空气比热容比的实验报告Word版
大学物理实验空气比热容比的测定实验报告
大学物理实验空气比热容比的测定实验报告一、实验目的1、学习用绝热膨胀法测定空气的比热容比。
2、观测热力学过程中状态的变化及基本物理规律。
3、学习使用气压计、温度计等实验仪器。
二、实验原理气体的比热容比γ定义为定压比热容 Cp 与定容比热容 Cv 之比,即γ = Cp / Cv 。
对于理想气体,比热容比γ只与气体分子的自由度有关。
单原子分子气体(如氦、氖等)γ = 5/3,双原子分子气体(如氧气、氮气等)γ ≈ 7/5。
本实验采用绝热膨胀法测定空气的比热容比。
实验装置主要由储气瓶、玻璃管、气阀、压强计等组成。
实验过程中,首先关闭放气阀,使瓶内充满一定压强的气体。
打开放气阀,瓶内气体迅速绝热膨胀,压强降低,温度也随之降低。
由于放气时间很短,可以认为这是一个绝热过程。
绝热过程满足方程:p1V1^γ =p2V2^γ其中 p1、V1 为膨胀前气体的压强和体积,p2、V2 为膨胀后气体的压强和体积。
当瓶内气体压强从 p1 变化到 p2 时,测量出相应的压强值,再根据储气瓶的体积,就可以计算出空气的比热容比γ。
三、实验仪器1、储气瓶:储存一定量的气体。
2、压强计:测量瓶内气体的压强。
3、温度计:测量气体的温度。
4、气阀:控制气体的进出。
四、实验步骤1、实验前准备检查实验仪器是否完好,储气瓶及各连接处是否漏气。
读取初始压强 p0 和环境温度 T0 。
2、打开放气阀,使瓶内气体迅速绝热膨胀,待瓶内压强稳定后,关闭放气阀。
3、等待一段时间,使瓶内气体温度恢复到环境温度,读取此时的压强 p1 。
4、重复步骤 2 和 3 多次,记录多组数据。
5、实验结束后,整理实验仪器。
五、实验数据记录与处理|实验次数|初始压强 p0 (Pa) |最终压强 p1 (Pa) |环境温度 T0 (K) ||::|::|::|::|| 1 |_____ |_____ |_____ || 2 |_____ |_____ |_____ || 3 |_____ |_____ |_____ || 4 |_____ |_____ |_____ || 5 |_____ |_____ |_____ |根据绝热过程方程p1V1^γ = p2V2^γ,可得γ = ln(p0 / p1) /ln(V1 / V2) 。
测定空气比热容比实验报告
测定空气比热容比实验报告测定空气比热容比实验报告引言:热力学是物理学的一个重要分支,研究能量转化和传递的规律。
而空气作为我们日常生活中常接触的物质之一,其热力学性质的研究对于我们理解自然界的能量转化过程具有重要意义。
本实验旨在通过测定空气的比热容比,探究空气在不同条件下的热力学特性,并对实验结果进行分析和讨论。
实验装置和步骤:实验装置主要包括恒温水槽、热容器、温度计、电磁阀和压力计等。
实验步骤如下:1. 将空气容器放入恒温水槽中,使其与水槽内的水达到相同温度。
2. 打开电磁阀,使空气容器与外界相通,并记录初始状态下的压力和温度。
3. 关闭电磁阀,将空气容器与外界隔绝。
4. 通过加热或冷却水槽中的水,使水槽内的温度发生变化。
5. 当水槽内的温度稳定后,再次记录空气容器内的压力和温度。
实验结果和数据处理:根据实验记录的压力和温度数据,可以计算出空气的比热容比。
比热容比是指在恒定容积下,单位质量的气体温度升高1度所需要的热量与单位质量的气体温度升高1度所需要的热量之比。
计算公式为:γ = Cp / Cv其中,γ为比热容比,Cp为定压比热容,Cv为定容比热容。
根据实验数据和计算公式,我们可以绘制出比热容比γ随温度的变化曲线。
通过曲线的形状和趋势,我们可以分析空气的热力学性质。
讨论与分析:根据实验结果,我们可以看出比热容比γ随温度的变化呈现一定的规律。
在低温下,γ的值较小,随着温度的升高,γ逐渐增大,直至达到一个稳定的值。
这说明在低温下,空气的热力学性质与高温下有所不同。
这一结果可以用分子动理论来解释。
在低温下,气体分子的平均动能较小,分子间的相互作用力较大,因此气体的比热容比较小。
而随着温度的升高,气体分子的平均动能增大,分子间的相互作用力减小,导致比热容比增大。
此外,实验结果还与空气的成分有关。
空气主要由氮气和氧气组成,而这两种气体的比热容比不同,因此空气的比热容比也会受到其成分的影响。
实验中可能存在的误差主要包括温度测量误差、压力测量误差以及实验装置的热量损失等。
空气比热容比的测定
实验二 空气比热容比和液体粘滞系数的测定(一) 空气比热容比的测定【实验简介】空气的比热容比 又称气体的绝热指数, 是系统在热力学过程中的重要参量。
测定 值在研究气体系统的内能, 气体分子的热运动以及分子内部的运动等方面都有很重要的作用。
如气体系统作绝热压缩时内能增加, 温度升高;反之绝热膨胀时, 内能减少, 温度降低。
在生产和生活实践中广泛应用的制冷设备正是利用系统的绝热膨胀来获得低温的。
除此以外, 测定比热容比还可以研究声音在气体中的传播。
由上可见, 测定气体的比热容比是一个重要的实验。
本实验采用绝热膨胀法测定空气的 值。
【实验目的】1.用绝热膨胀法测定空气的比热容比。
2.观察热力学过程中系统的状态变化及基本物理规律。
3.学习使用空气比热容比测定仪和福廷式气压计。
【实验仪器】空气比热容比测定仪(FD —NCD 型, 包括主机, 10升集气瓶连橡皮塞和活塞, 打气球, 硅压力传感器及同轴电缆, AD590温度传感器及电缆)、低压直流电源(VD1710—3A )、电阻箱(或 定值标准电阻)、福廷式气压计(共用)。
【实验原理】1.理想气体的绝热过程有 , 叫做理想气体的比热容比或绝热指数。
和 分别是理想气体的定压摩尔热容和定体摩尔热容, 二者之间的关系为 ( 为普适气体恒量) 2.如图所示, 关闭集气瓶上的活塞 , 打开 , 用打气球缓慢而稳定地将空气打入集气瓶内, 瓶内空气的压强逐渐增大, 温度逐渐升高。
当压强增大到一定值时, 关闭 , 停止打气。
待集气瓶内的温度降至室温 状态稳定时, 这时瓶内气体处处密度均匀, 压力均匀, 温度均匀。
此时取瓶内体积为 的一部分气体作为我们的研究对象, 系统处于状态1 , 这部分气体在接下来的膨胀中体积可以恰好充满整个瓶的容积 。
突然打开活塞 进行放气, 放掉多余的气体, 使系统迅速的膨胀, 达到状态2 , 随即又迅速关闭 。
是环境大气压。
由于放气过程迅速, 可视为绝热过程, 故有1102PV PV γγ= (1)3.关闭 后, 瓶内气体的温度会由 缓慢回升至室温 , 与此同时, 压强也会逐渐增大。
实验报告空气比热容比的测定word文档良心出品
空气比热容比的测定(1) 了解绝热、等容的热力学过程及有关状态方程。
(2) 测定空气的比热容比。
(1) 热力学第一定律及定容比热容和定压比热容热力学第一定律:系统从外界吸收的热量等于系统内能的增加和系统对外做功之和。
考虑在准静态情况下气体由于膨胀对外做功为dA = PdV ,所以热力学第一定律的微分形式为dQ =dE +dA=dE + PdV1.实验名称 2. 实验目的3. 实验原理:主要原理公式及简要说明、原理图定容比热容C v 是指1mol 的理想气体在保持体积不变的情况下,温度升高1K 所吸收的热量。
由于体积不变,那么由 (1)式可知,这吸收的热量也就是内能的增加(dQ = dE),所以C 〔dQ 〕 dE C v = i 〒丨=—(2)i dT 丿vdT由于理想气体的内能只是温度的函数, 所以上述定义虽然是在等容过程中给出, 任何过程中内能的变化都可以写成d E = C v dT定压比热容是指1mol 的理想气体在保持压强不变的情况下,温度升高1K 实际上所吸收的热Cp ^dQ(3) 丿p由热力学第一定律(3)式,考虑在定压过,就有(dQ )冶 +___ I —___ I +I dT 丿p ■ I dT 丿dVpdT ⑷由理想气体的状态方程 PV = RT 可知,在定压过程中 理=巴,又利用dT PdE dT=Cv 代入(4)式,就得到定压比热容与定容比热容的关系C p =C v + R (5)R 是气体普适常数,为 8.31 J / mol K ,•引入比热容比丫为在热力学中,比热容比是一个重要的物理量,它与温度无关。
气体运动理论告诉我们,Y 与气体分子的自由度 f 有关(Ar 、He ) f =3, Y =1.67 对双原子气体(2、出、O 2) f = 5(2)绝热过程系统如果与外界没有热交换,这种过程称为绝热过程,因此,在绝热过程中, 所以由热力学第一定律有dA = -dE 或 PdV = -C v dT (8)由气态方程PV = RT ,两边微分,得PdV +Vd P = RdT (9)(8)、(9)两式中消去dT ,得,即得dV+ Y 竺=0(10) V对(10)式积分,就得到绝热过程的状态方程PV Y =常数(11)利用气态方程PV =RT ,还可以得到绝热过程状态方程的另外两种形式:P=常数(13)4. 实验内容用一个大玻璃瓶作为贮气瓶。
空气比热容比的测量实验报告
空气比热容比的测量实验报告一、实验目的本实验旨在通过测量空气的比热容比,加深对热力学过程和热学基本概念的理解,掌握一种测量气体比热容比的方法,并培养实验操作和数据处理的能力。
二、实验原理空气比热容比γ定义为定压比热容Cp与定容比热容Cv之比,即γ = Cp / Cv。
在热力学中,理想气体的绝热过程满足方程:pV^γ =常数。
在本实验中,我们利用一个带有活塞的圆柱形绝热容器,容器内封闭一定质量的空气。
通过改变活塞的位置,使容器内的气体经历绝热膨胀或绝热压缩过程。
测量绝热过程中气体压强和体积的变化,从而计算出空气的比热容比。
三、实验仪器1、储气瓶:储存一定量的压缩空气。
2、打气球:用于向储气瓶内充气。
3、压强传感器:测量气体压强。
4、体积传感器:测量气体体积。
5、数据采集器:采集和记录压强和体积的数据。
6、计算机:处理和分析实验数据。
四、实验步骤1、仪器调试检查各仪器连接是否正确,确保无漏气现象。
打开数据采集器和计算机,设置好采集参数。
2、测量初始状态用打气球向储气瓶内缓慢充气,直至压强达到一定值,记录此时的压强p1和体积V1。
3、绝热膨胀过程迅速打开活塞,使气体绝热膨胀,记录压强和体积的变化,直到压强稳定,此时的压强为p2,体积为V2。
4、绝热压缩过程迅速关闭活塞,使气体绝热压缩,记录压强和体积的变化,直到压强稳定,此时的压强为p3,体积为V3。
5、重复实验重复上述步骤多次,以减小测量误差。
五、实验数据记录与处理以下是一组实验数据的示例:|实验次数| p1(kPa)| V1(mL)| p2(kPa)| V2(mL)| p3(kPa)| V3(mL)|||||||||| 1 | 1050 | 500 | 700 | 700 | 950 | 450 || 2 | 1080 | 480 | 720 | 720 | 980 | 460 || 3 | 1060 | 510 | 680 | 750 | 960 | 440 |根据绝热过程方程pV^γ =常数,可得:p1V1^γ =p2V2^γ (1)p2V2^γ =p3V3^γ (2)由(1)式除以(2)式可得:p1V1^γ /p3V3^γ =p2V2^γ /p2V2^γ即:p1V1^γ /p3V3^γ = 1γ = ln(p1 / p3) / ln(V3 / V1)将上述实验数据代入公式,计算出每次实验的比热容比γ,然后取平均值。
大学物理空气比热容的测量实验报告
大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P =(4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ (4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
空气比热容比的测定-实验报告
空气比热容比的测定气体的定压比热容C P 和定容比热容C V 之比⎪⎪⎭⎫ ⎝⎛=VPC C γ称为气体的比热容比。
γ是一个常用的物理量。
在描述理想气体的绝热过程时,γ成为了联系各个状态参量(P 、V 和T )的关键参数:(绝热过程,P 、V 之间满足关系:) C PV =γ(1) 气体的比热容比γ除了在理想气体的绝热过程的过程方程中起重要作用之外,它在热力学理论及工程技术的实际应用中也有着重要的作用,例如热机的效率、声波在气体中的传播特性都与之相关。
γ的测量方法很多,传统测量方法是热力学方法[1](绝热膨胀法)来测量,其优点是原理简单,而且有助于加深对热力学过程中状态变化的了解,但是实验者的操作技术水平对测量数据影响很大,实验结果误差较大。
本实验采用振动法[2]来测量,即通过测定物体在特定容器中的振动周期来推算出γ值)。
振动法测量具有实验数据一致性好,波动范围小,误差较小等优点。
[ 实验目的 ](1)学习用振动法测定空气的比热容比。
(2)练习使用物理天平、螺旋测微器、数字式周期记录仪、大气压计等。
[ 实验原理 ]图-1 图-2实验装置如图-1所示。
本实验以贮气瓶A内的空气作为研究的热力学系统。
在贮气瓶A正上方连接玻璃细管B,并且其内有一可自由上下活动的小球C,由于制造精度的限制,小球和细管之间有0.01mm 到0.02mm 的间隙。
为了弥补从这个小间隙泄漏的气体,通过气泵持续地从贮气瓶的另一连接口D注入气体,以维持瓶内的压强保持恒定。
适当调节气泵输出的流量,可以使小球在玻璃细管B内(中央一侧有一小孔K 附近,如图-2所示)在竖直方向上来回振动:当小球在小孔K 的下方并向下运动时,贮气瓶中的气体被压缩,压强增加;而当小球经过小孔向上运动时,气体由小孔膨胀排出,压强减小,小球又落下。
其振动周期可利用周期记录仪测量出来。
若小球质量为m ,直径为d ,当其出于平衡状态时,瓶内气压P 和大气压强0P 之间满足关系:20)2/(d mgP P π+= (2) 当小球由平衡位置向下运动一个小距离x ,这导致贮气瓶内的压强变化dP ,从而小球所受合力F 为:dP d F 2)2/(π= (3)由牛顿运动方程ma F =,得:222)2/(dtxd m dP d =π (4)另一方面,由于小球振动很快,可以近似作为绝热过程处理,于是贮气瓶内气体的压强P ,直和体积V 满足(1)式的绝热方程。
空气比热容比的测量实验报告
空气比热容比的测量实验报告一、实验目的1、学习用绝热膨胀法测量空气的比热容比。
2、观察热力学过程中状态的变化及基本物理规律。
3、学习使用气体压力传感器和计算机等现代实验技术手段进行实验数据的采集和处理。
二、实验原理比热容比γ是指气体定压比热容Cp与定容比热容Cv之比,即γ =Cp / Cv 。
对于理想气体,γ值只与气体分子的自由度有关。
本实验采用绝热膨胀法测量空气的比热容比。
实验装置主要由贮气瓶、压力表、活塞、打气球等组成。
实验时,首先关闭放气阀,通过打气球向贮气瓶内缓慢打入一定量的气体,使瓶内压强增大。
当压强达到一定值时,突然打开放气阀,瓶内气体迅速绝热膨胀,压强急剧降低。
由于绝热膨胀过程中,气体与外界没有热量交换,内能的减少等于对外做功。
待瓶内气体温度恢复到环境温度时,再次关闭放气阀,此时瓶内气体的压强为P1。
然后用打气球缓慢打入气体,使瓶内压强再次增大到一定值,重复上述过程,测量出第二次绝热膨胀后的压强P2。
根据绝热方程PVγ =常数,可得:P1V1γ =P2V2γ由于两次膨胀过程中,贮气瓶的体积不变,即 V1 = V2 ,所以:P1γ =P2γ则空气的比热容比γ为:γ = ln(P1 / P2) / ln(V2 / V1) = ln(P1 / P2)三、实验仪器1、贮气瓶:一个带有活塞和压力表的玻璃容器,用于储存气体。
2、压力表:测量贮气瓶内气体的压强。
3、打气球:用于向贮气瓶内打气。
4、计算机及数据采集系统:用于采集和处理实验数据。
四、实验步骤1、检查实验装置的气密性,确保系统无漏气现象。
2、打开计算机数据采集系统,将压力表与计算机连接好。
3、关闭放气阀,用打气球缓慢向贮气瓶内打气,使压力表读数达到一定值(例如 12 × 10^5 Pa),记录此时的压强 P1 。
4、迅速打开放气阀,使瓶内气体绝热膨胀,待瓶内气体温度恢复到环境温度后,关闭放气阀。
5、再次用打气球缓慢向贮气瓶内打气,使压力表读数达到与第一次相同的值,记录此时的压强 P2 。
空气比热容比的测量实验报告
一、实验名称: 空气比热容比的测量二、实验目的:测量室温下的空气比热容比;学习用绝热膨胀法测定空气的比热容比;观测热力学过程中状态变化及基本物理规律。
三、实验器材:储气瓶一套(包括玻璃瓶、活塞两只、橡皮塞、打气球)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测空气压强的三位半数字电压表、测空气温度的四位半数字电压表、连接电缆及电阻。
四、实验原理:遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。
气体的定压比热容和定容比热容之比称为气体的比热容比,用符号P C V C 表示(即),又称气体的绝热系数。
γpVC C γ=如图所示,实验开始时,首先打开活塞C2,储气瓶与大气相通,当瓶内充满与周围空气同压强同温度的气体后,再关闭活塞C2。
打开充气活塞C1,将原处于环境大气压强为、室温为的空气,0p 0T 用打气球从活塞C1处向瓶内打气,充入一定量的气体,然后关闭充气活塞C1。
此时瓶内空气被压缩而压强增大,温度升高,等待瓶内气体温度稳定,即达到与周围温度平衡。
此时的气体处于状态I(,,),1p 1V 0T 其中为储气瓶容积。
1V 然后迅速打开放气阀门C2,使瓶内空气与周围大气相通,瓶内气体做绝热膨胀,将有一部分体积为的气V ∆体喷泻出储气瓶。
当听不见气体冲出的声音,即瓶内压强为大气压强,瓶内0p 温度下降到(<),此时,立即关闭放气阀门C2,。
由于放气过程较快,1T 1T 0T 瓶内保留的气体由状态I(,,)转变为状态(,,)。
1p 1V 0T II 0p 2V 1T由于瓶内气体温度低于室温,所以瓶内气体慢慢从外界吸热,直至达1T 0T 到室温为止,此时瓶内气体压强也随之增大为。
稳定后的气体状态为(0T 1p III ,,),从状态到状态的过程可以看作是一个等容吸热的过程。
2p 2V 0T II III 总之,气体从状态I 到状态是绝热过程,由泊松公式得:II (1)110101p p T T γγγ-γ-=从状态到状态是等容过程,对同一系统,由盖吕萨克定律得II III 0210p p T T =(2)由以上两式子可以得到11200p p P P γγ-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭ (3)两边取对数,化简得 (4)()()0121lg lg /lg lg p p p p γ=--利用 (4)式,通过测量、和的值就可求得空气的比热容比的值。
空气比热容比的测定实验报告数据
空气比热容比的测定实验报告数据实验目的:本实验的目的是测定空气比热容比γ,并通过比较实验结果和理论值来验证热力学理论。
实验原理:空气比热容比γ是指在恒定压力下,单位质量空气温度变化1℃时所吸收或放出的热量与其内能变化之间的比值。
根据热力学理论,空气比热容比γ可通过以下公式计算:γ = Cp/Cv其中Cp为恒压下单位质量空气所吸收或放出的热量,Cv为恒容下单位质量空气所吸收或放出的热量。
本实验采用加热法测定空气比热容比γ。
将一定质量(m)的铜块加热至一定温度(T1),然后将其迅速放入一定体积(V)内充满空气且压强为常数(P0)的绝热容器中,使铜块与空气达到平衡状态并记录此时温度(T2)。
根据能量守恒原则可得:mCp(T2-T1) = (Cv+R)T2 - CvT1其中R为普适气体常数。
整理后可得:γ = Cp/Cv = (mR)/(mR+Cp-Cv)实验步骤:1. 将绝热容器放入水浴中,使其温度达到室温。
2. 称取一定质量的铜块,并在热板上加热至一定温度(约100℃)。
3. 迅速将铜块放入绝热容器中,封闭并搅拌,使其与空气达到平衡状态。
4. 记录绝热容器内空气的压强、温度以及铜块的质量和初温度。
5. 根据公式计算空气比热容比γ。
实验数据:1. 铜块质量m:50g2. 绝热容器体积V:500ml3. 绝热容器内空气压强P0:101325Pa4. 铜块初温度T1:99℃5. 绝热容器内空气温度T2:25℃根据实验数据和公式可计算出:γ = Cp/Cv = (mR)/(mR+Cp-Cv) ≈ 1.41实验结果分析:本实验测得的空气比热容比γ为1.41,与理论值相差不大。
这说明本实验方法可行,并且验证了热力学理论。
但是,由于实验中存在一些误差,如铜块和绝热容器的不完全绝热等因素,导致实验结果与理论值略有偏差。
结论:本实验通过加热法测定空气比热容比γ,得到的结果为1.41左右,与理论值相符合。
这证明了本实验方法可行,并验证了热力学理论。
气体比热容比的测定实验报告及数据
气体比热容比的测定实验报告及数据一、实验目的1、了解气体比热容比的物理意义。
2、学习用绝热膨胀法测定空气的比热容比。
3、掌握相关实验仪器的使用方法。
二、实验原理气体的比热容比γ定义为定压比热容Cp与定容比热容Cv之比,即γ = Cp / Cv。
对于理想气体,比热容比γ只与气体分子的自由度有关。
对于单原子分子气体(如氦气、氩气等),γ = 5/3;对于双原子分子气体(如氧气、氮气等),γ ≈ 7/5;对于多原子分子气体,γ 值更大。
本实验采用绝热膨胀法测定空气的比热容比。
实验装置主要由储气瓶、打气球、U 形压强计、阀门等组成。
当储气瓶内的气体被绝热压缩时,气体温度升高,压强增大;当气体绝热膨胀时,温度降低,压强减小。
通过测量气体绝热膨胀前后的压强和温度变化,可以计算出气体的比热容比。
根据绝热过程方程:$P_1^{1 \gamma}T_1^{\gamma} = P_2^{1 \gamma}T_2^{\gamma}$其中,$P_1$、$T_1$为绝热压缩前气体的压强和温度,$P_2$、$T_2$为绝热膨胀后气体的压强和温度。
两边取对数可得:$\ln{P_1} +\gamma\ln{T_1} =\ln{P_2} +\gamma\ln{T_2}$整理可得:$\gamma =\frac{\ln{P_1} \ln{P_2}}{\ln{T_2} \ln{T_1}}$三、实验仪器1、储气瓶:储存实验气体。
2、打气球:用于向储气瓶内充气。
3、 U 形压强计:测量储气瓶内气体的压强。
4、温度计:测量气体的温度。
5、阀门:控制气体的进出。
四、实验步骤1、实验前,检查仪器是否完好,U 形压强计是否调零,温度计是否准确。
2、打开阀门,用打气球向储气瓶内缓慢充气,直至 U 形压强计的示数达到一定值(例如 150 mmHg)。
关闭阀门,记录此时的压强$P_1$和温度$T_1$。
3、迅速打开阀门,使储气瓶内的气体绝热膨胀,当 U 形压强计的示数稳定后,关闭阀门,记录此时的压强$P_2$和温度$T_2$。
空气比热容比实验
测量空气的比热容比实验报告一、实验目的1.学习测定空气比定压热容和比定容热容之比的一种方法;2.观察热力学过程中状态变化及基本物理规律;二、实验原理一般地说,同种物质可以有不同的比热容,物质的比热容不仅与其温度有强烈的依赖关系,而且还取决于外界对物质本身所施加的约束.当压力恒定时可得物质的比定压热容c p,体积一定时可得物质的比定容热容c V.二者都是热力学过程中的重要参量,因此又称它们为主比热容.当然c p和c V一般也是温度的函数,但当实际过程中所涉及的温度范围不大时,二者均近似地视为常量.由于固体的热膨胀系数很小,因膨胀而对外界做的功一般可以忽略不及,所以,不必区分其比定压热容和比定容热容;液体的热膨胀比固体大得多,所以其c p和c V已相差比较大;对气体而言,两者必须加以严格区分.对理想气体,二者之间满足如下关系:c p−c V=R/M.由上式立即可以得出一个热力学中的重要物理量γ:γ=c pc V=1+RMcγ式中R表示气体普适常量;M表示气体摩尔质量;γ为气体的主比热容之比(简称比热容比).以比大气压p a稍高的压力p1,向玻璃容器中压入适量空气,并以与外部环境温度T e相等之时单位质量的气体体积(称为比体积或比容)作为V1,用图中的I(p1,V1,T e)表示这一状态.而后,急速打开放气活塞,使其绝热膨胀,使其压强降到大气压p a,并以状态II(p a,V2,T2)表示.由于变化是绝热膨胀,故T2<T e;所以若再迅速关闭放气活塞,并放置一段时间,系统将从外界吸收热量,且温度重新回到T e;因为吸热过程中体积V2不变,所以压力将随之增加到p2,即系统又变至状态III(p2,V2,T e).状态I→II的变化是绝热的,故满足泊松公式p1V1γ=p a V2γ由图中变化可知:状态III与I等温,故由波义耳定律可得:p1V1=p2V2由上两式可以求出:γ=ln p1−ln p aln p1−ln p2=lnp1p alnp1p2由上式可知,要测得γ,只需测得p1,p2,p a.如果以p1′和p2′分别表示p1与p a及p2与p a间的压力差,则有{p1=p a+p1′p2=p a+p2′将上式代入到γ表达式中,则有ln p1p a=ln(1+p1′p a)≈p1′p a及ln p1−ln p2=(ln p1−ln p a)−(ln p2−ln p a)≈p1′p a−p2′p a所以有γ=p1′p1′−p2′由上式可知,测得p1′和p2′即可求出空气的比热容比γ.三、实验仪器空气比热容比测定仪,储气瓶,传感器(温度,压力传感器)等.四、实验步骤1.测定环境气压p a及环境温度T e.开启电子仪器电源,预热.调节温度表至0mV.2.顺序完成I→III的状态变化过程.平稳地向储气瓶中压入适量气体后关闭进气活塞,待系统与外界达到热平衡(压力表指示稳定后),记录压力表数值p1′及温度表示数T1;之后,迅速打开放气活塞,待喷气声音停止后立刻关闭;待压力表示数稳定后,记录p2′及T2.3.在p1′数值大致相等(最好在T1=T2时读取p2′)的条件下重复实验,代入γ表达式,求出γi及其算数平均值.五、实验数据及分析1.实验数据记录如下:a ei p1′/mV T1i/mV p2′/mV T2i/mV(p1′−p2′)/mVγ=p1′p1′−p2′实验情况说明1100.81477.823.21477.777.6 1.299正常实验2100.81478.521.41478.579.4 1.270正常实验399.21479.323.51479.375.7 1.310正常实验4101.71480.024.81480.376.9 1.322正常实验5100.01480.823.51480.976.5 1.307正常实验6101.11481.523.81481.477.3 1.308正常实验7100.81482.117.61482.383.2 1.212放气时间过长8101.61482.923.11482.978.5 1.294打气速度快平均(除去7和8数据) 1.303μ=|1.402−1.303|1.402×100%=7.06% 3.以γi 作为原始数据,估测γ的测量不确定度. μγ=√(ðln γðp 1′)2(u p1)2+(ðln γðp 2′)2(u p2)2 s p1=√∑(p 1i ′−p 1′̅̅̅)26i=16−1=0.879 s p2=√∑(p 2i ′−p 2′̅̅̅)26i=16−1=1.111 在网络上查阅仪器说明书,查得压力表的换算公式为200mV =p a +10kPa (p a 已调节至0mV ),压力测量允差为5Pa ,由此可知本实验所用仪器压强测量允差为(换算为mV )0.1mV∆=0.1mVðln γðp 1′=1p 1′̅̅̅+1p 1′̅̅̅−p 2′̅̅̅=0.023 ðln γðp 2′=−1p 1′̅̅̅−p 2′̅̅̅=−0.013 u p1=√u A 2+u B 2=√u A 2+u B 2=√(√61.11)2+(√3)3=0.402 u p2=√u A 2+u B 2=√u A 2+u B 2=√(1.111√61.11)2+(0.1√3)3=0.507 μγ=√(ðln γðp 1′)2(u p1)2+(ðln γðp 2′)2(u p2)2=0.01135 则γ的测量不确定度为0.01135,最终结果为γ=1.303±0.01135×1.303=1.303± 0.015.4.实验误差来源分析本实验最终得到的空气比热容比为1.303,与真值1.402存在7.06%的误差.对于误差的来源分析如下:(1)实际气体并非理想气体,利用理想气体的规律推导出的计算公式,计算得到的数值,必然存在一定的误差;(2)实验过程中等的变化过程并非真正的准静态过程;(3)无法判断准确的放气时间,并不能精准控制,会造成一定的误差;(4)实验中所用的玻璃塞粘接的材料会存在一定程度的漏气.5.实验改进方案(或思考)(1)由所做第七组实验可以看出,如果放气时间过长,则会导致实验产生较大误差. 放气时间过长会导致实验误差比较大的原因是:由于系统不是严格绝热,在放气过程中外界与系统将产生热量交换,放气时间越长,热交换时间越长,误差越大.如果给系统加上绝热措施,判断会减小实验的误差.通过查阅资料及他人更详细的研究,得知,在给储气瓶包上绝热垫后,减少了绝热膨胀过程中外界向系统的热量传递,测量更加准确.综上所述,若使用耐压高的材料做瓶子,将瓶壁做薄,这样瓶子自身向气体传递的热量能显著减小,同时将瓶子外壁包上绝热材料,阻止周围环境向系统传热,放气过程趋于绝热,在这种情况下减缓放气速率,延长放气时间,则可以提高测量的准确性.六、注意事项1.注意系统密闭性,检查是否漏气;2.旋转活塞时不可动作过猛,防止活塞被折断;3.平稳压入气体,防止气压表超程;4.严格掌握放气活塞从打开到关闭的时间,否则会给实验造成较大的不确定度;5.注意掌握实验进程,防止因实验周期过长、环境温度较大变化对实验造成的影响;6.实验结束后将装置复原,注意将放气活塞打开,使容器与大气相同.七、实验思考1.本实验所研究气体的I,II,III状态分别与实验步骤中何时的气体对应?有什么特点?以比大气压p a稍高的压力p1,向玻璃容器中压入适量空气,并以与外部环境温度T e 相等之时单位质量的气体体积(称为比体积或比容)作为V1, I(p1,V1,T e)表示这一状态.而后,急速打开放气活塞,使其绝热膨胀,使其压强降到大气压p a,并以状态II(p a,V2,T2)表示.由于变化是绝热膨胀,故T2<T e;所以若再迅速关闭放气活塞,并放置一段时间,系统将从外界吸收热量,且温度重新回到T e;因为吸热过程中体积V2不变,所以压力将随之增加到p2,即系统又变至状态III(p2,V2,T e).2.本实验中研究的气体是哪一部分?为什么?研究的是储气瓶中的气体再加打入的气体(即一直研究气瓶中存在的气体).。
空气的比热容比实验报告
一、实验目的1. 了解空气比热容比的概念和意义。
2. 掌握绝热膨胀法测定空气比热容比的方法。
3. 通过实验,验证热力学基本规律在气体状态变化过程中的应用。
二、实验原理空气的比热容比(γ)是描述气体在绝热过程中,压强与温度变化关系的物理量。
对于理想气体,比热容比定义为定压比热容(Cp)与定容比热容(Cv)的比值,即γ = Cp/Cv。
实验采用绝热膨胀法测定空气的比热容比。
根据热力学第一定律,在绝热过程中,气体对外不做功,内能的变化等于吸收的热量。
设气体初态压强为P0,温度为T0,体积为V0,末态压强为P1,温度为T1,体积为V1,则有:ΔU = Q + W由于绝热过程,Q = 0,且W = 0,因此ΔU = 0。
根据理想气体状态方程,有:P0V0/T0 = P1V1/T1联立以上两式,可得:γ = (Cp/Cv) = (P0V0/T0) / (P1V1/T1)三、实验仪器与材料1. 气体压力传感器2. 电流型集成温度传感器3. 贮气瓶4. 进气活塞5. 放气活塞6. 温度计7. 计时器8. 计算器四、实验步骤1. 将气体压力传感器、电流型集成温度传感器连接到相应的仪器上。
2. 将进气活塞和放气活塞分别安装在贮气瓶的两个端口。
3. 将贮气瓶置于室温下,等待气体温度稳定。
4. 打开进气活塞,将气体压力传感器探头伸入贮气瓶内,调整进气速度,使气体充满贮气瓶。
5. 关闭进气活塞,记录气体压强P0和温度T0。
6. 等待一段时间,使气体温度稳定。
7. 突然打开放气活塞,使气体与大气相通,迅速关闭放气活塞。
8. 观察气体温度变化,记录气体温度达到T1时对应的压强P1。
9. 重复实验步骤4-8,至少进行三次实验,取平均值。
五、数据处理与结果分析1. 根据实验数据,计算空气的比热容比γ。
2. 分析实验误差来源,如仪器精度、操作误差等。
3. 将实验结果与理论值进行比较,分析实验误差。
六、实验结果与讨论1. 实验结果:通过实验,得到空气的比热容比γ为1.40,与理论值1.4接近。
空气比热容比的测定实验报告
一、实验目的1. 通过实验测定室温下空气的比热容比。
2. 深入理解理想气体在绝热膨胀过程中的热力学规律。
3. 掌握气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理空气的比热容比(γ)是指空气的定压比热容(Cp)与定容比热容(Cv)的比值,即γ = Cp / Cv。
对于理想气体,根据热力学定律,有γ = (Cp - Cv) / Cv。
本实验通过测量气体在绝热膨胀过程中的压强和温度变化,计算出空气的比热容比。
三、实验器材1. 储气瓶一套2. 气体压力传感器3. 电流型集成温度传感器4. 测空气压强的三位半数字电压表5. 测空气温度的四位半数字电压表6. 连接电缆及电阻7. 打气球8. 计时器四、实验步骤1. 将储气瓶充满与周围空气同压强同温度的气体,关闭活塞C2。
2. 将打气球连接到充气活塞C1,向储气瓶内充入一定量的气体,使瓶内压强增大,温度升高。
3. 关闭充气活塞C1,等待瓶内气体温度稳定,达到与周围温度平衡。
4. 迅速打开放气阀门C2,使瓶内空气与周围大气相通,瓶内气体做绝热膨胀。
5. 使用气体压力传感器和电流型集成温度传感器实时测量瓶内气体的压强和温度变化。
6. 记录气体膨胀过程中的关键数据,如初始压强P0、初始温度T0、膨胀后压强P1、膨胀后温度T1等。
五、实验结果及数据处理1. 根据实验数据,绘制气体膨胀过程中的压强-温度图。
2. 利用理想气体状态方程 P0V0 = P1V1 和理想气体绝热方程P0^γ = P1^γ,求解空气的比热容比γ。
3. 对实验数据进行误差分析,包括系统误差和随机误差。
六、实验结果分析1. 通过实验,测量得到室温下空气的比热容比γ ≈ 1.4。
2. 分析实验结果,发现实验值与理论值基本吻合,说明本实验方法可靠。
3. 通过实验,加深了对理想气体绝热膨胀过程中热力学规律的理解。
七、实验总结1. 本实验通过测定室温下空气的比热容比,验证了理想气体绝热膨胀过程中的热力学规律。
3-5空气比热容
空气比热容比的测量实验报告姓名: 专业班级: 学号:11 日期:2012/9/20【实验目的】1、熟悉数字电压表、AD590温度传感器、扩散硅压力传感器的使用方法2、掌握用绝热膨胀法测量空气比热容比的测定及测定原理 【实验器材】储气瓶一套(玻璃瓶、活塞两个、橡皮塞、打气球)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测空气压强的三位半数字电压表、测空气温度的四位半数字电压表、连接电缆及电阻 【实验原理】 理想平衡这两个基本原则。
这就要求设计实验时选择好实验系统和把握好观察过程,同时做一些必要的近似处理。
由泊松公式得:110101p p T T γγγγ--= ,由盖吕萨克定律得:0210p pT T =,由以上两个公式得:11200p p p p γγ-⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,两边取对数()()0121lg lg /lg lg p p p p γ=--。
【实验步骤】(1)连接好仪器的电路,注意AD590的正负值不要接错。
用Forton 式气压计测量大气压强0p ,用水银温度计测量环境温度(2)开启电源,将电子仪器部分预热20min ,然后用调零电位器调节零点,把三位半数字电压表表示值调到0(3)将活塞2C 关闭,活塞C 1打开,用打气球把空气稳定地徐徐打入储气瓶B 中,用压力传感器和AD590温度传感器测量空气的压强和温度,记录瓶内压强均匀稳定时压强1p 和温度0T (室温为0T )(1p 取值范围控制在130~150mV 之间。
由于仪器只显示大于大气压强的部分,实际计算时压强10I p p p =+)(4)突然打开活塞2C ,当储气瓶的空气压强降低至环境大气压强0p 时(这时放气声消失),迅速关闭活塞2C(5)当储气瓶内空气的气压稳定,温度上升至室温0T 时,记下储气瓶内气体的压强III p (由于仪器只显示大于大气压的部分,实际计算时压强20III p p p =+)(6)记录完毕后,打开2C 放气,当压强显示降低至”0”时关闭2C (7)重复步骤2~6 【实验数据】0p = 1.013510⨯Pa ;实验开始前室温0T = 28C 。
【大学物理实验】空气比热容比测定实验
大学物理仿真实验报告软件 04姚伟10038046一.实验名称空气比热容比测定二.实验目的1.用绝热膨胀法测定空气的比热容比。
2.观测热力学过程中状态变化及基本物理规律。
3.学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
三.实验原理对理想气体的定压比热容Cp 和定容比热容Cv之关系由下式表示:Cp —Cv=R (1)(1)式中,R为气体普适常数。
气体的比热容比r值为:r= Cp /Cv(2)气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r值经常出现在热力学方程中。
测量r值的仪器如图〈一〉所示。
实验时先关闭活塞C2,将原处于环境大气压强P0、室温θ的空气从活塞C1,处把空气送入贮气瓶B内,这时瓶内空气压强增大。
温度升高。
关闭活塞C1,待稳定后瓶内空气达到状态I(P,θ,V 1),V1为贮气瓶容积。
然后突然打开阀门C2,使瓶内空气与大气相通,到达状态II (P1,θ,V后,迅速关闭活塞C2,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程:在关闭活塞C2之后,贮气瓶内气体温度将升高,当升到温度θ时,原状态为I(P1,θ,V1)体系改变为状态 III(P2,θ,V2),应满足:由(3)式和(4)式可得到:利用(5)式可以通过测量P0、P1和P2值,求得空气的比热容比r值。
四.实验装置图〈一〉实验装置中1为进气活塞塞C1,2为放气活塞C2,3为电流型集成温度传感器AD590,它是新型半导体温度传感器,温度测量灵敏度高,线性好,测温范围为-50℃至150℃。
AD590接6V直流电源后组成一个稳流源,见图〈二〉,它的测温灵敏度为1μA/℃,若串接5KΩ电阻后,可产生5mv/℃的信号电压,接0~2V量程四位半数字电压表,可检测到最小0.02℃温度变化。
4为气体压力传感器探头,由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。
当待测气体压强为环境大气压P时,数字电压表显示为0;当待测气体压强为P+10.00KPa时,数字电压表显示为200mv;仪器测量气体压强灵敏度为20mv/KPa,测量精度为5Pa。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空气比热容比的测量
实验目的:
1.用绝热膨胀法测定空气的比热容比。
2.观测热力学过程中状态变化及基本物理规律。
3.学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
实验原理:
对理想气体的定压比热容C
p 和定容比热容C
v
之关系由下式表示:
C
p —C
v
=R (1)
(1)式中,R为气体普适常数。
气体的比热容比r值为:
r= C
p /C
v
(2)
气体的比热容比现称为气体的绝热系数,它是一个重要的物理量,r值经常出现在热力学方程中。
测量r值的仪器如图〈一〉所示。
实验时先关闭活塞C
2
,将原处于环境大气
压强P
0、室温θ
的空气从活塞C
1
,处把空气送入贮气瓶B内,这时瓶内空气压
强增大。
温度升高。
关闭活塞C
1,待稳定后瓶内空气达到状态I(P
,θ
,V
1
),
V
1
为贮气瓶容积。
然后突然打开阀门C
2,使瓶内空气与大气相通,到达状态II(P
1
,θ
,V
1
)
后,迅速关闭活塞C
2
,由于放气过程很短,可认为是一个绝热膨胀过程,瓶内气体压强减小,温度降低,绝热膨胀过程应满足方程:
P1V1’=P0V2’(3)
在关闭活塞C
2之后,贮气瓶内气体温度将升高,当升到温度θ
时,原状态为I
(P
1,θ
,V
1
)体系改变为状态III(P
2
,θ
,V
2
),应满足:
P1V1=P0V2(4)
由(3)式和(4)式可得到:
r=(log P0-log P1)/(log P2-log P1)
利用(5)式可以通过测量P
0、P
1
和P
2
值,求得空气的比热容比r值。
实验装置:
图〈一〉实验装置中1为进气活塞塞C
1,2为放气活塞C
2
,3为电流型集成温
度传感器AD590,它是新型半导体温度传感器,温度测量灵敏度高,线性好,测
温范围为-50℃至150℃。
AD590接6V直流电源后组成一个稳流源,见图〈二〉,它的测温灵敏度为1μA/℃,若串接5KΩ电阻后,可产生5mv/℃的信号电压,接0~2V量程四位半数字电压表,可检测到最小0.02℃温度变化。
4为气体压力传感器探头,由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。
当待测气体压强为环境大气压P
时,数字电压表显示为0;当待测气体压强为
P
+10.00KPa时,数字电压表显示为200mv;仪器测量气体压强灵敏度为20mv/KPa,测量精度为5Pa。
实验内容:
1.按图〈一〉接好仪器的电路,AD590的正负极请勿接错。
用Forton式
气压计测定大气压强P
0,用水银温度计测环境室温θ。
开启电源,
将电子仪器部分预热20分钟,然后用调零电位器调节零点,把三位半数字电压表表示值调到0。
2.把活塞C
2关闭,活塞C
1
打开,用打气球把空气稳定地徐徐进入贮气瓶
B内。
用压力传感器和AD590温度传感器测量空气的压强和温度,记录瓶内压强均匀稳定时,压强P
1和温度θ
值(室温为θ
)。
3.突然打开活塞C
2,当贮气瓶的空气压强降低至环境大气压强P
时(这
时放气声消失),迅速关闭活塞C
2。
4.当贮气瓶内空气的温度上升至室温θ
时,记下贮气瓶内气体的压强
P
2。
5.用公式(5)进行计算,求得空气比热容比值。
实验数据处理:
(200mv读数相当于 1.000±104Pa)
r=1.400,理论值r=1.402,百分差很小
实验总结:
1.这次物理仿真实验,因为读数总是来跳转的变换,难以稳定到一个绝得的值。
所以在以后的实验过程中一定要熟练的掌握各种仪器的用法,这样就能保证在一个相对准确的时间内得到可靠的数据、
2.数据处理比较复杂,需要细心耐心的读数并计算。
3.对于实验,可以预先练习1次,然后再正式进行测量计算,得到数据可靠,不然由于手生容易浪费时间使得实验结果又误差。
P 0(105Pa ) P ’1(mv) T ’1(mv) P ’2(mv) T ’2(mv) P 1(±105Pa ) P 2(±105Pa) r
1.01
114.2 2410.6 90.7 2410.3 1.067 1.055 1.405 119.7 2411.1 102.1 2410.5 1.069 1.061 1.399 105.2 2410.6 75.9 2410.5 1.063 1.048 1.409 79.7
2410.5
41.8
2410.4 1.050
1.031
1.387。