2021中考总复习课件第16讲 全等三角形
河北省廊坊市廊坊四中2021年九年级中考复习全等三角形综合(含知识点、练习题、答案、作业)
三角形综合讲义全等综合知识精讲一.全等三角形的断定方法:边角边定理()SAS:两边和它们的夹角对应相等的两个三角形全等.角边角定理()ASA:两角和它们的夹边对应相等的两个三角形全等.边边边定理()SSS:三边对应相等的两个三角形全等.角角边定理()AAS:两个角和其中一个角的对边对应相等的两个三角形全等.斜边、直角边定理()HL:斜边和一条直角边对应相等的两个直角三角形全等.二.全等三角形的应用:1.运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线;2.能通过断定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的根底.1.三.全等三角形辅助线的作法2.1.中点类辅助线作法见到中线(中点),我们可以联想的内容无非是倍长中线或者是与中点有关的一条线段,尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见,常见添加方法如以下图〔AD是∆底边的中线).ABC2.角平分线类辅助线作法有以下三种作辅助线的方式:〔1〕由角平分线上的一点向角的两边作垂线;〔2〕过角平分线上的一点作角平分线的垂线,从而形成等腰三角形;〔3〕OA OB=,这种对称的图形应用得也较为普遍.3.截长补短类辅助线作法截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长〞,就是将三者中最长的那条线段一分为二,使其中的一条线段等于的两条较短线段中的一条,然后证明其中的另一段与的另一条线段相等;所谓“补短〞,就是将一个的较短的线段延长至与另一个的较短的长度相等,然后求出延长后的线段与最长的线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进展求解.三点剖析 一.考点:1.全等三角形的断定2.全等三角形辅助线的作法 二.重难点:1.全等三角形的断定2.全等三角形辅助线的作法 三.易错点:1.在使用断定定理证明两个三角形全等时要注意条件的顺序必须和断定定理要求的一样,对应顶点要对应.2.辅助线只是一个指导方法,出现相关条件或结论时不一定要作辅助线或者是按照模型作辅助线,关键是如何分析题目;3.辅助线不是随意都可以作的,比方“作一条线段等于另外一条线段且与某条线段夹角是多少度〞这种辅助线就不一定能作出来. 1.全等三角形的断定2.全等三角形辅助线的作法 例题讲解一:全等与三角形综合例1.1.1把两个全等的Rt ABC ∆和Rt EFG ∆〔其直角边长均为4〕叠放在一起〔如图①〕,且使三角板EFG 的直角顶点G 与三角板ABC 的斜边中点O 重合,现将三角板EFG 绕O 点顺时针旋转〔旋转角α满足条件:090α︒<<︒〕,四边形CHGK 是旋转过程中两三角板的重叠局部〔如图②〕〔1〕在上述旋转过程中,BH 与CK 有怎样的数量关系,四边形CHGK 的面积有何变化?证明你发现的结论;〔2〕连接HK ,在上述旋转过程中,设BH=X ,GKH ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;〔3〕在〔2〕的前提下,是否存在某一位置,使GKH ∆的面积恰好等于ABC ∆面积的516?假设存在,求出此时x 的值;假设不存在,说明理由.【答案】〔1〕面积是4,是一个定值,在旋转中没有变化;理由见解析;〔2〕04x <<;〔3〕存在.【解析】〔1〕在上述旋转过程中,BH =CK ,四边形CHGK 的面积不变证明:连接CG 、KH ,ABC ∆为等腰直角三角形,()O G 为其斜边中点,CG BG ∴=,CG AB ⊥45ACG B ∴∠=∠=︒ BGH ∠与CGK ∠均为旋转角,BGH CGK ∴∠=∠在BGH ∆与CGK ∆中,B KCG BG CG BGH CGK ∠=∠⎧⎪=⎨⎪∠=∠⎩()BGH CGK ASA ∴∆∆≌ BH CK ∴=,BGH CGK S S ∆∆∴=111444222CHG CGK CHG BGH ABC CHGK S S S S S S ∆∆∆∆∆∴=+=+==⨯⨯⨯=四边形〔2〕4AC BC ==,x BH =,4CH x ∴=-,CH x = 由GHK CHK CHGK S S S ∆∆=-四边形得()1442y x x =-- 21242y x x ∴=-+ 由090α︒<<︒,得到max 4BH BC == 04x ∴<<.〔3〕存在;根据题意,得215248216x x -+=⨯ 解这个方程,得11x =,23x =即当11x =或23x =时,GHK ∆的面积均等于ABC ∆的面积的516. 例1.1.2如图1所示,点E 、F 在线段AC 上,过E ,F 分别作DE ⊥AC ,BF ⊥AC ,垂足分别为点E ,F ;DE ,BF 分别在线段AC 的两侧,且AE=CF ,AB=CD ,BD 与AC 相交于点G . 〔1〕求证:EG=GF ;〔2〕假设点E 在F 的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.〔3〕假设点E 、F 分别在线段CA 的延长线与反向延长线上,其余条件不变,〔1〕中结论是否成立?〔要求:在备用图中画出图形,直接判断,不必说明理由〕 【答案】〔1〕见解析〔2〕成立,见解析〔3〕成立 【解析】〔1〕∵DE ⊥AC ,BF ⊥AC , ∴∠DEG=∠BFE=90°. ∵AE=CF ,∴AE+EF=CF+EF . ∴AF=CE .在Rt △ABF 和Rt △CDE 中, ∴Rt △ABF ≌Rt △CDE 〔HL 〕, ∴BF=DE .在△BFG 和△DEG 中BFG DEG BGF DGE BF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG ≌△DGE 〔AAS 〕. ∴EG=FG .〔2〕〔1〕中结论仍然成立. 理由如下:∵AE=CF , ∴AE ﹣EF=CF ﹣EF . ∴AF=CE .∵DE ⊥AC ,BF ⊥AC , ∴∠DEG=∠BFE=90°.在Rt △ABF 和Rt △CDE 中AB CD AF CE =⎧⎨=⎩,∴Rt△ABF≌Rt△CDE〔HL〕.∴BF=DE.在△BFG和△DEG中BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG≌△DGE〔AAS〕.∴EG=FG.〔3〕〔1〕中结论仍然成立.如下图:理由如下:∵AE=CF,∴AE+ACEF=CF+AC.∴AF=CE.∵DE⊥AC,BF⊥AC,∴∠DEG=∠BFE=90°.在Rt△ABF和Rt△CDE中AB CD AF CE=⎧⎨=⎩,∴Rt△ABF≌Rt△CDE〔HL〕.∴BF=DE.在△BFG和△DEG中BFG DEGBGF DGE BF DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BFG≌△DGE〔AAS〕.∴EG=FG.例1.1.3等腰Rt△ABC中,∠ABC=90°,AB=BC,F为AB上一点,连接CF,过点B作BH⊥CF交CF 于G,交AC于H.〔1〕如图〔1〕,延长BH到点E,连接AE,当∠EAB=90°,AE=1,F为AB的三等分点,且BF<AF 时,求BE的长;〔2〕如图〔2〕,假设F为AB中点,连接FH,求证:BH+FH=CF;【答案】见解析【解析】〔1〕∵BH⊥CF,∠ABC=90°,∴∠ABE+∠CFB=∠CFB+∠BCF=90°,∴∠ABE=∠BCF,在△ABE与△BCF中,90EAB FBCAB BABE BCFC︒∠=∠⎧∠=∠=⎪=⎨⎪⎩,∴△ABE∽△BCF,∴BF=AE=1,∵F为AB的三等分点,且BF<AF,∴AB=3BF=3,∴〔2〕证明:过点A 作AD ⊥AB 交BH 的延长线于点D . ∴∠BAD=∠CBF=90°,∴∠D+∠ABD=∠CFB+∠ABD=90°, ∴∠ABD=∠BCF ,在△ABD 与△BCF 中,DAB FBC D CFBAB BC ∠=∠⎧⎪⎨⎪=∠=⎩∠,∴Rt △BAD ≌Rt △CBF , ∴AD=BF ,BD=CF . ∵F 为AB 的中点, ∴AF=BF , ∴AD=AF ,在△ADH 与△AFH 中,45AD AF AH DAH HAF AH ︒∠=∠==⎧⎪⎨⎪=⎩,∴△AHD ≌△AHF , ∴DH=FH .∵BD=BH+DH=BH+FH , ∴BH+FH=CF ;例:等边ABC ∆中,点O 是边AC ,BC 的垂直平分线的交点,M ,N 分别在直线AC ,BC 上,且60MON ∠=︒.〔1〕如图1,当CM CN =时,M ,N 分别在边AC ,BC 上时,请写出AM 、CN 、MN 三者之间的数量关系;〔2〕如图2,当CM CN ≠时,M ,N 分别在边AC ,BC 上时,〔1〕中的结论是否仍然成 立?假设成立,请你加以证明;假设不成立,请说明理由;【答案】〔1〕AM CN MN =+〔2〕AM CN MN =+〔3〕MN AM CN =+ 【解析】该题考察的是等边三角形的性质和全等三角形的性质和断定. 〔1〕如图1,在AM 上截取AN CN '=,连接ON ',OC ,OA , ∵O 是边AC 和BC 垂直平分线的交点,ABC ∆是等边三角形, ∴OC OA =,O 也是等边三角形三个角的平分线交点, ∵在OCN ∆和OAN ∆'中 OCN OAN ∆∆'≌〔SAS 〕,∴60AON COM ∠'+∠=︒,即NOM N OM ∠=∠', ∵在NOM ∆和'N OM ∆中∴'NOM N OM ∆∆≌〔SAS 〕,∴AM CN MN =+……2分〔2〕如图2,过点O 作OD AC ⊥,OE BC ⊥易得OD OE =,120DOE ∠=︒, 在边AC 上截取'DN NE =,连接'ON , ∴'DON EON ∆∆≌, ……4分 易证'MON MON ∆∆≌……4分 课后作业1ABC ∆,90BAC ∠=︒,等腰直角BDE ∆,90BDE ∠=︒,BD=DE ,点D 在线段AC 上.〔1〕如图1,当30ACB ∠=︒,点E 在BC 上时,试判断AD 与CE 的数量关系,并加以证明;〔2〕如图2,当45ACB ∠=︒,点E 在BC 外时,连接EC\、BD 并延长交于点F ,设ED 与BC 交于点N ,图中是否存在与BN 相等的线段?假设存在,请加以证明.假设不存在,请说明理由. 【答案】见解析.【解析】解:〔1〕2ED AD =.理由是:BDE ∆是等腰直角三角形 ∴45DBE DEB ∠=∠=︒ 又Rt ABC ∆中,30ACB ∠=︒,60ABC ∴∠=︒ 604515ABD ABC DBE ∴∠=∠-∠=︒-︒=︒ 同理60CEP ∠=︒,180180604515PED CEP DEB ∴∠=︒-∠-∠=︒-︒-︒=︒PDE ABD ∴∠=∠ ∴在ABD ∆和PDE ∆中,90DPE A PDE ABD DE BD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ABD PDE AAS ∴∆∆≌AD PE ∴= 又∵Rt PCE ∆中,30C ∠=︒,2CE PE ∴= 2CE AD ∴=. 〔2〕BN EF =,理由是:如图2,过E 作EG AC ⊥,交AC 的延长线于G在ABD ∆和GDE ∆中,90GDE ABD G A DE BD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()ABD GDB AAS ∴∆∆≌ AD GE ∴=,DG AB =AB AC =,AC DG ∴= AD DG GE ∴== CGE ∴∆是等腰直角三角形 45GCE ∴∠=︒F DNB ∴∠=∠ 在FDE ∆和NDB ∆中,F DNB FDE NDB DE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩2如图1,在ABC ∆中,ACB ∠是锐角,点D 为射线BC 上的一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .〔1〕假如AB=AC ,90BAC ∠=︒,①当点D 在线段BC 上时〔与点B 不重合〕,如图2,线段CF 、BD 所在直线的位置关系为 ,线段CF 、BD 的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;〔2〕假如AB=AC ,BAC ∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥〔点C 、F 不重合〕,并说明理由. 【答案】见解析.【解析】证明:〔1〕①正方形ADEF 中,AD=AF ,90BAC DAF ∠=∠=︒ BAD CAF ∴∠=∠ 又AB AC = DAB FAC ∴∆∆≌ CF BD ∴=,B ACF ∠=∠ 90ACB ACF ∴∠+∠=︒ 即CF BD ⊥.②当点D 在BC 的延长线上时①的结论仍成立.由正方形ADEF 得AD=AF ,90DAF ∠=︒ 90BAC ∠=︒ DAF BAC ∴∠=∠ DAB FAC ∴∠=∠ 又AB AC = DAB FAC ∴∆∆≌90BCF ACB ACF ∴∠=∠+∠=︒ 即CF BD ⊥.〔2〕当45ACB ∠=︒时,CF BD ⊥〔如图〕.理由:过点A 作AG AC ⊥交CB 的延长线于点G ,那么90GAC ∠=︒,45ACB ∠=︒,90AGC ACB ∠=︒-∠,904545AGC ∴∠=︒-︒=︒ 45ACB AGC ∴∠=∠=︒,AC AG ∴= DAG FAC ∠=∠〔同角的余角相等〕,AD=AF 即CF BC ⊥.3如图1,将两个完全一样的三角形纸片ABC 和DEC 重合放置,其中90C ∠=︒,30B E ∠=∠=︒. 〔1〕操作发现如图2,固定ABC ∆,使DEC ∆绕点C 旋转,当点D 恰好落在AB 边上时,填空: ①线段DE 与AC 的位置关系是 ;②设BDC ∆的面积为1S ,AEC ∆的面积为2S ,那么1S 与2S 的数量关系是 .〔2〕猜测论证当DEC ∆绕点C 旋转到如图3所示的位置时,小明猜测〔1〕中1S 与2S 的数量关系仍然成立,并尝试分别作出了BDC ∆和AEC ∆中BC 、CE 边上的高,请你证明小明的猜测. 〔3〕拓展探究60ABC ∠=︒,点D 是角平分线上一点,BD=CD=4,DE//ABA 交BC 于点E 〔如图4〕.假设在射线BA 上存在点F ,使DCF BDE S S ∆∆=,请直接写出相应的BF 的长.【答案】见解析.【解析】解:〔1〕①∵DEC ∆绕点C 旋转点D 恰好落在AB 边上,AC CD ∴= 90903060BAC B ∠=︒-∠=︒-︒=︒,ACD ∴∆是等边三角形,60ACD ∴∠=︒ 又60CDE BAC ∠=∠=︒ ACD CDE ∴∠=∠ //DE AC ∴.②30B ∠=︒,90C ∠=︒ 12CD AC AB ∴==BD AD AC ∴== 根据等边三角形的性质,ACD ∆的边AC 、AD 上的高相等 ∴BCD ∆的面积和AEC ∆的面积相等〔等底等高的三角形的面积相等〕,即12S S =〔2〕如图,DEC ∆是由ABC ∆绕点C 旋转得到,BC CE ∴=,AC CD =在ACN ∆和DCM ∆中,90ACN DCM CMD N AC CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACN DCM AAS ∴∆∆≌ AN DM ∴=BDC ∴∆的面积和AEC ∆的面积相等〔等底等高的三角形的面积相等〕即12S S =;〔3〕如图,过点D 作DF 1//BE ,易求四边形BE DF 1是菱形,所以BE= DF 1,且BE 、DF 1上的高相等,此时1DCF BDE S S ∆∆=;过点D 作2DF BD ⊥,60ABC ∠=︒,DF 1//BE ,2160F F D ABC ∴∠=∠=︒,∵B F 1=D F 1,11302F BD ABC ∠=∠=︒,290F DB ∠=︒,1260F DF ABC ∴∠=∠=︒ 12DF F ∴∆是等边三角形,12DF DF ∴=BD CD =,60ABC ∠=︒,点D 是角平分线上一点,160302DBC DCB ∴∠=∠=⨯︒=︒12CDF CDF ∴∠=∠ 在1CDF ∆和2CDF ∆中,1212DF DF CDF CDF CD CD =⎧⎪∠=∠⎨⎪=⎩()12CDF CDF SAS ∴∆∆≌∴点F 2也是所求的点,60ABC ∠=︒,点D 是角平分线上的一点,DE //AB 160302DBC BDE ABD ∴∠=∠=∠=⨯︒=︒ 又4BD =故BF.。
八年级数学上册 第1章 全等三角形章末复习课件
则( )
D
A.△ABD≌△AFE B.△AFE≌△ADC
C.△AFE≌△DFC D.△ABC≌△ADE
第十四页,共三十二页。
3. 如图,点B在AE上,且∠CAB=∠DAB,若要使△ABC≌△ABD,可补充的条件(tiáojiàn)
是 AC=AD .(写出一个即可)
4.如图,把一长一短两根细木棍的一端用螺钉铰合在一起,使长木棍的另一端与射线BC的端点B重
第三页,共三十二页。
讲练结合
1、下列(xiàliè)四个图形中,全等的图形是( C )
A.①和② B.①和③ C.②和③ D.③和④
2、下面(xià mian)是5个全等的正六边形 A、B、C、D、E ,请你仔细观察 A、B、C、D 四个
图案,其中与 E 图案完全相同的是(
).
C
第四页,共三十二页。
角,EF=2.1 cm ,EH=1.1 cm ,HN=3.3 cm .
(1)写出其他(qítā)对应边及对应角; (2)求线段NM及线段HG的长度.
解: (1)∵△EFG≌△NMH,∴最长边FG和MH是对应(duìyìng)边, 其他对应边是EF和NM、EG和NH;对应角是∠E和∠N、 ∠EGF和∠NHM. (2)由(1)知NM=EF=2.1 cm ,GE=HN=3.3 cm ,
5.尺规作图
作一个角等于(děngyú)已知角
知道△ABC 的六个元素中的某三个元素,根据确定三角形的条件,以下四种情 况可作出△ABC: ① 已知三边;
② 已知两边(liǎngbiān)及其夹角; ③ 已知两角及其夹边;
④ 已知两角和其中一角的对边.
2021/12/13
第二十九页,共三十二页。
布置作业
专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮
专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。
考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。
全等三角形的基本模型复习(正式经典)PPT课件
2021
10
模型四 一线三垂直型 模型解读:基本图形如下:此类图形 通常告诉 BD⊥DE,AB⊥AC, CE⊥DE,那么一定有∠B=∠CAE.(常用到同(等)角的余角相等)
2021
11
4.如图,AD⊥AB于A,BE⊥AB于B,点C在AB上,且CD⊥CE,CD=CE. 求证:AB=AD+BE.
2021
2021
3
1.如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.
2021
4
解:∵BE=CF,∴BE+EC=CF+EC,即 BC=EF, ∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F, 在△ABC 与△DEF 中 ∠B=∠DEF, BC=EF, ∠ACB=∠F, ∴△ABC≌△DEF(ASA) ∴AB=DE
2021
8
3.如图,AB⊥CD于B,CF交AB于E,CE=AD,BE=BD.求证:CF⊥AD.
2021
9
解:∵AB⊥CD,∴∠EBC=∠DBA=90°.在 Rt△CEB 与 Rt△ADB 中 CBEE= =ABDD,,∴Rt△CEB≌Rt△ADB(HL),∴∠C=∠A,又∵∠C+∠CEB= 90°,∠CEB=∠AEF,∴∠A+∠AEF=90°,∴CF⊥AD
12
解:∵AD⊥AB,BE⊥AB,CD⊥CE,∴∠DAC=∠CBE=∠DCE=90 °,又∵∠DCB=∠D+∠DAC=∠DCE+∠ECB,∴∠D=∠ECB.在△ACD
与△BEC 中,∠∠AD==∠∠BEC,B,∴△ACD≌△BEC(AAS),∴AC=BE,CB= DC=CE,
AD,∴AB=AC+CB=AD+BE
2021
5
模型二 翻折型 模型解读:将原图形沿着某一条直线折叠后,直线两边的部分能够完全重 合,这两个三角形称之为翻折型全等三角形.此类图形中要注意其隐含条件, 即公共边或公共角相等.
12.1 全等三角形 课件 初中数学人教版八年级上册(2021年)
E
∴AB=EB,BD=BC(全等三角形对应边相等),
∠D=∠C(全等三角形对应角相等).
AB
C
∵AB=3cm,BC=5cm,∠D=30°,
∴BE=3cm,BD=5cm,∠C=30°.
新课讲解
合作探究
观察下列3组全等三角形的对应边和对应角,你能得出什么结论?
A
A
C
E
D
A
B
D
B
D
△ABC≌△DCB
B
C
AC=AE,BC=DE.
对应角:
∠A=∠A,
∠C=∠E,
∠ABC=∠ADE.
新课讲解
知识点3 全等三角形的性质
结论
1、全等三角形中,公共边一定是对应边. 2、全等三角形中,公共角一定是对应角. 3、全等三角形中,对顶角一定是对应角. 4、全等三角形中,最长的边与最长的边是对应边,最短的边与最短 的边是对应边,最大的角与最大的角是对应角,最小的角与最小的 角是对形状大小相同的图形均能
①只有两个三角形才能完全重合;完全重合
②如果两个图形全等,那么它们的形状和大小一定都相同 ;对
③两个正方形一定是全等形;错,形状相同,大小不一定相同
④边数相同的图形一定能够重合. 错,形状大小都不一定相同
其中错误说法的个数为( B )
A.4
B.3
A
D
B
C
E
F
如图,△ABC≌△DEF,
AB=DE,AC=DF,BC=EF(全等三角形的对应边相等).
∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应角相等).
新课讲解
典例分析
例 2 如图,△ABD≌△EBC,如果AB=3cm,BC=5cm,∠D=30°,求BE
第16讲 三角形与全等三角形
B.线段CD是△ABC的AB边上的高线
C.线段AD是△ABC的BC边上的高线
D.线段AD是△ABC的AC边上的高线
2.(2022凉山)下列长度的三条线段能组成三角形的是(
A.3,4,8
B.5,6,11
C.5,6,10
D.5,5,10
3.(2022广东)下列图形中有稳定性的是(
直角顶点
条高相交于
;钝角三角形的三条高相交于三角形的
外部
中线
三角形的三条中线相交于 一点 ,这个交点叫做三角形的重
相等
心,每一条中线都将三角形分成面积
的两部分
角平
分线
三角形的三条角平分线相交于 一点 ,这个交点是三角形的
内心 ,这个点到三边的距离
相等
定义 连接三角形两边 中点 的线段叫做三角形的中位线
(1)在证明两个三角形全等时,多注意观察图形,充分挖掘题目中的隐含条件,如有些对应边、角的
条件常常通过公共角(或边)、对顶角、平行、互余(或互补)、角(或线段)的和差等条件间接给出.
(2)在证明线段或角相等时,常寻找线段或角是否在两个三角形中,若在两个三角形中,可尝试证明
全等解决问题;证明两三角形边上的中线、高或对应角的角平分线相等,也可通过证全等三角形获
识点也为证明等腰三角形、三角形全等或相似提供必要的角相等的条件,注意综合图形中该隐含
条件的挖掘.
2.几个常见结论
(1)如图①所示,BD 与 CD 为△ABC 一内角与一外角的平分线,则有结论∠D= ∠A;
(2)如图②所示,BE 与 CE 为△ABC 两外角的平分线,则有结论∠E=90°- ∠A;
已知两角→找任意一边→ASA 或 AAS
2021年中考数学一轮复习课时训练:第16课时 三角形与全等三角形
第16课时三角形与全等三角形【例题分析】【例1】已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【例2】如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【针对训练】1.(2020·宿迁中考)在△ABC中,AB=1,BC=5,下列选项中,可以作为AC长度的是()A.2 B.4 C.5 D.62.(2020·包头中考)如图,∠ACD是△ABC的外角,CE∥AB.若∠ACB=75°,∠ECD=50°,则∠A的度数为()A.50°B.55°C.70°D.75°3.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4 B.4或5C.5或6 D.6【例3】如图,点A,D,C,F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【针对训练】4.(2020·黄石中考)如图,AB=AE,AB∥DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.【考点训练】1.下列图形具有稳定性的是()2.下列长度的三条线段不能组成三角形的是()A.5,5,10 B.4,5,6C.4,4,4 D.3,4,53.(源于沪科八上P73)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A B C D4.(2020·丹东中考)如图,CO是△ABC的角平分线,过点B作BD∥AC交CO延长线于点D,若∠A=45°,∠AOD=80°,则∠CBD的度数为()A.100°B.110°C.125°D.135°5.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC6.(源于沪科八上P109)如图,在△ABC中,AD⊥BC于点D,BE⊥AC于点E,AD与BE相交于点F,若BF =AC,∠CAD=25°,则∠ABE的度数为()A.30°B.15°C.25°D.20°7.(2020·龙东中考)如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.8.(2019·梧州中考)如图,已知在△ABC中,点D,E分别是AB,AC的中点,点F,G分别是AD,AE的中点,且FG=2 cm,则BC的长度是cm.9.(2020·江西中考)如图,AC平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=49°,则∠BAE 的度数为.10.(2019·桂林中考)如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.11.已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.答案第16课时 三角形与全等三角形【例题分析】【例1】已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( C ) A .1 B .2 C .8 D .11【解析】根据三角形的三边关系求解即可.设三角形第三边的长为x ,由题意得7-3<x <7+3,即4<x <10,由此可选出满足条件的正确选项.【例2】如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A =60°,∠B =40°,则∠ECD 等于( C ) A .40° B .45° C .50° D .55°【解析】根据三角形外角性质求出∠ACD 的度数,根据角的平分线定义即可求出∠ECD 的度数. ∵∠A =60°,∠B =40°,∴∠ACD =∠A +∠B =100°.∵CE 平分∠ACD ,∴∠ECD =12∠ACD =50°.【针对训练】1.(2020·宿迁中考)在△ABC 中,AB =1,BC =5 ,下列选项中,可以作为AC 长度的是( A ) A .2 B .4 C .5 D .62.(2020·包头中考)如图,∠ACD 是△ABC 的外角,CE ∥AB .若∠ACB =75°,∠ECD =50°,则∠A 的度数为( B )A .50°B .55°C .70°D .75° 3.(2015·百色中考)△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( B ) A .4 B .4或5 C .5或6 D .6【例3】如图,点A ,D ,C ,F 在同一条直线上,AD =CF ,AB =DE ,BC =EF . (1)求证:△ABC ≌△DEF ;(2)若∠A =55°,∠B =88°,求∠F 的度数. 【解析】(1)证出AC =DF ,结合已知条件根据“SSS ”就可以推出△ABC ≌△DEF ; (2)由(1)中结论利用全等三角形的性质得到∠F =∠ACB ,进而得出结果.【解答】(1)证明:∵AC = AD +DC ,DF =DC +CF , 且AD =CF ,∴AC =DF . 在△ABC 和△DEF 中, ∵⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,∴△ABC ≌△DEF (SSS );(2)解:由(1)可知,∠F =∠ACB .∵∠A =55°,∠B =88°,∴∠ACB =180°-(∠A +∠B )=180°-(55°+88°)=37°. ∴∠F =∠ACB =37°.【针对训练】4.(2020·黄石中考)如图,AB =AE ,AB ∥DE ,∠DAB =70°,∠E =40°. (1)求∠DAE 的度数;(2)若∠B =30°,求证:AD =BC .(1)解∵AB ∥DE ,∠E =40°, ∴∠EAB =∠E =40°. ∵∠DAB =70°, ∴∠DAE =30°;(2)证明:在△ADE 和△BCA 中, ∵⎩⎪⎨⎪⎧∠DAE =∠B =30°,AE =BA ,∠E =∠BAC ,∴△ADE ≌△BCA (ASA ). ∴AD =BC . 【考点训练】1.下列图形具有稳定性的是( A )2.下列长度的三条线段不能组成三角形的是( A )A .5,5,10B .4,5,6C .4,4,4D .3,4,53.(源于沪科八上P 73)如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( A )A B C D 4.(2020·丹东中考)如图,CO 是△ABC 的角平分线,过点B 作BD ∥AC 交CO 延长线于点D ,若∠A =45°,∠AOD =80°,则∠CBD 的度数为( B )A.100° B .110° C .125° D .135°5.(源于沪科八上P 102)如图,已知∠ABC =∠DCB ,添加以下条件,不能判定△ABC ≌△DCB 的是( C ) A .∠A =∠D B .∠ACB =∠DBC C .AC =DB D .AB =DC6.(源于沪科八上P 109)如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 相交于点F ,若BF =AC ,∠CAD =25°,则∠ABE 的度数为( D )A .30°B .15°C .25°D .20°7.(2020·龙东中考)如图,Rt △ABC 和Rt △EDF 中,BC ∥DF ,在不添加任何辅助线的情况下,请你添加一个条件 AB =ED (BC =DF 或AC =EF 或AE =CF 等) ,使Rt △ABC 和Rt △EDF 全等.8.(2019·梧州中考)如图,已知在△ABC 中,点D ,E 分别是AB ,AC 的中点,点F ,G 分别是AD ,AE 的中点,且FG =2 cm ,则BC 的长度是 8 cm.9.(2020·江西中考)如图,AC 平分∠DCB ,CB =CD ,DA 的延长线交BC 于点E ,若∠EAC =49°,则∠BAE 的度数为 82° .10.(2019·桂林中考)如图,AB =AD ,BC =DC ,点E 在AC 上. (1)求证:AC 平分∠BAD ; (2)求证:BE =DE .证明:(1)在△ABC 和△ADC 中, ∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC (SSS ). ∴∠BAC =∠DAC , 即AC 平分∠BAD ;(2)由(1)知,∠BAE =∠DAE . 在△BAE 和△DAE 中, ∵⎩⎪⎨⎪⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE (SAS ). ∴BE =DE .11.已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F . (1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AD ∥BC ,∠B =∠D .∴∠1=∠ECB .∵AF ∥CE ,∴∠AFB =∠ECB . ∴∠AFB =∠1.在△ABF 和△CDE 中, ∵⎩⎪⎨⎪⎧∠B =∠D ,∠AFB =∠1,AB =CD ,∴△ABF ≌△CDE (AAS );(2)解:由(1)知,∠1=∠ECB . ∵CE 平分∠BCD ,∴∠DCE =∠ECB . ∴∠1=∠DCE =65°.∴∠B =∠D =180°-2×65°=50°.。
2024年中考数学复习+全等三角形课件
3.(2020·衡阳8分)如图,在△ABC中,∠B=∠C,过BC的中点D作 DE⊥AB,DF⊥AC,垂足分别为点E,F. (1)求证:DE=DF;
证明:∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90° ∵D是BC的中点,∴BD=CD. 在△BED和△CFD中,
∠BED=∠CFD ∠B=∠C
BD=CD
强调:两角一边一定能判定三角形全等
方法指 ----全等常见的判定思路: 引
已知一角一边: 找角的邻边 找边的邻角 找边的对角
已知两边:
找第三边 找夹角 找直角
已知两角: 找夹边
找对边 找第三边
方法指 引
E
全等与图形的变换:
D
F
G 轴对称
直观发现全等
平移
旋转
通过图形的变换, 直观发现全等;发现相等的边、相等的角.
1.(2022·衡阳6分)如图,在△ABC中,AB=AC,D,E是BC边上的 点,且BD=CE.求证:AD=AE.
证明:∵AB=AC, ∴∠B=∠C.
在△ABD和△ACE中,
AB=AC
∠B=∠C
全等五行
∴△BADB=DC≌E △ACE(SAS).
∴AD=AE.
2.(2021·衡阳6分)如图,点A,B,D,E在同一条直线上,AB=DE, AC∥DF,BC∥EF.求证:△ABC≌△DEF.
4.(2018·衡阳6分)如图,线段AC,BD相交于点E,AE=DE,BE=CE. (1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.
(1)证明:在△ABE和△DCE中,
AE=DE
∠AEB=∠DEC
BE=CE
∴△ABE≌△DCE(SAS).
(2)解:∵△ABE≌△DCE,∴AB=CD. ∵AB=5,∴CD=5.
第16讲 全等三角形 课后作业-2021年中考数学一轮复习课件(江西专版)
4.(2021·原创)阅读获知 (1)如图1,在△ABC中,①已知AB=AC,过A作∠BAC的平分线AD交BC于 点D.易证 △ABD≌△ACD(SAS),则得结论∠B=∠C. ②若将①中条件“AB=AC”换成 “∠B=∠C”为条件,其结论:AB= AC成立吗?答:_成__立___. 特例感知 (2)如图2,∠ABO=∠CDO=90°,AB=BO, OD=DC,OA与OC,OB与 OD都在同一条直线上,∠ABO和∠CDO的平分线分别交AC于点E和点F.求 证: AC=2(BE+DF).
带②去,仅保留了原三角形的一个角和部分边,不能得到 B 与原来一样的三角形
带③上,不但保留了原三角形的两个角,还保留了其中一 C 个边,符合ASA判定
带①和②去,仅保留了原三角形的一个角和部分边,不能 D 得到与原来一样的三角形
正误 × × √ ×
3.如图,在△ABC中,AB=AC,D是BC的中点,P是AD上任意一点,连接BP, CP并延长分别交AC,AB于点E,F,则图中的全等三角形共有( ) A A.7对 B.6对 C.5对 D.4对
OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:
①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其
中正确的结论个数有 ( B ) A.4个
B.3个
C.2个 D.1个
第1题图
【解析】 ∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+
拓展深知 如图3,∠ABO=∠CDO=90°,AB=OD,BO=DC, ∠BOA+∠AOD= 180°,且OA与OC不在同一条直线上时,连接AC与BD交于点G,∠ABO 和∠CDO的平分线分别交AC于点E和点F,那么(2)中的结论还成立吗? 如果成立请证明,不成立说明你的理由.
2021年中考数学复习讲义:第四章 全等三角形 模型(十六)——半角模型
第四章.全等三角形模型(十六)——半角模型一、正方形中的半角模型【条件】如图①两个角共顶点,②其中一个角(45º)是另一个角(90º)的一半【结论】①EF=BE+DF,②EA平分∠BEF,FA平分∠DFE,③△EFC的周长等于正方形边长的2倍④如图:AM=AB⑤如图:∠EAF=45º,则EF²=BE²+FC²模型讲解【证明】①∶延长CB 至点P ,使得BP=DF 连接AP第一次全等 第二次全等在△ABP 和△ADF 中 在△AEP 和△AEF 中AB=AD (正方形边长相等) AP=AF∠ABP=∠ADF=90º ∠PAE=∠FAEBP=DF (构造) AE=AE∴ △ABP ≌△ADF (SAS ) ∴△AEP ≌△AEF (SAS ) ∴AP=AF ,∠1=∠2 ∴PE=EF∵∠2+∠3=45º 即PB+BE=EF∴∠1+∠3=45º, ∴DF+BE =EF∴∠PAE=∠FAE② 由①得:△AEP ≌△AEF ,则∠4=∠5,∠AFE=∠P又△APB ≌△AFD ,∴∠P=∠AFD ,∴∠AFE=∠AFD∴EA 平分∠BEF ,FA 平分∠DFE③ 由①得:EF=BE+DF ,∴△EFC 的周长=EF+EC+CF =BE+DF+EC+CF=BC+DC , ∴△EFC 的周长等于正方形边长的2倍④ 过A 作AM ⊥EF ,则∠AME=∠B=90º。
由①得∠1=∠2,AE=AE ,∴△ABE ≌△AME (AAS ),∴AM=AB见半角,旋全角,盖半角,得半角。
⑤如图,过点A作AP⊥AF 且AP=AF.连接PE∵∠CAB= ∠PAF=90º,∠1=∠2第一次全等第二次全等在△ABP和△ACF中在△AEP和△AEF中AB=AC AP=AF∠2=∠1 ∠PAE=∠FAEAP=AF AE=AE∴△ABP≌△ACF(SAS)∴△AEP≌△AEF(SAS)∴BP=CF ,∠ABP=∠C=45º∴PE=EF∵∠EAF=45º在Rt△PBE中,PE²=PB²+BE²∴∠1+∠3=45º, 即EF²=CF²+BE²∴∠2+∠3 =45º二、等腰三角形中的半角模型【条件】如图,△ABC是等边三角形,△BDC 是等腰三角形,且∠BDC=120°,∠MDN=60º,【结论】①MN= BM+CN;②△MAN 的周长等于△ABC边长的 2 倍;③MD是∠BMN的平分线,ND是∠CNM的平分线【证明】∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.∵△ABC是等边三角形,∴∠ABC = ∠BAC = ∠BCA=60°,∴∠DBA= ∠DCA=90°.延长 AB至点F,使BF=CN,连接DF,如图.在△BDF 和△CDN 中,DB=DC,∠DBF=∠DCN,BF=CN,∴△BDF≌△CDN(SAS),∴∠BDF=∠CDN,∠F=∠CND,DF=DN.∵∠MDN=60°, ∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,即∠FDM=60°=∠MDN.在△DMN 和△DMF 中,DN=DF,∠MDN= ∠MDF, DM=DM,∴△DMN≌△DMF(SAS),∴ MN=MF=BM+CN,∠F=∠MND=∠CND,∠FMD=∠DMN,∴△AMN的周长是 AM+AN+MN=AM+MB+CN+AN=AB+AC=2边长.三、对角互补且邻边相等的半角模型【条件】如图,∠B+∠D=180°,∠BAD= 2∠EAF,AB=AD,【结论】①EF=BE+FD;②EA 是∠BEF的平分线,FA是∠DFE的平分线.典例秒杀典例1 ☆☆☆☆☆如图,已知正方形 ABCD 中,∠MAN=45º,则线段MN,BM与DN之间的关系是( )A.MN= BM+DNB.BM=MN+DNB.DN=MN+BM D.无法确定【答案】A【解析】∵正方形 ABCD中,∠MAN=45°,根据半角模型结论可知 MN=BM+DN.故选 A.典例2 ☆☆☆☆☆如图,△ABC是边长为α的等边三角形,△BDC是等腰三角形,且∠BDC=120°,以 D为顶点作一个 60°角,使其两边分别交 AB于占M,交 AC于点N,连接 MN,则△AMN 的周长是().A. aB.2aC. 3aD. 不能确定【答案】B【解析】△BDC是等腰三角形,观察图形,能发现图形为等腰三角形的半角模型,根据半角模型结论可知,△AMN 的周长为△ABC边长的 2 倍,即为 2a.故选 B.典例3 ☆☆☆☆☆⑴如图1,在四边形 ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边 BC,1∠BAD,求证:EF =BE+FD.CD 上的点,且∠EAF=2⑵在四边形 ABCD 中,AB=AD,∠B+∠D=180°,E,F分别是边 BC,CD上的点1∠BAD,(1)中的结论是否仍然成立?(不需要说明理由)且∠EAF=2⑶如图 2,在四边形 ABCD中,AB=AD,∠B+∠ADC=180°,E,F分别是边 BC,1∠BAD ,(1)中的结论是否仍然成立?若成立,CD延长线上的点,且∠EAF=2请证明;若不成立,请写出它们之间的数量关系,并证明.【解析】(1)如图,延长 EB到点G,使 BG=DF,连接 AG.∵∠ABG=∠ABC=∠D=90°,AB=AD,∴△ABG≌△ADF(SAS),∴AG=AF,∠1=∠2.1∠BAD,∴∠GAE=∠EAF.∴∠1+∠3=∠2+∠3=∠EAF=2又 AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG,∴EF=BE+FD.(2)(1)中的结论 EF= BE+FD仍然成立.(3)结论 EF=BE+FD不再成立,应当是 EF=BE-FD.证明∶如图,在 BE上截取 BG,使 BG=DF,连接 AG.∵∠B+∠ADC=180°,∠ADF+∠ADC=180°, ∴∠B=∠ADF.又∵AB=AD,∴△ABG≌△ADF(SAS),∴∠BAG=∠DAF,AG=AF.1∠BAD,∴∠BAG+∠EAD= ∠DAF+∠EAD=∠EAF=2∴∠GAE=∠EAF.又∵AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF∵EG=BE-BG,:.EF=BE-FD.小试牛刀1.(★★☆☆☆)如图,△ABC 是边长为 3 的等边三角形,△BDC 是等腰三角形,且∠BDC= 120°.以 D为顶点作一个 60°角,使其两边分别交 AB 于点M,交 AC于点N,连接 MN,则△AMN 的周长为______。
中考数学第一轮总复习全等三角形课件
第3题图
第三节 全等三角形
返回目录
解法二:∵FC∥AB, ∴∠A=∠ECF,∠ADE=∠F,(1分) 在△ADE与△CFE中,
∠A=∠ECF
∠ADE=∠F ,(3分)
DE=FE ∴△ADE≌CFE(AAS),(5分) ∴AE=CE.(6分)
解法三:∵FC∥AB, ∴∠ADE=∠F,(1分) 在△ADE和△CFE中,
∠A=∠ECD,AB=CD.
求证:∠B=∠D.
证明:∵点C是AE的中点, ∴AC=CE.(2分) 在△ABC和△CDE中,
AC=CE
∠A=∠ECD
AB=CD ∴△ABC≌△CDE(SAS),(4分)
∴∠B=∠D.(6分)
第14题图
第三节 全等三角形
15. (2014昆明卷16题5分)已知:如图,点A、B、C、D在同一直线
返回目录
3. (2016昆明卷16题6分·源于人教八上P45第12题)如图,点D是AB上一点,DF交
AC于点E,DE=FE,FC∥AB.
求证:AE=CE.
证明:解法一:∵FC∥AB,
∴∠A=∠ACF,(1分)
在△ADE和△CFE中, ∠A=∠ACF
∠AED=∠CEF ,(3分)
DE=FE ∴△ADE≌△CFE(AAS),(5分) ∴AE=CE.(6分)
∴BC=DF.
第5题图
返回目录
第三节 全等三角形
返回目录
6. (2018曲靖卷17题7分)如图,在 ABCD的边AB,CD上截取线段AF,CE,使
AF=CE,连接EF,点M,N是线段EF上的两点,且EM=FN,连接AN,CM.
(1)求证:△AFN≌△CEM;
(1)证明:∵四边形ABCD是平行四边形, ∴AB∥CD, ∴∠AFN=∠CEM.(1分) 在△AFN和△CEM中,
2021年中考数学专题复习:全等三角形(含答案)
2020-2021中考专题复习:全等三角形一、选择题1. 如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等,所需的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′2. 如图所示,AC,BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于点E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个3. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE4. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC5. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.56. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D7. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 68. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题9. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.10. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).11. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.12. 如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).13. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为________________________.14. 如图,AB∥CD,点P到AB,BD,CD的距离相等,则∠BPD的度数为________.15. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.16. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题17. 如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.18. 如图,在△ABC中,D是BC边上一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.19. 如图,沿AC方向开山修路,为了加快施工进度,要在山的另一面同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD并延长,使DF=BD,过点F作AB的平行线FM,连接MD并延长,在延长线上取一点E,使DE=DM,在点E开工就能使A,C,E三点成一条直线,你知道其中的道理吗?20. 观察与类比(1)如图①,在△ABC中,∠ACB=90°.点D在△ABC外,连接AD,作DE⊥AB于点E,交BC于点F,AD=AB,AE=AC,连接AF.求证:DF=BC +CF;(2)如图②,AB=AD,AC=AE,∠ACB=∠AED=90°,延长BC交DE于点F,写出DF,BC,CF之间的数量关系,并证明你的结论.21. 如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.22. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD<60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2020-2021中考专题复习:全等三角形-答案一、选择题1. 【答案】C2. 【答案】D[解析] 与已知三角形全等的三角形有△DCB,△BAD,△DCE,△CDA.3. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.4. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.5. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.6. 【答案】C7. 【答案】B【解析】如解图,连接OC,由已知条件易得∠A=∠OCE,CO=AO,∠DOE=∠COA,∴∠DOE-∠COD=∠COA-∠COD,即∠AOD=∠COE,∴△AOD≌△COE(ASA),∴AD=CE,进而得CD+CE=CD+AD=AC=22AB=3,故选B.8. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.二、填空题9. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.10. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.11. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.12. 【答案】答案不唯一,如CE=CB[解析] 由∠1=∠2,可得∠DCE=∠ACB,又∵CD=CA,∴添加CE=CB,可根据“SAS”判定两个三角形全等.13. 【答案】(4,0)或(4,4)或(0,4)14. 【答案】90°[解析] ∵点P到AB,BD,CD的距离相等,∴BP,DP分别平分∠ABD,∠BDC.∵AB∥CD,∴∠ABD+∠BDC=180°.∴∠PBD+∠PDB=90°.故∠BPD=90°.15. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.16. 【答案】32°[解析] ∵PD=PE=PF,PD⊥AB交BA的延长线于点D,PE⊥AC 于点E,PF⊥BC交BC的延长线于点F,∴CP平分∠ACF,BP平分∠ABC.∴∠PCF=12∠ACF,∠PBF=12∠ABC.∴∠BPC=∠PCF-∠PBF=12(∠ACF-∠ABC)=12∠BAC=32°.三、解答题17. 【答案】证明:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC ,即AC 平分∠BAD. (2)由(1)知∠BAE=∠DAE. 在△BAE 与△DAE 中,∴△BAE ≌△DAE (SAS), ∴BE=DE.18. 【答案】解:(1)证明:∵BE 平分∠ABC , ∴∠ABE=∠DBE , 在△ABE 和△DBE 中,∴△ABE ≌△DBE (SAS). (2)∵∠A=100°,∠C=50°, ∴∠ABC=30°, ∵BE 平分∠ABC ,∴∠ABE=∠DBE=∠ABC=15°,在△ABE 中,∠AEB=180°-∠A -∠ABE=180°-100°-15°=65°.19. 【答案】解:在△BDE 和△FDM 中,⎩⎨⎧BD =FD ,∠BDE =∠FDM ,DE =DM ,∴△BDE ≌△FDM(SAS). ∴∠BEM =∠FME.∴BE ∥MF. 又∵AB ∥MF ,∴A ,C ,E 三点在一条直线上.20. 【答案】解:(1)证明:∵DE ⊥AB ,∠ACB =90°, ∴∠AED =∠AEF =∠ACB =90°.在Rt △ACF 和Rt △AEF 中,⎩⎨⎧AC =AE ,AF =AF ,∴Rt △ACF ≌Rt △AEF(HL).∴CF =EF. 在Rt △ADE 和Rt △ABC 中,⎩⎨⎧AD =AB ,AE =AC ,∴Rt △ADE ≌Rt △ABC(HL). ∴DE =BC. ∵DF =DE +EF , ∴DF =BC +CF. (2)BC =CF +DF. 证明:如图,连接AF.在Rt △ABC 和Rt △ADE 中, ⎩⎨⎧AB =AD ,AC =AE ,∴Rt △ABC ≌Rt △ADE(HL). ∴BC =DE.∵∠ACB =90°,∴∠ACF =90°=∠AED. 在Rt △ACF 和 Rt △AEF 中,⎩⎨⎧AC =AE ,AF =AF ,∴Rt △ACF ≌△AEF(HL). ∴CF =EF.∵DE =EF +DF ,∴BC =CF +DF.21. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.22. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GB GE , ∴BP =261315.。
2021中考数学真题分类专题16 三角形及全等三角形(共40题含解析)
专题16三角形及全等三角形(共40题)一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点 2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理8.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinC a c b R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF 的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是413.(2021·湖南娄底市·中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m - B .102m - C .10 D .414.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为( )A .80︒B .70︒C .60︒D .50︒16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点A B 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD 为ABC 的角平分线的是( ) A . B .C .D .二、填空题18.(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.19.(2021·江苏苏州市·中考真题)如图.在Rt ABC △中,90C ∠=︒,AF EF =.若72CFE ∠=︒,则B ∠=______.20.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.21.(2021·江苏连云港市·中考真题)如图,BE 是ABC 的中线,点F 在BE 上,延长AF 交BC 于点D .若3BF FE =,则BD DC=______.22.(2021·四川遂宁市·中考真题)如图,在∠ABC 中,AB =5,AC =7,直线DE 垂直平分BC ,垂足为E ,交AC 于点D ,则∠ABD 的周长是 _____ .23.(2021·云南中考真题)已知ABC 的三个顶点都是同一个正方形的顶点,ABC ∠的平分线与线段AC 交于点D .若ABC 的一条边长为6,则点D 到直线AB 的距离为__________.24.(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)25.(2021·四川成都市·中考真题)如图,在Rt ABC 中,90,C AC BC ∠=︒=,按以下步骤作图:∠以点A 为圆心,以任意长为半径作弧,分别交,AC AB 于点M ,N ;∠分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠内交于点O ;∠作射线AO ,交BC 于点D .若点D 到AB 的距离为1,则BC的长为_______.三、解答题26.(2021·陕西中考真题)如图,//BD AC ,BD BC =,点E 在BC 上,且BE AC =.求证:D ABC ∠=∠.27.(2021·湖南衡阳市·中考真题)如图,点A 、B 、D 、E 在同一条直线上,,//,//AB DE AC DF BC EF =.求证:ABC DEF △≌△.28.(2021·四川乐山市·中考真题)如图,已知AB DC =,A D ∠=∠,AC 与DB 相交于点O ,求证:OBC OCB ∠=∠.29.(2021·四川泸州市·中考真题)如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:BD =CE30.(2021·云南中考真题)如图,在四边形ABCD 中,,,AD BC AC BD AC ==与BD 相交于点E .求证:DAC CBD ∠=∠.31.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.32.(2021·江苏连云港市·中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC 是边长为3的等边三角形,E 是边AC 上的一点,且1AE =,小亮以BE 为边作等边三角形BEF ,如图1,求CF 的长;(2)ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;(3)ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B 为顶点作正方形BFGH,其中点F、G都在直线AE上,如图4,当点E到达点B时,点F、G、H与点B 重合.则点H所经过的路径长为______,点G所经过的路径长为______.,点D是BC边上一点(不与点B、C重33.(2021·四川乐山市·中考真题)在等腰ABC中,AB AC合),连结AD.(1)如图1,若60C ∠=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE ∠=________;(2)若60C ∠=°,将线段AD 绕点A 顺时针旋转60︒得到线段AE ,连结BE .∠在图2中补全图形;∠探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE ==,且ADE C ∠=∠,试探究BE 、BD 、AC 之间满足的数量关系,并证明.34.(2021·安徽中考真题)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作CF //AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD △≌△;(2)如图2,若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF 的延长线经过AD 的中点M ,求BE EC的值.35.(2021·重庆中考真题)如图,四边形ABCD 为平行四边形,连接AC ,且2AC AB =.请用尺规完成基本作图:作出BAC ∠的角平分线与BC 交于点E .连接BD 交AE 于点F ,交AC 于点O ,猜想线段BF 和线段DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)36.(2021·浙江温州市·中考真题)如图,BE 是ABC 的角平分线,在AB 上取点D ,使DB DE =.(1)求证://DE BC .(2)若65A ∠=︒,45AED ∠=︒,求EBC ∠的度数.37.(2021·江苏无锡市·中考真题)已知:如图,AC ,DB 相交于点O ,AB DC =,ABO DCO ∠=∠.求证:(1)ABO DCO △≌△;(2)OBC OCB ∠=∠.38.(2021·福建中考真题)如图,在ABC 中,D 是边BC 上的点,,⊥⊥DE AC DF AB ,垂足分别为E ,F ,且,DE DF CE BF ==.求证:B C ∠=∠.39.(2021·四川南充市·中考真题)如图,90BAC ∠=︒,AD 是BAC ∠内部一条射线,若AB AC =,BE AD ⊥于点E ,CF AD ⊥于点F .求证:AF BE =.40.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,3ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =.(3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.2021年中考数学真题分项汇编【全国通用】专题16三角形及全等三角形 试题解析(共40题)一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A 、五边形的内角和是540︒,故原命题为假命题,不符合题意;B 、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C 、两直线平行,内错角相等,故原命题为假命题,不符合题意;D 、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B .【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·山东临沂市·中考真题)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30D .40︒【答案】B【分析】根据平行线的性质得到∠ABC =∠BCD ,再根据角平分线的定义得到∠ABC =∠BCD ,再利用三角形外角的性质计算即可.【详解】解:∠AB ∠CD ,∠∠ABC =∠BCD ,∠CB 平分∠DCE ,∠∠BCE =∠BCD ,∠∠BCE =∠ABC ,∠∠AEC =∠BCE +∠ABC =40°,∠∠ABC =20°,故选B .【点睛】本题考查了平行线的性质,角平分线的定义和外角的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.3.(2021·陕西中考真题)如图,点D 、E 分别在线段BC 、AC 上,连接AD 、BE .若35A ∠=︒,25B ∠=︒,50C ∠=︒,则1∠的大小为( )A .60°B .70°C .75°D .85°【答案】B【分析】 由题意易得105BEC ∠=︒,然后根据三角形外角的性质可进行求解.【详解】解:∠25B ∠=︒,50C ∠=︒,∠在Rt ∠BEC 中,由三角形内角和可得105BEC ∠=︒,∠35A ∠=︒,∠170BEC A ∠=∠-∠=︒;故选B .【点睛】本题主要考查三角形内角和及外角的性质,熟练掌握三角形内角和及外角的性质是解题的关键. 4.(2021·四川乐山市·中考真题)如图,已知直线1l 、2l 、3l 两两相交,且13l l ⊥.若50α=︒,则β的度数为( )A .120︒B .130︒C .140︒D .150︒【答案】C【分析】 由垂直的定义可得∠2=90°;根据对顶角相等可得510α∠=∠=︒,再根据三角形外角的性质即可求得140β∠=︒.【详解】∠13l l ⊥,∠∠2=90°;∠510α∠=∠=︒,∠125090140β∠=∠+∠=︒+︒=︒.故选C .【点睛】本题考查了垂直的定义、对顶角的性质、三角形外角的性质,熟练运用三角形外角的性质是解决问题的关键.5.(2021·安徽中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒【答案】C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∠//BC EF ,∠45FDB F ∠=∠=︒,∠180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键. 6.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】 连接BD ,根据三角形内角和求出∠CBD +∠CDB ,再利用四边形内角和减去∠CBD 和∠CDB 的和,即可得到结果.【详解】解:连接BD ,∠∠BCD =100°,∠∠CBD +∠CDB =180°-100°=80°,∠∠A +∠ABC +∠E +∠CDE =360°-∠CBD -∠CDB =360°-80°=280°,故选D .【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形.7.(2021·河北中考真题)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【答案】B【分析】根据三角形的内角和定理与平角的定义可判断A与B,利用理论与实践相结合可判断C与D.【详解】解:A. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故A不符合题意;B. 证法1给出的证明过程是完整正确的,不需要分情况讨论,故选项B符合题意;C. 证法2用量角器度量两个内角和外角,只能验证该定理的正确性,用特殊到一般法证明了该定理缺少理论证明过程,故选项C不符合题意;D. 证法2只要测量够一百个三角形进行验证,验证的正确性更高,就能证明该定理还需用理论证明,故选项D不符合题意.故选择:.B【点睛】本题考查三角形外角的证明问题,命题的正确性需要严密推理证明,三角形外角分三种情形,锐角、直角、和钝角,证明中应分类才严谨.8.(2021·四川泸州市·中考真题)在锐角ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( )A .163πB .643πC .16πD .64π【答案】A【分析】方法一:先求出∠C ,根据题目所给的定理,2sin c R C = , 利用圆的面积公式S 圆=163π. 方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,由三角形内角和可求∠C =60°,由圆周角定理可求∠AOB =2∠C =120°,由等腰三角形性质,∠OAB =∠OBA =30,由垂径定理可求AD =BD =2,利用三角函数可求OA,利用圆的面积公式S 圆=163π. 【详解】解:方法一:∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,有题意可知42=sin sin 603c R C ===︒,∠3R =, ∠S 圆=2221633R OA ππππ⎛=== ⎝⎭.方法二:设∠ABC 的外心为O ,连结OA ,OB ,过O 作OD ∠AB 于D ,∠∠A =75°,∠B =45°,∠∠C =180°-∠A -∠B =180°-75°-45°=60°,∠∠AOB =2∠C =2×60°=120°,∠OA =OB ,∠∠OAB =∠OBA =()1180120302︒-︒=︒, ∠OD ∠AB ,AB 为弦,∠AD =BD =122AB =,∠AD =OA cos30°,∠OA =343cos30223AD ÷︒=÷=, ∠S 圆=222431633R OA ππππ⎛⎫=== ⎪ ⎪⎝⎭.故答案为A .【点睛】本题考查三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式,掌握三角形的外接圆,三角形内角和,圆周角定理,等腰三角形性质,垂径定理,锐角三角函数,圆的面积公式是解题关键.9.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠B .AB DC = C .AC DB =D .A D ∠=∠【答案】B【分析】 根据已知条件和添加条件,结合全等三角形的判断方法即可解答.【详解】选项A ,添加ABC DCB ∠=∠,在ABC 和DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABC ∠DCB (ASA ),选项B ,添加 AB DC =,在ABC 和DCB 中, AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ∠DCB ; 选项C ,添加AC DB =,在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (SAS );选项D ,添加A D ∠=∠,在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠ABC ∠DCB (AAS );综上,只有选项B 符合题意.故选B .【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键.10.(2021·重庆中考真题)如图,点B ,F ,C ,E 共线,∠B =∠E ,BF =EC ,添加一个条件,不等判断∠ABC ∠∠DEF的是( )A .AB =DE B .∠A =∠DC .AC =DFD .AC ∠FD【答案】C【分析】根据全等三角形的判定与性质逐一分析即可解题.【详解】 解:BF =EC ,BC EF ∴=A. 添加一个条件AB =DE ,又,BC EF B E =∠=∠()ABC DEF SAS ∴△≌△故A 不符合题意;B. 添加一个条件∠A =∠D又,BC EF B E =∠=∠()ABC DEF AAS ∴≌故B 不符合题意;C. 添加一个条件AC =DF ,不能判断∠ABC ∠∠DEF ,故C 符合题意;D. 添加一个条件AC ∠FDACB EFD ∴∠=∠又,BC EF B E =∠=∠()ABC DEF ASA ∴≌故D 不符合题意,故选:C .【点睛】本题考查添加条件使得三角形全等即全等三角形的判定,是重要考点,难度较易,掌握相关知识是解题关键.11.(2021·浙江嘉兴市·中考真题)将一张三角形纸片按如图步骤∠至∠折叠两次得图∠,然后剪出图∠中的阴影部分,则阴影部分展开铺平后的图形是( )A .等腰三角形B .直角三角形C .矩形D .菱形【答案】D【分析】 此题是有关剪纸的问题,此类问题应亲自动手折一折,剪一剪.【详解】解:由题可知,AD 平分BAC ∠,折叠后AEO △与AFO 重合,故全等,所以EO =OF ;又作了AD 的垂直平分线,即EO 垂直平分AD ,所以AO =DO ,且EO ∠AD ;由平行四边形的判定:对角线互相平分的四边形为平行四边形,所以AEDF 为平行四边形;又AD ∠EF ,所以平行四边形AEDF 为菱形.故选:.D【点睛】本题主要考察学生对于立体图形与平面展开图形之间的转换能力,与课程标准中“能以实物的形状想象出几何图形,有几何图形想象出实物的图形”的要求相一致,充分体现了实践操作性原则.12.(2021·四川遂宁市·中考真题)下列说法正确的是( )A .角平分线上的点到角两边的距离相等B .平行四边形既是轴对称图形,又是中心对称图形C .在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,x π,42b a+是分式 D .若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是4【答案】A【分析】根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.【详解】解:A.角平分线上的点到角两边的距离相等,故选项正确;B.平行四边形不是轴对称图形,是中心对称图形,故选项错误;C.在代数式1a ,2x ,x π,985,42b a +,13y +中,1a ,42b a +是分式,故选项错误; D.若一组数据2、3、x 、1、5的平均数是3,则这组数据的中位数是3,故选项错误;故选:A .【点睛】本题综合考查了角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数等知识点,熟悉相关性质是解题的关键.13.(2021·湖南娄底市·中考真题)2,5,m ) A .210m -B .102m -C .10D .4 【答案】D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+,解得:37x ,374m m =-+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简. 14.(2021·山东泰安市·中考真题)如图,直线//m n ,三角尺的直角顶点在直线m 上,且三角尺的直角被直线m 平分,若160∠=︒,则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D【分析】 根据角平分线的定义求出∠6和∠7的度数,再利用平行线的性质以及三角形内角和求出∠3,∠8,∠2的度数,最后利用邻补角互补求出∠4和∠5的度数.【详解】首先根据三角尺的直角被直线m 平分,∠∠6=∠7=45°;A 、∠∠1=60°,∠6=45°,∠∠8=180°-∠1-∠6=180-60°-45°=75°,m∥n ,∠∠2=∠8=75°结论正确,选项不合题意;B 、∠∠7=45°,m ∠n ,∠∠3=∠7=45°,结论正确,选项不合题意;C 、∠∠8=75°,∠∠4=180-∠8=180-75°=105°,结论正确,选项不合题意;D 、∠∠7=45°,∠∠5=180-∠7=180-45°=135°,结论错误,选项符合题意.故选:D .【点睛】本题考查了角平分线的定义,平行线的性质,三角形内角和,邻补角互补,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.15.(2021·四川资阳市·中考真题)如图,已知直线//,140,230m n ∠=︒∠=︒,则3∠的度数为()A .80︒B .70︒C .60︒D .50︒【答案】B【分析】如图,由题意易得∠4=∠1=40°,然后根据三角形外角的性质可进行求解.【详解】解:如图,∠//,140m n ∠=︒,∠∠4=∠1=40°,∠230∠=︒,∠34270∠=∠+∠=︒;故选B .【点睛】本题主要考查平行线的性质及三角形外角的性质,熟练掌握平行线的性质及三角形外角的性质是解题的关键.16.(2021·海南中考真题)如图,已知//a b ,直线l 与直线a b 、分别交于点A B 、,分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,若140∠=︒,则ACB ∠的度数是( )A .90︒B .95︒C .100︒D .105︒【答案】C【分析】 根据题意可得直线MN 是线段AB 的垂直平分线,进而可得CB AC =,利用平行线的性质及等腰三角形中等边对等角,可得40CAB CBA ∠=∠=︒,所以可求得100ACB ∠=︒.【详解】∠已知分别以点A B 、为圆心,大于12AB 的长为半径画弧,两弧相交于点M N 、,作直线MN ,交直线b 于点C ,连接AC ,∠直线MN 垂直平分线段AB ,∠CB AC =,∠//a b ,140∠=︒,∠140CBA ∠=∠=︒,∠40CAB CBA ∠=∠=︒,∠180100ACB CBA CAB ∠=︒-∠-∠=︒.故选:C.【点睛】题目主要考查线段垂直平分线的作法及性质、平行线的性质等,根据题意得出直线MN垂直平分线段AB 是解题关键.17.(2021·四川广元市·中考真题)观察下列作图痕迹,所作线段CD为ABC的角平分线的是()A.B.C.D.【答案】C【分析】根据角平分线画法逐一进行判断即可.【详解】A:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为ACB的角平分线,满足题意。
(沪科版)中考数学总复习课件【第16讲】三角形与全等三角形
第16讲┃三角形与全等三角形
经典示例
例2 [2014·成都] 如图 16-1,为估计池塘两岸边 A,B
两点间的距离, 在池塘的一侧选取点 O, 分别取 OA , OB 的中点 M,
64 N,测得 MN=32 m,则 A,B 两点间的距离是________ m.
图 16 - 1 讲┃三角形与全等三角形 第 16
8.[2014·黄石] 如图16-5,一张矩形纸片,剪去部分后 得到一个三角形,则图中∠1+∠2的度数是( C )
A.30° B.60° C.90° D.120°
图16-5
第16讲┃三角形与全等三角形
9.[2014·孝感] 如图16-6,直线l1∥l2,l3⊥l4,∠1= 44°,那么∠2的度数为( A )
角平 AE 是 △ABC 的 角 平 分 线 分线 ∠BAE=∠CAE 高 AF 是△ABC 的高
BFA=∠CFA=90°
第16讲┃三角形与全等三角形
概念:连接三角形两边的中点的线段 性质:三角形的中位线平行于第三边, 中位 并且等于第三边的一半.GH 是△ABC 的 线 1 中位线 GH BC 2
经典示例
例1 [2012·长沙] 现有长度分别为 3 cm ,4 cm,7 cm,9 cm 的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角 形的个数是( B )
A.1 B.2
C.3 D.4
第16讲┃三角形与全等三角形
[解析] 可以用枚举法得出四条木棒的所有组合:3 cm,
4 cm,7 cm和3 cm,4 cm,9 cm和3 cm,7 cm,9 cm和4 cm,
第16讲┃三角形与全等三角形
一副三角板叠在一起如图 16-11 放置, 最小锐角的顶点 D 恰好放 在等腰直角三角板的斜边 AB 上, BC 与 DE 交于点 M.如果∠ADF=100°, 那么∠BMD 为________度.
专题16 全等三角形判定和性质问题(解析版)2021年中考数学必考34个考点高分三部曲
专题16 全等三角形判定和性质问题1.全等三角形:能够完全重合的两个图形叫做全等形。
能够完全重合的两个三角形叫做全等三角形。
2.全等三角形的表示全等用符号“≌”表示,读作“全等于”。
如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3.全等三角形的性质:全等三角形的对应角相等、对应边相等。
4.三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
5.直角三角形全等的判定:HL定理:有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例题1】(2020•贵州省安顺市)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【解答】选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;专题知识回顾专题典型题考法及解析选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.【例题2】(2020•黑龙江省齐齐哈尔市)如图,已知在△ABC和△DEF中,△B=△E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC△△DEF,则还需添加的一个条件是_________(只填一个即可).【答案】AB=DE.【解析】添加AB=DE;△BF=CE,△BC=EF,在△ABC和△DEF中,,△△ABC△△DEF(SAS)【例题3】(2020•铜仁)如图,AB=AC,AB△AC,AD△AE,且△ABD=△ACE.求证:BD=CE.【答案】见解析。
2023年九年级中考数学复习讲义 三角形及其全等
2023年中考数学复习讲义三角形及其全等第一部分:知识点精准记忆一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边一半.二、全等三角形1.三角形全等的判定定理:(1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”);(5)对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、线段垂直平分线与角平分线1.线段的轴对称性:线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线.注:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.注:对于含有垂直平分线的题目,首先考虑将垂直平分线上的点与线段两端点连接起来.4.角是轴对称图形,角平分线所在的直线是它的对称轴.5.性质:角的平分线上的点到这个角的两边的距离相等.第二部分:考点典例剖析考点一: 三角形的三边关系【例1-1】(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)【例1-2】(2021·江苏淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___.考点二: 三角形的内角和外角【例2-1】(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【例2-2】(2021·江苏宿迁市·中考真题)如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°【例2-3】(2021·浙江绍兴市·中考真题)如图,在中,,点D ,E 分別在边AB ,AC 上,,连结CD ,BE .(1)若,求,的度数.(2)写出与之间的关系,并说明理由.考点三:三角形中的重要线段【例3-1】(2022•大庆)下列说法不正确的是( )A .有两个角是锐角的三角形是直角或钝角三角形B .有两条边上的高相等的三角形是等腰三角形C .有两个角互余的三角形是直角三角形D .底和腰相等的等腰三角形是等边三角形ABC 40A ∠=︒BD BC CE ==80ABC ∠=︒BDC ∠ABE ∠BEC ∠BDC∠【例3-2】(2021·江苏泰州市·中考模拟)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是( )A .点B .点C .点D .点【例3-3】如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心考点四: 垂直平分线与角平分线的性质 【例4-1】(2021·青海中考真题)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【例4-2】在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为 A B C D E F G ABC∆D E FGA .50°B .40°C .30°D .25°【例4-3】如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考点五: 全等三角形的性质与判定【例5-1】2020·湖北省直辖县级行政单位·中考真题)如图,已知和都是等腰三角形,,交于点F ,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【例5-2】(2021·陕西中考真题)如图,,,点在上,且.求证:.【例5-3】(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,,,ABC ADE 90BAC DAE ∠=∠=︒,BD CE AF BD CE =BF CF ⊥AF CAD ∠45AFE ∠=︒//BD AC BD BC =E BC BE AC =D ABC ∠=∠//AB CD A D ∠=∠,证明:.【例5-4】(2021·江苏淮安·中考真题)(知识再现)学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定理)”是判定直角三角形全等的特有方法.(简单应用)如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .(拓展延伸)在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上. (1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【例5-5】(2020·山东烟台市·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.考点六: 三角形全等综合【例6-1】(2022·北京)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC = BE CF =AE DF=αα(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【例6-2】(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:2AG CG DG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.第三部分:中考真题一.选择题1.(2022•鄂尔多斯)如图,15AOE ∠=︒,OE 平分AOB ∠,//DE OB 交OA 于点D ,EC OB ⊥,垂足为C .若2EC =,则OD 的长为( )A .2B .23C .4D .43+2.(2022•荆门)数学兴趣小组为测量学校A 与河对岸的科技馆B 之间的距离,在A 的同岸选取点C ,测得30AC =,45A ∠=︒,90C ∠=︒,如图,据此可求得A ,B 之间的距离为( )A .203B .60C .302D .303.(2022•湘西州)如图,在Rt ABC ∆中,90A ∠=︒,M 为BC 的中点,H 为AB 上一点,过点C 作//CG AB ,交HM 的延长线于点G ,若8AC =,6AB =,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .184.(2022•西宁)若长度是4,6,a 的三条线段能组成一个三角形,则a 的值可以是( )A .2B .5C .10D .117.(2022•西宁)如图,60MON ∠=︒,以点O 为圆心,适当长为半径画弧,交OM 于点A ,交ON 于点B ;分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点P ,画射线OP ;连接AB ,AP ,BP ,过点P 作PE OM ⊥于点E ,PF ON ⊥于点F .则以下结论错误的是( )A .AOB ∆是等边三角形B .PE PF =C .PAE PBF ∆≅∆D .四边形OAPB 是菱形5.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.5-B.4C.7D.86.(2022•大连)如图,在ABC∆中,90ACB∠=︒.分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若3AB=,则CD的长是()A.6B.3C.1.5D.1 7.(2022•青海)如图,在Rt ABC∆中,90ACB∠=︒,D是AB的中点,延长CB至点E,使BE BC=,连接DE,F为DE中点,连接BF.若16AC=,12BC=,则BF的长为( )A.5B.4C.6D.88.(2022•张家界)如图,点O是等边三角形ABC内一点,2OA=,1OB=,3OC=,则AOB∆与BOC∆的面积之和为()A 3B3C33D39.(2022•长沙)如图,在ABC∆中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若22AB=AM的长为()A.4B.2C3D2 10.(2022•海南)如图,直线//m n,ABC∆是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒11.(2022•黑龙江)如图,ABC∆中,AB AC=,AD平分BAC∠与BC相交于点D,点E 是AB的中点,点F是DC的中点,连接EF交AD于点P.若ABC∆的面积是24, 1.5PD=,则PE的长是()A .90ADC ∠=︒B .DE DF =C .AD BC = D .BD CD =12.(2022•广东)下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形13.(2022•贺州)如图,在Rt ABC ∆中,90C ∠=︒,56B ∠=︒,则A ∠的度数为( )A .34︒B .44︒C .124︒D .134︒14.(2022•永州)如图,在Rt ABC ∆中,90ABC ∠=︒,60C ∠=︒,点D 为边AC 的中点,2BD =,则BC 的长为( )A 3B .23C .2D .415.(2022•荆州)如图,直线12//l l ,AB AC =,40BAC ∠=︒,则12∠+∠的度数是( )A .60︒B .70︒C .80︒D .90︒16.(2022•宜昌)如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为( )A .25B .22C .19D .1817.(2022•岳阳)如图,已知//l AB ,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30︒B .40︒C .50︒D .60︒18.(2022•台湾)如图,ABC ∆中,D 点在AB 上,E 点在BC 上,DE 为AB 的中垂线.若B C ∠=∠,且90EAC ∠>︒,则根据图中标示的角,判断下列叙述何者正确?( )A .12∠=∠,13∠<∠B .12∠=∠,13∠>∠C .12∠≠∠,13∠<∠D .12∠≠∠,13∠>∠19.(2022•宜宾)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是( )A .5B .10C .15D .2020.(2022•广元)如图,在ABC ∆中,6BC =,8AC =,90C ∠=︒,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .2.5B .2C .3.5D .321.(2022•宜宾)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④22.(2022•杭州)如图,CD AB ⊥于点D ,已知ABC ∠是钝角,则( )A .线段CD 是ABC ∆的AC 边上的高线B .线段CD 是ABC ∆的AB 边上的高线C .线段AD 是ABC ∆的BC 边上的高线D .线段AD 是ABC ∆的AC 边上的高线二.填空题1.(2020·辽宁铁岭市·中考真题)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.2.(2020·辽宁营口市·中考真题)如图,△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.3.(2021·辽宁锦州·中考真题)如图,在△ABC 中,AC =4,∠A =60°,∠B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.4题4.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.5.(2020·湖北中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为_____.6.(2021·湖北十堰市·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且3AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是__________.7.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .三.解答题1.(2022铜仁)如图,点C 在BD 上,,,,⊥⊥⊥=AB BD ED BD AC CE AB CD .求证:ABC CDE △≌△.2.(2022福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .3.(2022广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.4.(2022大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.5.(2022云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .6.(2022梧州)如图,在ABCD 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG .求证:EF HG =.7.(2022遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长8.(2022贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.9.(2022安徽)已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .10.(2022玉林)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB AC = ②DB DC = ③BAD CAD ∠=∠若以其中两个等式作为已知条件,能否得到余下一个等式成立? 解决方案:探究ABD △与ACD △全等.问题解决:(1)当选择①②作为已知条件时,ABD △与ACD △全等吗?_____________(填“全等”或“不全等”),理由是_____________;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求ABD ACD △≌△的概率.11.(2022北部湾)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.。
中考数学精华复习三角形与全等三角形完美
第16讲┃ 三角形与全等三角形
11.如图16-8,给出下列四组条件: ①AB=DE,BC=EF,AC=DF; ②AB=DE,∠B=∠E,BC=EF; ③∠B=∠E,BC=EF,∠C=∠F; ④AC=DF,∠A=∠D,∠B=∠E; 其中能使△ABC≌△DEF的条件共有( D )
A.1组
B.2组
图16-8 C.3组
图16-4
[解析] 如图,根据题意可知∠5=90°, ∴∠3+∠4=90°,∴∠1+∠2=2∠5+∠3+∠4=2×90°+90° =270°.
第16讲┃ 三角形与全等三角形
考点3 全等三角形的定义及性质
定义 性质
如果两个三角形能够完全_重__合___,那么这 两个三角形全等,即对应边相__等____,对应
第16讲┃ 三角形与全等三角形
6.若一个三角形三个内角度数的比为2∶3∶4,那么这个三
角形是( B )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.等边三角形
第16讲┃ 三角形与全等三角形
7.如图16-4,一个直角三角形纸片,剪去直角后,得到一个四边 形,则∠1+∠2=___27_0____度.
考点2 三角形的边和角
三角形边 的关系
三角形的内角 和与外角和
三角形外 角性质
三角形任意两边之和__大_于_____第三 边,任意两边之差_小__于_____第三边 三角形内角和等于_1_8_0_°__,外角和为
_3_6_0_°__ ①三角形的一个外角__等_于___与它不相 邻的两个内角的和;②三角形的一个 外角大于与__它__不__相__邻_的__任何一个内角
_三__边___对应相等的两三角形全等 斜边和一条直角边对应相等的两个直角
2021年九年级数学中考复习——几何专题:全等三角形性质与判定(三)
2021年九年级数学中考复习——几何专题:全等三角形性质与判定(三)1.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连结CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DA=12,则ED的长是.2.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s 的速度由点B向点C运动,同时,点Q在线段AC上由点A向点C以4cm/s的速度运动.若P、Q两点分别从B、A两点同时出发,回答下列问题:(1)经过2s后,此时PB=cm,CQ=cm;(2)在(1)的条件下,证明:△BPD≌△CQP;(3)当△CPQ的周长为18cm时,求经过多少秒后,△CPQ为等腰三角形?3.已知:在△ABC中,AB=AC,点D、点E在边BC上,BD=CE,连接AD、AE.(1)如图1,求证:AD=AE;(2)如图2,当∠DAE=∠C=45°时,过点B作BF∥AC交AD的延长线于点F,在不添加任何辅助线的情况下,请直接写出图2中的四个等腰三角形,使写出的每个等腰三角形的顶角都等于45°.4.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:BE=AD;(2)求∠BFD的度数.5.若△ABC和△AED均为等腰三角形,且∠BAC=∠EAD=90°.(1)如图(1),点B是DE的中点,判定四边形BEAC的形状,并说明理由;(2)如图(2),若点G是EC的中点,连接GB并延长至点F,使CF=CD.求证:①EB=DC,②∠EBG=∠BFC.6.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,P A=PD,∠APD=90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,P A=PD,∠APD=90°.求的值.7.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)请直接写出AD,BE,DE之间的数量关系:.8.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D在边BC上(不与点B、C重合),BE⊥AD,垂足为E,过点C作CF⊥CE,交线段AD于点F.(1)试说明△CAF≌△CBE的理由;(2)数学老师在课堂上提出一个问题,如果EF=2AF,试说明CD=BD的理由.班级同学随后进行了热烈讨论,小明同学提出了自己的想法,可以取EF的中点H,联结CH,就能得出结论,你能否能根据小明同学的想法,写出CD=BD的理由.9.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若∠ACB=65°,求∠BDC的度数.10.如图,在等腰直角三角形ABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.(1)若AB=2,BF=3,求AD的长度;(2)G为AC中点,连接GF,GE,GB,求证:GE=GF.参考答案1.证明:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA,在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)解:∵△BCE≌△CAD,∴BE=DC=5,AD=CE=12,∴DE=CE﹣CD=12﹣5=7.故答案为:7.2.(1)解:当P,Q两点分别从B,A两点同时出发运动2秒时,有BP=2×2=4cm,AQ=4×2=8cm,则CP=BC﹣BP=10﹣4=6cm,∴CQ=AC﹣AQ=12﹣8=4cm,故答案为:4,4;(2)证明:∵D是AB的中点,∴BD=AB=6cm,∴BP=CQ,BD=CP,又∵△ABC中,AB=AC,∴∠B=∠C,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(3)解:设当P,Q两点同时出发运动t秒时,有BP=2t,CP=10﹣2t,CQ=12﹣4t,∴PQ=18﹣(10﹣2t)﹣(12﹣4t)=6t﹣4,要使△CPQ是等腰三角形,则可分为三种情况讨论:①当CP=CQ时,则有10﹣2t=12﹣4t,解得:t=1;②当PQ=PC时,则有6t﹣4=10﹣2t解得:t=;③当QP=QC时,则有6t﹣4=12﹣4t解得:t=;综上所述,当t=1s或s或s时,△CPQ是等腰三角形.3.(1)证明:∵AB=AC,∵∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵AD=AE,∴∠ADE=∠AED,∵BF∥AC,∴∠FBD=∠C=45°,∵∠ABC=∠C=∠DAE=45°,∠BDF=∠ADE,∴∠F=∠BDF,∠BEA=∠BAE,∠CDA=∠CAD,∴满足条件的等腰三角形有:△ABE,△ACD,△DAE,△DBF.4.(1)证明:∵△ABC为等边三角形,∴∠BAE=∠C=60°,AB=CA,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴BE=AD;(2)解:∵∠BFD=∠ABE+∠BAD,又∵△ABE≌△CAD,∴∠ABE=∠CAD.∴∠BFD=∠CAD+∠BAD=∠BAC=60°.5.解:(1)四边形BEAC是平行四边形,理由如下:∵△AED为等腰三角形,∠EAD=90°,B是DE的中点,∴∠E=∠BAE=45°,∠ABE=90°,∵△ABC是等腰三角形,∠BAC=90°,∴∠ABC=∠BAE=45°,∠ABE=∠BAC=90°,∴BC∥AE,AC∥BE,∴四边形BEAC是平行四边形;(2)①∵△ABC和△AED均为等腰三角形,∠BAC=∠EAD=90°,∴AE=AD,AB=AC,∠BAE=∠CAD,∴△AEB≌△ADC(SAS),∴BE=CD;②延长FG至点H,使GH=FG,∵G是EC的中点,∴EG=DC,又∵∠EGH=∠FGC,∴△EGH≌△CGF(SAS),∴∠BFC=∠H,CF=EH,∵CF=CD,CD=BE,∴EH=BE,∴∠H=∠EBG,∴∠EBG=∠BFC.6.证明:(1)∵∠B=∠APD=90°,∴∠BAP+∠APB=90°,∠APB+∠DPC=90°,∴∠BAP=∠DPC,又P A=PD,∠B=∠C=90°,∴△BAP≌△CPD(AAS),∴BP=CD,AB=PC,∴BC=BP+PC=AB+CD;(2)如图2,过点A作AE⊥BC于E,过点D作DF⊥BC于F,由(1)可知,EF=AE+DF,∵∠B=∠C=45°,AE⊥BC,DF⊥BC,∴∠B=∠BAE=45°,∠C=∠CDF=45°,∴BE=AE,CF=DF,AB=AE,CD=DF,∴BC=BE+EF+CF=2(AE+DF),∴==.7.证明:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA,在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)∵△BCE≌△CAD,∴BE=DC,AD=CE,∴AD=CE=CD+DE=BE+DE,故答案为:AD=BE+DE.8.解:(1)∵BE⊥AD,∴∠ACB=∠BED=90°,又∵∠ADC=∠BDE,∴∠CAF=∠CBE,∵CE⊥CF,∴∠ECF=∠ACB=90°,∴∠ACF=∠BCE,又∵AC=BC,∴△CAF≌△CBE(ASA);(2)如图,取EF的中点H,联结CH,∵△CAF≌△CBE,∴CF=CE,AF=BE,∴△CEF是等腰直角三角形,∵点H是EF中点,∴CH=FH=EH=EF,CH⊥EF,∵EF=2AF,∴CH=AF=FH=EH,∴CH=BE,又∵∠CDH=∠BDE,∠CHD=∠BED=90°,∴△CHD≌△BED(AAS),∴CD=BD.9.证明:(1)∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE和△ACD中,∴△ABE≌△ACD(ASA),∴AE=AD;(2)解:∵∠ACB=65°,AB=AC,∴∠ABC=∠ACB=65°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°,∵∠ABD=∠ACD,∠AOB=∠COD,∴∠BDC=∠BAC=50°.10.解:(1)∵DE⊥BE,AB⊥BE,∴DE∥AB,∴△ABC∽△DEC,∵∠ABC=90°,AB=BC,∴△CDE为等腰直角三角形,∵CE=BF=3,∴CD=3,∵AB=2,∴AC=2,∴AD=AC+CD=5;(2)证明:∵G是等腰直角△ABC斜边AC中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
续表
5. 线段的垂直平分线: (1)定义:经过某一条线段的中点,并且__垂__直____于这条线段的 直线,叫做这条线段的垂直平分线(又称中垂线). (2)性质定理:线段垂直平分线上的点到线段两端点的距离 __相__等____;反之,到一条线段两端点距离相等的点,在这条线 段的___垂__直__平__分__线________上.
第一部分 教材梳理
第四章 三角形
第16讲 全等三角形
目录
01 知识梳理 02 考点突破 03 变式诊断 04 分层训练
命题点 全等三角形的判定
近五年广东中考情况
2020
2019
2018
2017
2016
题20,3分 题10,1分 题22(1), 2分
题22(1),题10,1分 题23(2),Βιβλιοθήκη 4分题21(1),1分
2019
2018
2017
2016
题15,2分 线段的垂直平分线的 性质
题19(2),题20(2),题19(1),
1分
1分
1分
题21(1),
2分
知识梳理
1. 全等三角形的概念:能够完全__重__合____的两个三角形叫做 全等三角形.平移、翻折、旋转前后的三角形全等. 注:记两个全等三角形时,通常把表示对应顶点的字母写在对 应的位置上. 2. 全等三角形的性质:两个三角形全等时,对应边__相__等____, 对应角__相__等____,周长和面积__相__等____,对应线段(高、中线、 角平分线)__相__等____.
AD=AC, 在△ADE和△ACB中, ∠DAE=∠CAB,
AE=AB,
∴△ADE≌△ACB(SAS). ∴DE=CB.
变式诊断
4.(2018·大庆)如图1-16-4,在四边形ABCD中,∠B=∠C= 90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则 ∠MAB=( B ) A.30° B.35° C.45° D.60°
5.(2020·青海)如图1-16-5,在△ABC中,AB=AC=14 cm,AB的 垂直平分线MN交AC于点D,且△DBC的周长是24 cm,则 BC=___1_0____ cm.
6. (2020·鞍山)如图1-16-6,在四边形ABCD中,∠B=∠D= 90°,点E,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD .
考点三: 全等三角形的判定与性质(5年5考)
3. (2020·西藏)如图1-16-3,在△ABC中,D为BC边上的一点 ,AD=AC,以线段AD为边作△ADE,使得AE=AB,∠BAE=∠CAD. 求证:DE=CB.
证明:∵∠BAE=∠CAD, ∴∠BAE+∠BAD=∠CAD+ ∠BAD,即∠DAE=∠CAB.
(1)证明:在△BEF BE=CD,
和△CDA中, ∠B=∠1, BF=CA,
∴△BEF≌△CDA(SAS). ∴∠D=∠2.
(2)解:∵∠D=∠2,∠D=78°, ∴∠2=∠D=78°. ∵EF∥AC, ∴∠BAC=∠2=78°.
10. (2020·黄石改编)如图1-16-10,AB=AE,AB∥DE, ∠DAB=70°,∠E=40°.若∠B=30°,求证:AD=BC.
谢谢
证明:如答图1-17-1,连接AC.
AC=AC, 在△AEC与△AFC中, CE=CF,
AE=AF, ∴△AEC≌△AFC(SSS).
∴∠CAE=∠CAF. ∴AC平分∠DAB. 又∵∠B=∠D=90°, 答图1-16-1∴CB=CD.
分层训练
A组 7. (2020·湘潭)如图1-16-7,点P是∠AOC的角平分线上一点 ,PD⊥OA,垂足为点D,且PD=3,点M是射线OC上一动点,则PM 的最小值为_3_______.
考点突破 考点一:
角平分线的性质(5年未考)
1. (2020·怀化)如图1-16-1,在Rt△ABC中,∠B=90°,AD平
分∠BAC,交BC于点D,DE⊥AC,垂足为点E.若BD=3,则DE的长
为( A )
A.3
B.
C.2
D.6
考点二: 线段的垂直平分线的性质(5年4考)
2. (2020·十堰)如图1-16-2,在△ABC中,DE是AC的垂直平 分线.若AE=3,△ABD的周长为13,则△ABC的周长为________ . 19
续表
3. 三角形全等的判定定理: (1)边边边:三边对应相等的两个三角形全等(可简写成 “SSS”). (2)边角边:两边和它们的__夹__角____对应相等的两个三角形全等 (可简写成“SAS”). (3)角边角:两角和它们的__夹__边____对应相等的两个三角形全等 (可简写成“ASA”).
题24(1),1分
题24(3),
1分
题24(2),1分
1分
题25(2),
1分
全等三角形的性质
题20,1分 题10,1分 题22(2), 题21(1),题23(2),
题22(1),
1分
1分
1分
1分
题24(1), 题24(2),题24(3),
1分
1分
2分
题25(2),
1分
续表
近五年广东中考情况
命题点
2020
证明:∵AB∥DE, ∠E=40°, ∴∠EAB=∠E=40°,即 ∠DAE=∠DAB-∠EAB=70°-40°=30°. 在△ADE与△BCA中,
∠DAE=∠B, EA=AB, ∠E=∠BAC, ∴△ADE≌△BCA(ASA).
∴AD=BC.
C组 11. (2020·徐州)如图1-16-11,AC⊥BC,DC⊥EC,AC=BC, DC=EC,AE与BD交于点F. (1)求证:AE=BD; (2)求∠AFD的度数.
8. (2020·枣庄)如图1-16-8,在△ABC中,AB的垂直平分线交 AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长 为( B ) A.8 B.11 C.16 D.17
B组 9. (2020·镇江)如图1-16-9,AC是四边形ABCD的对角线, ∠1=∠B,点E,F分别在AB,BC上,BE=CD,BF=CA,连接EF. (1)求证:∠D=∠2; (2)若EF∥AC,∠D=78°, 求∠BAC的度数.
(1)证明:∵AC⊥BC,DC⊥EC, ∴∠ACB=∠DCE=90°. ∴∠ACB+∠BCE=∠DCE+∠BCE,即∠ACE=∠BCD.
AC=BC, 在△ACE和△BCD中, ∠ACE=∠BCD,
CE=CD, ∴△ACE≌△BCD(SAS). ∴AE=BD.
(2)解:如答图1-16-2,设BC与AE交于点N. ∵∠ACB=90°,∴∠A+∠ANC=90°. ∵△ACE≌△BCD, ∴∠A=∠B. ∵∠ANC=∠BNF, ∴∠AFD=∠B+∠BNF=∠A+∠ANC=90°.
续表
(4)角角边:两角和其中一个角的对边分别相等的两个三角形全 等(可简写成“___A_A_S___”). (5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角 形全等(可简写成“HL”). 4. 角的平分线的性质定理:角平分线上的点到角的两边的 __距__离____相等.反之,角的内部到角的两边距离相等的点,在角 的_平__分__线___上.