基于舵机控制的四足机器人设计
智能四足机器人设计
四足机器人设计与总结报告指导老师:麦文学生:陈伟内容摘要本设计中,机器人的行走是根据四足动物的步行原理,将其运动过程分解,再结合实际模型,抽象出四足运动的基本原理,并制作出结构模型,通过对向前行走、原地左转弯、原地右转弯的控制,从而实现直行的行走。
本设计采用采用MCU控制机器人的步态设计,通过CPLD强大的信号处理功能实现PWM从而对每个舵机进行控制,实现机器人的直行行走。
同时预留了大量的端口,为以后实现寻路、显示、语音等功能提供条件。
关键词:四足步行 PWM 步态规划AbstractThis design, the robot is walking quadruped walking under the principle of decomposition of their movement, combined with the actual model, to abstract the basic principles of four-legged movement, and create structural models, by walking forward, the original to turn left, turn right to control in situ, in order to achieve straight walking.The design uses the robot gait control by MCU design, by CPLD realization of a powerful signal processing functions to each servo PWM control, the robot walk straight. At the same time a large number of ports reserved for the future find its way to achieve, display, voice and other features provide the conditions.Key words:QUADRUPED WALKING GAIT PLANNING PW M目录引言 (3)一、方案设计与论证 (4)二、肢体的结构设计 (5)2.1、舵机的结构 (6)2.2、舵机的控制方法 (7)2.3、舵机安装 (8)2.4、构件的级联 (9)2.5、整体结构介绍 (9)三、步行原理及步态、路径规划 (11)3.1、行走原理 (11)3.2、行走步态及动作时序 (12)3.2.1、初始化 (12)3.2.2、向前行走 (13)四、电路设计 (14)4.1、主控板设计 (14)4.1.1、MCU配置 (14)4.1.2、CPLD配置 (16)4.2、PWM脉宽调制(P ULSE W IDTH M ODULATION)信号产生 (16)4.3、程序流程图 (17)4.4、程序 (18)4.4.1单片机程序 (18)4.4.2、CPLD程序 (19)总结 (25)引言自从人类发明机器人以来,各种各样的机器人日渐走入我们的生活。
四足机器人方案设计书
浙江大学“海特杯”第十届大学生机械设计竞赛“四足机器人”设计方案书“四足机器人”设计理论方案自从人类发明机器人以来,各种各样的机器人日渐走入我们的生活。
仿照生物的各种功能而发明的各种机器人越来越多。
作为移动机器平台,步行机器人与轮式机器人相比较最大的优点就是步行机器人对行走路面的要求很低,它可以跨越障碍物,走过沙地、沼泽等特殊路面,用于工程探险勘测或军事侦察等人类无法完成的或危险的工作;也可开发成娱乐机器人玩具或家用服务机器人。
四足机器人在整个步行机器中占有很大大比重,因此对仿生四足步行机器人的研究具有很重要的意义。
所以,我们在选择设计题目时,我们选择了“四足机器人”,作为我们这次比赛的参赛作品。
一.装置的原理方案构思和拟定:随着社会的发展,现代的机器人趋于自动化、高效化、和人性化发展,具有高性能的机器人已经被人们运用在多种领域里。
特别是它可以替代人类完成在一些危险领域里完成工作。
科技来源于生活,生活可以为科技注入强大的生命力,基于此,我们在构思机器人的时候想到了动物,在仔细观察了猫.狗等之后我们找到了制作我们机器人的灵感,为什么我们不可以学习小动物的走路呢,于是我们有了我们机器人行走原理的灵感。
为了使我们所设计的机器人在运动过程中体现出特种机器人的性能及其运动机构的全面性,我们在构思机器人的同时也为它设计了一些任务:1. 自动寻找地上的目标物。
2. 用机械手拾起地上的目标物。
3.把目标物放入回收箱中。
4. 能爬斜坡。
图一如图一中虚线所示的机器人的行走路线,机器人爬过斜坡后就开始搜寻目标物体,当它发现目标出现在它的感应范围时,它将自动走向目标,同时由于相关的感应器帮助,它将自动走进障碍物中取出物体。
二.原理方案的实现和传动方案的设计:机器人初步整体构思如上的图二和图三,四只腿分别各有一个电机控制它的转动,用一个电机驱动两条腿的抬伸。
根据每只腿的迈步先后实现机器人的前进,后退,左转和右转,在机器人腿迈出的同时,它也会相应地进行抬伸,具体实现情况会在下文详细说明。
四足仿生机器人运动控制系统的设计与实现
四足仿生机器人运动控制系统的设计与实现一、引言二、运动控制系统的架构1.硬件部分关节驱动器是控制机器人关节运动的关键部件,一般采用电机驱动器实现。
这些关节驱动器负责接收来自上位机的控制信号,控制机器人的关节运动。
此外,还需要搭建适当的传感器系统来获取机器人环境信息,如足底力传感器、陀螺仪和加速度计等。
2.软件部分软件部分主要包括运动规划和运动控制算法。
运动规划是设定机器人运动的目标,如前进、后退、转弯等,根据目标规划机器人的运动轨迹。
而运动控制算法则是根据运动规划的结果,控制机器人的关节角度以实现相应的运动。
常用的控制算法包括PID控制算法和机器学习算法等。
关节驱动器是控制机器人关节运动的关键部件,设计与实现要根据机器人的关节类型进行选择。
常用的关节类型有旋转关节和伸展关节。
在硬件设计上,需要选择合适的电机驱动器来实现关节驱动,同时搭建传感器系统以获取机器人的状态信息。
运动规划是实现机器人运动的关键环节,要根据机器人的类型和任务需求进行设计。
一般情况下,可以使用几何运动规划方法,如逆运动学方法,根据机器人当前状态计算关节角度以实现目标运动。
运动控制算法是根据运动规划结果,控制机器人的关节运动的核心。
常用的算法包括PID控制算法和机器学习算法等。
PID控制算法是一种经典的控制算法,通过调节比例、积分和微分等参数,根据实际指令和实际输出来调节输出信号,使系统达到期望状态。
机器学习算法则是使用机器学习模型来训练机器人,使其能够自主学习和优化运动控制策略。
四、运动控制系统的实验验证为了验证运动控制系统的可行性和性能,需要进行相应的实验验证。
实验过程中,可以使用传感器监测机器人的状态信息,并通过上位机控制机器人进行各种运动模式的实现。
通过实验验证,可以评估系统的准确性、稳定性和鲁棒性。
五、总结与展望四足仿生机器人运动控制系统是实现机器人各个关节协同工作的关键。
本文介绍了运动控制系统的设计与实现,包括硬件部分和软件部分的设计,并讨论了关键的运动规划和运动控制算法。
创意之星之四足机器人---精品管理资料
大学专业实践课题:四足追光机器人姓名:学院:机械工程学院专业:机械设计制造及其自动化班级:学号:指导教师:四足追光机器人一、实验目的用“创意之星"机器人套件组装可以进行追光行走的四足机器人;二、实验套件(创意之星)1。
机械结构:基本结构件、舵机动力关节、可转向轮子、机械爪等;2.控制系统:控制卡、舵机、直流电机、各类传感器、电源等;3。
控制软件:NorthSTAR 图形化开发环境三、实验步骤1、确定其基本功能基本功能:a.在平地上通过步态设计,可以正常迈步行走.同时头部传感器检测前方光源,便于及时调整运行动作,追光行走。
b.当左侧红外线传感器检测到光源强于右侧红外线传感器检测到的光源时,机器人运行步态会改变,控制机器人左转.右侧的光源强于左侧的光源时用同样的原理控制机器人右转。
c.当两侧均检测到光源亮度相等时,调整步态,追光机器人会向前走。
直至检测不到光源停止,再控制向后退.2、机构设计整个巡视机器人由大致三个模块组成:a。
由8个舵机组成四足机器人的4条腿模块;b。
由2个舵机组成四足机器人尾部部分;c。
由2个红外接近传感器和1个舵机组成的感应模块。
3、机构的装配整个四足避障机器人由1个控制板,1个舵机和两个红外接近传感器组成可转动头部,8个舵机组成主要的4条机械腿,由两个舵机构成尾部部分。
整个四足机器人共由11个舵机、两个红外接近传感器及“创意之星”机器人零部件组成。
安装可分为零件的安装,部件的组装以及最后的总装过程。
根据预先设计好的机器人结构方案,组装四条腿的部件、头部、尾部以及机器人主体部分,最后组装到一块,形成完整的整体结构.4、连接电线由于我们此次使用的是创意之星的标准套件,舵机接线、传感器模拟与数字端口的连接都及其方便简单.5、设置各个舵机的限制参数一方面保护所使用器件的性能,防止过载或错误操作而将其损坏;另一方面也为我们进行各种复杂的调试做良好的准备,能够顺利的完成设计任务。
基于STM32的四足仿生机器人控制系统设计与实现
基于STM32的四足仿生机器人控制系统设计与实现近年来,随着科技的不断发展,机器人技术也得到了极大的进展。
四足仿生机器人作为一种模拟动物四肢运动方式的机器人,具有较高的机动性和适应性。
本文将介绍基于STM32的四足仿生机器人控制系统的设计与实现。
1. 引言随着社会对机器人技术需求的增加,仿生机器人的研究也变得越来越重要。
四足仿生机器人可以模拟真实动物四肢的运动方式,具备较大的运动自由度和稳定性。
其中,控制系统是四足仿生机器人实现各种功能和动作的核心。
2. 系统设计基于STM32的四足仿生机器人控制系统主要包括硬件设计和软件设计两部分。
2.1 硬件设计在硬件设计方面,需要选择合适的传感器、执行器和控制器。
传感器常用于感知环境信息,可以选择激光传感器、压力传感器和陀螺仪等。
执行器常用于驱动机器人的运动,可以选择直流电机或伺服电机。
控制器负责处理各种传感器和执行器的数据和信号,最常用的是基于STM32的微控制器。
2.2 软件设计在软件设计方面,需要编写嵌入式程序来实现机器人的各种功能和动作。
可以使用C语言或嵌入式汇编语言来编写程序。
程序需要实时处理传感器数据,控制执行器的运动,同时保证系统的稳定性和安全性。
3. 实现步骤在实现基于STM32的四足仿生机器人控制系统时,可以按照以下步骤进行:3.1 传感器数据获取通过传感器获取环境信息,并将数据传输给控制器进行处理。
可以使用SPI或I2C等通信协议进行数据传输。
3.2 运动规划根据传感器数据分析,确定机器人的运动规划。
例如,判断机器人所处环境是否有障碍物,确定机器人的步态等。
3.3 控制算法设计基于运动规划结果,设计合适的控制算法。
其中包括反馈控制、PID控制等。
控制算法需要保证机器人的稳定性和动作的准确性。
3.4 执行器控制根据控制算法计算出的控制信号,控制执行器的运动。
根据机器人的步态和动作需求,驱动各个关节实现运动。
3.5 系统优化与调试对控制系统进行优化和调试,保证系统的稳定性和性能良好。
手把手教你做四足步行机器人
手把手教你做四足步行机器人用两个飞机模型舵机就能DIY个四足机器人!简单易做.你可试试.来源:机器人天空原创时间:2008-05-19第一步:准备零件和所需的材料制作一个四腿的行走机器人非常简单,所需零件也非常少,两个电机,机器人的腿(用直径合适的铁丝弯制),电池,底板(我用的是一种非常酷的塑胶材料,当它被在热水中加热时就会变软,冷却后又会回复硬度),用来将电池和电机固定在底板上的螺钉,一小块电路实验版(可以在电子市场买到),一个用来安放 ATMega的28针芯片插座,胶,烙铁和焊锡,以及刀子。
装配之前我还画了一张草图,在上面标出了需要打孔和切割的位置,有一张草图可以让你少走很多弯路,所以我建议大家在对手之前都要做一番“纸上谈兵”的工作。
第二步:现在需要用刀子在机器人的底板上划出两个安放电机的洞,我先按照草图划出一个洞后用切下来的那部分做标尺直接在另一边划另外一个洞。
切的时候不要忘了在下面垫一块纸板,我差一点切了我的咖啡桌。
打好两个洞后试一试电机,我划的洞似乎稍微宽了一点,长度倒是刚好。
第三步:弯曲底板,安装电机很不幸,本人手劲不足,无法直接把底板弯曲成照片中的角度,只好采用技术含量比较高的办法:首先烧一壶开水然后将底板放入水中一到二分钟,主要要用一个东西按住底板,免得它浮上来(不要用手!)。
拿出来后底板应该软一些了,戴着手套将它弯曲到自己想要的角度直到冷却。
根据网上高手的建议,最佳角度为30度。
钻上两个螺纹孔,然后用螺钉将电机固定在底板上。
第四步:固定腿部到伺服电机的十字臂我用尖嘴钳截了两段粗铜线作为机器人的前腿和后腿,然后把它们弯曲成适合伺服电机的十字臂的形状。
一条经典的BEAM准则就是需要连接零件时,如果可能的话尽量采用铁丝来捆绑。
用铁丝捆绑要优于采用焊锡连接。
用铁丝捆绑的话会给零件一定的自由空间,并且也利于零部件的再次使用。
第五步:关键的一步:将固定好腿部零件的十字臂装在伺服电机上将绑上了腿部的十字臂固定到伺服电机上,然后用钳子小心地把机器人的前后腿一点点折到图中所示位置。
毕业论文设计-可变形仿生翻滚四足机器人结构设计(全套图纸)
可变形仿生翻滚四足机器人结构设计摘要:移动机器人是科学技术进步的产物,更是人类无限幻想和智慧的结晶。
移动机器人在军事、生产、生活以及科学研究中还有着许多潜在的应用前景。
移动机构决定了移动机器人的综合移动性能,是移动机器人能够在工作环境中实现快捷、平稳、精确、高效移动的关键。
为了提高机器人的移动效率,同时也为了降低机器人结构的复杂性,本课题从现代仿生学原理出发,将自然界中的翻滚运动引入到四足机器人结构当中,并借鉴可重构机器人理论,首次提出一种具有翻滚模式和步行模式的可变形仿生翻滚四足机器人,达到用一种机构实现两种运动的目的。
本文对可变形仿生翻滚四足机器人进行了总体方案设计,选定了结构参数,和驱动方式。
详细地对机器人的本体结构进行了设计,并对机器人关键部位进行了校核。
本课题提高了四足机器人的环境适应能力,拓展四足机器人的应用领域,而且丰富了移动机器人学科的理论和实践,对移动技术的发展和高机动性移动平台的开发具有一定的借鉴作用,具有重要的理论意义与实际应用价值。
关键词:四足机器人;仿生翻滚;可重构机器人;设计校核全套图纸加153893706Structural Design for a Reconfigurable Bionic RollingQuadruped RobotAbstract : Mobile robot is the product by scientific and technological progress, and also the crystallization of human infinite fantasy and wisdom. Mobile robot have many potential application prospect in the military, production, living and scientific research. The move mechanism of the robot determines the comprehensive move performance, also it’s the key for robot to work smooth, accurate and quick, efficient in the surroundings.In order to improve the robot move efficiency, and also to reduce the complexity of the structure, this paper is based upon the modern bionics principle. The rolling style in nature is put into robot structure. Referencing reconfigurable robot theory, a reconfigurable bionic rolling quadruped robot is put forward, which has two move modes---- walk model and rolling model. In this way, it can achieve the purpose of using a mechanism to get two movement models.General scheme design of the robot is made in this paper, structure parameters and drive mode are selected. Robot body structure is designed detailed, and the key parts of the robot are checked in this paper.This topic raised the ability for robot to adapt environment, expand the application field of robot, and also enriched the discipline theory andpractice for robotics. It has a certain reference of the development of mobile technology and high mobility mobile platform. So this paper has an important theoretical significance and practical application value.Key words:quadruped robot; bionic rolling; reconfigurable robot; design and check目录第一章绪论 (6)1.1课题研究的目的与意义 (6)1.2移动机器人的应用领域 (7)1.2.1工业领域 (7)1.2.2农业生产 (7)1.2.3科技探索 (7)1.2.4医疗服务机器人 (8)1.3国内外在该领域的研究现状 (8)1.3.1轮-足复合式移动机构 (8)1.3.2仿生翻滚与翻转移动平台 (9)1.4主要研究内容 (11)第二章移动机器人系统 (12)2.1移动机器人系统组成 (12)2.2 传统移动机器人简介 (12)2.3 腿式移动机器人 (13)2.3.1双腿 (13)2.3.2四腿 (14)2.3.3六腿 (15)2.4腿式机器人存在的问题及展望 (16)2.5轮式移动机器人 (17)2.5.1单轮滚动机器人 (17)2.5.2 两轮移动机器人 (18)2.5.3 三轮及四轮移动机器人 (19)2.5.4 复合式移动机器人 (21)2.6轮式移动机器人性能比较 (21)2.7履带式机器人 (22)2.7.1单节双履带式机器人 (23)2.7.2双节双履带式移动机器人 (23)2.7.3多节多履带式移动机器人 (23)2.7.4多节轮履复合式移动机器人 (24)2.7.5自重构式移动机器人 (24)2.7.6履带式移动机器人存在的问题及发展趋势 (25)第三章总体方案设计 (26)3.1 结构外形设计 (26)3.2 仿生翻滚运动方案设计 (27)3.3结构基本参数 (28)3.4驱动方案选择 (29)第四章机器人设计 (30)4.1 电机选择 (30)4.1.1 电机扭矩 (30)4.1.2确定电机型号 (31)4.1.3选择联轴器 (32)4.2 机械结构设计 (33)4.2.1 材料选择 (33)4.2.2 机体设计 (33)4.2.3 大腿机构设计 (35)4.2.4 小腿机构设计 (36)4.2.5 足部设计 (36)第五章设计总结 (37)5.1主要内容小结 (37)5.2设计心得体会 (38)参考文献 (38)致谢 (41)第一章绪论1.1课题研究的目的与意义移动机器人是科学技术进步的产物,更是人类无限幻想和智慧的结晶。
四足机器人设计报告
四足机器人设计报告摘要:本文介绍了四足机器人(walking dog)的设计过程,其中包括控制系统软硬件的设计、传感器的应用以及机器人步态的规划。
一、本体设计:walking dog的单腿设置髋关节和踝关节两自由度,能在一个平面内自由运动(见图1.1)。
采用舵机作为机器人的关节驱动器,其单腿结构图见(图1.2)。
为了便于步态规划,设计上下肢L1、L2长均为65mm。
四肢间用铝合金框架连接,完成后照片见(图1.3)。
walking dog 的每只脚底均有一个光电传感器,能有效检测脚底环境的变化。
walking dog的头部为一个舵机,携带光电反射式传感器,能探测前方180度75cm内的障碍物。
图1.1 四足机器人模型图1.2 单腿结构图1.3:完成后照片二、控制系统设计为了使机器人能灵活地搭载各种传感器以及实现不同的步态,将底层驱动单元与上层步态算法平台分开。
因为walking dog的各关节均为舵机,特设计了16路舵机驱动器作为底层驱动单元,用来驱动机器人全身各关节。
并设计了上层算法平台,将各关节参数通过UART 实时地发送到底层驱动单元。
图2.1为系统框图。
图2.1:系统框图1、底层驱动单元设计图2.2给出了舵机的工作原理框图,电动机驱动减速齿轮组,并带动一个线性的电位器作位置检测,控制电路将反馈电压与输入的控制脉冲信号作比较,产生偏差并驱动直流电动机正向或反向转动,使齿轮组的输出位置与期望值相符。
图2.2:舵机工作原理框图针对舵机这一特性,设计底层驱动器的系统结构图见图2.3。
Mage8的16位定时器分时产生16次定时中断,中断子程序产生移位脉冲,通过4N25光偶隔离输入到移位寄存器,实现各路PWM信号高电平部分的分时产生。
图2.4为定时产生脉冲的中断处理流程,图2.5例举了产生4路PWM信号的波形图。
实际电路原理图见附录1。
图2.3:16路舵机驱动器结构图图2.4:定时中断服务流程 图2.5:产生4路PWM 的波形信号2、算法平台的设计步态机器人要求对各个关节实施快速准确的位置控制,因此对控制系统提出了比较高的要求:1、具有大量数据存储能力用来存储大量的步态数据。
四足机器人设计方案书
浙江大学“海特杯”第十届大学生机械设计竞赛“四足机器人”设计方案书“四足机器人”设计理论方案自从人类发明机器人以来,各种各样的机器人日渐走入我们的生活。
仿照生物的各种功能而发明的各种机器人越来越多。
作为移动机器平台,步行机器人与轮式机器人相比较最大的优点就是步行机器人对行走路面的要求很低,它可以跨越障碍物,走过沙地、沼泽等特殊路面,用于工程探险勘测或军事侦察等人类无法完成的或危险的工作;也可开发成娱乐机器人玩具或家用服务机器人。
四足机器人在整个步行机器中占有很大大比重,因此对仿生四足步行机器人的研究具有很重要的意义。
所以,我们在选择设计题目时,我们选择了“四足机器人”,作为我们这次比赛的参赛作品。
一.装置的原理方案构思和拟定:随着社会的发展,现代的机器人趋于自动化、高效化、和人性化发展,具有高性能的机器人已经被人们运用在多种领域里。
特别是它可以替代人类完成在一些危险领域里完成工作。
科技来源于生活,生活可以为科技注入强大的生命力,基于此,我们在构思机器人的时候想到了动物,在仔细观察了猫.狗等之后我们找到了制作我们机器人的灵感,为什么我们不可以学习小动物的走路呢,于是我们有了我们机器人行走原理的灵感。
为了使我们所设计的机器人在运动过程中体现出特种机器人的性能及其运动机构的全面性,我们在构思机器人的同时也为它设计了一些任务:1. 自动寻找地上的目标物。
2. 用机械手拾起地上的目标物。
3.把目标物放入回收箱中。
4. 能爬斜坡。
图一如图一中虚线所示的机器人的行走路线,机器人爬过斜坡后就开始搜寻目标物体,当它发现目标出现在它的感应范围时,它将自动走向目标,同时由于相关的感应器帮助,它将自动走进障碍物中取出物体。
二.原理方案的实现和传动方案的设计:机器人初步整体构思如上的图二和图三,四只腿分别各有一个电机控制它的转动,用一个电机驱动两条腿的抬伸。
根据每只腿的迈步先后实现机器人的前进,后退,左转和右转,在机器人腿迈出的同时,它也会相应地进行抬伸,具体实现情况会在下文详细说明。
四足机器人(课程标准)
《四足机器人的设计与制作》课程标准一、课程名称四足机器人的设计与制作二、适用年龄范围二年级以上三、课程定位《四足机器人的设计与制作》是一门将3d打印设计、舵机的单片机控制与仿生学动力原理相互结合的一门综合课程。
本课程以培养学生知识的综合运用能力为目的,在实践中发现问题并解决问题。
同时为后续创客课程打下坚实的基础。
1.这是一门综合运用机械、电子和数学知识的课程。
学生需要学会从顶层到底层的思考模式,即由最终爬行的四足机器人,拆分到每个环节应该如何去实现。
这是掌握任务设计思维的基础课程,同时对后续课程的进行起到至关重要的作用。
四、课程目标1.知识与技能的目标3D打印设计的学习与巩固仿生动力学原理的了解与运用舵机单片机控制原理的了解2.个人素养的目标空间思维能力与耐心的提高观察能力与动手实践能力的提高培养主动学习和深入学习的习惯发现问题和解决问题能力的提升五、课程设计《四足机器人的设计与制作》课程主要以学生自行参与动手时间为主,在教学过程中,重点应该放在学生课堂的实践,采用实践与理论一体化的教学方式,使学生能够在做中学,学中玩。
课程设计思路如下:(1)以课堂任务为载体,将教学内容融入其中,实现理论与实践一体化教学。
在基于项目式的教学过程中,学生是主要的行为者,全程实现小班化教学,学生以个体或者小组的形式,在老师的指导下完成任务。
老师需要根据学生每堂课的课堂表现和完成任务情况给予评价。
(2)基于项目式教学的基本方法如下:引入:使用视频、游戏、图片等方式引出课程,明确教学任务,培养学生从顶层到底层思考问题的能力。
设计制作:根据四足所涉及到的知识点进行教学任务的分解安排,首先使用3D打印设计制作机器人的机械部分,其次使用舵机控制板控制多个舵机联合运动,最后进行调试与运动。
拓展与运用:结合开源硬件Arduino和超声波传感器制作智能避障四足机器人。
学习结果评价:根据每堂课的表现和最终任务完成情况给予结果的综合评价。
四足仿生机器人运动控制系统的设计与实现
西北工业大学硕士学位论文第一章绪论图1-1LittleDog图1-2BigDogLittleDog是由DARPA(美国国防部高级研究项目署)资助,波士顿动力公司研制的四足机器人(如图1-1所示)。
LittleDog采用电机驱动,每条腿上装有3个电机,采用便携式计算机控制,机器人装有检测关节角度、电机电流、航向、脚与地之间的接触等用途的传感器,采用无线通信模块传送数据,随身携带的锂离子聚合物电池可以保证机器人运行30分钟。
科学家们通过该机器人来研究电机、动力控制、对环境的感知和粗糙地形下的运动等问题。
BigDog也是由DARPA资助,波士顿动力公司研制的四足机器入(如图1.2所示),BigDog与LittleDog相比性能得到了大幅度的提高,号称是目前世界上最先进的四足机器人。
BigDog长为l米、高为O.7米、重量为75千克,采用液压驱动,由汽油发动机提供动力,采用随身携带的计算机控制,装有位置、力、陀螺仪等传感器。
BigDog的环境适应能力特别强,可以在山地、沼泽地、雪地等路面上行走,目前可以3.3英里/4,时的速度小跑,可以爬越35度的坡面,负载120磅。
二、四足机器人Patrush和Tekken[8J日本电信大学的H.KiIlluIa等于十几年前开始研究四足机器人,先后研制出四足机器人Patrush-1191、Patrush-IIll01、Tekken-I[“I、Tekken-II[12】【131和Tekken.Ⅳ【14】(如图l-3所示)。
以Tekken-II为例来介绍其特征,Tekken-II的外形尺寸为30X14X27.5cm,含电池重4.3kg,共16个关节(每条腿4个关节,3个主动关节,一个被动关节),采用直流伺服电机驱动、并配有减速箱,配有编码盘、陀螺仪、倾角计和接触传感器,控制器采用PC机、操作系统为RT-Linux,通过遥控器操作机器人Il”。
Ⅺmnfa将中枢模式发生器CPG网络与牵张反射、伸肌反射、屈肌反射等机理结合,实现了所研制的四足机器人Tekken在复杂地形下的自适应运动,可以实现行走(walk)、同侧跑(pace)、对角跑(trot)和奔跑(gallop)步态,能避障、越障、爬坡,Tekken.IV最高速度达1.5m/s[16J。
四足机器人控制系统的简单设计
四足机器人控制系统的简单设计摘要:近年来四足机器人开始走进人们视野。
四足机器人是一个庞大的系统,而控制系统是其中最重要的系统之一。
一个良好及鲁棒性强的控制系统是四足机器人系统功能最大化的基础之一。
而要达到该期望的控制系统也往往更复杂。
本研究基于机器人运动学与图像处理技术,研究设计了一个四足机器人简单控制系统,旨在能对四足机器人进行初步控制验证,作为复杂控制系统开发的基础。
关键词:四足机器人;运动学控制;图像处理;1.项目意义四足机器人控制系统中往往采用动力学控制方法。
目前主流的控制方法中,MPC模型预测控制方法和WBC全身控制方法是非常常用的。
但采用该方法的控制系统复杂程度比较高,也往往需要较深的控制技术基础,不适合用于控制系统的前期验证。
为了克服上述问题。
本研究基于机器人运动学、ROS机器人开源操作系统,搭建了一个能在世界坐标系下进行运动的简单控制系统,并使用物理样机进行了验证。
该系统也能应用于物理样机制作中的前期验证,提高机器人研发迭代速度。
2.研究内容2.1基于机器人运动学的控制算法机器人运动学算法是本控制系统的关键。
本文借助逆矩阵等数学工具,实现了一个四足机器人运动学算法。
基于该算法,机器人不仅能轻松实现四足着地时的姿态控制,还能实现在运动中对机器人的姿态控制。
当然实现动静状态下的姿态控制,也同时意味着机器人能在一定的躯干扰动(对姿态的影响)下,依然能保持躯干的稳定,实现机器人的稳定运动控制。
本系统使用ROS开源系统中的RVIZ 可视化工具进行可视化。
2.2地形构建系统机器人的地形构建系统可以提供四足机器人运动中需要的信息:1.利用地形数据修正摆动相足端的落足点高度,使得四足机器人的腿部能跨越障碍。
2.利用地形数据,可以通过预先解算出机器人运行到该地形的数据,并作为机器人的姿态控制量进行预先控制,这在机器人遇到一些大型障碍中非常有用。
故地形构建系统是非常重要的系统。
3.系统实现3.1 基于机器人运动学的控制算法四足机器人坐标系定义如图1所示,在初始状态中,世界坐标系与躯干坐标系处于同样位置。
四足机器人系统设计
(此文档为word格式,下载后您可任意编辑修改!)摘要四足机器人作为仿生机器人的一种,得到了广泛的研究。
行走机构和转弯机构是四足机器人最关键的部分,目前,行走机构的研究大多采用在腿机构的关节处安装伺服电机进行驱动,增加了机器人的重量和控制策略的难度。
并且,机器人本体大多是一个刚性整体,转弯机构研究不足。
为此,项目将四足机器人本体作为一个柔性整体,采用三维建模软件Pro/E4.0设计了四足机器人的机械系统,提出了一种新颖的凸轮控制驱动式行走机构,设计了一种腿机构以及相应的凸轮控制驱动机构,并初步设计了柔性转弯机构。
在此基础上,论文采用主从式控制方式设计了四足机器人的控制系统,重点讨论了以8051单片机为控制器的行走机构和转向机构的控制系统设计。
关键词:四足机器人;行走机构;凸轮驱动;控制系统;三维设计AbstractQuadruped robot as one of biomimetic robots, has been extensively studied. Travel agencies and institutions is a quadruped robot turning the key, At the present, servo motor is installed in the leg joints of the most travel agencies, increasing the weight of the robot and the difficulty of the control system strategy . And most of the robot is a rigid body as a whole, and the research of the turning institutions is not fully studied . For this purpose, the project will take four-legged robot whole body as a flexible rigid body, and three-dimensional modeling software Pro/E4.0 is used for designing quadruped robot mechanical systems, a new travel agency based on cam control drive is proposed , a kind of leg mechanism and control of the corresponding cam drive mechanism is designed, and a flexible turning institution is preliminary designed. Based on this work, thecontrol system of the robot was designed. Especially, control systems of the stepped mechanism and the wheel mechanism were analyzed detailed.Key words: quadruped robot; stepped mechanism; cam drive; control system ;three dimensional design;目录1.引言 (1)1.1机器人及其相关技术的发展 (1)1.2国内外四足行走机器人得研究概况 (2)1.3机器人学主要涉及的学科内容 (4)1.4课题简介 (5)2.机器人系统总体设计 (6)2.1机器人系统结构概述 (6)2.2四足机器人研发流程 (7)2.3四足机器人系统结构设计 (9)3.四足机器人机械系统的结构设计技术 (10)3.1机器人机械设计的内容及特点 (10)3.2机械结构总体设计 (11)3.3行走机构的研究 (13)3.4行走机构的设计计算 (19)3.5转弯机构的设计 (24)3.6腱机构 (28)3.7机器人的外形设计 (28)3.8驱动系统的设计 (29)4.控制系统的硬件设计 (35)4.1传感器 (35)4.2控制器 (36)4.3控制系统 (39)5.控制系统的软件设计 (42)5.1行走系统软件设计 (42)5.2转弯控制系统软件设计 (43)总结 (47)参考文献 (49)致谢 (51)凸轮控制驱动式的四足机器人系统设计1. 引言1.1机器人及其相关技术的发展自从人类制造出了一电子计算机为代表的各种信息处理和计算的工具,进一步拓展和延伸了人类大脑的功能。
基于STM32-PCA9685的四足机器人控制系统设计
基于STM32-PCA9685的四足机器人控制系统设计张 亮,赵飞跃(长安大学工程机械学院,陕西 西安 710000)摘 要:近年来,四足机器人成为腿足式机器人研究的热点,控制系统作为整个机器人系统的核心部件之一,对机器人运动控制起着至关重要的作用。
如何开发有效简便的四足机器人控制系统成为重要问题。
文章设计了一款基于STM32-PCA9685的四足机器人控制系统,主控器STM32F407ZGT6通过构建的运动学模型计算机器人12个关节的目标转角值,转化为PWM 波信号指令,再通过IIC 通信协议发送给PCA9685,产生12PWM 波控制信号控制关节舵机转动。
该控制系统极大地节约了STM32F407ZGT6的资源接口,仅需占用其4个接口就可以控制12个舵机实时转动,提高了通信的稳定性。
最后,文章通过四足机器人的单腿摆动实验和站立实验验证了该控制系统的稳定性和实用性。
关键词:四足机器人;STM32;PCA9685;运动学中图分类号:TP242 文献标志码:A 文章编号:1672-3872(2020)14-0117-03——————————————作者简介: 张亮(1996—),男,湖北咸宁人,硕士,研究方向:机器人运动控制。
四足机器人由于运动灵活性、稳定性及优良的可控性,有着广泛的应用前景。
四足机器人控制系统作为其运动控制的关键部分,受到了越来越多的关注。
目前,机器人的运动控制系统种类繁多,如基于Arduino 开发的机器人[1-3];基于STM32开发的机器人[4-6]。
文章基于STM32-PCA9685开发的四足机器人控制系统,基于IIC 通信,仅需占用其4个接口就可以控制12个舵机实时转动。
相对传统仅依靠STM32的控制方式,对STM32接口资源占用少,通信稳定性高。
相对Arduino 控制系统,基于STM32系统对复杂运动行为具有较高的可控性。
最后通过单腿摆动实验和站立端和大小腿均采用聚乳酸(PLA)材料。
机械毕业设计(论文)-四足机器人结构设计(全套图纸)[管理资料]
摘要四足机器人步行腿具有多个自由度, 落足点是离散的, 故能在足尖点可达域范围内灵活调整行走姿态, 并合理选择支撑点, 具有更高的避障和越障能力。
对四足机器人的行走典型步态进行必要的分析比较,选择本次毕业设计四足机器人的步态——小跑步态,并对小跑步态进行设计。
对腿关节结构是使用电动机驱动关节运动还是使用传统的连杆机构(四杆机构、五杆机构、六杆机构等)驱动关节运动进行比较,同时对机构的自由度进行分析,选择一个自由度的斯蒂芬森型机构作为四足机器人的行走结构,并且引用了已经运用成熟的腿机构。
考虑到驱动系统的安装,选择一个电动机驱动四足机器人的行走机构,通过同步带驱动四条腿,减少了电动机的数目,减轻了四足机器人的负载,减少对腿关节运动的影响。
本毕业设计通过涡轮蜗杆传动和齿轮传动,设计出了蜗杆二级减速器,第一级减速为蜗杆涡轮减速,第二级减速为齿轮减速。
并对关键零部件进行必要计算和校核,从而得到四足机器人稳定步行所需要的速度,最终实现了四足机器人的步行。
关键词:四足哺乳动物;四足机器人;机器人步态;行走结构;蜗杆二级减速器全套图纸加153893706AbstractWalking legs of quadruped robot has multiple degrees of freedom , points of the foot are discrete , it can be flexibly adjusted walking posture within the gamut reach for the toe point , and a reasonable choice of the anchor , it gets a higher obstacle and avoidance ability . It is necessary to analysis and compare typical gait of quadruped walking robot, trotting gait is selected to be this graduation project quadruped robot gait. To compare the driving articulation that the leg joints structure is driven by the motor or the use of traditional articulation linkage (four agencies, five agencies, six institutions, etc.), while the degree of freedom mechanism is analyzed,to choose one degree of freedom structure Stephenson type mechanism as walking quadruped robot, and refers to already is used of mature leg mechanism. Taking into account the installation of the drive system, to choose a motor drive mechanism of quadruped walking robot, by timing belt drive four legs,the number of motor is reduced , it reduces the load on the four-legged robot , it reduces the impact on the movement of the leg joints .Two worm reducer is designed by designing worm gear and gear in the graduation design , the first stage reduction is a worm and wheel reducer , the second stage reduction is a gear reducer . And it is necessary to carry out calculations and check of key components, and to get speed required of quadruped robot walking is stable , ultimately , walking of quadruped robot is achieved.Keywords:quadruped mammal;quadruped robot; gait; walking structure; two worm reducer目录1.引言 (5)步行机器人 (5)步行机器人的发展 (5)步行机器人常见的连杆机构 (6)2. 四足机器人步态的设计 (6)3. 行走结构的设计 (7)四足机器人腿结构的配置形式 (7)开链式腿结构 (8)闭链式腿结构 (9)弹性腿结构 (10)机构自由度 (11)步行机构的选择方案 (12)对腿机构分析 (13)分析绞链点D的轨迹 (13)腿机构优化设计 (15)机器人腿足端的轨迹分析 (17)4. 传动结构的设计 (18)驱动方案 (18)传动方案 (18)驱动电动机 (20)普通圆柱蜗杆传动的主要参数及其选择 (21)普通圆柱蜗杆传动承载能力的计算 (22)蜗杆传动设计准则和常用材料 (22)涡轮齿面接触疲劳强度计算 (23)涡轮齿根弯曲疲劳强度计算 (24)蜗杆的刚度计算 (25)涡轮蜗杆传动的计算 (25) (29)5. 确定各轴的最小直径及轴承 (35)6. 轴的校核 (36)蜗杆上的作用力及校核轴径 (36)涡轮轴上的作用力及校核轴径 (37)输出轴上的作用力及校核轴径 (40)7. 键连接与计算校核 (42)8. 三维建模及平衡校核 (43)9. 结论 (43)论文完成的主要工作 (44)结论 (44)谢辞 (45)参考文献 (46)1.引言步行机器人在人类社会和大自然界中,有许多危险的地方,危及到人类自身生命安全,是我们人类无法直接到达的,于是人类研发出步行机器人,代替人类进行探索研究。
四足机器人课程设计
实验目的
·进一步了解“创意之星”标准版套件;
·初步学习足式机器人的不太规划;
·深入学习AVR控制器的使用方法;
·深入学习模拟量传感器的使用方法。
实验要求
·模仿四腿生物的行走方式,四条腿交替前进;
·能感知光源,并能转向光源,朝光源前进。
实验过程
1.任务分析与规划
·了解腿式机器人
·步态规划
·任务规划
2.搭建机器人
3.让四足机器人走起来
·四足机器人步态分析
设计前进、后退步态
设计转向步态
·编写步态
·让舵机跟踪光源
建立工程
添加变量
程序逻辑设计
等待延迟
最终的程序流程及对应源码
·让四足机器人跟踪光源
、
实验小结
本次试验我们进一步熟练的掌握了机器人ID的设置方法,并且通过对四足机器人的动作设计使其达到行走的效果,我们进行了小组讨论等形式,进一步掌握了机器人行走的工作原理,为编写程序提供了更清晰的思路,通过本次试验,我们更加熟练的掌握了NorthSTAR软件的应用,加深了对机器人学习的兴趣。
基于Arduino的视觉四足步行机器人的研究
基于Arduino的视觉四足步行机器人的研究使用Arduino板控制舵机旋转角度进而控制机器人的行走是四足步行机器人研究的一个重要方法。
文章通过重点研究Arduino的编程程序实现Arduino板、舵机和视觉模块的联动,从而控制视觉机器人的工作。
标签:Arduino;视觉步行机器人;舵机;Pixy引言Arduino是一款便捷灵活、方便上手的开源电子原型平台,包含硬件(各种型号的Arduino板)和软件(Arduino IDE)。
它具有跨平台性、简单清晰、开放性等优点,且近年来发展迅速,成为全球最流行的开源硬件,因此将其作为视觉步行机器人的控制模块具有很高的可操作性。
1 Arduino的软件--Arduino IDEArduino IDE是Arduino的编程软件,基于processing IDE开发,具有很高的灵活性,且Arduino语言基于wiring语言开发,是对A VRGCC库的二次封装,它可以在Windows、Macintosh OS X、Linux三大主流操作系统上运行,而其他的大多数控制器只能在Windows上开发,对于编程者来说极其便利。
2 Arduino控制舵机角度舵机是一种位置伺服的驱动器,其工作原理是由接收机或者单片机发出信号给舵机,其内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。
一般舵机旋转的角度范围是0°到180°度。
正是由于舵机转动的角度是通过调节PMW(脉冲宽度调制)信号的占空比来实现的,所以可以通过硬件上将Arduino板与舵机接线,软件上向Arduino嵌入控制程序来控制舵机旋转角度。
下面是一个简单的Arduino舵机角度控制程序:#includeServo myservo;int pos = 0;void setup()myservo.attach(9);}void loop(){for(pos = 0;pos 100){if(pixy.blocks[0].width * pixy.blocks[0].height200)right();if(pixy.blocks[0].x<100)left();上面程序中advance()、back()、right()、left()是子函数,控制机器人的行走方向。
舵机驱动仿生四足机器人设计
舵机驱动仿生四足机器人设计
林德龙
【期刊名称】《机械》
【年(卷),期】2011(000)002
【摘要】四足机器人是模仿动物的运动机理,实现不同环境下的适应性行走.电机驱动相比液压或气压驱动,有能量传递方便,信号传递迅速,标准程度高的优点,成为机器人驱动的主流选择.针对四足机器人多自由度运动的特点,提出了一种舵机驱动控制机器人实现所规划的行走步态的有效方法.即采用模块化设计了舵机驱动四足机器人,其中包括控制系统软硬件的设计、传感器的应用以及机器人的步态规划.实验证明此种方法能实现良好的行走稳定性.
【总页数】4页(P66-69)
【作者】林德龙
【作者单位】西南科技大学,机器人技术及应用四川省重点实验室,四川,绵
阳,621010
【正文语种】中文
【中图分类】TP242
【相关文献】
1.仿生四足机器人设计及运动学足端受力分析 [J], 常同立;刘学哲;顾昕岑;郭志鹏
2.凸轮连杆组合机构驱动的四足仿生马机器人运动学建模与分析 [J], 杨许;王若澜;王良文;李立伟;王团辉
3.四足仿生机器人液压驱动单元轨迹灵敏度分析 [J], 孔祥东;俞滨;权凌霄;巴凯先
4.凸轮连杆组合机构驱动的四足仿生马机器人运动仿真研究 [J], 王良文;张薇薇;李立伟;孟凡念;王团辉;杜文辽
5.四足机器人气动人工肌肉驱动的仿生柔性机体动力学分析 [J], 雷静桃;俞煌颖因版权原因,仅展示原文概要,查看原文内容请购买。