电机驱动芯片选型-步进电机和BLDC-Allegro

合集下载

主流步进驱动IC选型指南

主流步进驱动IC选型指南

主流步进驱动IC选型指南特点点评:1. TB6600作为东芝最新的大功率驱动IC,拥有最大50V@5A驱动能力,最高16细分,适用于部分86及全系列57步进电机,芯片自带欠压、过流、短路保护,而且自带5V逻辑电源,和LV8727并列为目前最高性价比的大功率驱动IC。

2. TB6560AHQ无疑是目前应用最多最广泛的步进驱动IC,适用于57及以下步进电机,由于出货量大所以价格便宜,且现货充足。

3. TB62209是最成熟的表贴式步进驱动IC之一,也曾经是性价比最高的42系列步进驱动芯片,但正逐渐被LV8731所取代。

4. LV8726是三洋针对于大中华区特别设计的一款驱动IC,电压高达60V,因为是外接Mosfet所以电流可以达到10A,最大128细分,且具有目前所有主流驱动IC的功能,目前还在内部测试中,预计今年下半年可以面市。

5. LV8727是三洋已经批量供货的最大功率驱动IC,前身是三洋给国内某公司定制的THB8128,三洋被安森美收购后将此IC做了工艺升级并小幅改善了封装方式,拥有最大********驱动能力,虽然稍逊于东芝的TB6600,但此IC细分数高达128,除了常用的保护功能外,还带有自动半流功能,价格也与TB6600相当,因此和TB6600并列为最高性价比大功率驱动IC。

6. LV8729是目前性价比最高的高细分表贴驱动IC,前身是三洋给国内某公司定制的THB6128,三洋被安森美收购后同样将此IC做了工艺升级,且大幅改善了封装和管脚排列方式,适用于部分57、全系列42及以下电机。

7. LV8731是三洋推出的非常成功的一款马达驱动IC,被誉为同级别中最高性价比,原本三洋的策略是剑指东芝的TB62209,但经过测试我们发现参数和驱动能力完全超越后者,已经和Allegro最成熟的A3977同一水准,且凭借新的工艺、多重保护以及自带逻辑5V,使得A3977也只能望尘莫及。

因此在2A以内电流的应用中,如果没有高细分的要求,LV8731是最好的选择。

介绍几种电机驱动芯片

介绍几种电机驱动芯片

介绍几种电机驱动芯片[作者:佚名转贴自:本站原创点击数:1493 更新时间:2005-4-22 文章录入:白桦]减小字体增大字体在自制机器人的时候,选择一个合适的驱动电路也是非常重要的,本文详细介绍了几种常用的机器人驱动芯片。

介绍几种机器人驱动芯片(注:本文已经投稿至《电子制作》)在自制机器人的时候,选择一个合适的驱动电路也是非常重要的。

最初,通常选用的驱动电路是由晶体管控制继电器来改变电机的转向和进退,这种方法目前仍然适用于大功率电机的驱动,但是对于中小功率的电机则极不经济,因为每个继电器要消耗20~100mA的电力。

当然,我们也可以使用组合三极管的方法,但是这种方法制作起来比较麻烦,电路比较复杂,因此,我在此向大家推荐的是采用集成电路的驱动方法:马达专用控制芯片LG9110芯片特点:低静态工作电流;宽电源电压范围:2.5V-12V ;每通道具有800mA 连续电流输出能力;较低的饱和压降;TTL/CMOS 输出电平兼容,可直接连CPU ;输出内置钳位二极管,适用于感性负载;控制和驱动集成于单片IC 之中;具备管脚高压保护功能;工作温度:0 ℃-80 ℃。

描述:LG9110 是为控制和驱动电机设计的两通道推挽式功率放大专用集成电路器件,将分立电路集成在单片IC 之中,使外围器件成本降低,整机可靠性提高。

该芯片有两个TTL/CMOS 兼容电平的输入,具有良好的抗干扰性;两个输出端能直接驱动电机的正反向运动,它具有较大的电流驱动能力,每通道能通过750 ~800mA 的持续电流,峰值电流能力可达1.5 ~2.0A ;同时它具有较低的输出饱和压降;内置的钳位二极管能释放感性负载的反向冲击电流,使它在驱动继电器、直流电机、步进电机或开关功率管的使用上安全可靠。

LG9110 被广泛应用于玩具汽车电机驱动、步进电机驱动和开关功率管等电路上。

管脚定义:1 A 路输出管脚、2和3 电源电压、4 B 路输出管脚、5和8 地线、6 A 路输入管脚、7 B 路输入管脚2、恒压恒流桥式1A驱动芯片L293图2是其内部逻辑框图图3是其与51单片机连接的电路原理图L293是著名的SGS公司的产品,内部包含4通道逻辑驱动电路。

直流无刷电机驱动芯片

直流无刷电机驱动芯片

直流无刷电机驱动芯片直流无刷电机(BLDC)驱动芯片是一种用于驱动无刷电机的集成电路。

BLDC驱动芯片常见于电动车、电动工具、家用电器以及工业领域等应用中。

本文将介绍BLDC驱动芯片的原理、特性以及其在不同应用中的应用案例。

BLDC驱动芯片的原理是基于对无刷电机的控制,它通过与外部电源和无刷电机相连,将输入的电能转换为驱动无刷电机运转所需的电能。

BLDC驱动芯片一般由功率电子器件、现场效应晶体管(MOSFET)、控制电路以及保护电路组成。

通过对这些电路的精确控制,可以实现对无刷电机的速度、转动方向和电流的准确控制。

BLDC驱动芯片的特性有以下几个方面:1. 高效性:BLDC驱动芯片能够高效地将输入电能转换为无刷电机所需的电能,减少能源损耗。

2. 稳定性:BLDC驱动芯片能够提供稳定的控制信号,保证无刷电机的运行稳定性,避免因控制信号不稳定而产生的运行故障。

3. 多功能性:BLDC驱动芯片具有多种功能,比如电流限制、过热保护、过流保护等,能够保护无刷电机免受电气故障和过载的影响。

4. 低噪音:BLDC驱动芯片采用先进的电控技术,能够使无刷电机的运行噪音降至最低。

BLDC驱动芯片在不同应用中有不同的应用案例,以下是几个常见的应用案例:1. 电动车:BLDC驱动芯片可以控制电动车的无刷电机的转速和转向,使电动车能够稳定地行驶在不同的路面条件下。

2. 家用电器:BLDC驱动芯片可以用于家用空调、洗衣机等电器中的无刷电机的控制,提高电器的工作效率和可靠性。

3. 工业控制系统:BLDC驱动芯片可以用于工业机械、机器人等设备中的无刷电机的控制,实现自动化生产和精确控制。

总之,BLDC驱动芯片是一种用于驱动无刷电机的集成电路,具有高效性、稳定性、多功能性和低噪音等特点。

它在电动车、家用电器、工业控制系统等应用中起到重要的作用。

随着科技的进步,BLDC驱动芯片的性能和功能将不断提升,以满足不同应用领域对无刷电机控制的需求。

高档无刷直流电机驱动IC ECN30206sp

高档无刷直流电机驱动IC ECN30206sp

The ECN30206 is a fully integrated, single-chip BLDC motor driver that facilitates a rapid design process and low part count solution. The chip integrates BLDC Logic with a 3-Phase Inverter containing six (6) 500V rated IGBTs and a Charge Pump TOP Arm bias. To reduce motor current losses, a BLDC motor can now be driven directly from rectified 200 to 230VAC (up to 450VDC) power lines, or from any DC power bus down to 15VDC. On-Chip Brushless (electronic) commutation logic is fully integrated with analog OSC/PWM functions that permit an analog (VSP) voltage to control motor speed.Description• • • • • • • • Integrated, Single-Chip 3-Phase BLDC Motor Driver IC.Integrated Charge Pump – Constant TOP Arm bias independent of motor speed. Integrated 3-Phase Brushless (Electronic) commutation via external Hall ICs.Integrated 3-Phase 6-IGBT Motor Bridge with on chip Free-Wheeling diodes.Pinout and Board Layout are compatible with the existing Hitachi ECN3022 and ECN30204. Maximum Ratings 500VDC/1.5A.Latch-Up free monolithic IC built with a high voltage Dielectrically Isolated (DI) process. Available in 3 package types with built-in heat sink (Tab).Functions and Features• • • • • • • • • • Power supply sequence is free when the current limit is less than 1A.Vs Operating Voltage Range from 15VDC up to 450VDC.Simple Variable Speed Control via a single (VSP) analog input.PWM duty cycle generator provides the 0% to 100% speed control range. Tachometer – Generates the (RPM/60) x (P/2) x 3 Hz speed signal (FG). BOTTOM Arms switch at up to 20kHz via an on-chip OSC/PWM.On-Chip 7.5VDC regulator (CB) with the guaranteed external Min load (25mA). Over-Current protection is set by an external Sense Resistor (RS).Under-Voltage protection for TOP and BOTTOM IGBT Arms.All output IGBT Shut-OFF function.Block DiagramNote : The inside of the bold line shows ECN30206Figure 1. Block DiagramTypes and PackagesECN30206SP ECN30206SPV ECN30206SPRi Package Type:SP-23TA•j (Package Type:SP-23TB) (Package Type:SP-23TR)1. Absolute Maximum RatingsTa = 25 oCNO. Item Symbol Terminal Rating Unit Condition 1 Output Device Breakdown Voltage VSM VS1,VS2 MU,MV,MW 500 V2 Analog Supply Voltage VCC VCC 18 V3 Input Voltage VIN VSP,RS HU,HV,HW-0.5 to VB+0.5V4 Pulse IP 1.5 Note 1 5 Output Current DC IDC MU,MV,MW 0.7 A6 VB Supply Current IBMAX CB 50 mA7 Junction Operating TemperatureTjop - -20 to +135 oC Note 28 Storage Temperature Tstg - -40 to +150 oC General Note: To determine appropriate deratings for these absolute maximum ratings, see pages 14and 15 (the Appendix) paragraphs 1.1, 1.2, 1.3, 1.4 and 1.5. Note 1: Output IGBTs can handle this peak motor current at up to 25 oC junction operating temperature. Note 2: Thermal Resistance1) Between junction and IC case (Tab) : Rjc = 4 oC/W2) Between junction and air : Rja = 40 oC/W2. Electrical CharacteristicsSuffix ( T ; Top arm, B ; Bottom arm ) Ta = 25 OCNo. Item Symbol TerminalMINTYPMAXUnit Condition1 VSop VS1,VS2 15 325450V2 Supply Voltage VCCop VCC 13.515 16.5V3 Standby Current ISH VS1,VS2 - 0.3 1.0mA VSP=0V,VS=325V,VCC=15V4 ICC VCC - 3 10 mA VSP=0V,VCC=15V,IB=0A5 IGBT Collector-Emitter VONT - 2.2 3.0V I=0.35A,VCC=15V6 Saturation Voltage VONB MU,MV,MW - 2.2 3.0V I=0.35A,VCC=15V7 TdONT 0.5 1.0 2.5µs VS=325V,VCC=15V8 Turn ON TdONB 1.0 2.0 3.0µs I=0.35A9 TdOFFT 1.0 2.0 3.0µs Resistive Load10 Output Delay Time Turn OFF TdOFFB MU,MV,MW 1.0 2.0 3.0µs 11 Free Wheel Diode VFDT MU,MV,MW - 2.2 2.8V 12 Forward Voltage VFDB MU,MV,MW - 2.2 2.8V I=0.35A13 VTR Output Resistance RVTR VTR - 200400Ω IVTR=•1mA,VCC=15V14 VSAWH 4.9 5.4 6.1V 15 High or Low Level VSAWL 1.7 2.1 2.5V VCC=15V Note 1 16 SAW WaveAmplitude VSAWWCR 2.8 3.3 3.8V VCC=15V Note 2 17 Reference Voltage Vref RS 0.450.50.55V VCC=15V18 VIH 3.5- - V 19 Voltage VIL - - 1.5V VCC=15V 20 IIL -100- - µA HU,HV,HW=0V VCC=15V21Hall Signal InputCurrent IIH HU, HV, HW -30- - µA HU,HV,HW=5V VCC=15VPull Up Resistor Note 3 22 Current IVSPH 5 - 100µA VSP=5V,VCC=15V Note 4Pull Down Resistor 23 Offset Voltage SPCOMOF -4010 60 mV VCC=15VRefer to CR terminal24 VSP Input All Off Operation Voff VSP 0.85 1.23 1.6V VCC=15V 25 Voltage VB 6.87.58.2V VCC=15V,IB=0A26 VB Supply Output Current IBCB - - 25 mA VCC=15V27 VOL - 1.5- V IOL=-5mA, VCC=15V 28 FG, DM Output Voltage and Resistance ROLFG,DM- 300400Ω IFG=-10mA,VCC=15VNote 5 29 Detect Voltage LVSDON VCC, 11.012.012.9V 30 Recover Voltage LVSDOFF MU,MV,MW 11.112.513.0V 31LVSD Hysteresis Vrh 0.10.50.9V Note 6 32 RS Input Current IILRS RS -100- - µA VCC=15V, RS=0VNote 7.33 OC Shutdown Delay Time Tref RS - 4.0 5.5µs VCC=15VNote 1. See Standard Applications in Section 4, page 8 to set the SAW wave frequency. Note 2. The amplitude of SAW (i.e., VSAWW) is determined by the following equation: VSAWW = VSAWH – VSAWLNote 3. Internal pull up resistors are typically 200 kW. The equivalent circuit is shown in Figure 2. Note 4. Internal pull down resistor is typically 200 kW. The equivalent circuit is shown in Figure 3. Note 5. The equivalent circuit is shown in Figure 4.Note 6. The LVSD (Low Voltage Shut Down) function detects and shuts-down at lower VCC. Note 7. Internal pull up resistor is typically 200 k Ω. The equivalent circuit is shown in Figure 5.VSPFigure 5. Equivalent circuit around RS terminal3.IGBT Motor Bridge Commutations and Logic Functions3.1 Truth TableHall Signal Input U V WStage HU HV HW Top Arm Bottom Arm Top Arm Bottom Arm Top Arm Bottom ArmFG Output(1) H L H OFF ON ON OFF OFF OFF H (2) H L L OFF ON OFF OFF ON OFF L (3) H H L OFF OFF OFF ON ON OFF H (4) L H L ON OFF OFF ON OFF OFF L (5) L H H ON OFF OFF OFF OFF ON H (6) L L H OFF OFF ON OFF OFF ON L - L L L OFF OFF OFF OFF OFF OFF L - H H H OFF OFF OFF OFF OFF OFF H3.2 Timing ChartHUHV HWM U Out putVolt age Hall Signal InputM V Out put Volt age M W Out put Volt ageFG Out put Volt ageStage3.3 PWM OperationThe PWM signal is generated by comparing the input voltage at the VSP pin with an internal SAW wave voltage (available at the CR pin). The Duty Cycle of the resulting PWM signal is thus directly, linearly controlled by VSP pin voltage: from the Min of VSAWL to the Max of VSAWH. That is, when VSP is below VSAWL, the PWM duty cycle is at the Minimum value of 0%. when VSP is above VSAWH, the PWM duty is at the Maximum value of 100%. The ECN30206 operates in 2 quadrants by chopping the BOTTOM Arms with this PWM duty cycle during the appropriate commutation times (phases). Thus, the duty cycle controls motor torque and speed.3.4 Over Current Limit OperationOver-Current is monitored via the voltage drop across an external resistance RS. If the input voltage at the RS pin exceeds the internal Reference voltage (Vref is typically 0.5V), all BOTTOM Arms are Turned-OFF. Following an Over Current event, reset is automatically attempted during each period of the on-chip OSC. This on-chip OSC signal is available at the VTR pin.3.5 Motor Rotation Direction Output FunctionThe rotation direction of the motor is outputted as a logic signal at the DM pin. The table below shows the DM output signals for the two (2) possible rotation directions.Rotation Direction DM OutputU→V→W LowU→W→V High3.6 VCC Under-Voltage DetectionIf VCC drops below LVSDON (12.0V typ), all IGBTs (TOP and BOTTOM Arms) Turn-OFF. Normal operation returns when VCC rises above LVSDOFF: the value of LVSDOFF is LVSDON + Vrh.3.7 All Output IGBT Shut-OFF FunctionWhen VSP drops below Voff (1.23V typ), all IGBTs (TOP and BOTTOM Arms) Shut-OFF.VSP Input Voltage TOP Arm Outputs BOTTOM Arm Outputs0V ≤ VSP < Voff All IGBTs are OFF All IGBTs are OFFVoff ≤ VSP < VSAWL Following the 3.1 Truth Table All IGBTs are OFF VSP ≥ VSAWL Following the 3.1 Truth Table Following the 3.1 Truth TableWhen a motor is rotating and VSP drops below Voff, the VS voltage can rise.Also in this condition VS must not exceed the 500VDC Breakdown Voltage.4. Standard Applications4.1 External ComponentsComponent StandardValue Usage Remark C0 0.22 µF ± 20% Filters the internalpower supply (VB)Stress voltage is VB (=8.2V) C1,C2 1.0 µF ± 20% For charge pump Stress voltage is VCCD1,D2 HitachiDFG1C6(Glassmold type), DFM1F6(Resin mold type) or equivalent For charge pump 600V, 1Atrr ≤ 100nsRs Note 1 Sets Over-Current limitCTR 1800 pF ± 5% Sets PWM frequency Stress voltage is VB (=8.2V) Note 2 RTR 22 kΩ± 5% Sets PWM frequency Stress voltage is VB (=8.2V) Note 2 Note 1 The detection current (IO) for the Over Current limit operation can be calculated as follows.IO(A) = Vref(V) / Rs(Ω)Where Vref is 0.55V and Rs is a minimum value.(These are worst case values.)To determine the Sense Resistor Rs, refer to the above comments and Appendix paragraphs 1.4. Note 2 The PWM frequency is approximated by the following equation:PWM Frequency (Hz) ≈ 0.494 / ( CTR(F) RTR(Ω) )Note 3 The Standard value for RU,RV,RW is 5.6 kΩ± 5%.Note : The inside of the bold line shows ECN30206Figure 6. Block Diagram4.2 Input PinsIn some applications, input pins may be noise sensitive due to their high impedance. This can be minimized with the use of an external resistor and/or external capacitors as follows:Resistor (for the VSP pin) : 5.6kΩ 5% pull down resistorCapacitor (for HU, HV, HW and VSP pins): 500pF±20% ceramic capacitor close to the input pin5. Pinout(Marking side) 2322212019181716151413121110987654321MVVS1MUGH1RSHUHWVTRCRCBC+CLGLMWVS2GH2VCCC-VSPHVFGNCDM6. Terminal definitionsTerminal No. Symbol Definition Remark1 VS2 Power Supply for Upper IGBTs of phases V and W Note1,Note22 MW W phase output (to BLDC motor coil W) Note13 NCNoConnection Note44 GH2 W phase emitter of IGBT and anode of FWD. Connect RS. Note35 VCC Analog/Logic power supply6 GLAnalog/Logicground7 C+ For the Charge Pump circuit, power supply for TOP Arm drive circuit Note18 C- For the Charge Pump circuit Note1, Note29 CL For the Charge Pump circuit Note110 CBInternallyregulated(VB) power supply output11 CR Connect resistance & capacitance to generate the PWM clock frequency Note512 VTR Connect resistance to generate the PWM clock frequency Note513 VSP Input analog voltage that varies the PWM duty cycle from 0% to 100% Note614 FGTachometer output signal whose frequency is (RPM/60)•(P/2)• 3 Hz15 DM Motor rotation direction output Note716 HW Input signal from the Hall IC of phase W17 HV Input signal from the Hall IC of phase V18 HU Input signal from the Hall IC of phase U19 RS RS voltage detect input for the on-chip Over Current limit detection20 GH1 U and V phase emitters of IGBTs and anodes of FWDs. Connect RS. Note321 MU U phase output (to BLDC motor coil U) Note122 VS1 Power supply for Upper IGBT of phase U Note1,Note223 MV V phase output (to BLDC motor coil V) Note1Note1 This is high voltage pin.Note2 The VS1, VS2 and C- pins are connected within the IC. But VS1 and VS2 must be connected by external wiring.Note3 GH1 and GH2 are not connected within the IC and must be connected by external wiring.Note4 Not connected to the internal IC chip.Note5 See paragraph 4.Note6 Can also Turn-OFF all IGBTs. See paragraph 3.7.Note7 See paragraph 3.5.7. InspectionHundred percent inspection shall be conducted on electric characteristics at room temperature. 8. Cautions8.1 Tightening torque at 0.39 to 0.78 N-m should be applied for device to attach to heat sink.8.2 Tab should not be soldered.8.3 Customers are advised to follow the below cautions to protect semiconductor from electrical staticdischarge (ESD).a) IC needs to be dealt with caution to protect from damage by ESD. Material of container or anydevice to carry semiconductor devices should be free from ESD, which may be caused by vibration while transportation. To use electric-conductive container or aluminum sheet is recommended as an effective countermeasure.b) What touches semiconductor devices such as work platform, machine and measuring and testequipment should be grounded.c) Workers should be grounded connecting with high impedance around 100kΩ to 1ΜΩ whiledealing with semiconductor to avoid damaging IC by electric static discharge.d) Friction with other materials such as a high polymer should not be caused.e) Attention is needed so that electric potential will be kept on the same level by short circuitterminals when PC board with mounted IC is carried and that vibration or friction might not occur.f) Air conditioning is needed so that humidity should not drop.8.4 Applying molding or resin coating is recommended for below mentioned pin-to-pin insulation;1-2, 2-4, 6-7, 8-9, 9-10, 20-21, 21-22, 22-238.5 Protective function against short circuit (ex. load short, line-to-ground short or top/bottom armshort) is not built in this IC. External protection needs to prevent IC breakdown.8.6 Refer to “Precautions for Use of High-Voltage Monolithic ICs” (No.IC-0401E) for the otherprecautions and instructions on how to deal with products.8.7 Regardless of changes in external conditions during use, “absolute maximum ratings” should neverbe exceeded in designing electronic circuits that employ products. In a case absolute maximum ratings are exceeded, products may be damaged or destroyed. In no event shall Hitachi be liable for any failure in products or any secondary damage resulting from use at a value exceeding the absolute maximum ratings.8.8 Products may experience failures due to accident or unexpected surge voltages. Accordingly,adopt safe design features, such as redundancy or prevention of erroneous action, to avoid extensive damage in the event of a failure.8.9 Products are not designed, manufactured, or warranted to be suitable for use where extremely highreliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment). Inclusion of products in such application shall be fully at the risk of customers.Hitachi, Ltd. assumes no liability for applications assistance, customer product design, or performance. In such cases it is advised customers to ensure circuit and/or product safety by using semiconductor devices that assures high reliability or by means of user’s fail-safe precautions or other arrangement. (If a semiconductor device fails, there may be cases in which the semiconductor device, wiring or wiring pattern will emit smoke or cause a fire or in which the semiconductor device will burst.)8.10 Lead (Pb)-free solder is used for coating pins and the tab of this IC. In case of flow soldering*, theIC can withstand peak temperature 260o C for less than 10 seconds in liquid solder.*Only pins are in liquid solder. The package body and the tab must not be in it.ECN302069. Important Notices9.1 Hitachi warrants performance of its power semiconductor products (hereinafter called “products”) tothe specifications applicable at the time of sale in accordance with the Product Specification.Testing and other quality control techniques are utilized to the extent Hitachi needs to meet specifications described in the Product Specification. Specific testing of all parameters of each device is not necessarily performed, except those mandated by related laws and/or regulations.9.2 Should any claim be made within one month of product delivery about products’ failure to meetperformance described in the Product Specification, all the products in relevant lot(s) shall be retested and re-delivered. Products delivered more than one month before of such claim shall not be counted for such response.9.3 Hitachi assumes no obligation or any way of compensation should any fault about customer’sgoods using products be found in marketplace. Only in such a case fault of Hitachi is evident and products concerned do not meet the Product Specification, compensation shall be conducted if claimed within one year of product delivery up to in the way of product replacement or payment of equivalent amount.9.4 Hitachi reserves the right to make changes in the Product Specification and to discontinue massproduction of the relevant products without notice. Customers are advised before purchasing to confirm specification of the product of inquiry is the latest version and that the relevant product is on mass production status in such a case purchasing is suspended for one year or more.9.5 In no event shall Hitachi be liable for any damage that may result from an accident or any othercause during operation of the user’s units according to this Product Specification. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this Product Specification.9.6 No license is granted by this Product Specification under any patents or other rights of any thirdparty or Hitachi, Ltd.9.7 This Product Specification may not be reproduced or duplicated, in any form, in whole or in partwithout the expressed written permission of Hitachi, Ltd.9.8 The products (technologies) described in this Product Specification are not to be provided to anyparty whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.ECN30206Appendix - Supplementary DataRefer to the derating information below when designing with the ECN30206.1. Safe Operation Area (SOA) and Derating Standards 1.1 SOAThe ECN30206 must not be used outside the SOA shown in Figure 7, where the current and voltage are at the MU, MV and MW pins (motor coils).4001.5 0SOA1.0VCC=15V Tj=25•O u t p u t P i n C u r r e n t (A )450Output Pin Voltage (V) Figure 7. SOA1.2 Current Derating for VCCThe current derating for VCC is shown in Figure 8. Use the ECN30206 below the derating curve. When the current limit is less than 1A, power supply sequence is free.1.3 Current Derating for Junction Operating TemperatureThe SOA has a dependence on junction operating temperature (Tjop) and Vs power supply voltage.The current derating for junction operating temperature is shown in Figure 9.1.4 Sense Resistor Determination for Over Current Limit OperationWhen determining the sense resistor (Rs) for over current limit operation, consider the variability of the reference voltage (Vref) and the sense resistor.The current must be below the derating curves of Figure 8 and Figure 9.1.5 General Design Derating Standardsa) Temperature - Junction Operating Temperature must be kept under 110 o C.b) Supply Voltage - VS power supply voltage must be kept under 450 V.2. Package Dimensions (Unit: mm)(1) ECN30206SP (SP-23TA)(3) ECN30206SPR (SP-23TR)Precautions for Safe Use and NoticesIf semiconductor devices are handled inappropriate manner, failures may result. For this reason, be sure to read “Precaution for Use” before use.NOTICES1. This Data Book contains the specifications, characteristics (in figures and tables), dimensionsand handling notes concerning power semiconductor products (hereinafter called “products”) to aid in the selection of suitable products.2. The specifications and dimensions, etc. stated in this Data Book are subject to change withoutprior notice to improve products characteristics. Before ordering, purchasers are advised to contact Hitachi’s sales department for the latest version of this Data Book and specifications.3. In no event shall Hitachi be liable for any damage that may result from an accident or any othercause during operation of the user’s units according to this Data Book. Hitachi assumes to responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this Data Book.4. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondarydamage resulting from use at a value exceeding the absolute maximum rating.5. No license is granted by this Data Sheet under any patents or other rights of any third party orHitachi, Ltd.6. This Data Book may not be reproduced or duplicated, in any form, in whole or in part, withoutthe expressed written permission of Hitachi, Ltd.7. The products (technologies) described in this Data Book are not to be provided to any partywhose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.。

步进电机的选型及计算方法

步进电机的选型及计算方法

步进电机的选型及计算方法步进电机是一种将电脑指令转化为机械运动的电机,广泛应用于打印机、绘图仪、数控机床、自动化设备等领域。

步进电机的选型和计算方法是确保电机能够满足使用要求的重要环节。

本文将介绍步进电机的选型和计算方法,以帮助读者了解如何正确选择步进电机。

**一、步进电机的选型**选型是步进电机设计的第一步,主要考虑以下几个因素:1.**载荷特性**:首先需要知道电机所需驱动的载荷特性,包括重量、转动惯量等。

根据载荷特性,选取适当的电机功率和扭矩。

2.**运动要求**:了解运动要求,包括速度、加速度、定位精度等。

根据运动要求,选取适当的步进角和步数。

3.**工作环境**:考虑工作环境的温度、湿度、粉尘、振动等因素,选取能够适应工作环境的电机。

4.**可靠性要求**:根据应用的可靠性要求,选取有良好可靠性的步进电机。

5.**成本**:考虑成本因素,选取能够满足需求且价格合理的电机。

选型过程中,通常需要参考制造商提供的电机规格书和技术手册,以获取详细的电机参数信息。

**二、步进电机的计算方法**1.**功率计算**:选择适当的功率可确保步进电机能够正常工作。

功率计算公式如下:功率(W)=扭矩(N·m)×转速(RPM)/9.54882.**扭矩计算**:根据应用的载荷特性计算步进电机所需的最大扭矩。

扭矩计算公式如下:扭矩(N·m)=载荷转动惯量(kg·m²)×角加速度(rad/s²)其中,角加速度可根据速度和加速度计算得到:角加速度(rad/s²)=加速度(rad/s²)/ 微步数(步)3.**速度计算**:根据应用的速度要求,计算步进电机的理论最大速度和可用的速度范围。

理论最大速度可按照电机额定的最大转速计算。

通常步进电机的最大转速范围在100-5000RPM之间。

可用速度范围受到供电电压、电机驱动方式、驱动电流等因素的影响。

Allegro A3916双路DMOS全桥马达驱动方案(英文)

Allegro A3916双路DMOS全桥马达驱动方案(英文)

摘要:Allegro MicroSystems 公司的A3916是新型低压双极步进马达或双路马达驱动IC,集成了所有的马达控制的功能,包括固定关断时间的PWM 稳压器,单电源2.7-15 V 输入电压,每路输出电流高达1A,低RDS(ON)输出,低电流睡眠模式,过流保护,内部UVLO 和热关断,集成了电荷泵.主要用在工业自动化,点负载,3D 打印,医疗设备,CCTV,玩具市场和其它应用.本文介绍了A3916主要特性和优势,框图和典型应用电路以及演示板电路图,材料清单和PCB 设计图。

Allegro MicroSystems,LLC announces a new low voltage bipolar stepper or dual DC motor driver IC.The A3916 device was designed for pulse-width-modulated (PWM) control of low-voltage stepper motors or dual DC motors and is capable of output currents up to 1 A per channel and operating voltages from 2.7 to 15 V. Allegro’s new motor driver IC is targeted at the office and industrial automation, point of sale, 3 D printing, medical, CCTV, toy markets, and other applications that run off single, Li-ion cell or 3 AA batteries.The A3916 integrates all motor control including a fixed off-time PWM regulator that sets a peak current in motor winding based on the selection of a low value a current sense resistor. A single supply eliminates the need for external LDO and an integrated charge pump requires only one external capacitor. Output diagnostic is provided by an active low fault output that notifies the user of a TSD or overcurrent protection event.Designed for pulse-width-modulated (PWM) control of lowvoltagestepper motors and single and dual DC motors, theA3916 is capable of output currents up to 1 A per channel andoperating voltages from 2.7 to 15 V.The A3916 has an internal fixed off-time PWM timer that setsa peak current based on the selection of a current sense resistor. An output fault flag is provided that notifies the user of a TSDor overcurrent protection event.图1 A3916框图Allegro A3916双路DMOS 全桥马达驱动方案The A3916 is supplied in a low-profile 3 × 3 mm 16-terminalQFN (suffix “ES”) and a low-profile 4mm×4mm 20-terminalQFN (suffixes “ES, -1”) both with exposed power tabs for enhanced thermal dissipation.A3916主要特性和优势•Wide, 2.7 to 15 V input voltage operating range•Dual DMOS full-bridges: drive two DC motors orone stepper motor •Low RDS(ON) outputs•Synchronous rectification for reduced power dissipation •Low-current sleep mode •Overcurrent protection•Internal UVLO and thermal shutdown circuitry •Integrated charge pump•Pin-to-pin compatible with A3906图2 A3916典型应用电路图3 A3916演示板电路图图4 A3916演示板PCB 设计图表1 A3916演示板材料清单详情:/en/Products/Motor-Driver-And-Interface-ICs/Brush-DC-Motor-Drivers/A3916.aspx。

BLDC与主控芯片,先进控制带来高效优势

BLDC与主控芯片,先进控制带来高效优势

BLDC与主控芯片,先进控制带来高效优势目录1.前言 (1)2.高效BLDC的复杂控制 (1)3.低成本高性价比方波控制 (2)4.高成本高效率FOC先进控制 (2)5.小结 (4)1.前言从简单的电动工具、电风扇到复杂的机器人、汽车电机,许多机器设备都使用高能效的无刷直流电机BLDe将电能转换为旋转运动。

在高效率、高扭矩、低噪音、长寿命、响应快速等优势的加持下,越来越多电动设备开始向BLDC转变。

虽然BLDC有着这么多优势,但实现BLDC的控制是相对较难的,比有刷电机难很多而且硬件成本也更高。

2.高效BLDC的复杂控制从工作原理上来看,BLDC作为电机,其基本构造也是定子加转子,不过其定子和转子和有刷电机是相反的。

BLDe的定子是通电的线圈,转子是永磁体。

那么根据电磁感应原理,只要给定子上的线圈接入适当方向的电流,让产生的磁极方向与永磁体的磁极相对应,就可以旋转起来。

也就是说,控制电流的大小和方向,就能控制转子的旋转。

进一步对接入电流线圈的定子进行优化,就能产生很多控制方式。

BLDC的控制虽然在原理上和有刷电机相似,但实现起来却要难得多,BLDe需要复杂的控制器才能将单个直流电源转换为三相电压,而有刷电机可以直接通过调节直流电压来控制。

原理层面固然通俗易懂,但是真正实现起来,控制BLDC的难度还是不小的。

控制电流的大小和方向就能控制转子的旋转,这里有很多控制算法的应用。

然后还需要知道转子的位置,对位置的测量是确定电机何时换相所需的输入。

对于转子位置的感测,又区分出有传感器和无传感器的路线。

对开环控制而言,这些已经足够,但是在需要精确速度控制的场景里,加入PID闭环的控制是有必要的。

对于闭环速度控制,需要对转子速度或电机电流以及PWM 信号进行测量,以控制电机速度以及功率。

目前的BLDC配置,硬件层面绝大多数控制方式都以六个功率开关器件构成的电子换相电路搭配成全桥,控制和驱动组合,再加上位置反馈电路和电流采样电路。

基于纳芯微nsi6602的隔离半桥电源驱动方案

基于纳芯微nsi6602的隔离半桥电源驱动方案

基于纳芯微nsi6602的隔离半桥电源驱动方案纳芯微NSI6602是一款高度集成的隔离半桥驱动芯片,主要用于驱动直流无刷电机(BLDC)和步进电机。

它提供了一种简单、高效的方式来控制这些电机,同时具有很高的性价比。

基于纳芯微NSI6602的隔离半桥电源驱动方案主要包括以下几个部分:1. 电源输入:为整个系统提供稳定的电源输入,通常为12V或24V直流电源。

2. 隔离半桥驱动器:纳芯微NSI6602作为隔离半桥驱动器,负责将输入的低压信号转换为高压输出,以驱动电机。

3. 电机:直流无刷电机(BLDC)或步进电机,根据实际应用场景选择合适的电机类型。

4. 控制器:用于接收外部控制信号(如PWM信号),并将其转换为纳芯微NSI6602所需的信号格式。

常见的控制器有Arduino、Raspberry Pi等。

5. 编码器:如果需要对电机进行闭环控制,可以添加一个编码器来实时监测电机的位置和速度,并将这些信息反馈给控制器。

基于纳芯微NSI6602的隔离半桥电源驱动方案的工作原理如下:1. 控制器接收到外部控制信号(如PWM信号)。

2. 控制器将PWM信号转换为纳芯微NSI6602所需的信号格式(例如H桥模式)。

3. 控制器通过SPI接口将转换后的信号发送给纳芯微NSI6602。

4. 纳芯微NSI6602根据接收到的信号,控制其内部的功率MOSFET开关,从而驱动电机。

5. 如果需要闭环控制,编码器会实时监测电机的位置和速度,并将这些信息反馈给控制器。

控制器根据反馈信息调整PWM信号的占空比,从而实现对电机的精确控制。

总之,基于纳芯微NSI6602的隔离半桥电源驱动方案是一种简单、高效的方式来驱动直流无刷电机(BLDC)和步进电机。

通过合理的电路设计和参数配置,可以实现对电机的精确控制,满足各种应用场景的需求。

st电机驱动芯片命名规则

st电机驱动芯片命名规则

st电机驱动芯片命名规则ST电机驱动芯片命名规则作为全球领先的半导体解决方案供应商之一,STMicroelectronics(简称ST)拥有众多电机驱动芯片产品线。

在市场上推出新产品时,ST采用一套统一的命名规则来标识其电机驱动芯片,以方便消费者和工程师准确选择适合的产品。

本文将一步一步回答“ST电机驱动芯片命名规则”的问题,帮助读者更好地了解ST电机驱动芯片的命名规则。

一、产品类型ST电机驱动芯片根据用途和特性可以分为多个不同的产品类型。

常见的产品类型包括:1. BLDC:无刷直流电机驱动器,用于追求高效率、高速度、低噪音和低能源消耗的应用。

2. BDC:直流无刷电机驱动器,用于需要高功率和高可靠性的应用。

3. SR:步进驱动器,用于控制步进电机,适用于精确控制和位置定位的应用。

4. HV:高压驱动器,用于需要高电压输出的应用。

二、主要特性ST电机驱动芯片通常有多种特性和功能,为不同的应用场景提供适配。

以下是一些常见的主要特性:1. 功率:电机驱动芯片能够提供的最大功率输出。

2. 电源电压:电机驱动芯片工作的电源电压范围。

3. 工作温度范围:电机驱动芯片可以安全工作的温度范围。

4. 集成度:电机驱动芯片的内部集成度,如是否集成了功率放大器、控制电路和保护功能等。

5. 控制方式:电机驱动芯片的控制方式,如PWM控制、直流电压控制、方向控制等。

6. 保护功能:电机驱动芯片是否具备过流保护、过热保护、欠压保护以及短路保护等功能。

三、产品系列和编号ST电机驱动芯片的命名规则通常由一系列字符和数字组成,每个字符和数字都代表了一定的含义。

下面是一些常见的字符和数字的含义解释:1. STSP:STSP是ST的品牌,通常出现在产品名称的开头。

2. Z:代表“无刷直流电机驱动器”产品类型。

3. L:代表“直流无刷电机驱动器”产品类型。

4. M:代表“步进驱动器”产品类型。

5. H:代表“高压驱动器”产品类型。

6. N:代表产品线的特殊版本,通常用于提供新的功能或改进的特性。

Allegro步进电机驱动IC选型指南

Allegro步进电机驱动IC选型指南
并行(转换器)
A4982 A4983
8.0 至 35 8.0 至 35
2.0 安培 2.0 A
并行(转换器) 并行(转换器)
A4984
8.0 至 35
2.0 安培
并行(转换器)
A4985
A4988 A3980K A3981K A3986 A4980K A4989
型号
A3972 A3981K A3992 A4980K A3985
串行接口
输出电流范围 1.5 安培 1 安培 1.5 安培 1 安培
2 安培至 10 安培 (典型)
并行(转换器)
并行(转换器) 并行(转换器)
并行/SPI 并行(转换器)
并行/SPI 并行(转换器)
接口 串行 并行/SPI 串行 并行/SPI 串行
封装 DFN-10 QFN-20 SOIC-16
A3906SES
接口
750 毫安
并行(转换器)
A3977
8.0 至 35
2.5 安培
并行(转换器)
A3979 A3982 A3983 A3984
A3987
8.0 至 35 8.0 至 35 8.0 至 35 8.0 至 35
8.0 至 35
2.5 A 1.5 安培 1.5 安培 1.5 安培
1.5 安培
并行 (转换器) 并行(转换器) 并行(转换器) 并行 (转换器)
步进电机驱动kerrytech型号输出电压范围输出电压范围伏特伏特25455050qq39492160输出电流范围400毫安10安培接口并行并行封装dfn10a3906sesa3901a3906a3966a3988a4986a4987型号输出电压范围伏特8050a3977a3979a3982a3983a3987a4982a4983a4985a4988a3980ka3981ka4989型号650毫安并行12安培步进24并行安培直流24安培并行12安培并行20安培并行10安培并行750毫安并行15安培并行步进方向接口输出电流范围接口750毫安并行并行转换器转换器25安培25a15安培15安培15安培15安培20安培20a20安培10培20安培1安培1安培2安培至10安培典型典型安培2安培至10安培典型典型并行并行转换器转换器并行转换器转换器并行并行转换器转换器并行并行转换器转换器并行转换器转换器qfn20soic16qfn36qfn36qfn36elqfp48etssop24qfn24etssop24dip34soic24plcc44dip16soic16a3988seva3988sl14步进a4987ses封装soic24plcc44etssop28etssop28soic24etssop24etssop24etssop24qfn32etssop24qfn28qfn24qfn32etssop24a3983slpa3987slp116步进并行并行转换器转换器并行并行转换器转换器并行并行转换器转换器并行并行转换器转换器转换器并行并行转换并行并行转换器转换器并行并行转换器转换器并行spi行并行转换器转换器并行spi并行并行转换器转换器18步进qfn24qfn32a4985sesa4985sletssop24pqfn28etssop28etssop28tssop38etssop28tssop38a3986sld116步进串行接口输出电压范围输出电压范围伏特伏特1550输出电流范围15安培1安培15安培1安培2安培至10安培典型典型接口串行并行spi串行并行spi串行封装dip24a3992slpa3972a3981ka3992a4980ka3985etssop28dip24etssop24etssop28tssop38

步进电机驱动芯片选型指南

步进电机驱动芯片选型指南

步进电机及驱动芯片选型指南1、系统常识:步进电机和步进电机驱动器构成步进电机驱动系统。

步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。

对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。

2、系统概述:步进电机是一种将电脉冲转化为角位移的执行元件。

当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。

3、系统控制:步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。

控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

4、用途:步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。

步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。

5、步进电机按结构分类:步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。

(1)反应式步进电机:也叫感应式、磁滞式或磁阻式步进电机。

其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。

一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。

(2)永磁式步进电机:通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。

步进电机的选型与计算

步进电机的选型与计算

步进电机的选型与计算步进电机是一种常见的电动机类型,广泛应用于各种自动控制系统中。

步进电机以其结构简单、运动精确和控制方便的特点,被广泛应用于打印机、数控机床、机器人等领域。

在选择步进电机和进行计算时,需要考虑以下几个方面:步进角度、扭矩、电流、电压、转速和加速度。

本文将对步进电机的选型和计算进行详细介绍。

1.步进角度选择步进电机通常有两种步进角度可选:1.8度和0.9度。

其中1.8度步进角度的电机更为常见,但如果需要更高的运动精度,可以选择0.9度步进角度的电机。

步进角度越小,电机一圈的步数越多,运动精度也就越高。

2.扭矩选择扭矩是步进电机的输出能力,通常由电机的尺寸和电流决定。

选择合适的扭矩需要考虑应用场景下的负载情况。

如果负载较大或需要较大的运动力矩,需要选择具有较大扭矩的电机。

3.电流选择4.电压选择选择步进电机的电压需要考虑到驱动器的额定电压。

步进电机的电压应该与驱动器能够提供的电压匹配,以确保电机正常工作。

通常,选择合适的电压可以提高电机的响应速度和运动精度。

5.转速和加速度选择在进行步进电机的计算时,可以根据具体的参数和公式进行计算。

以下是步进电机常用的几个计算公式:1.步进电机的转速计算公式:转速 = 频率× 步进角度× 60(单位:rpm)2.步进电机的转矩计算公式:转矩=功率/转速(单位:Nm)3.步进电机的加速度计算公式:加速度 = (最终速度 - 初始速度)/ 时间(单位:rad/s²)这些公式可以根据具体的参数进行灵活计算,以满足不同应用场景的需求。

总结起来,步进电机的选型和计算需要考虑步进角度、扭矩、电流、电压、转速和加速度等因素。

根据具体的应用场景需求,选择合适的步进电机,并进行相关参数的计算,以满足项目的设计要求。

永磁无刷直流电机的选型

永磁无刷直流电机的选型

永磁无刷直流电机的选型永磁无刷直流电机(BLDC Motor)是一种能够将电能转换为机械能以推动机械设备运转的电动机。

它具有效率高、转矩大、体积小、噪音低、寿命长等优点,被广泛应用于家电、汽车、航空航天等领域。

在选型永磁无刷直流电机之前,需要考虑以下因素:负载特性负载特性是指负载随时间变化时的特征,包括转矩大小、工作时间、起动和停止的频率等。

根据负载特性,选择合适的永磁无刷直流电机可以保证设备的高效、稳定运行。

在选型时需要确定的是电机的所需的最大和最小转矩值、最大和最小转速范围、以及各种负载运行时间和频率,根据这些确定适合的电机型号。

动力系统动力系统指驱动电机的电源及控制器。

根据动力系统的不同,驱动电机的特性也不同。

例如,单个电池可能无法满足某些电机的特殊工作要求。

如果需要更高的起动转矩、更高的动力或更精确的控制,那么需要选择更高级别的电池。

性能参数永磁无刷直流电机的性能参数通常包括额定功率、额定电压、转速、效率、转矩等。

这些参数将直接影响电机的性能和适用范围。

在选型时需考虑设备所需的功率、转速和效率等,以及其它性能参数,以找到适合特定应用的电机型号。

外形结构电机的形状和尺寸是选型时需要考虑的重要因素之一。

根据不同的应用需求,需要选择不同的电机外形结构和尺寸。

例如,对于一些小型设备,需要尺寸小、重量轻的电机才能适合;对于一些大型设备和工业机器人等则需要更大尺寸的电机才能满足要求。

成本成本在工业领域是非常重要的,选型时需要考虑电机的成本和使用成本。

往往一个高质量、稳定性强的电机价格会较高。

但该电机有更长的使用寿命,可以降低停机和更换的成本。

正确选型永磁无刷直流电机是非常重要的,同时也需要考虑应用设备的实际运行过程和环境特性。

电机驱动芯片

电机驱动芯片

电机驱动芯片电机驱动芯片是一种集成电路芯片,用于驱动电机实现各类动力设备的控制和调节。

电机驱动芯片通过控制电流和电压等参数,控制电机的转速、转向和力矩等。

在现代工业和生活中广泛应用于各类电动机驱动系统,如电动汽车、工业机械、家电、机器人等。

目前市场上主要常见的电机驱动芯片有直流电机驱动芯片、步进电机驱动芯片和交流电机驱动芯片等。

下面将分别介绍这三种常见的电机驱动芯片。

直流电机驱动芯片:直流电机驱动芯片是用于控制直流电机的芯片。

直流电机驱动芯片通常包括电流检测电路、电流调节电路和保护电路等。

它能够通过控制电流和电压实现对直流电机的转速和转向的控制。

直流电机驱动芯片广泛应用于无刷直流电机、刷式直流电机和直流减速电机等电动机驱动系统中。

步进电机驱动芯片:步进电机驱动芯片是用于控制步进电机的芯片。

步进电机是一种特殊的电动机,通过控制电机的驱动信号以及相序信号来控制电机的旋转角度和速度。

步进电机驱动芯片通常包含相序控制电路和电流检测电路等。

步进电机驱动芯片广泛应用于印刷机、注塑机、纺织机、数控机床和机器人等设备上。

交流电机驱动芯片:交流电机驱动芯片是用于控制交流电机的芯片。

交流电机是一种常见的电机类型,广泛应用于空调、电扇、洗衣机等家电以及工业机械中。

交流电机驱动芯片通常包含功率放大器、频率调节电路和相序控制电路等。

它能够通过控制电机的电压和频率来实现对交流电机的转速和转向的控制。

总结来说,电机驱动芯片是一种集成电路芯片,用于控制和调节各类电机的转速、转向和力矩等。

不同类型的电机驱动芯片适用于不同类型的电机,如直流电机驱动芯片用于直流电机、步进电机驱动芯片用于步进电机、交流电机驱动芯片用于交流电机。

这些电机驱动芯片在现代工业和生活中发挥着重要作用,提高了电机驱动系统的控制精度和效率。

Allegro MicroSystems,LLC发布全新汽车级正弦波无传感器BLDC风扇驱动器

Allegro MicroSystems,LLC发布全新汽车级正弦波无传感器BLDC风扇驱动器

Allegro MicroSystems,LLC 发布全新汽车级正弦波
无传感器BLDC 风扇驱动器
新产品适合于范围广泛的电机、负载和应用。

美国马萨诸塞州伍斯特市–Allegro MicroSystems,LLC 宣布推出一款新型无传感器无刷直流(BLDC)电机控制器A5932,这是一款当今市场上更
先进的解决方案。

Allegro 的汽车级A5932 是一款三相BLDC 电机控制器,
主要针对高功率汽车风扇应用,具有非常低的振动和可听闻噪声。

A5932 的MOSFET 栅极驱动器输出能够调整电机电流以适应具体的应用需求,其用户友好的图形用户界面(GUI)可以实现快速评估并缩短上市时间。

A5932 针
对的主要汽车应用包括座椅、电池、信息娱乐系统和前大灯冷却风扇等等。

通过对速度输入(SPD)施加一个占空比命令可以控制电机速度,SPD 输入支持很宽的频率范围。

在启动时,电机绕组将施加一个正弦波电压,因而
可以使电机安静地启动,并逐渐加快到所需的速度。

这款新器件具有5.5V
至50V 的额定输入电压,工作温度范围为-40℃~150℃。

常用无刷电机驱动芯片

常用无刷电机驱动芯片

常用无刷电机驱动芯片无刷电机驱动芯片是一种控制无刷电机运转的电子元件,具有体积小、功耗低、效率高等优点,在很多领域得到广泛应用。

下面介绍一些常用的无刷电机驱动芯片。

1. DRV8301:DRV8301是Texas Instruments(德州仪器)公司推出的一款常用的无刷电机驱动芯片,适用于功率较小的无刷直流电机驱动。

该芯片采用封装形式较小的QFP封装,具有集成化程度高、性能稳定等特点,能够提供高电流输出和多种保护功能,广泛应用于工业自动化、电动工具、电动车等领域。

2. L6234:L6234是STMicroelectronics(意法半导体)公司推出的一款无刷电机驱动芯片,采用封装形式较小的SOIC封装。

该芯片采用了独特的电流控制技术,具有工作稳定、抗干扰能力强等特点,适用于中小功率的无刷电机驱动。

3. MC33035:MC33035是ON Semiconductor(安森美半导体)公司推出的一款无刷电机驱动芯片,采用封装形式较小的PDIP封装。

该芯片具有内置了多种保护功能,包括过压、过流、过热等保护,可广泛应用于家用电器、电动工具、电动车等电机驱动领域。

4. LB1938FA:LB1938FA是SANYO(三洋)公司推出的一款无刷电机驱动芯片,采用封装形式较小的SOP封装。

该芯片具有集成化程度高、工作稳定等特点,适用于小功率的无刷电机驱动。

5. A4950:A4950是Allegro MicroSystems公司推出的一款无刷电机驱动芯片,采用封装形式较小的SOIC封装。

该芯片具有高电流输出能力、低功耗等特点,适用于高功率无刷电机驱动,广泛应用于电动工具、机器人、电动车等领域。

综上所述,无刷电机驱动芯片是控制无刷电机运转的电子元件,常用的无刷电机驱动芯片有DRV8301、L6234、MC33035、LB1938FA和A4950等。

这些芯片具有集成化程度高、性能稳定、功耗低、效率高等特点,适用于不同功率范围的无刷电机驱动需求,被广泛应用于工业自动化、家电、电动工具、电动车等领域。

【专业】步进电机怎么样选型?步进电机选型要注意哪些方面?步进电机选型指南

【专业】步进电机怎么样选型?步进电机选型要注意哪些方面?步进电机选型指南

【专业】步进电机怎么样选型?步进电机选型要注意哪些方面?步进电机选型指南步进电机是比较特殊的电机产品,不是很有经验的工程师往往不知道怎么样选到合适的步进电机,那么到底应该怎样选到合适的步进电机?也有人觉得步进电机振动噪声大,不知道怎么样改善,下面步进电机服务品牌维科特机电来给大家简单介绍一下。

步进电机不需要带反馈就可以精确控制电机的运行位置和速度,对于工程师来讲是一种便宜好用的运动控制的动力单元。

步进电机其实是一种特殊的直流无刷电机,需要驱动器来电子换相。

相对于其他电机产品,步进电机可以不带减速箱的情况下低速大力矩运行。

步进电机的一般建议工作速度范围是90~900rpm,速度太低的时候容易共振,速度高了力矩衰减得太厉害,带不了多大的负载。

但不是说任何一款步进电机都适合在90~900rpm的转速范围内工作,需要根据电机的实际工作情况来选择合适的法兰尺寸、机身厚度和特性参数。

法兰尺寸大、机身长度大的电机力矩大,低速应用场合适合选电感大的电机,高速应用场合适合选电感小的电机。

具体的选型可以按照下面的流程来选择:1.确定步进电机的工作速度区间和工作力矩。

确定步进电机的工作速度区间和工作力矩之后,再参考步进电机的距频图,选择能够满足对应工作速度下力矩的步进电机,需要留合理的安全余量,因为负载一旦超过步进电机工作力矩就失步了,不能够正常工作了。

2.确定步进电机外形尺寸方面的要求或者限制条件。

尽量选市面上最常用的尺寸的步进电机的性价比比较高,42和57法兰尺寸的步进步电机系统解决方案电机最常用,应该最优先考虑,尺寸更小的或者尺寸更大的成本都会更高。

除了力矩之外,尽可能考虑负载的转动惯量不要低于电机的转动惯量的10倍。

通常机身尺寸大的步进电机的转动惯量也大,但也和步进电机的内部结构有关。

3.确定合适的工作电压。

42和57步进电机一般工作电压是DC24V,如果速度比较高,就要考虑更高的驱动电压,法兰尺寸比较大的步进电机的工作电压也要适当提高。

Allegro发布四路DMOS全桥PWM电机驱动器IC

Allegro发布四路DMOS全桥PWM电机驱动器IC

Allegro发布四路DMOS全桥PWM电机驱动器IC
佚名
【期刊名称】《中国电子商情:基础电子》
【年(卷),期】2017(000)007
【摘要】Allegro MicroSystems,LLC发布一款全新的四路DMOS全桥驱动器IC A5990,它可驱动两个步进电机或四个直流电机,每个全桥的额定输出高达1.6A和40V。

Allegro的A5990集成有固定的关断时间脉宽调制电流稳压器和2位非线性数模转换器,从而能够以整步进、半步进和四分之一步进行步进电机的控制,或者以向前、反转和滑行模式控制直流电机。

【总页数】1页(P50-50)
【正文语种】中文
【中图分类】TM33
【相关文献】
1.Allegro MicroSystems新型DMOS全桥电机驱动器 [J],
2.Allegro发布四路DMOS全桥PWM电机驱动器IC [J],
3.全新四路DMOS全桥式PWM电机驱动器IC [J],
4.Allegro MicroSystems公司发布全新全桥式低电压直流电动机驱动器IC [J],
5.四路DMOS全桥PWM电机驱动器IC [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

厂家型号描述Allegro A3901Dual Full Bridge Low Voltage Motor DriverAllegro A3916Dual DMOS Full-Bridge Motor DriverAllegro A3966Dual Full-Bridge PWM Motor DriverAllegro A3967Microstepping Driver with TranslatorAllegro A3977Microstepping DMOS Driver with TranslatorAllegro A3979Microstepping DMOS Driver with TranslatorAllegro A3981K Automotive, Programmable Stepper DriverAllegro A3982DMOS Stepper Motor Driver with TranslatorAllegro A3983DMOS Microstepping Driver with TranslatorAllegro A3984DMOS Microstepping Driver with TranslatorAllegro A3985Digitally Programmable Dual Full-Bridge MOSFET DriverAllegro A3987DMOS Microstepping Driver with TranslatorAllegro A3988Quad DMOS Full Bridge PWM Motor DriverAllegro A3989Bipolar Stepper and High Current DC Motor DriverAllegro A3992DMOS Dual Full-Bridge Microstepping PWM Motor DriverAllegro A3995DMOS Dual Full Bridge PWM Motor DriverAllegro A3998Dual DMOS Full Bridge Motor Driver With Serial Port Control and Allegro A4970Dual Full-Bridge PWM Motor DriverAllegro A4975Full-Bridge PWM Microstepping Motor DriverAllegro A4979Microstepping Programmable Stepper Motor Driver With Stall Dete Allegro A4980K Automotive, Programmable Stepper DriverAllegro A4982DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A4983DMOS Microstepping Driver with TranslatorAllegro A4984DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A4985DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A4986DMOS Dual Full-Bridge PWM Motor Driver With Overcurrent Protect Allegro A4987DMOS Dual Full-Bridge PWM Motor Driver with Overcurrent Protect Allegro A4988DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A4989Dual Full-Bridge MOSFET Driver with Microstepping Translator Allegro A4990K Automotive Dual Full Bridge DriveAllegro A4992K Automotive Stepper DriverAllegro A4993Automotive Stepper Motor DriverAllegro A5976Microstepping DMOS Driver with TranslatorAllegro A5977Microstepping DMOS Driver with TranslatorAllegro A5979Microstepping DMOS Driver with TranslatorAllegro A5984DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A5985DMOS Microstepping Driver with Translator And Overcurrent Prote Allegro A5988Bipolar Stepper and High-Current DC Motor DriverAllegro A5989Bipolar Stepper and High-Current DC Motor DriverAllegro A5990Quad DMOS Full-Bridge PWM Motor DriverAllegro AMT49701Quad DMOS Full-Bridge PWM Motor DriverAllegro AMT49702Dual DMOS Full-Bridge Motor Driver后缀“K”表示汽车级产品(通过 AEC-Q100 认证)下列器件已停产:A3986, A3972电桥数量峰值输出电流最大电源电压接口位置反馈最小电源电压Parallel External 2.5 5.50.4Full-Bridge x2 Parallel External 2.7151Full-Bridge x2 PH/EN External 4.75300.75Full-Bridge x2 Translator (Step/DIR)External 4.75300.85Full-Bridge x2 Translator (Step/DIR)External835 2.5Full-Bridge x2 Translator (Step/DIR)External835 2.5Full-Bridge x2 SPI,Translator (Step/DIR)External732 1.4Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 SPI External1250Full-Bridge x2 Translator (Step/DIR)External850 1.5Full-Bridge x2 Parallel External836 1.2Full-Bridge x4 Parallel,PH/EN External836 1.2Full-Bridge x4 SPI External1550 1.5Full-Bridge x2 PH/EN External836 2.4Full-Bridge x4 SPI External950 1.5Full-Bridge x2 Parallel External7.45451Full-Bridge x2 Parallel External550 1.5Full-Bridge x1 SPI,Translator (Step/DIR)External750 1.5Full-Bridge x2 SPI,Translator (Step/DIR)External 3.332 1.4Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External835 2.5Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External8351Full-Bridge x2 Parallel External8352Full-Bridge x2 Parallel External8351Full-Bridge x2 Translator (Step/DIR)External8352Full-Bridge x2 Translator (Step/DIR)External1250 1.2Full-Bridge x2 Parallel External632 1.4Full-Bridge x2 SPI,Translator (Step/DIR)External 3.832 1.4Full-Bridge x2 SPI,Translator (Step/DIR)Open Loop 3.532 1.4Full-Bridge x2 Translator (Step/DIR)External840 2.8Full-Bridge x2 Translator (Step/DIR)External840 2.8Full-Bridge x2 Translator (Step/DIR)External840 2.8Full-Bridge x2 Translator (Step/DIR)External8402Full-Bridge x2 Translator (Step/DIR)External8402Full-Bridge x2 Parallel External840 1.6Full-Bridge x4 Parallel External840 1.6Full-Bridge x4 Parallel External840 1.6Full-Bridge x4 Parallel External4181Full-Bridge x4 Parallel External 3.5151Full-Bridge x2封装DFN Consumer,Industrial QFN Consumer,Industrial SOIC Consumer,Industrial SOIC Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial TSSOP AutomotiveSOIC Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial QFN,LQFP Consumer,Industrial QFN Consumer,Industrial DIP,TSSOP Consumer,Industrial QFN Consumer,Industrial QFN Consumer,Industrial SOIC Consumer,Industrial DIP,SOIC Consumer,Industrial TSSOP Consumer,Industrial TSSOP AutomotiveQFN,TSSOP Consumer,Industrial QFN Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN Consumer,Industrial TSSOP Consumer,Industrial TSSOP AutomotiveTSSOP AutomotiveTSSOP AutomotiveTSSOP Consumer,Industrial TSSOP Consumer,Industrial TSSOP Consumer,Industrial QFN,TSSOP Consumer,Industrial QFN Consumer,Industrial QFN Consumer,Industrial QFN Consumer,Industrial QFN Consumer,Industrial,Of QFN Consumer,Industrial TSSOP AutomotiveFull, Half Step Resolution, Single Supply, Sleep ModeInternal PWM Current Control, Single Supply, OCP Protection, Fault Output, Sleep Mode, Parallel Ope Internal PWM Current Control, Full, Step Resolution, Sleep ModeInternal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, Sleep Mode, Automatic Mixed Dec Internal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, Sleep Mode, Automatic Mixed Dec Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Sleep Mode, Automatic Mixed De Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Programable Fa Internal PWM Current Control, Full, Half Step Resolution, Sleep Mode, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, Sleep Mode, Automatic Mixed Dec Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Sleep Mode, Automatic Mixed De Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Sleep Mode, Mixed Decay Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Sleep Mode, Au Internal PWM Current Control, Full, Half, 1/4 Step Resolution, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4 Step Resolution, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Sleep Mode, Mi Internal PWM Current Control, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, OCP Protection, Sleep Mode, 3.3 Internal PWM Current Control, Full, Half Step Resolution, Sleep ModeInternal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, Automatic Mixed DecayInternal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Programable Fa Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Programable Fa Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Sleep Mode, Au Internal PWM Current Control, Full, Half, 1/4, 1/8, 1/16 Step Resolution, Sleep Mode, Automatic Mix Internal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, OCP Protection, Sleep Mode, Aut Internal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, OCP Protection, Sleep Mode, Aut Internal PWM Current Control, Full, Half, 1/4 Step Resolution, OCP Protection, Sleep Mode, Mixed De Internal PWM Current Control, Full, Half, 1/4 Step Resolution, OCP Protection, Sleep Mode, Mixed De Internal PWM Current Control, Full, Half, 1/4, 1/8, 1/16 Step Resolution, OCP Protection, Sleep Mod Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Sleep Mode, Mixed Decay Internal PWM Current Control, Full Step Resolution, Single Supply, Sleep ModeInternal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, Single Supply, OCP Protection, Integrated Current Sense, Internal PWM Current Control, 50V Transient compatible, Full, Half, 1/4, Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Fault Output, Internal PWM Current Control, Full, Half, 1/4, 1/8 Step Resolution, OCP Protection, Sleep Mode, Aut Internal PWM Current Control, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Sleep Mode, Au Internal PWM Current Control, Full, Half, 1/4, 1/8, 1/16, 1/32 Step Resolution, Single Supply, OCP Internal PWM Current Control, Full, Half, 1/4, 1/8, 1/16, 1/32 Step Resolution, Single Supply, OCP Internal PWM Current Control, Full, Half, 1/4 Step Resolution, Single Supply, OCP Protection, Sleep Internal PWM Current Control, Full, Half, 1/4 Step Resolution, Single Supply, OCP Protection, Sleep Adaptive Percent fast decay, Adjustable off time, Internal PWM Current Control, Full, Half, 1/4 Ste Internal PWM Current Control, Full, Half, 1/4 Step Resolution, Single Supply, OCP Protection, Sleep Internal PWM Current Control, Half step resolution, Single Supply, OCP Protection, Fault Output, SlParallel OperationAutomatic Mixed DecayAutomatic Mixed Decay, Automatic Mixed Decaytion, Programable Fault Output, Sleep Mode, Advanced DiagnosticsMixed DecayAutomatic Mixed Decay, Automatic Mixed Decay, Mixed Decaytion, Sleep Mode, Automatic Mixed Decaytion, Sleep Mode, Mixed Decayion, Sleep Mode, 3.3/5.0V LDO, Mixed Decayixed Decaytion, Programable Fault Output, Sleep Mode, Advanced Diagnosticstion, Programable Fault Output, Sleep Mode, Advanced Diagnosticstion, Sleep Mode, Automatic Mixed DecayMode, Automatic Mixed Decayion, Sleep Mode, Automatic Mixed Decayion, Sleep Mode, Automatic Mixed DecaySleep Mode, Mixed DecaySleep Mode, Mixed Decayrotection, Sleep Mode, Automatic Mixed Decay, Mixed Decayply, OCP Protection, Programmable Fault Output, Sleep Mode, Mixed Decaye, Full, Half, 1/4, 1/16 Step Resolution, OCP Protection, Programable Fault Output, Sleep Mode, Advanced Dia tion, Fault Output, Sleep Mode, Automatic Mixed Decayion, Sleep Mode, Automatic Mixed Decaytion, Sleep Mode, Automatic Mixed DecaySingle Supply, OCP Protection, Fault Output, Sleep Mode, Adaptive Percent Fast DecaySingle Supply, OCP Protection, Fault Output, Sleep Mode, Adaptive Percent Fast DecayCP Protection, Sleep Mode, Mixed DecayCP Protection, Sleep Mode, Mixed DecayFull, Half, 1/4 Step Resolution, Single Supply, OCP Protection, Sleep Mode, Mixed Decay, diagnostic output CP Protection, Sleep Mode, Mixed Decayon, Fault Output, Sleep Modeep Mode, Advanced Diagnostic d Decay, diagnostic output。

相关文档
最新文档