中考数学模拟试卷(2)及答案
2023年山东省临沂市中考数学模拟试卷(二)(含解析)
2023年山东省临沂市中考数学模拟试卷(二)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. −2023的绝对值是( )A. −12023B. −2023C. 12023D. 20232. 下列图形中,不是中心对称图形的是( )A. 平行四边形B. 圆C. 等边三角形D. 正六边形3. 如图,在数轴上,点A 、B 分别表示数a 、b ,且a +b =0.若A 、B 两点间的距离为6,则点A 表示的数为( )A. −6B. 6C. −3D. 34.某几何体的三视图如图所示,这个几何体是( )A.B.C.D.5. 不等式组{2−x >0x−12≥−1的解集在数轴上表示正确的是( )A. B.C. D.6.如图,将直角三角板放置在矩形纸片上,若∠1=48°,则∠2的度数为( )A. 42°B. 48°C. 52°D. 60°7. 下列关于x的一元二次方程没有实数根的是( )A. x2+2x−5=0B. x2−6=xC. 5x2+1=5D. x2−2x+2=08. 已知二元一次方程组{2x−y=5x−2y=1,则x−y的值为( )A. 2B. −2C. 6D. −69. 不透明袋子中装有3个红球和2个白球,这些球除了颜色外都相同.从袋子中随机地摸出2个球,则这两个球都是红球的概率是( )A. 25B. 35C. 23D. 31010.如图,△ABC∽△ADE,S△A B C:S四边形B D E C=1:3,BC=2,则DE的长为( )A. 6B. 22C. 32D. 4211. 某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为( )A. 160x +400(1+20%)x=18 B. 160x+400−160(1+20%)x=18C. 160x +400−16020%x=18 D. 400x+400−160(1+20%)x=1812. 如图,点A,B在反比例函数y=kx(k>0,x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,BE⊥y轴于点E,连接AE.若OE=1,OC=23OD,AC=AE,则k的值为( )A. 2B. 322C. 94D. 2 2二、填空题(本大题共4小题,共12.0分)13. 比较大小: 10232.(填“>”,“<”或“=”)14. 分解因式4x 2−4x +1=______.15.如图,把△ABC 沿AC 方向平移1cm 得到△FDE ,AE =6c m ,则FC 的长是 cm .16.如图,⊙O 是等边△ABC 的外接圆,点D 是弧AC 上一动点(不与A ,C 重合),下列结论:①∠ADB =∠BDC ;②DA =DC ;③当DB 最长时,DB =2DC ;④DA +DC =DB ,其中一定正确的结论有______.(填写结论序号)三、解答题(本大题共7小题,共72.0分。
2023年山东省济南市中考数学模拟试卷(二)及答案解析
2023年山东省济南市中考数学模拟试卷(二)一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)的倒数是()A.2003B.﹣2003C.D.﹣2.(4分)如图所示的几何体,其俯视图是()A.B.C.D.3.(4分)“神舟”五号飞船总重7990000克,用科学记数法表示为()A.0.799×107克B.8×106克C.8.0×106克D.7.99×106克4.(4分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.(4分)如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=55°时,∠2的度数为()A.25°B.35°C.45°D.55°6.(4分)化简:的结果是()A.﹣mn+m B.﹣m+1C.﹣m﹣1D.﹣mn﹣n 7.(4分)某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是()A.1~2月份利润的增长快于2~3月份分利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元8.(4分)如图,在矩形ABCD中,AB=4,BC=6,点E是BC的中点,连接AE,将△ABE 沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()A.B.C.D.9.(4分)如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C 的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣5 10.(4分)二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5B.﹣5<t<3C.3<t≤4D.﹣5<t≤4二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.(4分)分解因式:xy2﹣4x=.12.(4分)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.13.(4分)计算:=.14.(4分)如图,已知AC为⊙O的直径,BC为⊙O的切线,且BC=AC,连接线段AB,与⊙O交于点D,若AC=4cm,则阴影部分的面积为.15.(4分)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC 的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是.16.(4分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③CF=CD;④AF=AB+CF.其中正确结论的结论:(填序号)三、解答题(本大题共10个小题,共86分)17.(6分)计算:()﹣1﹣(π﹣2)0+||+2sin60°.18.(6分)解不等式组:,并写出它的所有整数解.19.(6分)如图,在▱ABCD中,点E是AB边的中点,DE的延长线与CB的延长线交于点F.求证:BC=BF.20.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛.初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分)A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x <100并绘制出如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)参加初赛的选手共有名;扇形统计图中,E组对应的圆心角是°;(2)现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.21.(8分)为提高数学学习的兴趣,某学校数学社团利用周日举行了测量旗杆高度的活动.已知旗杆的底座高1米,长8米,宽6米,旗杆位于底座中心.测量方法如下:在地面上找一点D,用测角仪测出看旗杆AB顶B的仰角为67.4°,沿DE方向走4.8米到达C地,再次测得看旗杆顶B的仰角为73.5°.(1)求旗杆的高度.(2)已知夏至日时该地的最大太阳高度角约为78°,试问夏至日旗杆的影子能不能落在台阶上?(太阳高度角是指某地太阳光线与地平线的夹角.结果精确到0.1m,参考数据:tan67.4°≈2.4,tan73.5°≈24/7,tan22.6°≈5/12,tan16.5°≈7/24,tan12°≈0.21)22.(8分)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.23.(10分)“绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元.(1)求柏树和杉树的单价各是多少元;(2)本次绿化荒山,需购买柏树和杉树共80棵,且柏树的棵数不少于杉树的3倍,要使此次购树费用最少,柏树和杉树各需购买多少棵?24.(10分)如图,已知点A(5,0),B(0,5),把一个直角三角尺DEF放在△OAB内,使其斜边FD在线段AB上,三角尺可沿着线段AB上下滑动,其中∠EFD=45°,ED=2,点G为边FD的中点.(1)求直线AB的解析式;(2)如图1,当点D与点A重合时,求经过点G的反比例函数y=(k≠0)的解析式;(3)在三角尺滑动的过程中,经过点G的反比例函数的图象能否同时经过点F?如果能,求出此时反比例函数的解析式,如果不能,说明理由.25.(12分)已知△ABC中,∠ACB=90°,点D是AB上的一点,过点A作AE⊥AB,过点C作CE⊥CD,且AE与CE相交于点E.(1)如图1,当∠ABC=45°,试猜想CE与CD的数量关系:;(2)如图2,当∠ABC=30°,点D在BA的延长线上,连接DE,请探究以下问题:①CD与CE的数量关系是否发生变化?如无变化,请给予证明;如有变化,先猜想CD与CE的数量关系,再给予证明;②若AC=2,四边形ACED的面积为3,试求BD的值.26.(12分)如图,抛物线y=x2﹣bx+c过点B(3,0),C(0,﹣3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=x2﹣bx+c对称轴的对称点为E点,连接BC,BE,求∠CBE的正切值;(3)在(2)的条件下,点M是抛物线对称轴上且在CE上方的一点,是否存在点M使△DMB和△BCE相似?若存在,求点M坐标;若不存在,请说明理由.2023年山东省济南市中考数学模拟试卷(二)参考答案与试题解析一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.【分析】乘积是1的两数互为倒数,由此即可得到答案.【解答】解:的倒数是2003.故选:A.【点评】本题考查倒数,关键是掌握倒数的定义.2.【分析】根据简单组合体的三视图的画法画出它的俯视图即可.【解答】解:这个组合体的俯视图为:故选:D.【点评】本题考查简单组合体的三视图,理解视图的定义,掌握简单组合体的三视图的画法和形状是正确解答的前提.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7990000用科学记数法表示为7.99×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、该图形既不是轴对称图形,也不是中心对称图形,故A不符合题意;B、该图形既是轴对称图形又是中心对称图形,故B符合题意;C、该图形既不是轴对称图形,也不是中心对称图形,故C不符合题意;D、该图形是轴对称图形,不是中心对称图形,故不D符合题意.故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=55°,∴∠3=90°﹣55°=35°.∵直尺的两边互相平行,∴∠2=∠3=35°.故选:B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.【分析】原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.【解答】解:原式=﹣•=﹣(m+1)=﹣m﹣1.故选:C.【点评】此题考查了分式的混合运算,分式的乘除运算关键是约分,约分的关键是找公因式.7.【分析】解决本题需要从统计图获取信息,再对选项一一分析,选择正确结果.【解答】解:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;B、1~4月份利润的极差为130﹣100=30万元,1~5月份利润的极差为130﹣100=30万元,极差相同,故选项错误;C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,故选项错误.故选:C.【点评】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况.8.【分析】过E作EH⊥CF于H,由折叠的性质得BE=EF,∠BEA=∠FEA,由点E是BC 的中点,得到CE=BE,得到△EFC是等腰三角形,根据等腰三角形的性质得到∠FEH =∠CEH,推出△ABE∽△EHC,求得EH=,结果可求sin∠ECF==.【解答】解:过E作EH⊥CF于H,由折叠的性质得:BE=EF,∠BEA=∠FEA,∵点E是BC的中点,∴CE=BE,∴EF=CE,∴∠FEH=∠CEH,∴∠AEB+∠CEH=90°,在矩形ABCD中,∵∠B=90°,∴∠BAE+∠BEA=90°,∴∠BAE=∠CEH,∠B=∠EHC,∴△ABE∽△EHC,∴,∵AE==5,∴EH=,∴sin∠ECF=sin∠ECH==,(方法二,可以证明∠AEB=∠ECF,求出AE=10,sin∠ECF=sin∠AEB=)故选:D.【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.9.【分析】过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,通过解直角三角形可求出BM,AM,CN,DE的长,再结合CD=CN+EN﹣DE即可求出结论.【解答】解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.【点评】本题考查了解直角三角形﹣仰角俯角问题及解直角三角形﹣坡度坡脚问题,通过解直角三角形求出BM,AM,CN,DE的长是解题的关键.10.【分析】如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y=t的交点的横坐标,利用图象法即可解决问题.【解答】解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx 与直线y=t的交点的横坐标,由题意可知:m=4,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.【点评】本题考查抛物线与x轴的交点、一元二次方程等知识,解题的关键是学会利用图象法解决问题,画出图象是解决问题的关键,属于中考选择题中的压轴题.二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在答题卡的横线上.)11.【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】利用频率估计概率,可得到摸到红色、黄色球的概率为10%和15%,则摸到蓝球的概率为75%,然后根据概率公式可计算出箱子中蓝色球的个数.【解答】解:根据题意得摸到红色、黄色球的概率为10%和15%,所以摸到蓝球的概率为75%,因为20×75%=15(个),所以可估计箱子中蓝色球的个数为15个.故答案为15.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.13.【分析】首先找到最简公分母把式子通分,然后进行加减运算.【解答】解:==.故答案为.【点评】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.14.【分析】由切线的性质和圆周角定理可得∠ACB=90°,∠ADC=90°,由等腰直角三角形的性质可得AD=DB=CD,AO=CO=DO,AC⊥OD,由面积和差关系可求解.【解答】解:如图,连接OD,CD,∵BC为⊙O的切线,AC为⊙O的直径,∴∠ACB=90°,∠ADC=90°,又∵AC=BC,∴AD=DB=CD,∵AO=CO=2cm,∴AC⊥OD,OD=AO=CO=2cm,∴∠COD=90°,∴S阴影=S△ACB﹣S△AOD﹣S扇形COD=×4×4﹣×2×2﹣=(6﹣π)cm2,故答案为:(6﹣π)cm2.【点评】本题考查了切线的性质,圆周角定理,扇形的面积公式等知识,灵活运用这些性质解决问题是解题的关键.15.【分析】过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正切等于对边比邻边列式计算即可得解.【解答】解:如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴DE=3,∴tan∠α=.故答案为:.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,作辅助线构造出全等三角形是解题的关键.16.【分析】①根据题目中的条件和正方形的性质,利用锐角三角函数可以得到∠BAE是否等于30°;②根据题目中的条件,可以求得∠AEB和∠CFE的正切值,从而可以得到射线FE是否为∠AFC的角平分线;③根据正方形的性质和相似三角形的判定和性质定理即可得到结论;④根据题目中的条件和全等三角形的判定与性质,可以得到AF=AB+CF是否成立.【解答】解:在正方形ABCD中,E是BC的中点,∴AB=BC,BE=AB,∴tan A==,∵tan30°=,∴∠BAE≠30°,故①错误;∵∠B=∠C=90°,AE⊥EF,∴∠BAE+∠BEA=90°,∠BEA+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF,∵AB=2BE=2CE,∴EC=2CF,设CF=a,则EC=BE=2a,AB=4a,∴AE=2a,EF=a,tan∠CFE=2,∴tan∠AFE==2,∴∠AFE=∠CFE,即射线FE是∠AFC的角平分线,故②正确;∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE⊥EF,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF,在△BAE和△CEF中,,∴△BAE∽△CEF,∴,∴BE=CE=2CF,∵BE=CF=BC=CD,即2CF=CD,∴CF=CD,故③选项的结论是错误;过点E作AF的垂线于点G,在△ABE和△AGE中,,∴△ABE≌△AGE(AAS),∴AG=AB,GE=BE=CE,在Rt△EFG和Rt△EFC中,,∴Rt△EFG≌Rt△EFC(HL),∴GF=CF,∴AB+CF=AG+GF=AF,故④选项的结论是正确.故答案为:②④.【点评】此题考查了相似三角形的判定与性质,直角三角形的性质以及正方形的性质.熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(本大题共10个小题,共86分)17.【分析】直接利用负指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=2﹣1+2﹣+2×=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】分别求解两个不等式,得到不等式组的解集,写出整数解即可.【解答】解:解不等式①得:x<3,解不等式②得:x≥1,∴原不等式组的解集为:1≤x<3,∴整数解为1,2.【点评】本题考查了一元一次不等式组的整数解,解一元一次不等式组,掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.19.【分析】首先由平行四边形的性质可得AD=BC,再由全等三角形的判定定理AAS可证明△ADE≌△BFE由此可得AD=BF,进而可证明BC=BF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,,∴△ADE≌△BFE(AAS),∴AD=BF,∴BC=BF.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边、对顶角以及公共角.20.【分析】(1)用组类的人数除以它所占的百分比得到调查的总人数;然后用360°乘以E 组所占的百分比得到扇形统计图中“E”所在扇形圆心角的度数;(2)通过树状图展示12种等可能的结果数,找出恰好选中一名男生和一名女生的结果数,然后根据概率公式求解.【解答】解:(1)参加初赛的选手的人数为8÷20%=40(人);扇形统计图中,E组对应的圆心角=360°×=54°;故答案为40,54;(2)画树状图为:共有12种等可能的结果数,其中恰好选中一名男生和一名女生的结果数为8,所以恰好选中一名男生和一名女生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.【分析】(1)设旗杆的高度为x米,则EB=(x+1)米,利用锐角三角函数列式计算即可;(2)设夏至日旗杆的影长为y米,根据锐角三角函数解得y的值,然后根据旗杆的底座长8米,旗杆位于底座中心.根据8÷2=4,比较y与4的大小,进而可以解决问题.【解答】解:(1)设旗杆的高度为x米,则EB=(x+1)米,根据题意可知:∠BDE=67.4°,∠BCE=73.5°.DC=4.8米,∴tan∠BDE==≈2.4,tan∠BCE==≈,∴≈2.4,解得x=37.4,∴旗杆的高度为37.4米;(2)∵旗杆的高度为37.4米,则BE=38.4米,设夏至日旗杆的影长为y米,∵tan12°=y÷BE≈0.21,解得y=0.21×38.4≈8.1,∵旗杆的底座长8米,宽6米,∴底座的对角线是10米,∴8.1>5,∴夏至日旗杆的影子不能落在台阶上.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题、平行投影、三角函数;借助仰角构造直角三角形并解直角三角形是解决问题的关键.22.【分析】(1)连接OC,根据切线的性质可得∠OCD=90°,再根据AD⊥DC,和半径线段即可证明AC是∠DAB的角平分线;(2)利用圆周角定理得到∠ACB=90°,再证明Rt△ADC∽Rt△ACB,对应边成比例即可求出AC的长.【解答】解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD=90°,∴∠ACD+∠ACO=90°,∵AD⊥DC,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠ACO=∠DAC,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OAC,∴AC是∠DAB的角平分线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠D=∠ACB=90°,∵∠DAC=∠BAC,∴Rt△ADC∽Rt△ACB,∴=,∴AC2=AD•AB=2×3=6,∴AC=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.23.【分析】(1)设柏树的单价为x元/棵,杉树的单价是y元/棵,根据“购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元”列出二元一次方程组,求解即可;(2)设购买柏树a棵,则杉树为(80﹣a)棵,购树总费用为w元,根据题意求出w与a的函数关系式,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,再根据a是正整数确定出购买方案.【解答】解:(1)设柏树的单价为x元/棵,杉树的单价是y元/棵,根据题意得:,解得,答:柏树的单价为200元/棵,杉树的单价是150元/棵;(2)设购买柏树a棵,则杉树为(80﹣a)棵,购树总费用为w元,根据题意:a≥3(80﹣a),解得a≥60,w=200a+150(80﹣a)=50a+12000,∵50>0,∴w随a的增大而增大,又∵a为整数,∴当a=60时,w=15000,最小此时,80﹣a=20,即购买柏树60棵,杉树20棵时,总费用最小为15000元.【点评】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.24.【分析】(1)由A、B点的坐标,利用待定系数法可求得直线AB的解析式;(2)由条件可求得E点坐标,则可求得F点的坐标,利用三角形中位线定理可求得G 点坐标,则可求得反比例函数解析式;(3)可设出F点坐标,则可表示出G点坐标,代入反比例函数解析式进行判断即可.【解答】解:(1)设直线AB的解析式为y=ax+b,把A、B坐标代入可得,解得,∴直线AB的解析式为y=﹣x+5;(2)∵A(5,0),∴OA=5,当D与A重合时,则OE=OD﹣DE=5﹣2=3,∵∠EFD=45°,∴EF=DE=2,∵F(3,2),D(5,0),∵G为DF的中点,∴G(4,1),∴k=4×1=4,∴经过点G的反比例函数的解析式为y=;(3)设F(t,﹣t+5),则D点横坐标为t+2,代入直线AB解析式可得y=﹣(t+2)+5=﹣t+3,∴D(t+2,﹣t+3),∵G为DF中点,∴G(t+1,﹣t+4),若反比例函数同时过G、F点,则可得t(﹣t+5)=(t+1)(﹣t+4),解得t=2,此时F点坐标为(2,3),设过F、G的反比例函数解析式为y=,则s=2×3=6,∴经过点G的反比例函数的图象能同时经过点F,其函数解析式为y=.【点评】本题为反比例函数的综合应用,涉及待定系数法、等腰直角三角形的性质、三角形中位线定理等知识.在(1)中注意待定系数法的应用,在(2)中求得G点坐标是解题的关键,注意中点坐标的求法,在(3)中用t分别表示出F、G的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.【分析】(1)结论:CE=CD.证明△BCD≌△ACE(ASA)可得结论.(2)①结论有变化.CD=CE.证明△BCD∽△ACE可得结论.②如图2中,过点C作CH⊥AB于H.设EC=a,则CD=a,根据四边形ACED的面积为3,构建方程求出a即可解决问题.【解答】解:(1)结论:CE=CD.理由:如图1中,∵∠ACB=90°,∠B=45°,∴∠B=∠CAB=45°,∴CA=CB,∵AE⊥BA,CE⊥CD,∴∠ACB=∠ECD=∠BAE=90°,∴∠BCD=∠ACE,∠CAE=∠B=45°,∴△BCD≌△ACE(ASA),∴CD=CE.故答案为CE=CD.(2)①结论有变化.CD=CE.理由:如图2中,∵∠ACB=90°,∠B=30°,∴∠BAC=60°,BC=AC,∵AE⊥BA,CE⊥CD,∴∠ACB=∠ECD=∠BAE=90°,∴∠BCD=∠ACE,∠CAE=∠B=30°,∴△BCD∽△ACE,∴==,∴CD=CE.②如图2中,过点C作CH⊥AB于H.设EC=a,则CD=a,∵AC=2,∠ACH=30°,∠CHA=90°,∴AH=AC=1,CH=AH=,∴DH==,∴AD=﹣1,=3,∵S四边形ACED+S△ECD=3,∴S△ACD∴×(﹣1)•+•a•a=3,整理得:a4﹣17a2+52=0,∴a2=4或13(舍弃),∵a>0,∴a=2,∴DH=3,∵BH=CH=3,∴BD=BH+DH=6.【点评】本题属于四边形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.26.【分析】(1)设抛物线的解析式为y=(x+3)(x+n),将点C的坐标代入可求得n的值,则可得到抛物线的解析式,然后利用配方法可求得抛物线的顶点坐标;(2)过点E作ED⊥BC,垂足为D.由题意可得到△OBC和△CDE均为等腰直角三角形,然后求得CE、BC、DE的长,最后利用锐角三角函数的定义求解即可;(3)先证明tan∠FDB=tan∠CBE,从而得到∠FDB=∠CBE,当=或当∠BMD =∠BCE=45°时,△DMB和△BCE相似.【解答】解:(1)设抛物线的解析式为y=(x+3)(x+n),将点C的坐标代入得:3n=﹣3,解得n=﹣1.∴抛物线的解析式为y=(x+3)(x﹣1)即y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4).(2)如图1所示:过点E作ED⊥BC,垂足为D.∵B(3,0),C(0,﹣3),∴OC=OB=3.∴∠OCB=∠OBC=45°,BC=3∵点E与点C关于抛物线的对称轴对称,∴CE⊥OC,∴∠DCE=45°.∵ED⊥CD,∴△DEB为等腰直角三角形.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为x=1.∴CE=2.∴CD=ED=.∴BD=BC﹣CD=2.∴tan∠CBE==.(3)如图2所示:∵B(3,0),D(1,﹣4),∴A(﹣1,0),F(1,0).∴FB=2,DF=4.∴tan ∠FDB =.∴tan ∠FDB =tan ∠CBE .∴∠FDB =∠CBE .∴当=时,△BCE ∽△DBM .∴=,解得:MD =.∴点M 的纵坐标=﹣4+=﹣.∴M (1,﹣).如图3所示:∵∠FDB =∠CBE ,∴当∠BMD =∠BCE =45°时,△DMB ∽△BCE .∴FM =FB =2.∴M (1,2).综上所述,当点M 的坐标为(1,﹣)或(1,2)时,△DMB 和△BCE 相似.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、等腰直角三角形的判定和性质、相似三角形的判定,找出△DMB 和△BCE 相似的条件是解答本题的关键。
2024年海南省海南中学中考数学模拟试卷(二)(含答案)
2024年海南省海南中学中考数学模拟试卷(二)一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.实数3的绝对值是( )A. −3B. ±3C. 3D. 132.“致中和,天地位焉,万物育焉.”(出自《礼记》)对称美是我国古人和谐平衡思想的体现,常被用于建筑、绘画、标识等设计上.下列数学经典图形中,是轴对称图形的是( )A. B. C. D.3.新能源汽车已经成为全球汽车产业转型发展的主要方向.据中国乘用车协会统计,2024年1−4月我国新能源汽车销量为294万辆,数据2940000用科学记数法表示为( )A. 2.94×106B. 2.94×107C. 29.4×105D. 294×1044.四个大小相同的正方体搭成的几何体如图所示,它的主视图是( )A. B. C. D.5.某校举行“遵守交通安全,从我做起”演讲比赛,7位评委给选手甲的评分如下:91,95,89,93,88,94,95,则这组数据的众数和中位数分别是( )A. 95,92B. 93,93C. 93,92D. 95,936.下列计算正确的是( )A. (a2)3=a6B. a6÷a2=a3C. a3⋅a4=a12D. a2−a=a7.已知蓄电池的电压为定值,使用某蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则当电阻为6Ω时,电流为( )A. 3AB. 4AC. 6AD. 8A8.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.以点A为圆心,适当长MN的为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12长为半径画弧,两弧交于点P,射线AP与BC交于点D,DE⊥AB,垂足为E.则BE为( )A. 3B. 4C. 4.5D. 59.分式方程xx−2=12−x的解是( )A. x=−1B. x=1C. x=2D. x=310.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°11.如图,在平面直角坐标系中,菱形OABC的边长为26,点B在x轴的正半轴上,且∠AOC=60°,将菱形OABC绕原点O逆时针方向旋转60°,得到四边形OA′B′C′(点A′与点C重合),则点B′的坐标是( )A. (36,32)B. (32,36)C. (32,62)D. (62,36)12.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为( )A. 25cm2B. 1003cm2 C. 50cm2D. 75cm2二、填空题:本题共4小题,每小题3分,共12分。
台州市三门县中考数学模拟试卷(二)及答案解析
浙江省台州市三门县中考数学模拟试卷(二)一.选择题(共10小题)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣2.函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤33.已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A. B.C.D.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.05.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B. C. D.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.129.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.610.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:二.填空题(共6小题)11.因式分解:x3﹣xy2=.12.正十边形的一个外角为度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.三.解答题(共7小题)17.计算:18.解方程:x2﹣5x﹣6=0.19.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B (1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.20.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B 处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.22.我县实施新课程后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D 类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.浙江省台州市三门县中考数学模拟试卷(二)参考答案与试题解析一.选择题(共10小题)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣【考点】绝对值.【分析】利用绝对值的定义求解即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤3【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件,即根号下大于等于0,求出即可.【解答】解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.【点评】此题主要考查了函数变量的取值范围,此题是中考考查重点,同学们应重点掌握,特别注意根号下可以等于0这一条件.3.已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A. B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】因为k的符号不确定,所以应根据k﹣1的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,k﹣1<0,反比例函数y=的图象在二,四象限,一次函数y=kx+k﹣1的图象过二、三、四象限,故选项C错误,符合题意;而选项D正确,不合题意;当k>0时,k﹣1的符号不确定,则反比例函数y=的图象在一、三象限,一次函数y=kx+k﹣1的图象过一、三、四象限或一、二、三象限故选项A,B正确,不符合题意.故选C.【点评】本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.0【考点】二次函数的最值.【分析】由图可知,x≤1.5时,y随x的增大而减小,可知在﹣1≤x≤0范围内,x=0时取得最大值,然后进行计算即可得解.【解答】解:∵x≤1.5时,y随x的增大而减小,∴当﹣1≤x≤0时,x=0取得最大值,为y=2.故选C.【点评】本题考查了二次函数的最值问题,主要利用了二次函数的增减性求最值,准确识图是解题的关键.5.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处【考点】三角形的外接圆与外心.【专题】应用题;压轴题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:三角形三边垂直平分线的交点到三个顶点的距离相等.故选D.【点评】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=【考点】由实际问题抽象出分式方程.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.【解答】解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,﹣1.5=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B. C. D.【考点】锐角三角函数的定义;勾股定理的逆定理.【专题】常规题型.【分析】找出OB边上的格点C,连接AC,利用勾股定理求出AO、AC、CO的长度,再利用勾股定理逆定理证明△AOC是直角三角形,然后根据余弦=计算即可得解.【解答】解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO==2,AC==,OC==,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB===.故选B.【点评】本题考查了锐角三角函数的定义,勾股定理,勾股定理逆定理,找出格点C并作辅助线构造出直角三角形是解题的关键.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.12【考点】圆的综合题.【分析】易知直线y=kx﹣3k+4过定点D(3,4),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【解答】解:对于直线y=kx﹣3k+4,当x=3时,y=4,故直线y=kx﹣3k+4恒经过点(3,4),记为点D.过点D作DH⊥x轴于点H,则有OH=3,DH=4,OD==5.∵点A(13,0),∴OA=13,∴OB=OA=13.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=2×12=24.故选:B.【点评】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(3,4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.9.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.6【考点】反比例函数综合题.【专题】计算题.【分析】先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数的图象上,可得到A点坐标为(﹣,b),B点坐标为(,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即A点坐标为(﹣,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OP=•b=3.故选:A.【点评】本题考查了点在函数图象上,点的横纵坐标满足函数图象的解析式.也考查了与坐标轴平行的直线上的点的坐标特点以及三角形的面积公式.10.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【考点】正多边形和圆;勾股定理.【专题】计算题;压轴题.【分析】先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.【解答】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD==,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=,∴⊙M的面积是π×()2=π,∴扇形和圆形纸板的面积比是π÷(π)=.故选:A.【点评】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.二.填空题(共6小题)11.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.正十边形的一个外角为36度.【考点】多边形内角与外角.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出答案.【解答】解:正十边形的一个外角为360÷10=36度.【点评】本题主要考查了正多边形的性质:正多边形的各个外角相等,外角和是360度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是6.【考点】频数与频率.【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【解答】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为:6.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总数,各小组频率之和等于1.频率、频数的关系:频率=频数÷数据总数.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是π.【考点】弧长的计算;旋转的性质.【分析】仔细观察顶点O经过的路线可得,顶点O到O′所经过的路线可以分为三段,分别求出三段的长,再求出其和即可.【解答】解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA′=AB的弧长;第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°.所以,O点经过的路线总长S=π+π+π=π.故答案是:.【点评】本题考查了旋转的性质,弧长的计算,根据题意,准确分析得到三段的运动过程是解题的关键.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是<t<3.【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】根据点P的横坐标表示出AB,由点C的横坐标大于3列出不等式求解即可.【解答】解:∵点P(t,0),AB∥y轴,∴点A(t, t),B(t,﹣t),∴AB=|t﹣(﹣t)|=|t|,∵t>0时,点C的横坐标为t+t=t,∵点(2,0)在正方形ABCD内部,∴t>3,且t<3,解得t>且t<3,∴<t<3;故答案为:<t<3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,正方形的性质;由点C的横坐标大于3列出不等式求解是解题的关键.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【考点】矩形的性质;平行四边形的判定与性质.【专题】计算题;压轴题.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.【点评】本题考查了矩形的性质,平行四边形的判定与性质,作出辅助线并证明出四边形EGHF是平行四边形是解题的关键.三.解答题(共7小题)17.计算:【考点】实数的运算.【分析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2=.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:x2﹣5x﹣6=0.【考点】解一元二次方程-因式分解法.【分析】把方程左边进行因式分解得到(x﹣6)(x+1)=0,则方程就可化为两个一元一次方程x ﹣6=0,或x+1=0,解两个一元一次方程即可.【解答】解:x2﹣5x﹣6=0,∴(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x1=6,x2=﹣1.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.19.如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,其中点A (5,4),B (1,3),将△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1.(1)画出△A 1OB 1;(2)在旋转过程中点B 所经过的路径长为 π ;(3)求在旋转过程中线段AB 、BO 扫过的图形的面积之和.【考点】作图-旋转变换;勾股定理;弧长的计算;扇形面积的计算.【专题】作图题.【分析】(1)根据网格结构找出点A 、B 绕点O 逆时针旋转90°后的对应点A 1、B 1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB ,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA ,再根据AB 所扫过的面积=S 扇形A1OA +S △A1B1O ﹣S 扇形B1OB ﹣S △AOB =S 扇形A1OA ﹣S 扇形B1OB 求解,再求出BO 扫过的面积=S 扇形B1OB ,然后计算即可得解. 【解答】解:(1)△A 1OB 1如图所示;(2)由勾股定理得,BO==, 所以,点B 所经过的路径长==π;故答案为:π.(3)由勾股定理得,OA==, ∵AB 所扫过的面积=S 扇形A1OA +S △A1B1O ﹣S 扇形B1OB ﹣S △AOB =S 扇形A1OA ﹣S 扇形B1OB , BO 扫过的面积=S 扇形B1OB ,∴线段AB 、BO 扫过的图形的面积之和=S 扇形A1OA ﹣S 扇形B1OB +S 扇形B1OB ,=S 扇形A1OA , =, =π.【点评】本题考查了利用旋转变换作图,弧长公式,扇形的面积,勾股定理,熟练掌握网格结构准确找出对应点的位置是解题的关键,难点在于(3)表示出两线段扫过的面积之和等于扇形的面积.20.如图,⊙O 中,FG 、AC 是直径,AB 是弦,FG ⊥AB ,垂足为点P ,过点C 的直线交AB 的延长线于点D ,交GF 的延长线于点E ,已知AB=4,⊙O 的半径为.(1)分别求出线段AP 、CB 的长;(2)如果OE=5,求证:DE 是⊙O 的切线;(3)如果tan ∠E=,求DE 的长.【考点】切线的判定.【专题】证明题.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.【解答】(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明∵AP=BP,AO=OC∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B 处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.【解答】解:(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)能.理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40•sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.【点评】此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.22.我县实施新课程后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.【解答】解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为:20,2,1;(2)如图所示:(3)根据张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:男A 女A1 女A2男D 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D 女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.【考点】二次函数综合题.【专题】计算题;压轴题.【分析】(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c,列出方程组,即可求出函数解析式.(2)当P在l下方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;当P在l上方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;(3)画出函数图形,利用三角形相似,求出P点坐标,再利用待定系数法求出函数解析式.【解答】解:(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c得,,解得,函数解析式为y=﹣x2+3x+4.(2)P在l下方时,令①△AOC∽△AQP,=,即,由于y=﹣x2+3x+4,则有=,解得x=0(舍去)或x=,此时,y=,P点坐标为(,).②△AOC∽△PQA,,即,由于y=﹣x2+3x+4,则有,解得,x=0(舍去)或x=7,P点坐标为(7,﹣24).③P在l上方时,令△AOC∽△PQA,,即,∵y=﹣x2+3x+4,∴,解得,x=0(舍去)或x=﹣1,P点坐标为(﹣1,0)(不合题意舍去).④△AOC∽△AQP,=,即∴,解得,x=0(舍去)或x=,P点坐标为(,).(3)如图(1),若对称点M在y轴,则∠PAQ=45°,设AP解析式为y=kx+b,则k=1或﹣1,当k=1时,把A(0,4)代入得y=x+4,当k=﹣1时,把A(0,4)代入得y=﹣x+4,此时P在对称轴右侧,符合题意,∴y=x+4,或y=﹣x+4,设点Q(x,4),P(x,﹣x2+3x+4),则PQ=x2﹣3x=PM,∵△AEM∽△MFP.则有=,∵ME=OA=4,AM=AQ=x,PM=PQ=x2﹣3x,∴=,解得:PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,Rt△AOM中,由勾股定理得OM2+OA2=AM2,∴(3x﹣12)2+42=x2,解得x1=4,x2=5,均在抛物线对称轴的右侧,故点P的坐标为(4,0)或(5,﹣6).设一次函数解析式为y=kx+b,把(0,4)(4,0)分别代入解析式得,解得,函数解析式为y=﹣x+4.把(0,4)(5,﹣6)分别代入解析式得,解得,函数解析式为y=﹣2x+4.综上所述,函数解析式为y=x+4,y=﹣x+4,y=﹣2x+4.【点评】本题考查了二次函数解析式的求法、二次函数解析式、相似三角形的性质、翻折变换、待定系数法求一次函数解析式等,题目错综复杂,涉及知识面广,旨在考查逻辑思维能力.。
中考模拟数学试题及答案(二)
中考数学模拟试卷(二)一、选择题(本题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.13-的值是 ( )A .-3B .3C .13D .-132.函数(1)y k x =-中,如果y 随着x 增大而增大,那么常数k 的取值范围是( ) A .1k < B .1k ≤ C .1>k D .1k ≥ 3.一个几何体的三视图如图所示,则此几何体是( ) A .圆锥 B .棱柱 C .圆柱 D .棱台3.下列计算正确的是 ( )A.422a a a =+; B .236a a a =÷; C .32a a a =⋅; D .532)(a a =. 4.如果b a <,0<c ,那么下列不等式成立的是( ).A. c b c a +<+;B. c b c a +-<+-;C. bc ac <;D.cbc a <. 5.在一个不透明的袋子中装有2个白球,n 个红球,它们除了颜色不同外,其余均相同. 若从中随机摸出一个球,摸到红球的概率是54,则n 的值等于( ) A .15个 B .8个 C .10个 D .6个6.在平面直角坐标系中,若点P (m ,m+2)在第二象限,则mx 的取值范围为 ( ) A .-2 <m<0 B .m <-2 C .m >0 D .m >-2 7.如图所示,点P 为反比例函数y =2x上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y =k x -1的图像为 ( )8.如图所示,将矩形ABCD 沿对角线BD 折叠,使C 落在C'处, BC'交AD 于E ,则下列结论不一定成立的是 ( ) A .AD =BC' B .∠EBD =∠EDB C .△ABE ∽△CBD D .sin ∠ABE =AEED9.如图所示,已知Rt △ABC 中,∠ABC =90°,∠BAC =30°,AB =3,将△ABC 绕顶点C 顺时针旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上, 则点A 经过的最短路线的长度是 ( )(第3题图)俯视图 主视图左视图A .8cmB .43cmC .323πcm D .83πcm10.如图所示,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°.现给出以下四个结论:①∠A =45°; ②AC =AB ;③AE =BE ;④CE ·AB =2BD 2,其中正确结论的序号是 ( ) A .①②B .②③C .②④D .③④二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.请把最后结果填在题中横线上.11.分解因式:a 3-a =________________.12.如图所示的围棋盘放在平面直角坐标系内,黑棋A 的坐标为(-1, 2),那么白棋B 的坐标是____________.13.4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一 场比赛),则总的比赛场数为_______场.14.若关于x 的分式方程311x a x x--=-无解,则a =_______.15.现在一般超市都是使用环保购物袋,某超市有偿..提供可重复使用的三种环保购物袋,每个售价分别为1元、2元和3元,这三种环保购物袋每个最多分别能装大米3kg 、5kg和8kg .6月7日,小明和爸爸在该超市选购了3个环保购物袋用来装刚购买的20kg 散装大米,他们选购的3个环保购物袋至少..应付给超市___________元. 16.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图像,那么a 的值是_______. 17.如图所示,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是________.18.如图所示为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是_______;当字母C 第2n +l 次出现时(n 为正整数),恰好数到的数是_______(用含n 的代数式表示).A B CD E(第10题Ox yE DC A B三、解答题(本题共11小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:0183221π⎛⎫-+⎪-⎝⎭20.(本小题5分)先化简,再求值:2239(1)x xx x---÷,其中31x=21.(本小题5分)解不等式组:12,132,2xx x->⎧⎪⎨-≤+⎪⎩………………①…………②22.(本小题6分)如图所示,△ABC在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2).并求出B点坐标.(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.(3)计算△A'B'C'的面积S.23.(本小题6分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图所示:(1)请你完成如左图所示游戏一个回合所有可能出现的结果的树状图.(2)求一个回合能确定两人先下棋的概率.解:(1)树状图为:24.(本题满分6分)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数..,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表1和图6,部分数据缺失).试根据所提供的信息解答下列问题:(1) 本次随机抽样调查的样本容量是 ▲ ;(2) 试估计全校所有参赛学生中成绩等第为优良的学生人数;(3) 若本次随机抽样的样本平均数为76.5,又表1中b 比a 大15,试求出a 、b 的值; (4) 如果把满足q x p ≤≤的x 的取值范围记为[p ,q ],表1中a 的取值范围是 ▲ . (A )[69.5,79.5] (B )[65,74] (C )[66.5,75.5] (D )[66,75]25.(本小题8分)如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200m 范围内为原始森林保护区,在MN 上的点A 处测得点C 在点A 的北偏东45°方向上,从A 向东走600m 到达B 处,测得点C 在点B 的北偏西60°方向上. (1)MN 是否穿过原始森林保护区?为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?26.(本小题8分)如图a 所示,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE 、GC .成绩范围60<x 8060<≤x80≥x 成绩等第 不合格合格优良人数 40平均成绩57a b表1:抽样分析分类统计表抽样分析频率分布直方图(图6)成绩0.01 0.04 组距频率0.020.0349.5 0.1 0.20.3 0.15 59.5 69.5 79.5 89.599.5(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图b 所示,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.(本小题9分)如图所示,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q .A 、B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为t s . (1)求PQ 的长.(2)当t 为何值时,直线AB 与⊙O 相切?OPQMNAB28.(本小题9分)某茶厂种植“春蕊”牌绿茶,由历年来市场销售行情知道,从每年的3 月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用图a 中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用图b 所示的抛物线表示.B C D EFG A a 图 B C D E F G A b 图(1)直接写出图a中表示的市场销售单价y(元)与上市时间£(天)(t>0)的函数关系式.(2)求出图b中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式.(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500g.)29.(本小题9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标.(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式.(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案1~10. BCCAB AACDC 11.()()11a a a +- 12.(-3,-2) 13.6 14.1或-2 15.8 16.-1 17.601318.B 603 6n +3 19.0 20.解:原式=9)32(2-⨯--x xx x x x =)3)(3(3-+⨯-x x x x x=31+x 当13-=x 时,原式=231+=32-21.由①,得x>3. 由②,得x ≤10. ∴原不等式的解集为3<x ≤10. 22.(1)图略.B (2,1) (2)图略(3)16 23.(1)如图所示:(2)3424..解:(1) 80 ; (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(.所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) (3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人),依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba 解得 ⎩⎨⎧==.87,72b a(4) D .25.(1)MN 不会穿过原始森林保护区 (2)原计划完成这项工程需要25天 26.(1)AE ⊥GC (2)成立 27.(1)8cm (2)当t 为0.5s 或3.5s 时,直线AB 与⊙O 相切28.(1) ()()2160 0<t<120,380 (120t 150),220 150t 1805t y t ⎧-+⎪⎪=≤≤⎨⎪⎪+≤≤⎩(2)()2111020300z t =-+(t>0)(3)在t =10时,纯收益单价最大,最大值为100元。
黄石市阳新县中考数学逼真模拟试卷(二)及答案解析
湖北省黄石市阳新县中考数学逼真模拟试卷(二)一、选择题1.下列数中最小的是()A.﹣2.5 B.﹣1.5 C.0 D.0.52.若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x> C.x≥D.x>3.不等式组的解集是()A.B.C.D.4.下列事件中,为必然事件是()A.度量三角形的内角和,结果是360°B.从仅装有5个黑球的口袋中摸出一球是黑球C.购买中奖率为1%的100张彩票,结果中奖D.汽车累积行驶1万千米,从未出现故障5.下列一元二次方程中,两实数根的和等于﹣4的是()A.x2+2x﹣4=0 B.x2﹣2x+4=0 C.x2﹣4x﹣5=0 D.x2+4x﹣5=06.某物体的侧面展开图如图所示,那么它的左视图为()A.B. C. D.7.如图,在△ABC中,∠BAC=50°,把△ABC沿EF折叠,C对应点恰好与△ABC的外心O重合,则∠CFE的度数是()A.40°B.45°C.50°D.55°8.如图是某朋的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22),若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.1449.对某市8所学校抽取共1 000名学生进行800米跑达标抽样检测.结果显示该市达标学生人数超过半数,达标率达到52.5%.图l、图2反映的是本次抽样中的具体数据.根据以上信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有()A.O个 B.1个C.2个D.3个10.如图,在菱形ABCD中,对角线AC、BD交于点O,以OB为直径画圆M,过D作⊙M的切线,切点为N,分别交AC、BC于点E、F,已知AE=5,CE=3,则DF的长是()A.3 B.4 C.4.8 D.5二、填空题11 .计算:cos245°=.12.微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为平方毫米.13.在我市开展的“好书伴我成长”读书活动中,某中学为了解七年级300名学生读书情况,随机调查了七年级50各学生读书的册数,统计数据如下表所示,则这50个样本数据的中位数是.册数0 1 2 3 4人数 2 13 9 22 414.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终到达C港,设甲乙两船行驶的时间为x(h),与B港的距离为y(km),它们间的函数关系如图所示,若两船的距离不超过10km时能够相互望见,则甲乙两船可以互相望见的时间共有小时.15.如图,矩形OABC的边OA、OC在坐标轴上,反比例函数(k为常数,且k>0)的图象在第一象限与BC、AB分别交于点M、N,直线MN与y轴交于点D,若,记△BMN的面积为s1,△OMN的面积为s2,则的值是.16.如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是.三、解答题(共9题,共72分)17.解分式方程:.18.直线y=kx﹣3经过点A(﹣1,﹣1),求关于x的不等式kx﹣3≥0的解集.19.如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.20.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点C的坐标为(﹣1,1),将Rt△ABC按一定的规律变换:第一次,将Rt△ABC沿AC边翻折,得Rt△AB1C;第二次,将Rt△AB1C绕点B1逆时针旋转90°,得Rt△A1B1C1;第三次,将Rt△A1B1C1沿A1C1边翻折,得Rt△A1B2C1;第四次,将Rt△A1B2C1绕点B2逆时针90°,得Rt△A2B2C2…如此依次下去(1)试在图中画出Rt△A1B1C1和Rt△A2B2C2,并写出A1的坐标;(2)请直接写出在第11次变换后所得的点B的对应的点的坐标是.22.如图1,在Rt△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O切BC于点D,交AC于点E,且AD=BD.(1)求证:DE∥AB;(2)如图2,连接OC,求cos∠ACO的值.23.”4.20芦山地震”发生后,各地积极展开抗震救援工作,一支救援车队经过如图1所示的一座拱桥,拱桥的轮廓是抛物线型,拱高6m,跨度20m,相邻两支柱间的距离均为5m,将抛物线放在所给的直角坐标系中(如图2所示),拱桥的拱顶在y轴上.(1)求拱桥所在抛物线的解析式;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2m、高2.4m的三辆汽车(隔离带与内侧汽车的间隔、汽车间的间隔、外侧汽车与拱桥的间隔均为0.5m)?请说说你的理由.24.如图,梯形ABCD中,AD∥BC,AB=AD,∠ABC=2∠BCD=2α.(1)求证:BD2=AD•BC;(2)若点M、N分别在AD、CD上,连BN,且∠BNC=∠BMD.①若α=30°(如图2),求证:CN=MD;②若α=45°,以BM为边作正方形BMNE,NE交BC于点F(如图3).当AB=3,MD=2时,直接写出△FEC的面积是.25.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,抛物线y=x2的顶点在直线AO上运动,与直线x=2交于点P,设平移后的抛物线顶点M的横坐标为m.(1)如图1,若m=﹣1,求点P的坐标;(2)在抛物线平移的过程中,当△PMA是等腰三角形时,求m的值;(3)如图2,当线段BP最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.湖北省黄石市阳新县中考数学逼真模拟试卷(二)参考答案与试题解析一、选择题1.下列数中最小的是()A.﹣2.5 B.﹣1.5 C.0 D.0.5【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2.5<﹣1.5<0<0.5,故各数中最小的是﹣2.5.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.若式子在实数范围内有意义,则x的取值范围是()A.x≥B.x> C.x≥D.x>【考点】二次根式有意义的条件.【分析】根据二次根式的定义可知被开方数必须为非负数,即可求解.【解答】解:根据题意得:2x﹣3≥0,解得x≥.故选:A.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.不等式组的解集是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:不等式组的解集是:﹣1≤x≤2.故选:A.【点评】本题考查了在数轴上表示不等式的解集,解决本题的关键是求出不等式的解集.4.下列事件中,为必然事件是()A.度量三角形的内角和,结果是360°B.从仅装有5个黑球的口袋中摸出一球是黑球C.购买中奖率为1%的100张彩票,结果中奖D.汽车累积行驶1万千米,从未出现故障【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、度量三角形的内角和,结果是360°是不可能事件,故A错误;B、从仅装有5个黑球的口袋中摸出一球是黑球是能必然事件,故B正确;C、购买中奖率为1%的100张彩票,结果中奖是随机事件,故C错误;D、汽车累积行驶1万千米,从未出现故障是随机事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.下列一元二次方程中,两实数根的和等于﹣4的是()A.x2+2x﹣4=0 B.x2﹣2x+4=0 C.x2﹣4x﹣5=0 D.x2+4x﹣5=0【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系对各选项进行判断.【解答】解:A、两实数根的和等于﹣2,所以A选项错误;B、两实数根的和等于2,所以B选项错误;C、两实数根的和等于4,所以C选项错误;D、两实数根的和等于﹣4,所以D选项正确.故选D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.6.某物体的侧面展开图如图所示,那么它的左视图为()A.B. C. D.【考点】几何体的展开图;简单几何体的三视图.【专题】常规题型.【分析】先根据侧面展开图判断出此物体是圆锥,然后根据左视图是从左面看到的视图解答.【解答】解:∵物体的侧面展开图是扇形,∴此物体是圆锥,∴圆锥的左视图是等腰三角形.故选B.【点评】本题考查了几何体的展开图,与简单几何体的三视图,根据侧面展开图判断出此物体是圆锥是解题的关键.7.如图,在△ABC中,∠BAC=50°,把△ABC沿EF折叠,C对应点恰好与△ABC的外心O重合,则∠CFE的度数是()A.40°B.45°C.50°D.55°【考点】三角形的外接圆与外心;翻折变换(折叠问题).【分析】连接OB、OC,由圆周角定理得出∠BOC=2∠BAC=100°,由等腰三角形的性质得出∠OCF=40°,由折叠的性质得出OC⊥EF,即可求出∠CFE的度数.【解答】解:连接OB、OC,如图所示:由圆周角定理得:∠BOC=2∠BAC=100°,∵OB=OC,∴∠OCF=(180°﹣100°)=40°,由折叠的性质得:OC⊥EF,∴∠CFE=90°﹣40°=50°;故选:C.【点评】本题考查了三角形的外接圆与外心、圆周角定理、等腰三角形的性质、折叠的性质;熟练掌握三角形的外心性质和折叠的性质,由圆周角定理求出∠BOC是解决问题的关键.8.如图是某朋的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22),若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144【考点】一元二次方程的应用.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.【点评】此题主要考查了一元二次方程的应用、数字变化规律以及一元二次方程的解法,根据已知得出最大数与最小数的差为16是解题关键.9.对某市8所学校抽取共1 000名学生进行800米跑达标抽样检测.结果显示该市达标学生人数超过半数,达标率达到52.5%.图l、图2反映的是本次抽样中的具体数据.根据以上信息,下列判断:①小学高年级被抽检人数为200人;②小学、初中、高中学生中高中生800米跑达标率最大;③小学生800米跑达标率低于33%;④高中生800米跑达标率超过70%.其中判断正确的有()A.O个 B.1个C.2个D.3个【考点】条形统计图;扇形统计图.【分析】利用扇形统计图,用总人数1000×小学高年级学生所占百分比即可;分别计算出小学、中学、高中三个学段的抽检的学生总数,再计算出达标率即可判断出②③④的正误.【解答】解:①小学高年级被抽检人数为:1000×(1﹣30%﹣35%﹣15%)=200人,故①说法正确;②达标总人数:1000×52.5%=525(人),小学抽检人数:1000×(1﹣30%﹣35%)=350,达标率:×100%≈39%,中学抽检人数:1000×35%=350,达标率:×100%≈59%,高中抽检人数:1000×30%=300,达标率:×100%≈63%,小学、初中、高中学生中高中生.800米跑达标率最大,故②正确;③小学生800米跑达标率低于33%,说法错误;④高中生800米跑达标率超过70%,说法错误;故选:C.【点评】此题主要考查了扇形统计图和条形统计图,从统计图中找出正确信息是解决问题的关键.10.如图,在菱形ABCD中,对角线AC、BD交于点O,以OB为直径画圆M,过D作⊙M的切线,切点为N,分别交AC、BC于点E、F,已知AE=5,CE=3,则DF的长是()A.3 B.4 C.4.8 D.5【考点】圆的综合题.【分析】首先延长EF,过点B作直线平行AC和EF相交于P,由菱形的性质,可求得OE的长,证得AC是⊙M的切线,然后由切线长定理,求得EN的长,易证得△DMN∽△DEO,△EFC∽△PFB,然后由相似三角形的对应边成比例,求得答案.【解答】解:延长EF,过点B作直线平行AC和EF相交于P,∵AE=5,EC=3,∴AC=AE+CE=8,∵四边形ABCD是菱形,∴OA=OC=AC=4,AC⊥BD,∴OE=OC﹣CE=4﹣3=1,∵以OB为直径画圆M,∴AC是⊙M的切线,∵DN是⊙M的切线,∴EN=OE=1,MN⊥AN,∴∠DNM=∠DOE=90°,∵∠MDN=∠EDO,∴△DMN∽△DEO,∴DM:MN=DE:OE,∵MN=BM=OM=OB,∴DM=OD+OM=3MN,∴DE=3OE=3,∵OE∥BP,∴OD:OB=DE:EP,∵OD=OB,∴DE=EP=3,∴BP=2OE=2,∵OE∥BP,∴△EFC∽△PFB,∴EF:PF=EC:BP=3:2,∴EF:EP=3:5,∴EF=EP×=1.8,∴DF=DE+EF=3+1.8=4.8.故选C.【点评】此题属于圆的综合题,考查了切线的判定与性质、菱形的性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.二、填空题11 .计算:cos245°=.【考点】特殊角的三角函数值.【分析】运用特殊角三角函数值计算.【解答】解:原式=()2==.【点评】此题比较简单,只要熟知特殊角度的三角函数值即可.12.微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为7×10﹣7平方毫米.【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.在我市开展的“好书伴我成长”读书活动中,某中学为了解七年级300名学生读书情况,随机调查了七年级50各学生读书的册数,统计数据如下表所示,则这50个样本数据的中位数是3.册数0 1 2 3 4人数 2 13 9 22 4【考点】中位数.【分析】根据把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数解答即可.【解答】解:把数据从小到大排列如下:0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,所以这50个样本数据的中位数是(3+3)÷2=3,故答案为3.【点评】本题考查了中位数的定义,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.14.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终到达C港,设甲乙两船行驶的时间为x(h),与B港的距离为y(km),它们间的函数关系如图所示,若两船的距离不超过10km时能够相互望见,则甲乙两船可以互相望见的时间共有1小时.【考点】一次函数的应用.【分析】由图象可求出甲、乙两船的速度为60千米/时,30千米/时,则甲、乙两船离A 港口的距离为S 甲=60x ,S 乙=30x+30,有三种可能:①S 乙﹣S 甲=10,②S 甲﹣S 乙=10;③120﹣S 乙=10,将甲、乙的函数关系式代入分别求x ,得出x 的取值范围,进而求解即可. 【解答】解:由图象可知, 甲船的速度为:30÷0.5=60千米/时, 乙船的速度为:90÷3=30千米/时, 由此可得:所以,甲、乙两船离A 港口的距离为S 甲=60x ,S 乙=30x+30, ①当乙船在甲船前面10千米时,S 乙﹣S 甲=10, 即:30x+30﹣60x=10,解得x=,②当甲船在乙船前面10千米时,S 甲﹣S 乙=10, 即:60x ﹣(30x+30)=10,解得x=, 所以,当≤x ≤时,甲、乙两船可以相互望见;③由图可知,A 、B 两港相距30km ,B 、C 两港相距90km ,A 、C 两港相距120km , 甲船到达C 港需要的时间:120÷60=2小时,乙船到达C 港需要的时间:90÷30=3小时, 当2≤x ≤3时,甲船已经到了而乙船正在行驶, 两船的距离是10km ,即乙船与C 港的距离是10km , 即:120﹣(30x+30)=10,解得x=, 所以,当≤x ≤3时,甲、乙两船可以相互望见; (﹣)+(3﹣)=1小时. 故答案为1.【点评】本题考查了一次函数的应用.关键是根据图象求出甲乙两船的行驶速度,再表示两船离A 港口的距离,分类列出方程.15.如图,矩形OABC的边OA、OC在坐标轴上,反比例函数(k为常数,且k>0)的图象在第一象限与BC、AB分别交于点M、N,直线MN与y轴交于点D,若,记△BMN的面积为s1,△OMN的面积为s2,则的值是.【考点】反比例函数综合题.【分析】连接OB.首先根据反比例函数的比例系数k的几何意义,得出S△AON=S△COM=k,然后根据平行线分线段成比例定理得出==,=,从而求得S△BOM=3S△COM=k,S△BOC=S△AOB=k+k=2k,进一步求得S1=×2S△BOC=×4k=k,最后由S△OMN=S﹣矩形AOCBS△AON﹣S△COM﹣S△BMN=4k﹣k﹣k﹣k=k得出结果.【解答】解:连接OB.∵M、N是反比例函数(k为常数,且k>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AON=S△COM=k.∵,∴=,∵AB∥OD,∴==,∴=,∴S△BOM=3S△COM=k,∴S△BOC=S△AOB=k+k=2k,∴S△BON=S△BOC﹣S△AON=2k﹣k=k,S=4k,矩形∴=,∴=,∴=,∴=×=,∴=,∴S1=×2S△BOC=×4k=k,∵S△OMN=S﹣S△AON﹣S△COM﹣S△BMN=4k﹣k﹣k﹣k=k.矩形AOCB∴==.故答案是:.【点评】本题是反比例函数的综合题,主要考查反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.得出=,=,是解决本题的关键.16.如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是.【考点】轴对称-最短路线问题.【分析】根据题意得出作EF∥AC且EF=,连结DF交AC于M,在AC上截取MN=,此时四边形BMNE的周长最小,进而利用相似三角形的判定与性质得出答案.【解答】解:作EF∥AC且EF=,连结DF交AC于M,在AC上截取MN=,延长DF交BC 于P,作FQ⊥BC于Q,则四边形BMNE的周长最小,由∠FEQ=∠ACB=45°,可求得FQ=EQ=1,∵∠DPC=∠FPQ,∠DCP=∠FQP,∴△PFQ∽△PDC,∴=,∴=,解得:PQ=,∴PC=,由对称性可求得tan∠MBC=tan∠PDC==.故答案为.【点评】此题主要考查了正方形的性质以及相似三角形的判定与性质,得出M,N的位置是解题关键.三、解答题(共9题,共72分)17.解分式方程:.【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是x(x﹣2),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘x(x﹣2),得:x=3(x﹣2),解得:x=3,检验:当x=3时,(x﹣2)x≠0,∴x=3是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.18.直线y=kx﹣3经过点A(﹣1,﹣1),求关于x的不等式kx﹣3≥0的解集.【考点】一次函数与一元一次不等式.【专题】计算题.【分析】先把A点坐标代入y=kx﹣3求出k的值,然后解不等式kx﹣3≥0即可.【解答】解:把A(﹣1,﹣1)代入y=kx﹣3得﹣k﹣3=﹣1,解得k=﹣2,所以一次函数解析式为y=﹣2x﹣3,解不等式2x﹣3≥0得x≥.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.19.如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.【考点】全等三角形的判定与性质;平行线的性质.【专题】证明题.【分析】根据BE∥DF,可得∠ABE=∠D,再利用ASA求证△ABC和△FDC全等即可.【解答】证明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.【点评】此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.20.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.【考点】列表法与树状图法;点的坐标.【分析】(1)直接利用表格列举即可解答;(2)利用(1)中的表格求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【解答】解:(1)如下表,﹣7 ﹣1 3﹣2 (﹣7,﹣2)(﹣1,﹣2)(3,﹣2)1 (﹣7,1)(﹣1,1)(3,1)6 (﹣7,6)(﹣1,6)(3,6)点A(x,y)共9种情况;(2)∵点A落在第三象限共有(﹣7,﹣2)(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是.【点评】此题主要考查利用列表法求概率,关键是列举出事件发生的所有情况,并通过概率公式进行计算,属于基础题.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点C的坐标为(﹣1,1),将Rt△ABC按一定的规律变换:第一次,将Rt△ABC沿AC边翻折,得Rt△AB1C;第二次,将Rt△AB1C绕点B1逆时针旋转90°,得Rt△A1B1C1;第三次,将Rt△A1B1C1沿A1C1边翻折,得Rt△A1B2C1;第四次,将Rt△A1B2C1绕点B2逆时针90°,得Rt△A2B2C2…如此依次下去(1)试在图中画出Rt△A1B1C1和Rt△A2B2C2,并写出A1的坐标(﹣3,﹣4);(2)请直接写出在第11次变换后所得的点B的对应的点的坐标是(﹣5,﹣1).【考点】作图-旋转变换;作图-轴对称变换.【专题】规律型.【分析】(1)利用网格特点和对称轴变换和旋转的性质画出Rt△A1B1C1和Rt△A2B2C2,从而得到A1的坐标;(2)通过画图可得到第8次变换后所得△A4B4C4与△ABC重合,即没8次变换一个循环,于是可判断第11次变换与第3次变换的图形一样,然后写出B2的坐标即可.【解答】解:(1)如图,Rt△A1B1C1和Rt△A2B2C2为所作,A1的坐标为(﹣3,﹣4);(2)第8次变换后所得△A4B4C4与△ABC重合,所以第11次变换后的三角形与△A1B2C1重合,所以所得的点B的对应的点的坐标为(﹣5,﹣1).故答案为(﹣3,﹣4),(﹣5,﹣1).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.22.如图1,在Rt△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O切BC于点D,交AC于点E,且AD=BD.(1)求证:DE∥AB;(2)如图2,连接OC,求cos∠ACO的值.【考点】切线的性质.【专题】证明题.【分析】(1)连结OD、OE,如图1,根据切线性质得OD⊥BC,则OD∥AC,所以∠2=∠3,加上∠1=∠3,则∠1=∠2,再利用AD=BD得到∠1=∠B,所以∠1=∠2=∠B,然后根据三角形内角和可计算出∠1=∠2=∠B=30°,于是可判断△OAE为等边三角形,得到AE=OE,再判断四边形AEDO 为平行四边形,从而得到DE∥AB;(2)作OH⊥AE于H,如图2,则AH=HE,设⊙O的半径为r,在Rt△AOH中利用含30度的直角三角形三边的关系得到OH=AH=r,易得四边形ODCH为矩形,则CH=OD=r,再利用勾股定理计算出OC=r,然后根据余弦的定义求解.【解答】(1)证明:连结OD、OE,如图1,∵BC为切线,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠2=∠3,∵OA=OD,∴∠1=∠3,∴∠1=∠2,∵AD=BD,∴∠1=∠B,∴∠1=∠2=∠B,∵∠1+∠2+∠B=90°,∴∠1=∠2=∠B=30°,∴△OAE为等边三角形,∴AE=OE,∴AE=OD,∵AE∥OD,∴四边形AEDO为平行四边形,∴DE∥AB;(2)解:作OH⊥AE于H,如图2,则AH=HE,设⊙O的半径为r,在Rt△AOH中,∵∠OAH=60°,∴AH=OA=r,OH=AH=r,易得四边形ODCH为矩形,∴CH=OD=r,在Rt△OCH中,OC===r,∴cos∠HCO===,即cos∠ACO=,【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的性质和三角函数的定义.23.”4.20芦山地震”发生后,各地积极展开抗震救援工作,一支救援车队经过如图1所示的一座拱桥,拱桥的轮廓是抛物线型,拱高6m,跨度20m,相邻两支柱间的距离均为5m,将抛物线放在所给的直角坐标系中(如图2所示),拱桥的拱顶在y轴上.(1)求拱桥所在抛物线的解析式;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2m、高2.4m的三辆汽车(隔离带与内侧汽车的间隔、汽车间的间隔、外侧汽车与拱桥的间隔均为0.5m)?请说说你的理由.【考点】二次函数的应用.【分析】(1)根据题目可知A.B,C的坐标,设出抛物线的解析式代入可求解;(2)设N点的坐标为(5,y N)可求出支柱MN的长度;(3)设DE是隔离带的宽,EG是三辆车的宽度和,作GH垂直AB交抛物线于H,求出GH则可求解.【解答】解:(1)根据题目条件,A、B、C的坐标分别是(﹣10,0)、(10,0)、(0,6).将B、C的坐标代入y=ax2+c,得解得a=﹣,c=6.所以抛物线的表达式是y=﹣x2+6;(2)可设N(5,y N),于是yN=﹣×52+6=4.5.从而支柱MN的长度是10﹣4.5=5.5米;(3)设DE是隔离带的宽,EG是三辆车最内侧与最外侧的宽度和,则G点坐标是(9,0),过G点作GH垂直AB交抛物线于H,则y H=﹣×92+6=1.14<2.4,根据抛物线的特点,可知一条行车道不能并排行驶这样的三辆汽车.【点评】本题考查二次函数的实际应用,借助二次函数解决实际问题是解题根本,求出二次函数关系式是关键.24.如图,梯形ABCD中,AD∥BC,AB=AD,∠ABC=2∠BCD=2α.(1)求证:BD2=AD•BC;(2)若点M、N分别在AD、CD上,连BN,且∠BNC=∠BMD.①若α=30°(如图2),求证:CN=MD;②若α=45°,以BM为边作正方形BMNE,NE交BC于点F(如图3).当AB=3,MD=2时,直接写出△FEC的面积是.【考点】四边形综合题.【专题】综合题.【分析】(1)由AB=AD,利用等边对等角得到一对角相等,再由AD与BC平行,得到一对内错角相等,等量代换得到∠ABD=,∠DBC,再由已知角的关系得到两对角相等,进而确定出三角形ABD与三角形DBC相似,由相似得比例,即可得证;(2)①连接BD,如图2所示,根据题意确定出三角形BMD与三角形BNC相似,由相似得比例,设AB=AD=x,则BD=CD=x,表示出BC,代入比例式即可得证;②连接BD,如图3所示,由AD与MD求出AM的长,利用勾股定理求出BD的长,进而求出BC 与CD,过E作EH⊥BC于H,利用AAS得出三角形BAM与三角形HBE全等,求出EH与BH的长,由三角形BHE与三角形EHF相似,得比例求出CF的长,再由EH的长,利用三角形面积公式求出三角形FEC的面积即可.【解答】解:(1)∵AB=AD,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠DBC,。
2024年中考数学模拟测试试卷(带有答案)
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:
∴
∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数
则
∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.
2023年山东省枣庄市中考数学模拟试卷(二)(含解析)
2023年山东省枣庄市中考数学模拟试卷(二)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在下列四个实数中,最大的实数是( )A. −5B. 12C. −1D. 22. 下列运算中,正确的是( )A. a+a=2a2B. a2⋅a3=a6C. (−2a)2=4a2D. (a−1)2=a2+13. 一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为( )A. 145°B. 140°C. 135°D. 130°4. 对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2−b2,根据这个定义,代数式(x+y)☆y可以化简为( )A. xy+y2B. xy−y2C. x2+2xyD. x25. 《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为( )A. {5x+6y=15x−y=6y−x B. {6x+5y=1 5x+y=6y+xC. {5x+6y=14x+y=5y+x D. {6x+5y=1 4x−y=5y−x6. 已知关于x的方程2x+mx−2=3的解是正数,那么m的取值范围为( ) A. m>−6且m≠−2 B. m<6C. m>−6且m≠−4D. m<6且m≠−27.如图,点C,D在以AB为直径的⊙O上,且CD平分∠ACB,若CD =43,∠CAB=75°,则AB的长是( )A. 83B. 43C. 8D. 48.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=1,则k的值为( )A. 1B. 22C. 2D. 29.如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形A BCD,使AB边落在AC上,点B落在点H处,折痕AE交BC于点E,交BO 于点F,连接FH,下列结论:①AD=DF;②四边形BEHF为菱形;③FHAD=2−1;④S△ABES△ACE =ABAC.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个10. 如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )A. 2个B. 3个C. 4个D. 5个第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 新冠肺炎患者喷嚏、咳嗽、说话的飞沫,直接吸入都会导致感染,所以我们要戴口罩,医用口罩可以过滤小至0.00000004米颗粒,用科学记数法表示0.00000004是______ .12. 已知关于x的不等式组{x−a>05−2x≥−1无解,则a的取值范围是______.13.如图,在平面直角坐标系xOy中,点A在第一象限内,点B在x轴正半轴上,△OCD是以点O为位似中心,且与△OAB的相似比的位似图形.若点A的坐标为(3,2),则点C的坐标为______.为1314.如图,在等腰Rt△ABC中,∠BAC=90°,BC=42.分AB的长为半径画弧分别与△ABC别以点A,B,C为圆心,以12的边相交,则图中阴影部分的面积为______ .(结果保留π)15. 如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为______.16. 直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3 C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2022B2022C2022C2021中的点B2022的坐标为______.三、解答题(本大题共8小题,共72.0分。
2024年河南省洛阳市中考招生模拟考试(二)数学试题 (含解析)
洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.2. 榫卯是古代中国建筑、家具及其它器械主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A. B. C. D.3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A B.C. D. 5. 下列计算,结果正确的是( )A. B. C. D. 6. 不等式组的解集是( )A. B. C. D.的.5-1-454.3210⨯45.43210⨯55.43210⨯65.43210⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 8. 如图,在菱形中,,连接、,则的值为( )A.B.C.D.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B. C.D.10.在中,,D 为上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C. D. 二、填空题(每小题3分,共15分)2220x x m -+-=3m ≥3m >3m ≤3m <ABCD 60ABC ∠=︒AC BD ACBD1224015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x=-Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEF AB11.x 的取值范围是_____.12. 计算的结果是________.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级平均中位众211a a a -++O AB O AB 120,ACD CD ∠=︒=ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF ()01320242--+-+()()()223a b a b a a b -+--统计量数数数甲b 乙a146根据以上信息,回答下列问题:(1)表格中的a =,b =;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.18. 已知:点P 是外一点.(1)尺规作图:如图,以直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为.19. 如图,菱形的边在x 轴正半轴上,点A的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一为155.3152.5155.3O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠OABC OC ()34,()0ky x x=>BC AB ()0ky x x=>AE OE AOE △条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是;的53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈xOy ()33G --,1ky x=(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .23. 【综合与实践】在一次综合实践活动课上,张老师组织学生开展“如何仅通过折纸的方法来确定特殊平行四边形纸片一边上的三等分点”的探究活动.【操作探究】“求知”小组的同学经过一番思考和讨论交流后,对正方形进行了如下操作:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,然后展开铺平,折痕;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程如下:连接,∵正方形沿折叠,∴① ,又∵,∴,∴.由题意可知E 是的中点,设,则,在中,可列方程:② ,(方程不要求化简)解得:③ ,即H 是边的三等分点.“励志”小组对矩形纸片进行了如下操作:第1步:如图2所示,先将矩形纸片对折,使点A 与点B 重合,然后展开铺平,折痕为;第2步:再将矩形纸片沿对角线翻折,再展开铺平,折痕为,沿翻折得折痕交于点G ;第3步:过点G 折叠矩形纸片,使折痕.为21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++ABCD ABCD EF BC CE GC EG AD AD CH ABCD CE 90D B CGH ∠=∠=∠=︒CH CH =CGH CDH ≌△△GH DH =AB 2AB a DH x ==,AE BE EG a ===Rt AEH DH =AD ABCD ABCD EF ABCD BD BD CE CE BD ABCD MN AD ∥【过程思考】(1)“求知”小组的证明过程中,三个空所填的内容分别是①: ,②:,③:;(2)“励志”小组经过上述操作,认为点M 为边的三等分点,请你判断“励志”小组的结论是否正确,并说明理由.【拓展提升】(3)如图3,在菱形中,,E 是上的一个三等分点,记点D 关于的对称点为,射线与菱形的边交于点F ,请直接写出的长.洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.【答案】D 【解析】【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵故选:D .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )AB ABCD 8,6AC BD ==BD AE D ¢ED 'ABCD D F '5-1-510-<-<<A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,熟练掌握三视图的画法,是解题的关键.根据俯视图是从上向下观察到的图形,进行判断即可,注意,主视图中存在的线段,在俯视图中被遮住或是看不到的线段要用虚线表示.【详解】解:由题意,得:“卯”的俯视图为:.故选A .3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数,据此解答即可.【详解】解:54.32万,故选:C .4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A. B.C. D. 【答案】D454.3210⨯45.43210⨯55.43210⨯65.43210⨯10n a ⨯110a ≤<5543200 5.43210==⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒【分析】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵,∴,∴,∵,∴;故选:D .5. 下列计算,结果正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了积的乘方,合并同类项,同底数幂的除法,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A . 与不是同类项,不能合并,故该选项不正确,不符合题意; B . ,故该选项正确,符合题意;C . ,故该选项不正确,不符合题意;D . ,故该选项不正确,不符合题意;故选:B .6. 不等式组的解集是( )A. B. C.D. AB OF ∥1180BFO ∠+∠=︒18015525BFO ∠=︒-︒=︒235POF ∠=∠=︒3352560POF BFO ∠=∠+∠=︒+︒=︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=3a 2a -()2222339a a a ==()2222ab a ab b +=++62624a a a a -÷==23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-【解析】【分析】此题考查了求不等式组的解集,求出每个不等式的解集,取公共部分即可.【详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是故选:C7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了一元二次方程的判别式,根据方程两个实数根得出,代入数值计算,即可作答.【详解】解:∵一元二次方程有两个实数根,∴,解得,故选:C .8. 如图,在菱形中,,连接、,则值为( )A.B.C.D.【答案】D 【解析】的23312x x x -<⎧⎨+≥⎩①②5x <1x ≥-15x -≤<2220x x m -+-=3m ≥3m >3m ≤3m <240b ac ∆=-≥2220x x m -+-=()()22424121240b ac m m ∆=-=--⨯⨯-=-≥3m ≤ABCD 60ABC ∠=︒AC BD ACBD12【分析】设AC 与BD 的交点为O ,由题意易得,,进而可得△ABC 是等边三角形,,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:∵四边形是菱形,∴,,∵,∴△ABC 是等边三角形,∴,∴,∴,∴,∴故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. B. C. D. 【答案】B1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==BO =ABCD 1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==60ABC ∠=︒30,ABO AB AC ∠=︒=12AO AB =OB ==,2BD AC AO ==AC BD ==24015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x =-【解析】【分析】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得.故选:B .10. 在中,,D 为上一点,动点P 以每秒1个单位速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C.D. 【答案】A【解析】【分析】本题考查了二次函数图象,求二次函数解析式,在中,则,求得的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在中,则,当时,,解得:(负值已舍去),∴,∴抛物线经过点,∵抛物线顶点为:,的24015015012x x -=⨯Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEFABRt ABC△CD =,PC t=22222S PD t t ==+=+BC Rt ABC△CD =,PC t=22222S PD t t ==+=+6S =262t =+2t =2BC =()2,6()4,2设抛物线解析式为:,将代入,得:,解得:,∴,当时,(舍)或,∴,故选:A .二、填空题(每小题3分,共15分)11.x 的取值范围是_____.【答案】【解析】【分析】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.有意义,∴且,∴且,故答案为:.12. 计算的结果是________.【答案】【解析】【分析】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:原式,故答案为:.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.()242S a t =-+()2,6()26242a =-+1a =()242S t =-+18y =()218420t t =-+=,8t =826AB =-=5x ≥50x -≥0x ≠5x ≥0x ≠5x ≥211a a a -++11a +2(1)(1)111a a a a a -+-==++11a +【答案】【解析】【分析】本题主要考查等可能事件的概率,画出树状图展示所有等可能的结果,是解题的关键.根据题意画出树状图得出所有等可能情况数和恰好选中前面两首歌曲的情况数,然后根据概率公式即可得出答案.【详解】解:将《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲分别用甲,乙,丙,丁表示,根据题意画图如下:共有12种等可能的结果数,其中恰好选中前面两首歌曲的有2种,则恰好选中甲、乙两位选手的概率,故答案为:.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)【答案】【解析】【分析】本题主要考查切线的性质以及扇形的面积计算,连接,根据切线的性质得出由得由三角形外角的性质得根据勾股定理得,再根据求解即可【详解】解:连接如图,1621126==16O AB O AB 120,ACD CD ∠=︒=2π3-OC 90,30,OCD OCD ∠=︒∠=︒OC OA =,OAC OCA ∠=∠60,BOC ∠=︒2OC ==OCD BOC S S S - 阴影扇形OC ,∵是的切线,∴∴∵∴∵∴,∴∴∴即∴∴,故答案为:15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.CD O ,OC CD ⊥90,OCD ∠=︒120,ACD ∠=︒1209030,ACO ACD OCD ∠=∠-∠=︒-︒=︒,OC OA ==30ACO OAC ∠=∠︒303060,COD OCA OAC ∴∠=∠+∠=︒+︒=︒30,CDO ∠=︒2,DO CO =222,CD CO DO +=(2224,CO CO +=2,CO ==OCD BOC S S S - 阴影扇形2160222360π⨯=⨯-23π=-2π3-ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF【答案】1或9【解析】【分析】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理等知识,分为:当点E 在上时,连接,可证得,从而,设,则,可求得,在中列出,进而求得的值;当点E 在的延长线上时,同样方法求得结果.【详解】解:∵四边形是矩形,∴当点E 在上时,连接,如图,∵,∴∴,∵,∴,∴,设,则,由旋转得:,∵,∴,∴,在中,由勾股定理得,,∴,∴,DF AF Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-4DE ===Rt DCF ()()222534x x -+=+BF FD ABCD 3,5,90,CD AB BC AD ABC BCD CDA ====∠=∠=∠=︒DF AF EF AE ⊥90,AEF ∠=︒90AEF B ∠=∠=°AE AB AF AF ==,Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-3AE AB ==EF AE ⊥90AED AEF ∠=∠=︒4DE ===Rt DCF 222CF CD DF +=()()222534x x -+=+1x =∴,如图,当点E 在的延长线上时,同理上可得:,,设,则,,∴,∴,∴,综上所述:或9.故答案为:1或9三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.【答案】(1);(2)【解析】【分析】本题主要考查了实数混合运算,整式乘法混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据算术平方根定义,零指数幂和负整数指数幂运算法则进行计算即可;(2)根据平方差公式和单项式乘多项式运算法则进行计算即可.【详解】解:(1)1BF =FD EFBF =4DE =EF BF a ==4DF a =-5CF a =-()()222534a a -+=-9a =9BF =1BF =()01320242--+-+()()()223a b a b a a b -+--1122233a b ab-+()01320242--+-+13132=+-+;(2).17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级统计量平均数中位数众数甲b 乙a 146根据以上信息,回答下列问题:(1)表格中的a = ,b = ;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.【答案】(1)149,160(2)甲班成绩较好;甲、乙两班样本平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好(3)132人【解析】【分析】本题考查条形统计图、中位数、众数、平均数:(1)根据中位数的意义,将乙班的抽查的10人成绩排序找出处在中间位置的两个数的平均数即可为中位的112=()()()223a b a b a a b -+--()22243a b a ab =---22243a b a ab=--+2233a b ab -+=155.3152.5155.3数,从甲班成绩中找出出现次数最多的数即为众数;(2)根据平均数、中位数,众数可以分析得出;(3)根据题意,计算出两班级成绩为满分的学生的百分比,然后乘以总人数即可解答本题.【小问1详解】解:由题意得:乙班10名男生的跳绳成绩按大小顺序排列最中间的两个分数为146,153,故中位数;甲班10名男生的跳绳成绩出现次数最多的是160分,共出现2次,故众数;故答案为:149;160;【小问2详解】解:甲班成绩较好;理由如下:甲、乙两班样本的平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好;【小问3详解】解:(人),答:估计该校本次测试成绩满分的男生有132人.18. 已知:点P 是外一点.(1)尺规作图:如图,以为直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为 .【答案】(1)见解析(2)见解析 (3)或【解析】【分析】(1)如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;1461521492a +==160c =1124013220⨯=O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠65︒115︒OP OP OP O 'O 'O P 'PE PF(2)如图1,连接,由为直径,可得,即,,进而结论得证;(3)如图1,,由题意知,,由圆周角定理可得;由圆内接四边形可得,;计算求解即可.【小问1详解】解:如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;图1【小问2详解】证明:如图1,连接,∵为直径,∴,即,,∵是半径,∴,是的切线;【小问3详解】解:如图1,,由题意知,,∵,∴;由圆内接四边形可得,;综上所述,的度数为或,故答案为:或.【点睛】本题考查了作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质等知识.熟练掌握作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质是解题的关键.OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒12EDF EOF ∠=∠180ED F EDF '∠=︒-∠OP OP OP O 'O 'O P 'PE PF OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥OE OF ,PE PF O D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒ EFEF =1652EDF EOF ∠=∠=︒180115ED F EDF '∠=︒-∠=︒EDF ∠65︒115︒65︒115︒19. 如图,菱形的边在x 轴正半轴上,点A 的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.【答案】(1)13(2)【解析】【分析】本题考查反比例函数的综合,菱形的性质,垂直平分线的定义,中点坐标公式,三角形的面积求法等知识,运用数形结合思想是解题的关键.(1)先求出的长度,也就是菱形的边长,从而求出点的坐标,再用中点公式求出点D 的坐标,从而得解;(2)根据点的坐标求出点E 的横坐标,继而求出点E 的坐标,再利用割补法求面积即可.【小问1详解】解:∵A 点坐标∴∵四边形是菱形∴, ∴;【小问2详解】∵,∴反比例函数解析式是∵E 在AB 的垂直平分线上,A ,,OABC OC ()34,()0k y x x=>BC AB ()0k y x x =>AE OE AOE △8211OA C B 、A B 、()34,5OA =OABC ()50C ,()84B ,13,22D ⎛⎫∴ ⎪⎝⎭13k xy ==13k =()130y x x=>()34,()84B ,E 点横坐标为把 优人 得: 过A 作⊥ x 轴于 H ,的垂直平分线交x 轴于 F ,则.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).【答案】小聪的说法不正确,见解析【解析】【分析】本题考查了解直角三角形的应用.过C 作于D ,在中,利用三角函数的定义求得和的长,在中,求得,据此求得北岸健康步道的长度,即可判断.【详解】解:过C 作于D ,垂足为D,112,112x =()130y x x =>2611y =1126,211E ⎛⎫∴ ⎪⎝⎭AH AB AOE AOB FOEAEFH S S S S =+-△△△梯形112611133443221122⎛⎫⎛⎫=⨯⨯+⨯+⨯-- ⎪ ⎪⎝⎭⎝⎭8211=53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈CD AB ⊥Rt ACD △CD AD Rt BCD BD CD =CD AB ⊥由题意得:,,千米,在中,,千米千米,在中,,∴千米,∴千米,∴北岸健康步道的长度为,因此小聪的说法不正确.21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体的综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 饰品的进价为20元/件,B 饰品的进价为25元/件 (2)①;②购进A 饰品数量300件,购进B 饰品的数量100件时,获利最大,最大利润为3350元【解析】【分析】本题考查二元一次方程组和一次函数的应用,分段函数等知识,审清题意找出等量关系并正确列的905337CAD ∠=︒-︒=︒45CBD ∠=︒5AC =Rt ACD △37CAD ∠=︒·sin 3750.63CD AC =︒≈⨯=cos3750.84AD AC =⋅︒≈⨯=Rt BCD 45CBD ∠=︒3BD CD ==7AB AD BD =+=77π314111022≈⨯≈>.()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩式和方程是解题的关键.(1)设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,根据题意列出方程组求解即可;(2)①由购进A 饰品的数量为x 件,得购进B 饰品的数量为件,再分当时和当时两种情况,根据总利润的计算公式求出总利润即可;②根据两种情况下的解析式分别求出最大值,再比较即可.【小问1详解】解:设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,由题意列方程组为: , 解得 答:A 饰品的进价为20元/件,B 饰品的进价为25元/件;【小问2详解】①购进A 饰品的数量为x 件,则购进B 饰品的数量为件,∴当时,;当时,,综上所述:这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式是;②当时, ∴当时,y 取最大值,此时(元).当时, ,当时y 取最大值,此时,∵,∴当,即购进A 饰品的数量为件,则购进B 饰品的数量为件时,y 取最大值元.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.()400x -150250x ≤≤250300x <≤9633053175a b a b +=⎧⎨+=⎩2025a b =⎧⎨=⎩()400x -150250x ≤≤()()()3020302540052000y x x x =-+--=+250300x <≤()()()()()302025030203250302540022750y x x x =-⨯+--⨯-+--=+()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩150250x ≤≤52000y x =+250x =525020003250y =⨯+=250300x <≤22750y x =+300x =230027503350y =⨯+=32503350<300x =3001003350xOy(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是 ;(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .【答案】(1) (2)是直角三角形,理由见解析(3)【解析】【分析】本题主要考查了二次函数与x 轴的交点问题,一次函数与反比例函数的交点问题,勾股定理,二次函数的性质等等:(1)利用待定系数法求出反比例函数解析式,再求出时,自变量的值即可得到答案;(2)先求出时的自变量的值,进而求出点A 和点B 的坐标,再把解析式化为顶点式得到点C 的坐标,最后利用勾股定理和勾股定理的逆定理证明即可得到结论;(3)把解析式化为顶点式得到抛物线的顶点坐标为,分以下几种情况:当时,抛物线的图象上至少存在一个“梦之点”;当时,直线与抛物线在范围内不存在交点;当抛物线恰好经过原点时,则,解得或,当时,联立解得或,符合题意;()33G --,1k y x =21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++()33,ABC 12m -<<1y x =21922y x x x =-++=222AC AB BC +=()m m ,02m <<222y x mx m m =-++2m ≥y x =222y x mx m m =-++02x <<222y x mx m m =-++20m m +=0m =1m =-0m =2y x y x⎧=⎨=⎩00x y ==⎧⎨⎩11x y =⎧⎨=⎩。
【解析版】福建省福州市中考数学模拟试卷(二)
福建省福州市中考数学模拟试卷(二)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠53.下列交通标志图案是轴对称图形的是()A. B. C. D.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 25.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 46.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 27.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x68.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是度.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.18.先化简,再求值:﹣,其中a=+1,b=﹣1.19.解方程:x2+2x﹣3=0.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.福建省福州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.解答:解;1﹣x>0,解得x<1,故选:A.点评:本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义得出结论.解答:解:∠1与∠5是同位角.故选:D.点评:本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.3.下列交通标志图案是轴对称图形的是()A. B. C. D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选:D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 4考点:垂径定理;圆周角定理;解直角三角形.专题:计算题.分析:如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD.解答:解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.点评:本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.6.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 2考点:因式分解-提公因式法.分析:利用提取公因式法分解因式的方法得出即可.解答:解:∵代数式x2+ax可以分解因式,∴常数a不可以取0.故选:B.点评:此题主要考查了提取公因式法分解因式,理解提取公因式法分解因式的意义是解题关键.7.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x6考点:同底数幂的乘法;合并同类项.分析:根据合并同类项、同底数幂的运算法则计算.解答:解:A、符合合并同类项法则,故本选项正确;B、2x﹣x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2•x3≠x6=x5,故本选项错误.故选:A.点评:本题考查了同底数幂的乘法与合并同类项,熟悉合并同类项法则是解题的关键.8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.考点:作图—复杂作图.分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D 正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小考点:反比例函数的性质.专题:常规题型.分析:根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.解答:解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题;压轴题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选:C.点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是a≠﹣1.考点:分式有意义的条件.专题:计算题.分析:使代数式有意义的条件为a+1≠0,就可求得a的取值范围.解答:解:根据题意得:a+1≠0,所以a≠﹣1.故答案为a≠﹣1.点评:此题主要考查了分式的意义,要求掌握.只要令分式中分母不等于0,求得a的取值范围即可.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为y=2x﹣3.考点:一次函数图象与几何变换.分析:根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点代入即可得出直线的函数解析式.解答:解:设平移后直线的解析式为y=2x+b.把代入直线解析式得1=2×2+b,解得 b=﹣3.所以平移后直线的解析式为y=2x﹣3.故答案为:y=2x﹣3.点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=56.考点:规律型:数字的变化类.分析:对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为:56.点评:此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关键.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是150度.考点:弧长的计算.分析:直接利用弧长公式l=即可求出n的值,计算即可.解答:解:根据l===20π,解得:n=150,故答案为:150.点评:本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为1.考点:三角形中位线定理.分析:根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.解答:解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.点评:本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.考点:二次函数的图象;反比例函数的图象.专题:压轴题;图表型.分析:首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.解答:解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<2,故答案为:0<m<2.点评:本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:﹣,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式===a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:根据三角形全等得到对应角相等即可得出结论.解答:证明:∵FA=FC,∴∠FAC=∠FCA,在△ABC和△EDA中,,∴△ABC≌△EDA,∴∠B=∠D.点评:本题考查了全等三角形的判定与性质,找准对应边和对应角是解题的关键.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)考点:加权平均数;用样本估计总体;频数(率)分布直方图;扇形统计图.专题:压轴题;图表型.分析:(1)先求出喝红茶的百分比,再乘总数.先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.解答:解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;补全频数分布直方图如右图所示.(3)(小时).答:九年级300名同学完成家庭作业的平均时间约为1.8小时.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?考点:二元一次方程组的应用.分析:设运动服、运动鞋的标价分别为x元/套、y元/双,根据标价为480元的某款运动服装价格为400元,列方程组求解.解答:解:设运动服、运动鞋的标价分别为x元/套、y元/双,由题意得,,解得:.答:运动服、运动鞋的标价分别为300元/套、180元/双.点评:本题考查了二元一次方程的应用,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程求解.23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.考点:切线的判定.专题:几何综合题.分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cos∠A==,求出AE=,然后由BE=AB﹣AE即可求解.解答:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=﹣=2.点评:本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.考点:相似形综合题.专题:压轴题.分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB与△ADP不相似.(3)先求出S1=π•,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN=(x﹣1),在Rt△BMN中,求出BM2=x2﹣x+,最后根据S1=π•BM2代入计算即可.②当0<x≤2时,S2=π(x2﹣x+),最后根据S=S1+S2=π(x﹣)2+π即可得出S的最小值.解答:解:(1)过点C作CE⊥AB于E,在Rt△BCE中,∵∠B=60°,BC=4,∴CE=BC•sin∠B=4×=2,∴AD=CE=2.存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2,在Rt△ADP中,tan∠DPA===,∴∠DPA=60°,∴∠DPA=∠CPB,∴△ADP∽△CPB,∴存在△ADP与△CPB相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,∴PB=2,PC=2,∴AP=8.则≠且≠,此时△PCB与△ADP不相似.(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=π•()2=π•,①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.在Rt△GBH中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,∴S2=π•BM2=π(x2﹣x+).②∵当0<x≤2时,S2=π(x2﹣x+)也成立,∴S=S1+S2=π•+π(x2﹣x+)=π(x﹣)2+π.∴当x=时,S=S1+S2取得最小值π.点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为x=3;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.考点:二次函数综合题.分析:(1)首先把x=0,y=4代入y=a(x﹣1)(x﹣5),求出a的值是多少;然后求出B、C两点的坐标,确定出该抛物线的对称轴即可.首先过点N作NG∥y轴交AC于G,求出直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5);然后求出△CAN面积的最大值为多少,判断出是否存在一点N,使△NAC的面积为14即可.(3)首先判断出以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,判断出以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6一种情况,然后证明以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,并求出P的坐标是多少即可.解答:解:(1)把x=0,y=4代入y=a(x﹣1)(x﹣5),可得a×(﹣1)×(﹣5)=4,解得a=;∵B、C两点的坐标分别是(1,0)、(5,0),∴该抛物线的对称轴为x=(5+1)÷2=3,即该抛物线的对称轴为x=3.如图1,过点N作NG∥y轴交AC于G,,抛物线y=(x﹣1)(x﹣5)=x2+4,由点A(0,4)和点C(5,0),可得直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5),把x=t代入y=﹣x+4,可得G(t,﹣t+4),此时NG=﹣t+4﹣(t2﹣+4)=﹣t2+5t,∴S△ACN=S△ANG+S△CGN=×(﹣t2+5t)=﹣2+,∴当t=时,△CAN面积的最大值为:,∴存在一点N,使△NAC的面积为14.(3)如图2,,以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,又∵点P的坐标中x>5,∴MP>2,AP>2,∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,∴四条边的长只能是3、4、5、6一种情况.在Rt△AOM中,AM==5,∵抛物线的对称轴过点M,∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6,∴以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,即P(6,4).故答案为:、x=3.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力;此题还考查了三角形的面积的求法,以及数形结合方法的应用,要熟练掌握.。
安徽省合肥XX中学中考数学模拟试卷(二)及答案解析
安徽省合肥XX中学中考数学模拟试卷(二)一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)63.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为.10.分解因式:a3﹣4ab2=.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为.16.已知关于x的方程的解是负数,则n的取值范围为.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.26.如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB 和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.28.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27d(x)3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a﹣3b安徽省合肥XX中学中考数学模拟试卷(二)参考答案与试题解析一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.【点评】本题考查同底数幂的乘法、幂的乘方和有理数乘方的定义,熟练掌握运算性质是解题的关键.3.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥【考点】由三视图判断几何体.【分析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【考点】多边形内角与外角.【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°【考点】菱形的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】几何综合题.【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】首先根据题意推断方程x3+2x﹣1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x﹣1=0的实根x所在范围.【解答】解:方程x3+2x﹣1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x﹣1=0的实根x所在范围为:<x<.故选:C.【点评】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 4.5×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450000用科学记数法表示为4.5×105.故答案为:4.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400.【考点】反比例函数的应用.【分析】首先利用待定系数法求得v与P的函数关系式,然后代入P求得v值即可.【解答】解:∵在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,∴设P=∵当V=200时,p=50,∴k=VP=200×50=10000,∴P=当P=25时,得v==400故答案为:400.【点评】本题考查了反比例函数的应用,解题的关键是利用待定系数法求得反比例函数的解析式.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1200(条).故答案为:1200.【点评】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.【考点】解直角三角形;等腰三角形的性质.【分析】根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.【解答】解:过点A作AD⊥BC于D,如图∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.【点评】本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为30.【考点】等腰梯形的性质.【分析】首先过点A作AE∥BC于点E,由在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,可得四边形ADCE是平行四边形,△ABE是等边三角形,继而求得AB=AD=CD=BE=CE=6.继而求得答案.【解答】解:过点A作AE∥BC于点E,∵在梯形ABCD中,AD∥BC,∴四边形ADCE是平行四边形,∴AD=EC,AE=CD,∵AB=CD,∴AB=AE,∵∠ABC=60°,∴△ABE是等边三角形,∴AB=BE,∵AB=AD,∴AD=AB=CD=BE=CE=BC=×12=6,∴梯形ABCD的周长为:AB+AD+CD+BC=30.故答案为:30.【点评】此题考查了等腰梯形的性质、等边三角形的判定与性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为5π.【考点】弧长的计算;翻折变换(折叠问题).【分析】如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°﹣∠DOB=50°;然后由弧长公式弧长的公式l=来求的长.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.【点评】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB 是等边三角形是解答此题的关键之处.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6.【考点】勾股定理;矩形的性质.【分析】设矩形一条边长为x,则另一条边长为x﹣2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积.【解答】解:设矩形一条边长为x,则另一条边长为x﹣2,由勾股定理得,x2+(x﹣2)2=42,整理得,x2﹣2x﹣6=0,解得:x=1+或x=1﹣(不合题意,舍去),另一边为:﹣1,则矩形的面积为:(1+)(﹣1)=6.故答案为:6.【点评】本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E、F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.【考点】整式的混合运算—化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂的性质和特殊角的三角函数值代入计算即可;(2)利用整式的乘法和完全平方公式展开化简后代入求值即可.【解答】解(1)原式=4﹣2×+2=4+;(2)原式=2x2﹣x+2x﹣1﹣x2+6x﹣9=x2+7x﹣10,当x=﹣2时,原式=4﹣14﹣10=﹣20.【点评】本题考查了实数的运算、负整数指数幂及特殊角的三角函数值,属于基础题,应重点掌握.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.【解答】解:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.【点评】本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得该顾客最少可得20元购物券,最多可得80元购物券;(2)由(1)中的树状图即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为: =.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.17.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【考点】条形统计图;加权平均数;中位数;方差.【专题】计算题.【分析】(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可;(2)观察表格,成绩为7分处于中游略偏上,应为甲组的学生;(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组.【解答】解:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(5+5+6+7+7+8+8+8+8+9)=7.1(分),填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,小明是甲组的学生;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组.故答案为:(1)6;7.1;(2)甲【点评】此题考查了条形统计图,加权平均数,中位数,以及方差,弄清题意是解本题的关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形;正方形的判定;相似三角形的判定与性质.【专题】证明题.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论;(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE,∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,∴△BCD≌△ACE,∴∠B=∠CAE=45°,∴∠BAE=45°+45°=90°,∴AB⊥AE;(2)∵BC2=AD•AB,而BC=AC,∴AC2=AD•AB,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴∠CDA=∠BCA=90°,而∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形,∵CD=CE,∴四边形ADCE为正方形.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质、三角形全等、相似的判定与性质以及正方形的判定.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.【考点】分式方程的应用.【分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:﹣=8,解此方程即可求得答案.【解答】解:设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,则:﹣=8,解得:x=25,经检验,x=25是原分式方程的解.九(2)班的人均捐款数为:(1+20%)x=30(元)答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.【点评】本题考查分式方程的应用.注意分析题意,找到合适的等量关系是解决问题的关键.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)由BF是⊙O的切线,利用弦切角定理,可得∠1=∠C,又由∠ABF=∠ABC,可证得∠2=∠C,即可得AB=AC;(2)首先连接BD,在Rt△ABD中,解直角三角形求出AB的长度;然后在Rt△ABE中,解直角三角形求出AE的长度;最后利用DE=AD﹣AE求得结果.【解答】(1)证明:∵BF是⊙O的切线,∴∠1=∠C,∵∠ABF=∠ABC,即∠1=∠2,∴∠2=∠C,∴AB=AC;(2)解:如图,连接BD,在Rt△ADB中,∠BAD=90°,∵cos∠ADB=,∴BD====5,。
备考2023浙江省舟山市中考数学模拟试卷2含解析
【备考2023】浙江省舟山市中考数学模拟试卷2姓名:__________班级:__________考号:__________总分__________一.选择题(共10小题,满分30分,每小题3分)1.某年我国的商品进出口总额比上年的变化情况是增长7.5%,记作+7.5%,而美国的商品进出口总额比上年的变化情况是减少6.4%,则可记作( )A.﹣7.5%B.+7.5%C.﹣6.4%D.+6.4%2.正在热映的春节档电影电影《满江红》中所使用的印信道具是中国悠久的金石文化的代表之一,它的表面均由正方形和等边三角形组成,可以看成图②所示的几何体,该几何体的主视图是()A.B.C.D.3.今年新冠肺炎疫情发生以后,各级财政部门按照党中央国务院的决策部署,迅速反应、及时应对.2月14日下午,国务院联防联控机制就加大疫情防控财税金融支持力度召开新闻发布会.会上,财政部应对疫情工作领导小组办公室主任、社会保障司司长符金陵透露,财政部建立了全国财政系统疫情防控经费的日报制度,实时跟踪各地方经费保障情况,截至2月13日各级财政共计支出了805.5亿元保障资金,其中805.5亿元用科学记数法表示正确的是( )A.0.8055×1011元B.8.055×1010元C.8.055×102元D.80.55×109元4.如图所示的三个图是三个基本作图的作图痕迹,关于弧①,②,③有以下三种说法;(1)弧①是以点O为圆心,以任意长为半径所作的弧;(2)弧②是以点A为圆心,以任意长为半径所作的弧;(3)弧③是以点O为圆心,以大于DE的长为半径所作的弧.其中正确说法的个数为()A.3B.2C.1D.05.下列整数中,与﹣2最接近的是( )A.1B.2C.3D.46.如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,E F∥AC,GF∥AB,则四边形AE FG的周长是( )A.8B.16C.24D.327.选拔一名选手参加全国中学生男子百米比赛,我市四名中学生参加了训练,他们成绩的平均数及其方差s2如表所示:如果选拔一名学生去参赛,应派( )去.A.甲B.乙C.丙D.丁8.上学期某班的学生都是双人桌,其中男生与女生同桌,这些女生占全班女生的,本学期该班新转入4个男生后,男女生刚好一样多.设上学期该班有男生x人,女生y人,根据题意可得方程组为( )A.B.C.D.9.大小完全相同的两等腰直角三角形如图放置,其中∠ABC=∠E=90°,AB=BC=DE=E F,DE与AC交于AC中点N,D F过点C,S△DE F=98,BD⊥D F且BD=6,则点D到直线BC的距离为( )A.B.C.3D.10.已知点A(a,b),B(4,c)在直线y=kx+3(k为常数,k≠0)上,若ab的最大值为9,则c 的值为( )A.1B.C.2D.二.填空题(共6小题,满分24分,每小题4分)11.分解因式:3x2+6x= .12.若正n边形的一个内角是140°,那么它的边数n= .13.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“﹣﹣﹣”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“﹣﹣﹣”上方的概率是 .14.如图,在直角坐标系中,△ABC的顶点C与原点O重合,点A在反比例函数y=(k>0,x>0)的图象上,点B的坐标为(4,3),AB与y轴平行,若AB=BC,则k= .15.半径为6,圆心角为120°的扇形面积是 (结果用含π的式子表示)16.点E是矩形ABCD边CD所在直线上一点,且DE=CD,将矩形ABCD沿某直线折叠,使点B与点E重合,若AB=3,AD=4,则折痕的长为 .三.解答题(共8小题,满分66分)17.(6分)(1)计算:(2)解不等式,并把解集在数轴上表示出来.18.(6分)如图,已知在四边形ABCD中,AD∥BC,点E为BC中点,BD⊥DC,EA平分∠DEB.(1)求证:AE=DC;(2)求证:四边形ABED是菱形.19.(6分)已知实数a1,a2,…,a n(其中n是正整数)满足:(1)求a2,a n的值;(2)求+++…+的值.20.(8分)已知某一函数的图象如图所示,根据图象回答下列问题:(1)求当x=0,y的值是多少?(2)求当y=0,x的值是多少?(3)当﹣2≤x≤1.5时,y随x的增大而怎么样变化?21.(8分)如图1是某公园的一个五角星标志,图2是它的示意图,已知A,B,D,E四点共线,A,J,H,G四点共线,C,B,J,I四点共线,C,D,F,G四点共线,E,F,H,I四点共线,且C I∥MN,∠A=∠C=∠DE F=∠FGH=∠I=36°,且五个角的两边(如AB=A J)都是1m长,∠F E G=∠FG E=36°.求标志的高度,即点A到地面MN的距离.(参考数据:sin36°≈0.59,cos36°≈0.81,sin18°≈0.31,cos18°≈0.95,结果保留两位小数.)图1图222.(10分)2020年2月9日起,受新冠疫情影响,重庆市所有中小学实行“线上教学”,落实教育部“停课不停学”精神.某重点中学初2020级为了落实教学常规,特别要求家校联动,共同保证年级1600名学生上网课期间的学习不受太大影响.为了了解家长配合情况,年级对家长在“钉钉”上早读打卡的严格程度进行了调查,调查结果分为“很严格”,“严格”,“比较严格”和“不太严格”四类.年级抽查了部分家长的调查结果,绘制成如图所示的扇形统计图和条形统计图.接着,年级对早读打卡“不太严格”的全体学生进行了第一次基础知识检测,同时召开专题家长会提醒,督促这些家长落实责任,并告知将再次进行检测.两周后,年级又对之前早读打卡“不太严格”的这部分学生进行了第二次基础知识检测.[整理、描述数据]:以下是抽查的家长打卡“不太严格”的对应学生的两次检测情况:分数段0≤x<2020≤x<4040≤x<6060≤x<8080≤x≤100第一次人数3685a第二次人数b3966[分析数据]:众数中位数平均数第一次454843.7第二次6060.562.9请根据调查的信息分析:(1)本次参与调查的学生总人数是 ,并补全条形统计图;(2)计算a= ,b= ,并请你估计全年级所有被检测学生中,第二次检测得分不低于80分的人数;(3)根据调查的相关数据,请选择适当的统计量评价学校对早读打卡“不太严格”的家长召开专题家长会的效果.23.(10分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,且点B的坐标为(2,0),与y轴交于C点,抛物线的对称轴为直线x=﹣1,点D为抛物线的顶点,连接AD、AC,∠DAO=45°.(1)求抛物线的解析式;(2)点P是抛物线上第三象限内的一个动点,当点P位于对称轴左侧时,过点P作x轴的垂线分别交AD、AC于点E、F,过点P作AD的垂线交AD于点H,求E F+PH的最大值及此时点P的坐标;(3)在(2)的情况下,连接OD,将抛物线沿直线OD平移,点D平移后的对应点为D′,过点P 作x轴的垂线与平移后的抛物线交于点Q.在平移过程中,是否存在这样的点D′,使得由点P、Q、D′构成的三角形为直角三角形?若存在,直接写出D′点的坐标;若不存在,请说明理由.24.(12分)请认真阅读下列材料:如图①,给定一个以点O为圆心,r为半径的圆,设点A是不同于点O的任意一点,则点A的反演点定义为射线OA上一点A',满足OA×OA'=r2.显然点A也是点A′的反演点,即点A与点A'互为反演点,点O为反演中心,r称为反演半径,这种从点A到点A'的变换或从点A'到点A的变换称为反演变换.例如:如图②,在平面直角坐标系中,点A(6,0),以点O为圆心,AO为半径画圆,交y轴的正半轴于点B;C为线段OA的中点,P是AB上任意一点,点D的坐标为(0,5);若C关于⊙O 的反演点分别为C'.(1)求点C'的坐标;(2)连接D P、P C,求D P+2P C的最小值.解:(1)由反演变换的定义知:OC×OC'=r2,其中OC=OA=3,r=6.∴OC′===12,故点C'的坐标为(12,0);(2)如图③,连接O P、P C',由反演变换知OC×OC'=r2=O P2,即=,而∠P OC=∠C′O P,∴△P OC∽△C'O P.∴===,即2P C=P C'.∴D P+2P C=D P+P C′≥DC′==13.故D P+2P C的最小值为13.请根据上面的阅读材料,解决下列问题:如图④,在平面直角坐标系中,点A(6,0),以点O为圆心,AO为半径画圆,交y轴的正半轴于点B,C为线段OA的中点,P是上任意一点,点D的坐标为(0,5).(1)点D关于⊙O的反演点D'的坐标为 ;(2)连接D P、P C,求2D P+P C的最小值;(3)如图⑤,以OA为直径作⊙C,那么⊙C上所有的点(点O除外)关于⊙O的反演点组成的图形具有的特征是 .答案解析一.选择题(共10小题,满分30分,每小题3分)1.【考点】正数和负数【分析】根据正数与负数表示的意义可求解.解:增长7.5%,记作+7.5%,则减少6.4%,可记作﹣6.4%,故选:C.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.2.【考点】简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案.解:从正面看,可得图形如下:故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【考点】科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:805.5亿元用科学记数法表示正确的是8.055×1010元.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【考点】作图—基本作图【分析】根据作图痕迹判断即可.解:(1)弧①是以点O为圆心,以任意长为半径所作的弧,错误,应该是以点C为圆心,半径等于第一个角画的弧的半径;(2)弧②是以点A为圆心,以任意长为半径所作的弧,错误,应该是②是以点A,B为圆心,大于AB长为半径所作的弧;(3)弧③是以点O为圆心,以大于的长为半径所作的弧,错误,应该是弧③是以点D,E为圆心,以大于DE的长为半径所作的弧;故选:D.【点评】本题考查作图—基本作图,解题的关键是读懂图象信息,属于中考常考题型.5.【考点】估算无理数的大小【分析】用夹逼法即可进行无理数大小估计.解:∵9<13<16,∴3<<4.∵3.52=12.25<13,∴3.5<<4.∴1.5<﹣2<2.∴与最接近的数是2.故选:B.【点评】本题考查了无理数的大小,估算无理数大小要用逼近法.6.【考点】平行四边形的判定与性质;等腰三角形的性质【分析】由E F∥AC,GF∥AB,得四边形AE FG是平行四边形,∠B=∠GF C,∠C=∠E F B,再由AB=AC=8和等量代换,即可求得四边形AE FG的周长.解:∵E F∥AC,GF∥AB,∴四边形AE FG是平行四边形,∠B=∠GF C,∠C=∠E F B,∵AB=AC,∴∠B=∠C,∴∠B=∠E F B,∠GF C=∠C,∴EB=E F,FG=G C,∵四边形AE FG的周长=AE+E F+FG+A G,∴四边形AE FG的周长=AE+EB+G C+A G=AB+AC,∵AB=AC=8,∴四边形AE FG的周长=AB+AC=8+8=16,故选:B.【点评】本题考查平行四边形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握平行四边形的判定与性质是解题的关键.7.【考点】方差;算术平均数【分析】首先比较出较小的平均数,平均数相同时选择方差较小的运动员参加.解:∵乙和丙的平均成绩较好,∴从乙和丙中选择一人参加比赛,∵S乙2<S丙2,∴选择乙参赛,故选:B.【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【考点】由实际问题抽象出二元一次方程组【分析】根据男生与女生同桌,这些女生占全班女生的,可以得到x=y,根据本学期该班新转入4个男生后,男女生刚好一样多,可得x+4=y,从而可以列出相应的方程组,本题得以解决.解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.9.【考点】勾股定理;等腰直角三角形【分析】根据等腰直角三角形的面积可以先求出直角边长,再根据勾股定理求出CD的长,再根据三角形的面积即可求出点D到直线BC的距离.解:∵∠ABC=∠E=90°,S△DE F=98,∴AB=BC=DE=E F=14,∵BD⊥D F,∴∠BDC=90°,在Rt△BDC中,根据勾股定理,得CD===4,设点D到直线BC的距离为h,∴S△BCD=BC•h=BD•CD,即14h=6×4,解得h=.则点D到直线BC的距离为.故选:B.【点评】本题考查了勾股定理、等腰直角三角形的性质,解决本题的关键是掌握勾股定理和等腰直角三角形的性质.10.【考点】二次函数的最值;一次函数图象上点的坐标特征【分析】由点A(a,b),B(4,c)在直线y=kx+3上,可得,即得ab=a(ak+3)=ka2+3a=k(a+)2﹣,根据ab的最大值为9,得k=即可求出c=2.解:∵点A(a,b),B(4,c)在直线y=kx+3上,∴,由①可得:ab=a(ak+3)=ka2+3a=k(a+)2﹣,∵ab的最大值为9,∴k<0,﹣=9,解得k=﹣,把k=﹣代入②得:4×(﹣)+3=c,∴c=2,故选:C.【点评】本题考查一次函数图象上点坐标的特征及二次函数的最值,解题的关键是掌握配方法求函数的最值.二.填空题(共6小题,满分24分,每小题4分)11.【考点】因式分解﹣提公因式法【分析】提公因式3x即可.解:原式=3x(x+2).故答案为3x(x+2).【点评】本题考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.12.【考点】多边形内角与外角【分析】根据多边形每个内角与其相邻的外角互补,则正n边形的每个外角的度数=180°﹣140°=40°,然后根据多边形的外角和为360°即可得到n的值.解:∵正n边形的每个内角都是140°,∴正n边形的每个外角的度数=180°﹣140°=40°,∴n=360°÷40°=9.故答案为:9.【点评】本题考查了多边形内角与外角的关系及多边形的外角和定理,用到的知识点:多边形每个内角与其相邻的外角互补;多边形的外角和为360°.13.【考点】概率公式【分析】用“﹣﹣﹣”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案.解:观察“馬”移动一次能够到达的所有位置,即用“●”标记的有8处,位于“﹣﹣﹣”(图中虚线)的上方的有2处,所以“馬”随机移动一次,到达的位置在“﹣﹣﹣”上方的概率是=,故答案.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.14.【考点】勾股定理;反比例函数图象上点的坐标特征【分析】由点B的坐标为(4,3)求出BC=5,又AB=BC,AB与y轴平行,可得A(4,8),用待定系数法即得答案.解:∵点B的坐标为(4,3),C(0,0),∴BC==5,∴AB=BC=5,∵AB与y轴平行,∴A(4,8),把A(4,8)代入y=得:8=,解得k=32,故答案为:32.【点评】本题考查反比例函数图象上点坐标的特征,解题的关键是掌握待定系数法,能根据已知求出点A的坐标.15.【考点】列代数式【分析】根据扇形的面积公式是,代入数据计算即可.解:由题意可得,半径为6,圆心角为120°的扇形面积是:=12π,故答案为:12π.【点评】本题考查列代数式,解答本题的关键是明确扇形的面积公式是.16.【考点】翻折变换(折叠问题);相似三角形的判定与性质;勾股定理【分析】由DE、CD的比例关系,易求得DE的长,然后分两种情况考虑:①E点在线段CD上,设折线为M、N,首先在Rt△ADE中,利用勾股定理求得P E的长,设折线MN与P E的交点为O,那么在Rt△P O N中,可求得O N的值;然后延长P E交AD的延长线于F,根据△M O F∽△N OB来求得M O的值,从而由O M+O N得到折痕MN的长;②E点在线段CD的延长线上,解法同上.解:如图;由题意知:DE=CD=1;①当E点在线段CD上时,DE=1,CE=2;在Rt△BCE中,由勾股定理得:BE==2;由于折痕MN垂直平分BE,则OB=OE=;在Rt△BO N中,O N=OB•t an∠EBC=OB=;延长BE至F,则D F=2DE=2,E F=;易知:△BO N∽△F O M,则:,即,故O M=2O N;∴MN=3O N=;②当点E在线段CD的延长线上时,DE=1,CE=4;此时△BCE是等腰直角三角形,故N、C重合;易得:BO=O N=OE=2;在Rt△DE F中,∠E=45°,则D F=DE=1,E F=;∴O F=OE﹣E F=;同①可得:,即O N=2O M,∴MN=O N=3;综上可知:折痕MN3.【点评】此题主要考查了图形的翻折变换、勾股定理以及相似三角形的判定和性质等知识,由于E 点的位置不确定,因此要注意分类讨论思想的运用,以免漏解.三.解答题(共8小题,满分66分)17.【考点】解一元一次不等式;特殊角的三角函数值;实数的运算;零指数幂;负整数指数幂;在数轴上表示不等式的解集【分析】(1)根据绝对值的概念、零指数幂、负整数指数幂、特殊三角函数值计算即可;(2)根据去分母、去括号、移项、合并同类项、系数化1的一般步骤计算即可,再把解集在数轴上表示.解:(1)原式=﹣1+1+3﹣=3;(2)去分母得3(x﹣2)﹣6≤2(x﹣1),去括号得3x﹣6﹣6≤2x﹣2,移项、合并同类项得x≤10,不等式的解集再数轴上表示如图:【点评】本题考查了实数运算、解不等式,解题的关键是注意大于向右画,小于向左画,含有等于的画实心,没有等于的画空心.18.【考点】菱形的判定【分析】(1)由直角三角形斜边中线的性质得到DE=BE=CE,再根据角平分线的定义和平行线的性质证得∠DAE=∠AED,得到AD=CE,证得明四边形ABCD为平行四边形,由平行四边形的性质即可得到AE=DC;(2)由(1)可得AD∥BE,AD=BE=DE,根据平行四边形和菱形的判定定理可证得四边形ABED 是平行四边形,平行四边形ABED是菱形.证明:(1)∵E为BC中点,BD⊥DC,∴DE=BC=BE=CE,∵EA平分∠DEB,∴∠AEB=∠AED,∵AD∥BC,∴AD∥CE,∴∠DAE=∠AEB,AD∥CE,∴∠DAE=∠AED,∴AD=DE,∴AD=CE,∴四边形AECD平行四边形,∴AE=DC;(2)由(1)知,四边形AECD平行四边形,∴AD∥CE,AD=CE,∴AD∥BE,由(1)知,DE=BE=CE,∴AD=BE=DE,∴四边形ABED是平行四边形,∴四边形ABED是菱形.【点评】本题主要考查了平行四边形的性质和判定,菱形的判定,平行线的性质,等腰三角形的性质和判定,根据角平分线的定义、平行线的性质证和等腰三角形的性质和判定证得AD=DE=CE是解决问题的关键.19.【考点】分式的加减法;规律型:数字的变化类【分析】(1)由a2=(a1+a2)﹣a1,得a2,由a n=(a1+a2+a3+•••+a n)﹣(a1+a2+a3+•••+a n﹣1),得a n;(2)由裂项公式求解.解:(1)a2=(a1+a2)﹣a1=120﹣24=96,a n=(a1+a2+a3+•••+a n)﹣(a1+a2+a3+•••+a n﹣1)=n(n+1)(n+2)(n+3)﹣(n﹣1)n(n+1)(n+2)=n(n+1)(n+2)[(n+3)﹣(n﹣1)]=4n(n+1)(n+2),(2)由(1)得:,∴===.【点评】本题考查数字的变化类,列代数式,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值,并能用裂项公式解决其拓展问题,是中档题.20.【考点】函数的图象;函数值【分析】(1)根据函数图象与y轴的交点坐标,可得答案;(2)根据函数图象与x轴的交点坐标,可得答案;(3)根据函数图象的横坐标,观察图象即可.解:由图象可知:(1)当x=0,y的值是2;(2)当y=0时,x的值是﹣3,﹣1,4;(3)当﹣2≤x≤1.5时,y随x的增大而增大.【点评】本题考查了函数图象,观察函数图象的变化趋势获得有效信息是解题关键.21.【考点】解直角三角形的应用【分析】连接B J,过点A作A K⊥B J于点K,利用锐角三角函数即可求出结果.解:如图,连接B J,BD,JH,过点A作A K⊥B J于点K并延长交E G于点L,∵B J∥E G,∴A L⊥E G,∵AB=A J=1m,∠BA J=36°,∴∠BA K=18°,∴B K=AB⋅sin18°≈1×0.31=0.31(m),∴B J=0.62m,∴BD=JH=B J=0.62m,∴AE=A G=1+0.62+1=2.62(m),∵A L⊥E G,∠EA L=18°,∴A L=AE•cos18°=2.62×0.95≈2.49(m).【点评】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.22.【考点】条形统计图;加权平均数;中位数;众数;统计量的选择;全面调查与抽样调查;用样本估计总体;频数(率)分布表;扇形统计图【分析】(1)根据严格的人数和所占的百分比,可以求得本次调查的总人数,然后根据条形统计图中的数据,可以得到“不太严格”的人数长,从而可以将条形统计图补充完整;(2)根据(1)中的结果和表格中的数据,可以分别计算出a、b的值,计算出全年级所有被检测学生中,第二次检测得分不低于80分的人数;(3)根据表格中的数据,可以得到学校对早读打卡“不太严格”的家长召开专题家长会的效果.解:(1)本次参与调查的学生总人数是36÷30%=120(人),不太严格”的人数为120﹣6﹣36﹣54=24(人),补全的条形统计图如图所示,故答案为:120;(2)a=24﹣3﹣6﹣8﹣5=2,b=24﹣3﹣9﹣6﹣6=0,1600×=400(人),即第二次检测得分不低于80分的有400人,故答案为:2,0;(3)第二次的众数高于第一次,中位数高于第一次,平均数高于第一次,说明学校对早读打卡“不太严格”的家长召开专题家长会的效果比较明显,学生们取得了较大的进步.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、众数、中位数、平均数,解答本题的关键是明确题意,利用数形结合的思想解答.23.【考点】二次函数综合题【分析】(1)根据点B的坐标及二次函数的对称性,可得点A的坐标;根据∠DAO=45°及点D为抛物线的顶点,可得点D的坐标;设出抛物线的顶点式解析式,用待定系数法求解即可;(2)由抛物线的解析式,求得点C的坐标;由点A和点C的坐标得出直线AC的解析式;设P(m,m2+m﹣),其中﹣4<m<﹣1,分别用含m的式子表示出点F的坐标和线段PF;证得P E=PH,则可得E F+PH=PF,再根据二次函数的性质可得答案;(3)写出直线OD的解析式,分三种情况讨论:①当P D'⊥P Q时;②当Q D'⊥P D'时;③P Q⊥D'Q 不成立.①可以将点D'的纵坐标代入直线DO的解析式,求得其横坐标即可;②设D'(n,3n),则平移后抛物线的解析式为y'=(x﹣n)2+3n,分别用n表示出k D'Q和k D'P,根据k D'Q×k D'P=﹣1,解得n,则可得答案.解:(1)∵点B的坐标为(2,0),抛物线的对称轴为直线x=﹣1,∴A(﹣4,0),又∵∠DAO=45°,点D为抛物线的顶点,∴D(﹣1,﹣3),设抛物线的解析式为y=a(x+1)2﹣3,将B(2,0)代入,得:0=a(2+1)2﹣3,解得a=,∴y=(x+1)2﹣3=x2+x﹣,∴抛物线的解析式为y=x2+x﹣;(2)∵y=x2+x﹣,∴当x=0时,y=﹣,∴),又∵A(﹣4,0),∴直线AC的解析式为y=﹣x,设P(m,m2+m﹣),其中﹣4<m<﹣1,则F(m,﹣m﹣),∴PF=2m,∵PF⊥x轴,PH⊥AD,∴∠OAD=∠AE F=∠P E H=∠E PH=45°,∴P E=PH,∴E F+PH=PF=﹣m2﹣m=﹣(m+2)2+,∵﹣<0,﹣4<m<﹣1,∴当m=﹣2时,E F+PH有最大值,最大值为,此时P(﹣2,﹣);(3)∵D(﹣1,﹣3),∴直线DO的解析式为y=3x,①当P D'⊥P Q时,点D'的纵坐标为﹣,代入y=3x,得x=﹣,∴D'(﹣,﹣);②当Q D'⊥P D'时,设D'(n,3n),则平移后抛物线的解析式为y'=(x﹣n)2+3n.∵P(﹣2,﹣),∴Q(﹣2,(﹣2﹣n)2+3n),∴k D'Q==﹣(n+2),k D'P=,∵Q D'⊥P D',∴k D'Q×k D'P=×[﹣(n+2)]=﹣1,解得n=,∴D'(,);解法二:图2中,过点D′作D′⊥P Q于点T.∵△D′TQ∽△P T D′,可得D′T2=Q D•P T,由此构建方程,可得结论.③P Q⊥D'Q不成立.综上所述,点D'的坐标为(﹣,﹣)或(,).【点评】本题属于二次函数综合题,考查了待定系数法求函数的解析式、抛物线与坐标轴的交点、一次函数的图象与性质、等腰直角三角形的判定与性质、利用二次函数的性质解决几何图形的最值问题及抛物线的平移等知识点,数形结合、分类讨论及熟练掌握二次函数的性质是解题的关键.24.【考点】圆的综合题【分析】(1)根据反演变换的定义即可求出结论;(2)连接P D′,根据相似三角形的判定定理证出,列出比例尺即可求出,然后代入所求关系式并根据两点之间线段最短即可求出结论;(3)在⊙C上任取一点P,连接O P并延长至点P关于⊙O的反演点,连接A P,根据相似三角形的判定定理证出,根据相似三角形的性质可得,然后根据直径所对的圆周角是直角即可求出,从而得到结论.解:(1)由反演变换的定义知:OD×OD'=r2,其中OD=5,r=6,∴OD'===,∴点D关于⊙O的反演点D'的坐标为(0,),故答案为:(0,);(2)连接P D',如图:由反演变换知OD×OD'=r2=O P2,∴,又∵∠P OD=∠D'O P,∴△P OD∽△D'O P,∴===,∴D P=D'P,∴2D P+P C=(D P+P C)=(D'P+P C)≥D'C==13,∴2D P+P C的最小值为13;(3)在⊙C上任取一点P,连接O P并延长至点P关于⊙O的反演点P',连接A P和P'A,如图:由反演变换知O P×O P'=r2=OA2,∴=,又∵∠P OA=∠AO P',∴△P OA∽△AO P',∴∠O P A=∠OA P',∵OA为⊙C的直径,∴∠O P A=90°,∴∠OA P'=90°,∴⊙C上所有的点(点O除外)关于⊙O的反演点组成的图形具有的特征是过点A且与x轴垂直的一条直线.故答案为:过点A且与x轴垂直的一条直线.【点评】本题属于圆的综合题,主要考查了新定义在圆中的综合运用及相似三角形的判定与性质,读懂题中的定义、熟练掌握直径所对的圆周角是直角及相似三角形的判定与性质是解题的关键.。
2024年中考数学模拟考试试卷(含有答案)
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是
∴
∴
∴
故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4
∴
∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径
∴
∵
∴
又∵
∴
∴பைடு நூலகம்是等边三角形
∴
∵
∴
∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
2023年南京市联合体中考二模数学试卷及答案
2023年南京市联合体中考模拟试卷(二)数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.4的算术平方根是A .2B .-2C .16D .-162.与(-3)2的值相等的是A .-32B .32C .(-2)3D .233.不等式-x +1<0的解集在数轴上表示正确的是A .B .C .D .4.如图,AB 是半圆O 的直径,C ,D 在半圆O 上.若∠CAB =28°,则∠ADC 的度数为A .152°B .142°C .118°D .108°5.如图,AB ∥CD ∥EF ,则下列结论正确的是A .AC CE =DF BDB.AC AE =DF BFC .AC CE =AB CDD .AC BD =CEDF(第4题)A CEB D F(第5题)6.若关于x 的一元二次方程-x 2+2x -1=m (m 为常数)在-2<x <2的范围内有实数根,则m 的取值范围是 A .-9<m ≤0B .m ≤0C .-9<m <-1D .-1≤m <0二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写答题卡相应位置.......上) 7.3的相反数是 ▲,3的倒数是 ▲.8.若式子x -1在实数范围内有意义,则x 的取值范围是 ▲.9.某新型感冒病毒的直径约为0.000 000 82米.将0.000 000 82用科学记数法表示为 ▲.13.在平面直角坐标系中,点A 的坐标是(1,3).将OA 绕着点A 逆时针旋转90°得到AB ,则点B 的坐标是 ▲ .14.如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为E .若AB =4,CE =6,则⊙O 的半径r 为 ▲ . 15.如图,在矩形ABCD 中,E 是BC 的中点,将△DCE 沿DE 翻折,点C 落在点F 处.若BC =4,tan ∠FBE = 32,则AB 的长为 ▲ .16.如图,将△ABC 绕点A 旋转至△AB ′C ′,使得B ′,C ′,B 共线.若AC =2,∠ABC =30°,则CC ′的长为▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解方程组⎩⎨⎧2x -y =0,x +2y =5.ABCB ′C ′(第16题)ADFCEB(第15题)(第14题)18.(8分)化简并求值:⎝ ⎛⎭⎪⎫1a -1-a -3 a 2-1÷2a -1,其中a =2.19.(8分)某超市对近四周西红柿和黄瓜的销售情况进行了统计,并将销售单价和销售量分别制成如下统计图.(1)这四周西红柿销售单价的众数为 ▲ 元,黄瓜销售单价的中位数为 ▲ 元; (2)分别求这四周西红柿、黄瓜周销量的方差; (3)结合上述两幅统计图写出一条正确的结论.20.(8分)一个不透明的袋子中,装有3个红球,2个白球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球是红球的概率为 ▲ ; (2)搅匀后从中任意摸出2个球,求2个都是红球的概率.21.(8分)如图,在□ABCD 中,E ,F 位于BC ,AD 上,AE ,CF 分别平分∠BAC ,∠DCA .(1)求证:四边形AECF 是平行四边形;(2)当△ABC 满足条件 ▲ 时,四边形AECF 是矩形.ABCDEF(第21题)。
2024年湖北省武汉市江夏区光谷实验中学中考数学模拟试卷(二)及答案解析
2024年湖北武汉市江夏区光谷实验中学中考数学模拟试卷(二)一、选择题(共10小题,每小题3分,共30分)1.(3分)的相反数是()A.2024B.﹣2024C.D.2.(3分)下列是几个著名汽车品牌标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1B.点数的和为6C.点数的和大于12D.点数的和小于134.(3分)下列运算正确的是()A.(﹣3a2)3=﹣9a6B.(﹣a)2•a3=a5C.(2x﹣y)2=4x2﹣y2D.a2+4a2=5a45.(3分)从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是()A.B.C.D.6.(3分)如图,两个反比例函数y=和y=在第一象限的图象分别是C1和C2,设点P 在C1上,PA⊥x轴于点A,交C2于B,则△POB的面积为()A.1B.2C.3D.47.(3分)如果x2+2x﹣2=0,那么代数式•﹣的值为()A.﹣2B.﹣1C.1D.28.(3分)如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交AC的延长线于点F;若半径为3,且sin∠CFD=,则线段AE的长是()A.B.5C.D.9.(3分)3月23日早晨,“母亲河畔的奔跑﹣2013重庆国际马拉松赛”在南滨公园门口鸣枪开跑,甲、乙两选手的行程y(千米)随时间x(时)变化的图象(全程)如图所示.有下列说法:其中,错误的说法是()A.起跑后1小时内,甲在乙的前面B.第1小时两人都跑了21千米C.甲比乙先到达终点D.两人都跑了42.195千米10.(3分)如图,在正方形ABCD中,E是BC的中点,F是CD上一点,AE⊥EF.有下列结论:①∠BAE=30°;②射线FE是∠AFC的角平分线;③;④AF=AB+CF.其中正确结论的为()A.①②③B.①②④C.②③④D.②④二、填空题(共6小题,每小题3分,共18分)11.(3分)计算的结果是.12.(3分)世界文化遗产长城总长约21000千米,数21000用科学记数法表示为.13.(3分)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37°,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为.(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)14.(3分)如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得∠AFG=60°,CE=8米,仪器高度CD=1.5米,这棵树AB的高度为_______米.15.(3分)如图,已知开口向下的抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1.下列四个结论:①abc>0;②2a+b=0;③函数y=ax2+bx+c的最大值为﹣4a;④若关于x的方程ax2+bx+c=a+1无实数根,则﹣<a<0.其中正确的是_______(填写序号).16.(3分)如图,矩形ABCD中,AB=8,点E是AD上的一点,且DE=4,CE的垂直平分线交CB的延长线于点F,交CD于点H,连接EF交AB于点G.若G是AB的中点,则BC的长是.三、解答题(共6小题,共52分)17.(8分)解不等式组请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.18.(8分)已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DF∥CA,∠FDE=∠A;(1)求证:DE∥BA.(2)若∠BFD=∠BDF=2∠EDC,求∠B的度数.19.(8分)某工厂进行厂长选拔,从中抽出一部分人进行筛选,其中有“优秀”,“良好”,“合格”,“不合格”.(1)本次抽查总人数为,“合格”人数的百分比为;(2)补全条形统计图;(3)扇形统计图中“不合格人数”的度数为;(4)在“优秀”中有甲乙丙三人,现从中抽出两人,则刚好抽中甲乙两人的概率为.20.(8分)如图,AB是⊙O的直径,点D是弦AC延长线上一点,过点D作DE⊥AB于点E,过点C作⊙O的切线,交DE于点F.(1)求证:FC=FD;(2)若E是OB的中点,sin D=,OA=2,求FD的长.21.(10分)【问题发现】(1)如图1,在等腰直角△ABC中,点D是斜边BC上任意一点,在AD的右侧作等腰直角△ADE,使∠DAE=90°,AD=AE,连接CE,则∠ABC和∠ACE的数量关系为;【拓展延伸】(2)如图2,在等腰△ABC中,AB=BC,点D是BC边上任意一点(不与点B,C重合),在AD的右侧作等腰△ADE,使AD=DE,∠ABC=∠ADE,连接CE,则(1)中的结论是否仍然成立,并说明理由;【归纳应用】(3)在(2)的条件下,若AB=BC=6,AC=4,点D是射线BC上任意一点,请直接写出当CD=3时CE的长.22.(10分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是直线x=﹣且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.2024年湖北武汉市江夏区光谷实验中学中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】只有符号不同的两个数叫做互为相反数,由此判断即可.【解答】解:的相反数是,故选:C.【点评】本题考查了相反数,熟知相反数的定义是解题的关键,属于基础题.2.【分析】根据轴对称图形和中心对称图形的定义,逐项判断即可求解.【解答】解:A、该图形是轴对称图形,但不是中心对称图形,故本选项不符合题意;B、该图形是轴对称图形,但不是中心对称图形,故本选项不符合题意;C、该图形既是轴对称图形又是中心对称图形,故本选项符合题意;D、该图形是轴对称图形,但不是中心对称图形,故本选项不符合题意.故选:C.【点评】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.3.【分析】根据事件发生的可能性大小判断即可.【解答】解:A、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B、两枚骰子的点数之和为6,是随机事件,故符合题意;C、点数的和大于12,是不可能事件,故不符合题意;D、点数的和小于13,是必然事件,故不符合题意;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】A、根据积的乘方的性质进行计算即可判断;B、先计算乘方,再根据同底数幂的乘法计算即可判断;C、根据完全平方公式进行计算即可判断;D、根据合并同类项法则进行计算即可确定答案.【解答】解:选项A:(﹣3a2)3=﹣27a6,所以不符合题意;选项B:(﹣a)2•a3=a2•a3=a5,所以符合题意;选项C:(2x﹣y)2=4x2﹣4xy+y2,所以不符合题意;选项D:a2+4a2=5a2,所以不符合题意;故选:B.【点评】本题考查了完全平方公式、合并同类项以及幂的乘方、积的乘方等知识,掌握相关公式与运算法则是解答本题的关键.5.【分析】画出树状图,共有6种等可能的结果,其中甲被选中的结果有4种,由概率公式即可得出结果.【解答】解:根据题意画图如下:共有6种等可能的结果数,其中甲被选中的结果有4种,则甲被选中的概率为.故选:C.【点评】本题考查了树状图法求概率以及概率公式,解题的关键是画出树状图.6.【分析】根据反比例函数y=(k≠0)系数k的几何意义得到S△POA=×4=2,S△BOA=S△POA﹣S△BOA进行计算即可.=×2=1,然后利用S△POB【解答】解:∵PA⊥x轴于点A,交C2于点B,=×4=2,S△BOA=×2=1,∴S△POA=2﹣1=1.∴S△POB故选:A.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k ≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.7.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由已知等式得出x2+2x=2,代入计算可得.【解答】解:原式=•﹣=﹣=﹣=﹣,∵x2+2x﹣2=0,∴x2+2x=2,则原式=﹣=﹣2,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.8.【分析】连接OD,如图,利用等腰三角形的性质和平行线的判定得到OD∥AB,再根据切线的性质得到OD⊥DF,则AE⊥EF,接着在Rt△ODF中利用正弦的定义求出OF=5,然后在Rt△AEF中利用正弦定义可求出AE的长.【解答】解:连接OD,如图,∵AB=AC,∴∠B=∠ACB,∵OC=OD,∴∠OCD=∠ODC,∴∠B=∠ODC,∴OD∥AB,∵DF为切线,∴OD⊥DF,∴AE⊥EF,在Rt△ODF中,∵sin∠CFD==,OD=3,∴OF=5,在Rt△AEF中,∵sin∠F==,∴AE=(3+5)=.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了解直角三角形.9.【分析】由图象可知起跑后1小时内,甲在乙的前面;在跑了1小时时,甲追上乙,此时都跑了121千米;乙比甲先到达终点;根据纵坐标,即可求得两人跑的距离,则可求得答案.【解答】解:根据图象得:起跑后1小时内,甲在乙的前面;故选项A正确,不符合题意;在跑了1小时时,甲追上乙,此时都跑了21千米,故选项B正确,不符合题意;乙比甲先到达终点,故选项C错误,符合题意;两人都跑了42.195千米,故选项D正确,不符合题意.故选:C.【点评】此题考查了函数图形的意义.解题的关键是根据题意理解各段函数图象的实际意义,正确理解函数图象横纵坐标表示的意义,理解问题的过程.10.【分析】①根据题目中的条件和正方形的性质,利用锐角三角函数可以得到∠BAE是否等于30°;②根据题目中的条件,可以求得∠AEB和∠CFE的正切值,从而可以得到射线FE是否为∠AFC的角平分线;③根据前面的推论,可以得到CF和CD的关系,从而可以判断CF=CD是否成立;④根据题目中的条件和全等三角形的判定与性质,可以得到AF=AB+CF是否成立.【解答】解:∵在正方形ABCD中,E是BC的中点,∴AB=BC,BE=AB,∴tan A==,∵tan30°=,∴∠BAE≠30°,故①错误;∵∠B=∠C=90°,AE⊥EF,∴∠BAE+∠BEA=90°,∠BEA+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF,∵AB=2BE=2CE,∴EC=2CF,设CF=a,则EC=BE=2a,AB=4a,∴AE=a,EF=a,tan∠CFE=2,∴tan∠AFE==2,∴∠AFE=∠CFE,即射线FE是∠AFC的角平分线,故②正确;∵BC=CD,BC=2CE=4CF,∴CF=CD,故③错误;作EG⊥AF于点G,∵FE平分∠AFC,∠C=90°,∴EG=EC,∴EG=EB,∵∠B=∠AGE=90°,在Rt△ABE和Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴AB=AG,又∵CF=GF,AF=AG+GF,∴AF=AB+CF,故④正确,由上可得,②④正确,正确的个数为2,故选:D.【点评】本题考查正方形的性质、全等三角形的判定与性质、锐角三角函数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二、填空题(共6小题,每小题3分,共18分)11.【分析】直接利用二次根式的性质化简得出答案.【解答】解:=6.故答案为:6.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.【解答】解:数21000用科学记数法表示为2.1×104.故答案为:2.1×104.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.13.【分析】由锐角三角函数可以求得AB的长即可.【解答】解:根据题意得:∠BAC=37°,∠ACB=90°,∵,∴,解得:AB≈10米,即自动扶梯AB的长约为10米.故答案为:10米.【点评】本题考查解直角三角形的应用,熟练掌握锐角三角函数是解题的关键.14.【分析】根据直角三角形的边角间关系,可用含AG的代数式表示出FG、DG,由于DG ﹣FG=DF,得到关于AG的方程,求解即可【解答】解:由题意,四边形CDFE、四边形FEBG、四边形CDBG均为矩形,△ADG、△AFG均为直角三角形,所以CD=BG=1.5米,CE=DF=8米.在Rt△ADG中,∵tan∠ADG=,即DG==AG,在Rt△AFG中,∵tan∠AFG=,即FG==AG,又∵DG﹣FG=DF=8,∴AG﹣AG=8即AG=8∴AG=4∴AB=AG+GB=1.5+4(米)故答案为:1.5+4【点评】本题考查了解直角三角形.掌握直角三角形的边角关系是解决本题的关键.15.【分析】根据抛物线的开口方向和对称轴以及与y轴的交点即可判断①;利用抛物线的对称轴即可判断②;由抛物线对称轴得到抛物线的解析式为y=a(x+1)(x﹣3),当x =1时,y的值最大,最大值为﹣4a,即可判断③;把问题转化为一元二次方程,利用判别式<0,即可判断④.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线交y轴于正半轴,∴c>0,∵﹣>0,∴b>0,∴abc<0,故①错误.∵抛物线的对称轴是直线x=1,∴﹣=1,∴2a+b=0,故②正确.∵抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为直线x=1,∴抛物线交x轴于另一点(3,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),当x=1时,y的值最大,最大值为﹣4a,故③正确.∵ax2+bx+c=a+1无实数根,∴a(x+1)(x﹣3)=a+1无实数根,∴ax2﹣2ax﹣4a﹣1=0,Δ<0,∴4a2﹣4a(﹣4a﹣1)<0,∴a(5a+1)<0,∴﹣<a<0,故④正确,故答案为:②③④.【点评】本题考查二次函数的性质,根的判别式,二次函数的最值等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型,16.【分析】证明△AEG≌△BFG(ASA),根据全等三角形对应边相等可得AE=BF,EG=FG,设AE=x,表示出CF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得CF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.【解答】解:∵矩形ABCD中,G是AB的中点,AB=8,∴AG=BG=×8=4,在△AEG和△BFG中,,∴△AEG≌△BFG(ASA),∴AE=BF,EG=FG,设AE=x,则CF=BC+BF=AD+BF=4+x+x=4+2x,在Rt△AEG中,EG==,∴EF=2,∵FH垂直平分CE,∴CF=EF,∴4+2x=2,解得:x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故答案为:7.【点评】本题考查了全等三角形的判定与性质,矩形的性质,线段垂直平分线的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.三、解答题(共6小题,共52分)17.【分析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【解答】解:(1)解不等式①,得x≥﹣1;(2)解不等式②,得x≤2;(3)把把不等式①和②的解集在数轴上表示出来:(4)所以原不等式组的解集为﹣1≤x≤2.故答案为:(1)x≥﹣1;(2)x≤1;(3)见解答;(4)﹣1≤x≤2.【点评】本题考查了解一元一次不等式,一元一次不等式组,不等式的应用,关键是能根据不等式的解集找出不等式组的解集.18.【分析】(1)根据平行线的性质与判定方法证明即可;(2)设∠EDC=x°,由∠BFD=∠BDF=2∠EDC可得∠BFD=∠BDF=2x°,根据平行线的性质可得∠DFB=∠FDE=2x°,再根据平角的定义列方程可得x的值,进而得出∠B的度数.【解答】解:(1)证明:∵DF∥CA,∴∠DFB=∠A,又∵∠FDE=∠A,∴∠DFB=∠FDE,∴DE∥AB;(2)设∠EDC=x°,∵∠BFD=∠BDF=2∠EDC,∴∠BFD=∠BDF=2x°,由(1)可知DE∥BA,∴∠DFB=∠FDE=2x°,∴∠BDF+∠EDF+∠EDC=2x°+2x°+x°=180°,∴x=36,又∵DE∥AB,∴∠B=∠EDC=36°.【点评】本题主要考查了平行线的性质与判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.19.【分析】(1)由优秀人数及其所占百分比可得总人数,根据百分比之和为1可得合格人数所占百分比;(2)总人数乘以不合格人数所占百分比求出其人数,从而补全图形;(3)用360°乘以样本中“不合格人数”所占百分比即可得出答案;(4)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)本次抽查的总人数为8÷16%=50(人),“合格”人数的百分比为1﹣(32%+16%+12%)=40%,故答案为:50人,40%;(2)补全图形如下:(3)扇形统计图中“不合格”人数的度数为360°×32%=115.2°,故答案为:115.2°;(4)列表如下:甲乙丙甲(乙,甲)(丙,甲)乙(甲,乙)(丙,乙)丙(甲,丙)(乙,丙)由表知,共有6种等可能结果,其中刚好抽中甲乙两人的有2种结果,所以刚好抽中甲乙两人的概率为=.故答案为:.【点评】本题考查了列表法与树状图法、用样本估计总体、扇形统计图、条形统计图;读懂统计图中的信息、画出树状图是解题的关键.20.【分析】(1)连接OC,如图,先根据切线的性质得到∠OCF=90°,再证明∠D=∠FCD,从而得到FC=FD;(2)连接BC,过F点作FH⊥CD于H,如图,先在Rt△ADE中利用正弦的定义求出AD=5,再根据圆周角定理得到∠ACB=90°,则∠ABC=∠D,接着在Rt△ABC中利用正弦的定义求出AC=,则CD=,由于FC=FD,FH⊥CD,根据等腰三角形的性质得到DH=,然后在Rt△DFH中利用解直角三角形可求出DF的长.【解答】(1)证明:连接OC,如图,∵CF为⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠FCD+∠ACO=90°,∵OA=OC,∴∠OCA=∠A,∴∠FCD+∠A=90°,∵DE⊥AB,∴∠D+∠A=90°,∴∠D=∠FCD,∴FC=FD;(2)解:连接BC,过F点作FH⊥CD于H,如图,∵E是OB的中点,OA=2,∴OE=1,∴AE=3,在Rt△ADE中,∵sin D==,∴AD=×3=5,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠A=90°,∵∠D+∠A=90°,∴∠ABC=∠D,在Rt△ABC中,∵sin∠ABC=sin D==,∴AC=×4=,∴CD=AD﹣AC=5﹣=,∵FC=FD,FH⊥CD,∴DH=CH=CD=,在Rt△DFH中,∵sin D==,∴设FH=3x,DF=5x,∴DH=4x,即4x=,解得x=,∴DF=5×=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和解直角三角形.21.【分析】(1)利用SAS证明△ABD≌△ACE,得BD=CE;(2)根据等腰三角形的性质得到∠BAC=∠ACB=(180°﹣∠ABC),∠DAE=∠DEA=(180°﹣∠ADE),根据相似三角形的判定和性质定理即可得到结论;(3)如图3,根据等腰三角形的性质得到∠BAC=∠ACB=(180°﹣∠ABC),∠DAE=∠DEA=(180°﹣∠ADE),根据相似三角形的判定和性质定理即可得到结论.【解答】解:(1)相等,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE,故答案为:相等;(2)成立,理由:∵AB=BC,∴∠BAC=∠ACB=(180°﹣∠ABC),∵AD=DE,∴∠DAE=∠DEA=(180°﹣∠ADE),∵∠ABC=∠ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,△ABC∽△ADE,∴,∴△ABD∽△ACE,∴∠ABC=∠ACE;(3)如图2,∵AB=BC,∴∠BAC=∠ACB=(180°﹣∠ABC),∵AD=DE,∴∠DAE=∠DEA=(180°﹣∠ADE),∵∠ABC=∠ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,△ABC∽△ADE,∴,∴△ABD∽△ACE,∴=,∵AB=BC=6,AC=4,CD=3,∴=,∴CE=2.如图3,∵AB=BC,∴∠BAC=∠ACB=(180°﹣∠ABC),∵AD=DE,∴∠DAE=∠DEA=(180°﹣∠ADE),∵∠ABC=∠ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,△ABC∽△ADE,∴,∴△ABD∽△ACE,∴=,∵AB=BC=6,AC=4,CD=3,∴=,∴CE=6.综上所述,CE为2或6.【点评】本题是三角形综合题,主要考查了全等三角形的判定与性质,等腰三角形的性质,相似三角形的判定和性质等知识,熟练证明△ABD∽△ACE是解题的关键.22.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【解答】解:(1)当x=0时,y=2,即C(0,2),当y=0时,x+2=0,解得x=﹣4,即A(﹣4,0).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2﹣x+2;(2)①当点M在x轴上方时,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图:设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.∵AC2+BC2=AB2,∴∠ACB=90°,当△ANM∽△ACB时,∠CAB=∠MAN,此时点M与点C重合,M(0,2).当△ANM∽△BCA时,∠MAN=∠ABC,此时M与C关于抛物线的对称轴对称,M(﹣3,2).②当点M在x轴下方时,当△ANM∽△ACB时,∠CAB=∠MAN,此时直线AM的解析式为y=﹣x﹣2,由,解得或,∴M(2,﹣3),当△ANM′∽△BCA时,∠MAN=∠ABC,此时AM′∥BC,∴直线AM′的解析式为y=﹣2x﹣8,由,解得或,∴M(5,﹣18)综上所述:抛物线存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏。
中考数学模拟试卷及答案解析
绝密★启用前2022年四川省自贡市富顺三中中考数学模拟试卷(二)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、选择题(本大题共12小题,共48.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在下列四种图形变换中,本题图案不包含的变换是( ) A. 位似 B. 旋转 C. 轴对称 D. 平移2. 计算(a 3)2的结果是( ) A. a 9 B. a 6 C. a 5 D. a3. 下列图形中,是中心对称图形的是( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A.B.C.D.4. 对于反比例函数y =−k 2−1x,下列说法不正确的是( ) A. y 随x 的增大而增大B. 它的图象在第二、四象限C. 当k =2时,它的图象经过点(5,−1)D. 它的图象关于原点对称5. 下列调查中,适宜采用抽样方式的是( ) A. 调查我市中学生每天体育锻炼的时间B. 调查某班学生对“新冠疫情防疫知识”的知晓率C. 调查一架“歼20”隐形战机各零部件的质量D. 调查冬奥会越野滑雪参赛运动员兴奋剂的使用情况6. 下列命题中正确的是( ) A. 对角线相等的四边形是矩形 B. 对角线互相垂直的四边形是菱形C. 对角线互相垂直平分且相等的四边形是正方形……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………D. 一组对边相等,另一组对边平行的四边形是平行四边形7. 如图,小芳和爸爸正在散步,爸爸身高1.8米,他在地面上的影长为2.1米.若小芳身高只有1.2m ,则她的影长为( )A. 1.2mB. 1.4mC. 1.6mD. 1.8米8. 如图,设△DEF 缩小为原来的一半,操作方法如下:任意取一点P ,连接DP ,取DP 的中点A ,再连接EP 、FP ,取它们的中点B 、C ,得到△ABC ,下列说法错误的是( )A. △ABC 与△DEF 是位似图形B. △ABC 与△DEF 是相似图形C. △ABC 与△DEF 的周长比是1:2D. △ABC 与△DEF 的面积比是1:29. 已知抛物线y =ax 2+bx +c(a ≠0)在平面直角坐标系中的位置如图,则下列结论中正确的是( )A. a >0B. b <0C. c <0D. a +b +c >010. 宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A. (180+x −20)(50−x10)=10890 B. (x −20)(50−x−18010)=10890 C. x(50−x−18010)−50×20=10890D. (x +180)(50−x10)−50×20=1089011. 在同一平面直角坐标系中,函数y =kx 与y =kx +k 2(k ≠0)的大致图象是( )A.B.C.D.12. 如图,Rt △APC 的顶点A 、P 在反比例函数y =1x的图象上,已知P 的坐标为(1,1),CPAC=1n(n ≥2的自然数);当n =2,3,4……100时,A 点的横坐标相应为a 2,a 3,a 4⋯a 100,则1a 2+1a 3+1a 4+⋯+1a 100的值为( )A. 2100B. 5049C. (12)99D. 5050第II 卷(非选择题)二、填空题(本大题共6小题,共24.0分)13. 如果x 2=y 3=z 4≠0,则x+y+zx+y−z = ______ .14. 如图,△ABC 中,DE//BC ,DE 分别交边AB 、AC 于D 、E 两点,若AD :AB =1:3,则△ADE 与△ABC 的面积比为______ .……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………15. 已知m ,n 为一元二次方程x 2+2x −9=0的两实数根,那么m +n −mn 的值为______ .16. 在半径为4π的圆中,45°的圆心角所对的弧长等于______. 17. 如图,在△ABC 中,AB =AC ,点A 在反比例函数y =12x(x >0)的图象上,点B ,C 在x 轴上,OC =15OB ,延长AC 交y 轴于点D ,连接BD ,AO ,则△BCD 的面积为______.18. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE.将△ADE 沿AE对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF.下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG//CF ;④S △FGC =3.其中正确结论的是______.三、计算题(本大题共3小题,共26.0分)19. 解不等式2x −3<x+13,并把解集在数轴上表示出来.20. 先化简,再求值:(x−1x−x−2x+1)÷2x 2−xx 2+2x+1,其中x 满足x 2−x −1=0.21. 为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率. 四、解答题(本大题共5小题,共52.0分。
2024年山东省济南市中考数学模拟试卷(含答案)
2024年山东省济南市中考数学模拟试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.有理数a、b在数轴上的位置如图所示,化简:|a+2|―|2a|―|b―1|+|a+b|=( )A. ―3B. 2b―3C. 3―2bD. 2a+b2.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A.B.C.D.3.据报道,2024年春节假期河源万绿湖景区共接待游客约220000人次.数字220000用科学记数法表示是( )A. 2.2×106B. 2.2×105C. 22×106D. 0.22×1064.下列计算正确的是( )A. (a3)2=a9B. (xy2)3=xy6C. (―2b2)2=―4b4D. (a)2=a5.光线照射到平面镜镜面会产生反射现象,物理学中,我们知道反射光线与法线(垂直于平面镜的直线叫法线)的夹角等于入射光线与法线的夹角.如图一个平面镜斜着放在水平面上,形成∠AOB形状,∠AOB=36°,在OB上有一点E,从点E射出一束光线(入射光线),经平面镜点D处反射光线DC刚好与OB平行,则∠DEB的度数为( )A. 71°B. 72°C. 54°D. 53°6.若二次根式1―3x有意义,则x的取值范围是( )3A. x≠13B. x≥13C. x<13D. x≤137.下列计算正确的是( )A. (a―1)2=a2―1B. 4a⋅2a=8a2C. 2a―a=2D. a8÷a2=a48.若点A(―4,y1),B(―2,y2),C(5,y3)在反比例函数y=3x的图象上,则y1,y2,y3大小关系为( )A. y3>y1>y2B. y2>y3>y1C. y3>y2>y1D. y1>y2>y39.如图,AB为⊙O的直径,AD交⊙O于点F,点C是弧BF的中点,连接AC.若∠CAB=30°,AB=2,则阴影部分的面积是( )A. π3B. π6C. 2π3D. π210.如图,点A是反比例函数y=kx(k≠0)在第二象限图象上的一点,其纵坐标为1,分别作AB⊥x轴、AC⊥y轴,点D为线段OB的三等分点(BD=13OB),作DE⊥x轴,交双曲线于点E,连接CE.若CE=DE,则k的值为( )A. ―2B. ―322C. ―94D. ―22二、填空题:本题共6小题,每小题4分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A BCDE FMC'D'B'中考全真模拟数学精品试卷(2)(满分120分,时间120分钟)一、填空题:(本大题共10小题,每小题2分,共20分.)1、211-的倒数是_______________ 2、当x=___________时,分式1xx +无意义.3、在数轴上与表示3的点的距离最近的整数点所表示的数____.4、据市统计局初步核算,去年我市实现地区生产总值1583.45亿元.这个数据用科学记数法表示约为 元(保留三位有效数字).5、小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=____. 6、某篮球运动员投3分球的命中率为0.5,投2分球的命中率为0.8,一场比赛中据说他投了20次2分球, 投了6次3分球,估计他在这场比赛中得了 分.7、如图,已知点E 在面积为4的平行四边形ABCD 的边上运动,使△ABE 的面积为1的点E 共有_______个8、如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长13米,且12tan 5BAE ∠=,则河堤的高BE 为 米. 9、如图,把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'BM或'BM 的延长线上,那么∠EMF 的度数是_______.10、已知:AB 是O 的直径,弦CD ⊥AB ,连结OC 、AD ,∠OCD=32°,则∠A=_____.BCDEA第14题图第7题图ACDO二、选择题:本大题共8小题,共24分.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.11、下列各式正确的是( ) A .33--= B .326-=-C .(3)3--=D .0(π2)0-=12、 下面的图形中,是中心对称图形的是( )13、已知⎩⎨⎧-==11y x 是方程32=-ay x 的一个解, 那么a 的值是( )(A) 1 (B) 3 (C) -3 (D) -114、为迎接北京奥运会,有十五位同学参加奥运知识竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛 ( )A 、平均数B 、众数C 、最高分数D 、中位数 15、只用下列图形不能镶嵌的是 ( )A .三角形B .四边形C .正五边形D .正六边形 16、边长为4的正方形ABCD 的对称中心是坐标原点O, AB ∥x 轴,BC ∥y 轴, 反比例函数xy 2=与x y 2-=的图象均与正方形ABCD 的边相交,则图中的阴影部分的面积是( ) A 、2 B 、4 C 、8 D 、617、如图,一个空间几何体的主视图和左视图都是边长为1的三角形,俯视图是一个圆,那么这个几何体的侧面积是( ) A 、4π B 、π42 C 、π22 D 、2πA .B .C .D .yx第4题O18、在正方形网格中,△ABC 的位置如图所示,则tan ∠A 的值为( )A .12B .2C .13D .3三、解答题:(本大题共8小题,共76分.解答要写出必要的文字说明、证明过程或演算步骤.) 19、解不等式(6分):52112x x +≥- ,并在数轴上表示出它的解集。
20、解方程(6分):11262213x x=+--21、(8分)如图,在矩形ABCD 中,点E 是BC 上一点,AE=AD ,DF ⊥AE ,垂足为F .线段EF 与图中哪一条线段相等?先将你的猜想出的结论填写在下面的横线上,然后再加以证明. 即EF=________.22、(本题9分)如图,A ,B ,C ,D 四张卡片上分别写有23 ,,0,-3四个实数.(1)从中任取一张卡片,求取到的数是无理数的概率.(2)从中任取两张卡片,求取到的两个数的和是无理数的概率.(利用树状图或列表法)23、(本题9分)在盘点北京2008年奥运会成绩单时,有这样的信息:第一次获得奥运奖牌的国家,多哥:布克佩蒂 皮划艇激流回旋 铜牌;塔吉克斯坦:拉苏尔·博基耶夫 柔道 铜牌;阿富汗:尼帕伊 跆拳道 铜牌;毛里求斯:布鲁诺·朱利 拳击 铜牌; 苏丹:艾哈迈德 男子800米 银牌。
(1)请用一张统计表简洁地表示上述信息; (2)你从这些信息中发现了什么?24、(本题12分)如图,在△ABC 中,AC=2,BC=3,AB=4.D 是BC 边上一点,•直线DE ∥AC交BC 于D ,交AB 于E ,CF ∥AB 交直线DE 于F .(1)求证:△CFD ~△BAC.(2)设CD=x ,ED=y,求y 与x 的函数关系式. (3)若四边形EACF 是菱形,求出DE 的长.BCDE FA-2 0 A B C D25、(本题12分)2008年以来随着金融危机的不断曼延,我市某县的返乡农民工逐渐增多,政府部门决定利用现有经过培训的349名男职工和295名女职工推荐到某企业生产A、B两种大型产品共50个。
已知生产一个A型产品需男职工8名,女职工4名;生产一个B型产品需男职工5名,女职工9名.请你根据所学知识为这家企业分析A、B两种大型产品如何调配,问符合题意的调配方案有几种?请你帮助设计出来;如果为了扩大就业,企业应选择哪种方案?26、(本题14分)已知:直角梯形OABC 中,BC ∥OA ,∠AOC=90°,以AB 为直径的圆M 交OC 于D 、E ,连结AD 、BD 、BE 。
(1) 在不添加其他字母和线的前提下..............,直接..写出图1中的两对相似三角形。
_____________________,______________________(2) 直角梯形OABC 中,以O 为坐标原点,A 在x 轴正半轴上建立直角坐标系(如图2),若抛物线y=ax 2-2ax-3a (a<0)经过点A 、B 、D ,且B 为抛物线的顶点。
①写出顶点B 的坐标(用a 的代数式表示)___________。
②求抛物线的解析式。
③在x 轴下方的抛物线上是否存在这样的点P :过点P 做PN ⊥x 轴于N ,使得△PAN 与△OAD 相似?若存在,求出点P 的坐标;若不存在,说明理由。
x y AB C DO M M B C D E 图1图2参考答案一、1.23-,2.-1,3.2,4.1.58×1011,5.0,6. 3×6×0.5+2×20×0.8=41,7.两,8.在Rt △BAE 中,12tan 5BE BAE AE ∠==,设BE=12k,AE=5k,由勾股定理k=1,则BE=12. 9.由对称性∠BME=∠B /ME ,∠CMF=∠C /MF 所以∠EMF=90°10. 由题意,∠COB=90°-32°=58°,由垂径定理知∠COB=∠DOB ,所以∠A=29°. 二、CDA D CCDC 16.将 xy 2=的图象绕着点O 旋转90°与x y 2-=的图象重合,正方形绕点O 旋转90°与本身重合,可知阴影部分的面积是两个小正方形的面积为8.17.由题可知,这个几何体是底面直径为1、母线为1的圆锥体。
它的侧面积=111222lr ππ=⨯⨯=. 18.由题意,∠B=45°,过C 点作AB 的垂线必过小正方形网格顶点, 可知tan ∠A=13. 三、19.解:移项得5211,22123245x x x x -≥--⋅⋅⋅⋅-≥-⋅⋅⋅⋅⋅∴≤⋅⋅⋅⋅⋅分分分数轴略。
……6分 20.解:去分母,1314263425x x x =--⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅∴=⋅⋅⋅⋅⋅⋅分移项,分分检验:把x=2代入最简分母中6x-2≠0,x=2是方程的解 所以原方程的解为x=2.……6分 21、EF=EC ,………2分证明:在矩形ABCD 中,AD=BC ,AD ∥BC ……3分在△ADE 中,∠AFD=∠B ,∠DAF=∠AEB ,AD=AE ,………5分 ∴△ADF ≌△EAB.……………6分 ∴AF=BE …………………………7分 又∵AE=AD=BC ,∴EF=EC …………8分22.(1)四张卡片中只有BD 两张是无理数,所以P (无理数)=12……2分 (2)列表:……………6分其中和为无理数的是(AB )(AD )(BA )(DA )(BC )(CD )(CB )(DC ) 所以,P (和为无理数)=82123=…………9分 23.……………6分(2)奥运奖牌不是大国的专利,奥运精神已深入到世界各国人民心中,各国运动员的竞技水平不断提高。
………9分 24、解:(1)•∵EF ∥AC ,∴∠FDC=∠BCA ……2分∵AE ∥CF ,∴∠FCD=∠B ∴△CFD ~△BAC.………4分(2)•∵EF ∥AC ,AE ∥CF ,∴四边形ACFE 是平行四边形.∴EF=AC …………5分∵△CFD ~△BAC ,∴2,32CD DF x yBC AC -==………7分 ∴y=2-23x ……………………………8分 (3)四边形ACFE 是菱形,∴CF=AC=2.……………9分 ∵△CFD ~△BAC ,∴22,42CF DF yAB AC -==………10分 ∴DE=1…………………12分25.解:设生产A 种产品x 个,则B 种产品为(50)x -个,………2分 依题意,得:85(50)34949(50)295x x x x +-⎧⎨+-⎩≤≤ ,…………6分 解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ ………8分x 是整数,x ∴可取313233,,,…………………9分 ∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个 ②A 种园艺造型32个 B 种园艺造型18个③A 种园艺造型33个 B 种园艺造型17个. ……………10分其中①需职工343+295=638人②需职工346+290=636人③需职工349+285=643人,所以,如果为了扩大就业,企业应选择方案③。
…………12分 26.(1)△OA D ∽△CDB. △ADB ∽△ECB ………4分 (2)①(1,-4a )……………5分②∵△OAD ∽△CD B∴DC CBOA OD=………………6分 ∵ax 2-2ax -3a=0,可得A (3,0)……………8分 又OC=-4a,OD=-3a,CD=-a,CB=1, ∴331a a -=- ∴12=a ∵0<a ∴1-=a故抛物线的解析式为:322++-=x x y ………………10分③存在,…………11分设P (x,-x 2+2x+3)∵△PAN 与△OAD 相似,且△OAD 为等腰三角形 ∴PN=AN当x<0(x<-1)时,-x+3=-(-x 2+2x+3),x 1=-2,x 2=3(舍去),∴P (-2,-5)…13分 当x>0(x>3)时,x -3= -(-x 2+2x+3), x 1=0,x 2=3(都不合题意舍去) 符合条件的点P 为(-2,-5)…………14分。