性题策略:利用转化与划归思想.例4(2013上海理18)在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a u r u u r u u r u u r u u r;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d u u r u u r u u r u u r u u r.若,m M 分别为()()i j k r s t a a a d d d ++⋅++u r u u r u u r u u r u u r u u r 的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( ).(A) 0,0m M => (B) 0,0m M <>(C) 0,0m M <=(D) 0,0m M <<例5(2013江西10)如图,半径为1的半圆O 与等边三角形ABC 夹在两平行线,12,l l 之间l1l l»FG(0)x x π<<y EB BC CD =++l1l 2l ()y f x =法例6(2013年上海春季理24)已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅u u u u r u u u r u u u r,其中λ为常数,则动点M 的轨迹不可能是( )(A )圆 (B ) 椭圆 (C ) 抛物线 (D )双曲线 4、知识综合题策略:综合利用相关知识,理顺思路,步步为营. 例7(2013年天津理8)已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是( )(A) 15⎫-⎪⎪⎝⎭ (B) 13⎫-⎪⎪⎝⎭ (C) 1513⎛+⋃ ⎝⎫-⎪⎝⎭⎪⎭ (D) 51⎛-- ⎝⎭∞ 例8(2013年全国1理12.设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n =L ,若11111,2b c b c a >+=,111,,22n n n n n n n n c a b a a a b c +++++===,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列PBA M Fyx例9(2013年湖南理8)在等腰直角三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC ∆的重心,则AP 等于( )A .2B .1C .83 D .43例10(2013年安徽理10)若函数32()=+ax +b +f x x x c 有极值点1x ,2x ,且11()=f x x ,则关于x 的方程23(())+2a ()+=0f x f x b 的不同实根个数是( ) (A )3 (B )4 (C ) 5 (D )61.已知ABP ∆的三个顶点在抛物线C :24x y =上,F 为抛物线C 的焦点,点M 为AB 的中点,3PF FM =u u u r u u u u r;(1)若||3PF =,求点M 的坐标; (2)求ABP ∆面积的最大值.2. 已知函数()xf x x ae=-()a R Î,x R Î.已知函数()y f x =有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围;学科网(Ⅱ)证明21x x 随着a 的减小而增大; (Ⅲ)证明 12x x +随着a 的减小而增大.3. (本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分. 已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=. (1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是公比为q 等比数列,12n n S a a a =+++L ,zxxk 113,*,3n n n S S S n N +≤≤∈求q 的取值范围;(3)若12,,,k a a a L成等差数列,且121000k a a a +++=L ,学科网求正整数k 的最大值,以及k 取最大值时相应数列12,,,k a a a L的公差.4. 在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>直线y x=被椭圆C . (I)求椭圆C 的方程;(II )过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点). 点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i )设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ii )求OMN ∆面积的最大值.5. (本小题满分10分)选修4-5;不等式选讲 若,0,0>>b a 且ab ba =+11 (I )求33b a +的最小值;(II )是否存在b a ,,使得632=+b a 并说明理由.6. 设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (Ⅰ)求M ;(Ⅱ)当x M N ∈I 时,证明:221()[()]4x f x x f x +≤. 7. 将连续正整数1,2,,(*)n n N ∈L从小到大排列构成一个数学科网123n L ,()F n 为这个数的位数(如12n =时,此数为123456789101112,共有15个数字,(12)15f =),现从这个数中随机取一个数字,()p n 为恰好取到0的概率.(1)求(100)p ;(2)当2014n ≤时,求()F n 的表达式;(3)令()g n 为这个数字0的个数,()f n 为这个数中数字9的个数,()()()h n f n g n =-,{|()1,100,*}S n h n n n N ==≤∈,求当n S ∈时()p n 的最大值.8. 选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围. 9. 已知常数20,()ln(1).2xa f x ax x >=+-+函数 (1)讨论()f x 在区间(0,)+∞上的单调性;(2)若()f x 存在学科网两个极值点12,,x x 且12()()0,f x f x +>求a 的zxxk 取值范围.10. 函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.一、圆锥曲线中的定值问题 ★★椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,a +b =3. (Ⅰ)求椭圆C 的方程;(Ⅱ)如图,A ,B ,D 是椭圆C 的顶点,P 是椭圆C 上除顶点外的任意点,直线DP 交x 轴于点N 直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m ,证明2m -k 为定值.★★如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P (1,32),离心率e =12,直线l 的方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由.★★椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为32,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(Ⅰ)求椭圆C的方程;(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM 交C的长轴于点M(m,0),求m的取值范围;(Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明1kk1+1kk2为定值,并求出这个定值.★★★如图,已知双曲线C:x2a2-y2=1(a>0)的右焦点为F,点A,B分别在C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).(Ⅰ)求双曲线C的方程;(Ⅱ)过C上一点P(x0,y0)(y0≠0)的直线l:x0xa2-y0y=1与直线AF相交于点M,与直线x=32相交于点N.证明:当点P在C上移动时,|MF||NF|恒为定值,并求此定值.二、圆锥曲线中的最值问题★★在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,直线y=x被椭圆C截得的线段长为410 5.(Ⅰ)求椭圆C的方程;(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;(ii)求△OMN面积的最大值.★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l 交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值若存在,请求出最小值;若不存在,请说明理由.★★★如图,O为坐标原点,椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:x2a2-y2b2=1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=32,且|F2F4|=3-1.(Ⅰ)求C1、C2的方程;(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为A B的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.★★★如图,点P(0,-1)是椭圆C1:x2a2+y2b2=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(Ⅰ)求椭圆C1的方程;(Ⅱ)求△ABD面积的最大值时直线l1的方程.★★★在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为3 4.(Ⅰ)求抛物线C的方程;(Ⅱ)是否存在点M,使得直线MQ与抛物线C相切于点M若存在,求出点M的坐标;若不存在,说明理由;(Ⅲ)若点M的横坐标为2,直线l:y=kx+14与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当12≤k≤2时,|AB|2+|DE|2的最小值.三、圆锥曲线与过定点(定直线)问题★★设椭圆E:x2a2+y21-a2=1的焦点在x轴上.(Ⅰ)若椭圆E的焦距为1,求椭圆E的方程;xOyBl1l2PDA(Ⅱ)设F 1,F 2分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线F 2P 交y 轴于点Q ,并且F 1P ⊥F 1Q ,证明:当a 变化时,点P 在某定直线上. 四、圆锥曲线与求参数★★在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2,离心率为22. (Ⅰ)求椭圆C 的方程;(Ⅱ)A ,B 为椭圆C 上满足△AOB 的面积为64的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 与点P ,设OP →=tOE →,求实数t 的值.★★★已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y )满足|MA →+MB →|=OM →·(OA →+OB →)+2. (Ⅰ)求曲线C 的方程;(Ⅱ)动点Q (x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l 向:是否存在定点P (0,t )(t <0),使得l 与PA ,PB 都不相交,交点分别为D ,E ,且△QAB 与△PDE 的面积之比是常数若存在,求t 的值.若不存在,说明理由. 五、存在性问题★★如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)过点(1,22),离心率为22,左、右焦点分别为F 1、F 2.点P 为直线l :x +y =2上且不在x 轴上的任意一点,直线PF 1和PF 2与椭圆的交点分别为A 、B 和C 、D ,O 为坐标原点. (Ⅰ)求椭圆的标准方程;(Ⅱ)设直线PF 1、PF 2的斜线分别为k 1、k 2. ①证明:1 k 1-3k 2=2; ②问直线l 上是否存在点P ,使得直线OA 、OB 、OC 、OD 的斜率k OA 、k OB 、k OC 、k OD 满足k OA +k OB +k OC +k OD =0若存在,求出所有满足条件的点P 的坐标;若不存在,说明理由.★★★如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b 截得的线段长等于C 1的长半轴长. (Ⅰ)求C 1,C 2的方程;(Ⅱ)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A 、B ,直线MA ,MB 分别与C 1相交于D ,E . (i )证明:MD ⊥ME ;(ii )记△MAB ,△MDE 的面积分别是S 1,S 2.问:是否存在直线l ,使得S 1S 2=1732请说明理由. y六、轨迹方程y 2b 2=1(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭(Ⅰ)求椭圆C 的离心率;★★如图,抛物线C 1:x 2=4y ,C 2:x 2=-2p y (p >0),点M (x 0,y 0)在抛物线C 2上,(Ⅰ)求p 的值;(Ⅱ)当M 在C 2上运动时,求线段AB 中点N的轨迹方程(A ,B 重合于O 时,中点为O ).。