锅炉燃烧系统的控制系统设计

合集下载

燃气锅炉的控制系统及其操作方法

燃气锅炉的控制系统及其操作方法

燃气锅炉的控制系统及其操作方法随着我国经济的快速发展,燃气锅炉的应用越来越广泛。

燃气锅炉控制系统是整个锅炉系统的关键所在,能够确保燃气锅炉的安全、高效、稳定地运行。

本文将对燃气锅炉控制系统及其操作方法进行探讨。

一、燃气锅炉控制系统的组成燃气锅炉控制系统主要由以下几个部分组成:自动控制系统、填料控制系统、液位控制系统、排污控制系统、加药控制系统、给水控制系统和燃气供应系统。

这些系统在燃气锅炉的生产过程中,相互协调作用,以确保锅炉的安全、稳定、高效运行。

1.自动控制系统自动控制系统是燃气锅炉的核心,主要由控制器、执行机构、传感器和通讯线路等组成。

其主要功能是监测锅炉出水温度、烟气温度、压力等参数,根据这些参数来指挥燃烧器的工作,并对锅炉的运行状态进行调整。

自动控制系统可以实现批量自动生产,提高生产效率,降低人工干预的可能性,大大提高了燃气锅炉的安全性和稳定性。

2.填料控制系统燃气锅炉填料控制系统主要用于控制内部填料的加注量和压力,确保填料的均匀分布以及压力的平衡。

填料控制系统主要由控制器、执行机构、传感器和通讯线路等组成。

在锅炉生产过程中,系统可以根据锅炉负荷的变化来调整填料的量和压力,从而保证锅炉的工作效率和稳定性。

3.液位控制系统液位控制系统主要用于控制锅炉水位以及补给水的流量。

它主要由控制器、执行机构、传感器和通讯线路等组成。

它可以精确地控制锅炉内部水位,确保锅炉的充水量和污水排放的流量。

液位控制系统的合理设计和操作,可以保证锅炉的稳定性、安全性和高效性。

4.排污控制系统燃气锅炉排污控制系统主要用于控制废气排放和污水排放的流量。

它主要由控制器、执行机构、传感器和通讯线路等组成。

排污控制系统的作用非常重要,一般情况下污水和废气排放对环境造成的危害很大。

通过排污控制系统的运行,可以减少对环境的污染,保证锅炉运行环境的清洁和安全。

5.加药控制系统加药控制系统主要用于对锅炉内部水进行磷酸盐和硫酸盐等药品的添加。

基于PLC单片机控制中小型蒸汽锅炉智能燃烧系统

基于PLC单片机控制中小型蒸汽锅炉智能燃烧系统

产。
4
3、锅炉引风控制
炉膛负压控制系统一般采用的控制流程图 如下图所示,调节原理比较简单属于单闭 环调节系统,它的输入量是炉膛负压输出 量是引风变频器,同时引入鼓风量作为前 馈信号。
给定蒸汽压力
+ -
引风调节单元
引风机变频器
锅炉系统
抗干扰滤波
炉膛负压信号
5
4、锅炉鼓风控制
鼓风控制系统一般采用的控制流程图如下图所示,
先通过蒸汽压力变送器经滤波后取得信号,与设 定蒸汽压力进行比较,判断出鼓风PID调节器调节 的方向和大小,通过鼓风PID调节单元计算出鼓风 变频器的输出大小
给定蒸汽压力
+ -
炉排调节单元
风煤比
炉排变频器
鼓风调节单元 抗干扰滤波
鼓风变频器 蒸汽压力信号
炉排系统
6
二、控制系统硬件设计
PLC不仅具有逻辑控制功能,而且还具有了 运算、数据处理和数据传送等功能 ,采用可编 程控制器设计的控制系统可以实现对锅炉精确地 实时自动控制,并且实现了整个系统的优化控制。 变频调速的基本原理是通过改变电动机工作电源 频率达到改变电机转速的目的,采用变频调速技 术来控制锅炉的泵与风机,可以使电动机不必总 在工频下运行,可以大大的节省电能。
2、程序设计结果,见论文P35~P37
13
四、上位机系统制作
MCGS (Monitor and Control Generated System, 通用监控系统)是一套用于快速构造和生成计算机 监控系统的组态软件,它能够在基于Microsoft (各种 32 位 Windows 平台上)运行,通过对现 场数据的采集处理,以动画显示、报警处理、流 程控制、实时曲线、历史曲线和报表输出等多种 方式向用户提供解决实际工程问题的方案,它充 分利用了 Windows图形功能完备、界面一致性好、 易学易用的特点,在自动化领域有着广泛的应用。

基于PLC的锅炉燃烧控制系统设计_毕业设计论文正文 精品

基于PLC的锅炉燃烧控制系统设计_毕业设计论文正文 精品

基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。

锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。

工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。

作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。

而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。

1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。

这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。

因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。

(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。

在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。

在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。

基于PID控制的火电厂锅炉燃烧控制系统设计和优化

基于PID控制的火电厂锅炉燃烧控制系统设计和优化

基于PID控制的火电厂锅炉燃烧控制系统设计和优化近年来,随着能源需求的增加,火电厂作为传统能源的主要供应者,其运行效率和能源消耗问题也越来越引起人们的重视。

然而,火电厂锅炉燃烧控制系统作为影响火电厂运行效率和能源消耗的关键因素,其控制精度和稳定性问题也一直是值得关注和解决的难题。

本文将着重讨论基于PID控制的火电厂锅炉燃烧控制系统设计和优化问题。

一、 PID控制的基本原理PID控制是一种通过比较设定值和实际值来调节输出变量,以达到控制误差最小、调节时间最短、稳定性最好的控制方式。

PID的全称是“Proportional-Integral-Derivative”,即比例、积分和微分控制。

PID控制器通过对系统误差的反馈控制作用,可以实现对系统稳态误差、系统瞬时响应和稳定性的控制。

比例控制通过反馈控制器输出信号的幅值和误差信号的幅值成比例的关系,来控制系统的稳定性和响应速度;积分控制通过去除系统误差的恒定偏置,来控制系统稳态误差;微分控制通过提高系统对瞬时干扰的抵抗力,来控制系统的瞬时响应。

PID控制器将上述三种控制模式集成在一个系统中,可以根据具体的参数进行调整。

</p>二、火电厂锅炉燃烧控制系统的基本要求火电厂锅炉燃烧控制系统作为现代火电厂的关键装置,其设计和优化一旦失误,将直接影响火电厂运行的效率和成本。

因此,我们需要对火电厂锅炉燃烧控制系统的基本要求进行了解和掌握:1. 温度控制:火电厂锅炉燃烧控制系统需要实现对锅炉内部温度的控制,以确保锅炉的安全运行和燃烧效率的提高。

2. 水位控制:火电厂锅炉燃烧控制系统需要实现对锅炉内部水位的控制,以确保锅炉的安全运行和燃烧效率的提高。

3. 火焰控制:火电厂锅炉燃烧控制系统需要实现对锅炉内部火焰的控制,以确保锅炉的安全运行和燃烧效率的提高。

以上基本要求也是PID控制在设计和优化火电厂锅炉燃烧控制系统所要考虑的因素。

三、 PID控制在火电厂锅炉燃烧控制系统中的应用针对火电厂锅炉燃烧控制系统的基本要求,PID控制器可以实现如下的应用:1.温度控制:PID控制器可以通过对锅炉内部传感器信号的反馈,实现锅炉内部温度的控制。

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计

基于PLC的锅炉供热控制系统的设计一、本文概述随着科技的不断发展,可编程逻辑控制器(PLC)在工业自动化领域的应用日益广泛。

作为一种高效、可靠的工业控制设备,PLC以其强大的编程能力和灵活的扩展性,成为现代工业控制系统的重要组成部分。

本文旨在探讨基于PLC的锅炉供热控制系统的设计,通过对锅炉供热系统的分析,结合PLC控制技术,实现对供热系统的智能化、自动化控制,提高供热效率,降低能耗,为工业生产和居民生活提供稳定、可靠的热源。

文章首先介绍了锅炉供热系统的基本构成和工作原理,分析了传统供热系统存在的问题和不足。

然后,详细阐述了PLC控制系统的基本原理和核心功能,包括输入/输出模块、中央处理单元、编程软件等。

在此基础上,文章提出了基于PLC的锅炉供热控制系统的总体设计方案,包括系统硬件选型、软件编程、系统调试等方面。

通过本文的研究,期望能够实现对锅炉供热控制系统的优化设计,提高供热系统的控制精度和稳定性,降低运行成本,促进节能减排,为工业生产和居民生活提供更加安全、高效的供热服务。

也为相关领域的研究人员和技术人员提供有价值的参考和借鉴。

二、锅炉供热系统基础知识锅炉供热系统是一种广泛应用的热能供应系统,其主要任务是将水或其他介质加热到一定的温度,然后通过管道系统输送到各个用户端,满足各种热需求,如工业生产、居民供暖等。

该系统主要由锅炉本体、燃烧器、热交换器、控制系统和辅助设备等几部分构成。

锅炉本体是供热系统的核心设备,负责将水或其他介质加热到预定温度。

其根据燃料类型可分为燃煤锅炉、燃油锅炉、燃气锅炉、电锅炉等。

锅炉的性能参数主要包括蒸发量、蒸汽压力、蒸汽温度等。

燃烧器是锅炉的重要组成部分,负责燃料的燃烧过程。

燃烧器的性能直接影响到锅炉的热效率和污染物排放。

燃烧器需要稳定、高效、低污染,同时要适应不同的燃料类型和负荷变化。

热交换器是锅炉供热系统中的关键设备,负责将锅炉产生的热能传递给水或其他介质。

热交换器的设计应保证高效、稳定、安全,同时要考虑到热能的充分利用和防止结垢、腐蚀等问题。

锅炉燃烧过程控制系统仿真设计

锅炉燃烧过程控制系统仿真设计

锅炉燃烧过程控制系统仿真一、燃烧过程控制系统的基本理论燃油锅炉的燃烧控制主要有三个子系统构成:蒸汽压力控制系统、燃料空气比值控制系统和炉膛负压控制系统。

1.蒸汽压力控制和燃料空气比值控制系统燃油蒸汽锅炉燃烧的目的是生产蒸汽供应其他生产环节使用。

一般生产过程中蒸汽的控制是通过压力实现的,随着后续环节的生产用量不同,反应在燃油蒸汽锅炉环节就是蒸汽压的波动。

维持蒸汽压力恒定是保证生产正常进行的首要条件。

保证蒸汽压力恒定的主要手段是随着蒸汽压力波动及时调节燃烧产生的热量,而燃烧产生热量的调节是通过控制所供应的燃料量以及适当比例的助燃空气实现的。

如图1所示燃烧炉蒸汽压力控制与燃料比值控制系统2.炉膛负压控制系统锅炉炉膛负压力过小时,炉膛内的热烟、热气会外溢,造成热量损失、影响设备安全运行甚至会危及工作人员安全;当炉膛负压太大时,会使外部大量冷空气进入炉膛,改变燃料和空气比值,增加燃料损失、热量损失和降低热效率。

保证炉膛负压的措施是引风量和送风量的平衡。

如果负压波动不大,调节引风量即可实现负压控制;当蒸汽压力波动较大时,燃料用量和送风量波动也会较大,此时,经常采用的控制方案如图2所示。

炉膛负压控制系统3、控制方案:某锅炉燃烧系统要求对系统进行蒸汽压力控制。

本项目采用燃烧炉蒸汽压力控制和姗料空气比值控制系统,并辅以炉膛负压控制的方案,控制系统框图如图所示。

二、燃烧过程控制任务燃烧过程自动调节系统的选择虽然与燃料的种类和供给系统、燃烧方式以及锅炉与负荷的联接方式都有关系,但是燃烧过程自动调节的任务都是一样的。

归纳起来,燃烧过程调节系统有三大任务。

第一个任务是维持汽压恒定。

汽压的变化表示锅炉蒸汽量和负荷的耗汽量不相适应,必须相应地改变燃料量,以改变锅炉的蒸汽量。

第二个任务是保证燃烧过程的经济性。

当燃料量改变时,必须相应地调节送风量,使它与燃料量相配合,保证燃烧过程有较高的经济性。

第三个任务是调节引风量与送风量相配合,以保证炉膛压力不变。

600MW单元机组锅炉燃烧控制系统设计

600MW单元机组锅炉燃烧控制系统设计

的 。电子称 重式给煤 机给煤量 的称 重原 理是 通过 轮 ,在翼 背上产 生一个 升力 ,同时必 定在翼 腹 上产 负荷传 感 器测 出的单 位 长度 皮 带上 煤 的重 量 G, 生一 个大小相 等 方 向相 反 的作 用 力 ,使 气 体排 出
再 乘 以 由编码 器 测 出 的皮 带 转速 ,就 得 到 了给 叶轮呈 螺旋 形沿 轴 向 向前 运 动 。与此 同时 ,风 机
8224型给煤 机工 作原 理 比较 简单 ,原 煤 仓 落 煤经 给煤 机进 口,由皮带 驱动滚 轮 驱 动皮 带滚 动 , 将皮 带上 原煤输 送 至给煤 机 出 口进 入磨 煤 机进 行 碾磨 。皮 带边缘 的零星落 煤 由其下 部 的清 扫装 置
收 稿 日期 :2010-04—06 作 者 简 介 :林凤 华 (1966一 ),女 ,湖北 孝 感 人 ,湖 北 职 业 技 术 学 院 机 电工 程 学 院 副 教 授 。
1 燃 烧 过 程 分 析
燃 烧设 备 主 要 有 磨 煤 机 、给 煤 机 、燃烧 器 、风 机等n],下 面分别 做简单 介 绍 。 1.1 磨 煤机 的工作 原理
球磨 机主体 是一个 直 径约 2~4m、长 3~ 10m 的大 圆筒 ,筒 内装 有 大量 直 径 为 25 60mm 的钢 球 。筒 内壁衬装 波 浪形 锰 钢 护 甲 ,筒 身 两 端 是 架 在大 轴承 上 的空 心 轴 颈 ,一端 是 热空 气 和 原 煤 的 进 口,另一 端是 气粉混 合 物 的出 口。
第 3O卷 第 3期 2010年 5月
孝 感 学 院 学 报
JOURNA L OF XIAOGAN UNIVERSITY
V 0L.3O N 0 .3 M A Y.2O1O

智能锅炉控制系统的设计与实现

智能锅炉控制系统的设计与实现

智能锅炉控制系统的设计与实现随着科技的发展和人们生活水平的提高,家居设备的智能化成为了一种趋势。

在众多的智能家居设备中,智能锅炉是一种比较受欢迎的设备。

它可以通过智能控制系统实现远程控制、节能、安全等多种功能。

本文将介绍智能锅炉控制系统的设计与实现。

一、控制系统结构一个智能锅炉控制系统主要由以下部分组成:1.硬件部分:包括传感器、执行器、控制器、显示器等硬件设备。

2.软件部分:主要由控制算法和界面设计组成,控制算法是程序员根据控制需求编写的程序,界面设计则用于方便用户操作和管理。

3.远程通信组件:包括网络通信硬件和软件,实现远程控制和监控等功能。

二、传感器与执行器的选择为了实现智能控制,必须使用传感器来获取锅炉的状态信息,并使用执行器来控制锅炉的运行状态。

在传感器的选择上,应该选择具有高精度、快速响应、耐高温等优点的传感器。

例如,温度传感器应该选用高精度、线性度好、响应速度快、温度范围广的PTC热敏电阻或热电偶传感器。

在执行器的选择上,应该选择具有高精度、稳定可靠性、结构紧凑、响应速度快等优点的执行器。

三、控制器的设计与实现控制器是智能锅炉控制系统的核心,它主要完成控制算法的实现和与硬件设备的通讯。

控制器可以采用嵌入式控制系统、单片机、FPGA等硬件以及VC、VB、C++等软件开发工具进行设计和实现。

在控制方案的设计实现时,要结合锅炉的物理特性和工作状态,运用现代控制理论设计PID算法、模糊控制算法、神经网络控制算法等多种控制算法。

四、界面设计与人机交互一个好的界面设计可以让用户方便快捷地进行操作和管理。

界面设计可以采用电脑、手机APP、微信等多种形态,主要通过图形化的方式将控制参数和系统状态进行直观化显示。

在人机交互方面,可以使用语音、手势等更加便利的交互方式,以提高用户的操作效率和便利性。

五、远程通信组件的设计与实现远程通信组件是实现远程控制的关键,它主要通过网络实现用户对锅炉的远程控制和监控。

(完整版)我的工业燃煤锅炉DCS控制系统设计毕业论文设计

(完整版)我的工业燃煤锅炉DCS控制系统设计毕业论文设计

工业燃煤锅炉DCS控制系统设计(子课题:控制方案的组态及监控画面的制作)摘要:本文叙述了工业燃煤锅炉的工作原理,具体阐述了锅炉控制中对汽水控制系统方案和自动检测的设计,利用了Control Builder 软件、UMC800控制器和FIX软件进行35吨工业燃煤锅炉汽水系统的自动检测与控制回路的组态,并设计了友好的监控画面。

关键词:锅炉FIX UMC800 控制系统汽水系统蒸汽压力Abstract: the paper introduce the principle of the boiler which is used in burning coal industrial,it describes the scheme of the steam controlsystem in boiler control and the design of auto-detection. it use the Control Buildersoftware,UMC800 controller and FIX softwareto auto-detect 35t steam system in burningcoal industrial and configuration the controlloop, and designed the friendly supervisionappearance.Keyword: boiler, FIX, UMC800, control system, steam system, steam pressure引言锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的13,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。

提高热效率,降低耗煤量,降低耗电量,用微机进行控制是一件具有深远意义的工作。

基于PLC的锅炉燃烧控制系统的设计-毕业论文

基于PLC的锅炉燃烧控制系统的设计-毕业论文

摘要随着社会经济的飞速发展,城市建设规模的不断扩大,以及人们生活水平的不断提高,对城市生活供暖的用户数量和供暖质量提出了原来越高的要求。

结合现状,本论文供暖锅炉监控系统,设计了一套基于PLC和变频调速技术的供暖锅炉控制系统。

该控制系统以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行和调速。

上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。

下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度和压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制和其余电动机的控制。

本文设计的变频控制系统实现了锅炉燃烧过程的自动控制,系统运行稳定可靠。

采用锅炉的计算机控制和变频控制不仅可大大节约能源,促进环保,而且可以提高生产自动化水平,具有显著的经济效益和社会效益。

关键字:锅炉控制;变频调速;组态软件;PLCAbstractAlong with social economy’s swift development, the urban construction scale’s unceasing expansion , as well as the peple living standard’s unceasing enhancement , set more and more high request to the city life heating’s user quantity and the heating quality. The union present situation, the present paper heating boiler supervisory sysem, has designed a set based on PLC and the frequency conversion velocity modulation technology heating boiler control system.This control system takes the superior machine by one Industry cybertrons , west of family household S7-300 programmable controller for lower position machine ,system through frequency changer control motor’s start , movement and vclocity modulation .the superior machine monitoring software uses the three dimensional strength to control the WinCC design , mainly completes the system operation contract surface design ,realizes the system to open/stops functions and so on control ,parameter hypothesis ,warning linkage,historical data inquiry. The lower position machine control procedure uses Siemen’s STEP7 programming software design , mainly completes the simulation quantity signal processing , temperature and pressure signal functions and so on PID control , and receives the superior machine control command to complete the air blower to open/stops the control , the parameter hypothesis, the circulating pump control and other electric motor’s control.This article designs the frequency conversion processs automatic control, the systems operation is stable, is reliable. Uses boiler’s computer control and the frequency converseon control noe only may save the energy greatly, the promotion environmental protection moreover may raise the production automation level, has the remarkable economic efficiency and the social efficiency.Key Words:Boiler control;Frequency conversion velocity modulation ;Configuration Software;PLC目录摘要 0Abstract (1)第1章概述 (4)1.1 项目背景及课题的研究意义 (4)1.2 供暖锅炉控制的国内外研究现状 (5)1.3锅炉控制系统的发展趋势 (6)1.4本文所做工作 (7)第2章系统方案设计 (9)2.1锅炉控制研究简介 (9)2.2 总体设计思路 (9)2.3方案比较 (10)2.3.1方案1 (10)2.3.2 方案2 (10)2.4方案论证与方案确定 (11)第3章硬件设计 (12)3.1 用户系统框图 (12)3.2 锅炉系统的理论分析 (13)3.2.1变频调速基本原理 (13)3.2.2变频调速在供暖锅炉中的应用 (13)3.2.3变频调速节能分析 (14)3.3燃烧过程控制 (19)3.4锅炉控制系统设计 (20)3.5控制系统构成介绍 (21)第4章软件设计 (25)4.1 S7-300系列PLC简介 (26)4.2 PLC编程语言简介 (28)4.2.1 PLC编程语言的国际标准 (28)4.2.2复合数据类型与参数类型 (29)4.2.3系统存储器 (29)4.2.4 S7-300 CPU中的寄存器 (30)4.3 STEP7 的原理 (31)4.3.1 STEP7概述 (31)4.3.2 硬件组态与参数设置 (32)4.3.3 符号表 (36)4.3.4 逻辑块 (37)4.3程序设计 (38)4.4通信系统 (41)4.5人机界面 (43)4.5.1监控软件WinCC介绍 (43)4.5.2监控系统设计 (45)4.5.3锅炉监控界面设计 (49)第5章结论 (53)5.1 成果的创造性和先进性 (53)5.2作用意义(经济效益和社会意义) (53)5.3 推广应用范围和前景 (53)5.4 需要进一步改进之处 (54)参考文献 (55)外文资料翻译 (56)外文翻译原文 (56)外文翻译译文 (68)致谢 (75)附录 (76)附录1 程序清单 (76)附录2 I/O点数分配表 (96)附录3 物理参数比较表 (97)第1章概述1.1 项目背景及课题的研究意义工业锅炉是工业生产和集中供热过程中重要的动力设备。

燃气锅炉的燃烧控制系统及其要素

燃气锅炉的燃烧控制系统及其要素

燃气锅炉的燃烧控制系统及其要素燃气锅炉作为一种重要的能源设备,在现代生活中扮演着不可替代的角色。

其中,燃烧控制系统是燃气锅炉的核心部件之一,对于燃气锅炉的性能、效率和安全性都起着至关重要的作用。

因此,了解燃气锅炉的燃烧控制系统及其要素是必不可少的。

本文将对燃气锅炉的燃烧控制系统作一详细解析。

一、燃烧控制系统的组成燃气锅炉的燃烧控制系统主要由点火系统、风机系统、燃气系统、火焰监测系统、温度控制系统等组成。

1. 点火系统点火系统是燃气锅炉的启动系统,其作用是将点火电流传递到点火电极上,使燃料被点燃。

点火系统由点火变压器、点火电极、高压电缆等组成。

2. 风机系统风机系统主要由鼓风机、风管等组成,其作用是将空气送入燃烧室,同时调节氧气的浓度和风量,以获取最佳的燃烧效果。

3. 燃气系统燃气系统主要由燃气阀门和燃气管道等组成,其作用是将燃气送入燃烧室中。

燃气阀门通过控制燃气的流量和压力,来调节燃烧室中的氧气浓度和燃料供应量,以达到最佳的燃烧效果。

4. 火焰监测系统火焰监测系统主要由火焰探测器、火焰信号放大器等组成,其作用是监测火焰的状态,以确保燃烧过程的安全和有效性。

一旦火焰出现问题,火焰监测系统就会发出警报,同时停止燃气供应,以保护燃烧设备和用户的安全。

5. 温度控制系统温度控制系统主要由温度传感器和温度控制器等组成,其作用是监测燃烧室内部的温度,并通过控制燃气、空气的配比和供应量,来调节燃烧室的温度,以满足用户的需求。

例如,在供暖场合下,温度控制系统可以根据室内温度的变化,自动调节燃烧室内的温度,以达到最佳的供暖效果。

二、燃烧控制系统的要素燃烧控制系统的要素主要包括燃气/空气比、火焰形态和火焰温度等。

1. 燃气/空气比燃气/空气比是指燃烧室中燃气和空气的配比,其配得过多或过少都会影响燃烧效果。

燃气/空气比过多会导致燃气未完全燃烧,产生有害气体和烟雾等物质,同时也会浪费燃料资源;而燃气/空气比过少则会导致缺氧燃烧,产生大量一氧化碳等有害气体,同时也会降低燃烧效率。

燃油蒸汽锅炉的燃烧控制系统的设计和仿真

燃油蒸汽锅炉的燃烧控制系统的设计和仿真

燃油蒸汽锅炉的燃烧控制系统的设计和仿真摘要工业自动化涉及的范围很广,过程控制是其中最重要的一个分支。

它主要针对工业过程的五大参数,即温度、压力、流量、液位(或物位)、成分和特性等参数的控制问题。

过程控制覆盖了很多工业部门,例如石油、化工、电力、冶金、轻工、纺织等部门,在国民经济中所占有的地位极其重要。

根据实际应用领域和工艺过程的不同,所采用的控制方式及其侧重点也不相同。

而在大量的工业生产中燃烧都是必要的一环,从燃烧角度来说,有燃油、燃煤、燃气的区别。

虽然燃烧的应用场合和燃料可能不同,但燃烧过程的控制都不外是燃烧控制、温度控制、燃烧程度控制、安全性控制、节能控制等。

本文仅以燃油蒸汽锅炉为例说明燃烧系统中具有一定普遍性的控制问题。

本次课题的目的就是基于生产实际的需求,针对蒸汽压力控制、燃料空气比值控制和炉膛负压控制进行系统框架设计并在MATLAB环境下建立模型、进行控制算法的实现研究。

其主要采用了MATLAB中的SIMULINK工具箱进行仿真,通过模拟示波器中的波形来调节参数,改良控制效果。

关键字:燃烧控制系统,MATLAB,过程控制,SIMULINKTHE DESIGN AND SIMULATION OF THE COMBUSTION CONTROL SYSTEM BASED ON FUEL STEAM BOILERABSTRACTIndustrial automation involve a very wide range, while process control is one of the most important branches. It mainly refer to control techniques of five industrial processes parameters which are temperature, pressure, and flow, liquid level (or bits), composition and characteristics. Process control covers many industries, such as petroleum, chemical industry, electric power, metallurgy, light industry and textile department.It occupied an extremely important position of the national economy.The control modes and their emphasis depend on the different actual application and process bustion is essential in the industrial production.Burning speaking, it can be divide into fuel, coal and gas. Although burning applications and fuel combustion process may be different, the control of burning process all involve burning control, temperature control and burning level control, safety control, degree of saving energy control etc. This paper only to take fuel steam boiler combustion system as an example,it illustrates the control problems with certain universality in the combustion system. The purpose of this subject is to design the system framework for steam pressure control, fuel air ratio control and hearth negative pressure based on the actual production needs, also make model in the MATLAB environment as well as research for the algorithm of control . It mainly uses the MATLAB and SIMULINK toolbox, adjusting the parameters in terms of the waveform of oscilloscope.As a result, the control effect improved.Key words:,combustion control system,MATLAB, process control, SIMULINK目录摘要 (I)ABSTRACT (II)前言 (1)1绪论-------------------------------------------------------------------------------------------------61.1 研究目的及意义-------------------------------------------------------------------------------------------61.2相关领域的研究现状--------------------------------------------------------------------------------------61.2.1燃油蒸汽锅炉发展和现状-----------------------------------------------------------------61.2.2燃烧控制系统的简介--------------------------------------------------------------------------------81.3 论文的章节安排2 燃油蒸汽锅炉燃烧控制系统控制原理---------------------------------------------------------62.1 系统基本结构与设备--------------------------------------------------------------------------------------62.2 主要控制技术及要求-----------------------------------------------------------------------------102.2.1稳定蒸汽母管的压力-------------------------------------------------------------------------------122.2.2维持锅炉燃烧的最佳状态和经济性-------------------------------------------------------------122.2.3维持炉膛负压在一定范围------------------------------------------------------------------------ 122.2.4锅炉燃烧系统控制对象的特性-------------------------------------------------------------------123 蒸汽压力控制、燃料空气比值控制和炉膛负压控制的基本模型建立-------------------143.1蒸汽压力控制系统和燃料空气比值控制系统基本模型--------------------------------------------143.2炉膛负压控制系统----------------------------------------------------------------------------------------154 MATLAB环境下控制算法的研究---------------------------------------------------------------184.1系统辨识---------------------------------------------------------------------------------------------------184.2控制系统参数整定---------------------------------------------------------------------------------------184.3控制系统SIMULINK仿真-----------------------------------------------------------------------------245 结论-------------------------------------------------------------------------------------------------28 参考文献-------------------------------------------------------------------------------------------------28 致谢-------------------------------------------------------------------------------------------------------29附录-------------------------------------------------------------------------------------------------------46 译文及原文----------------------------------------------------------------------------------------------501 绪论1.1 引言锅炉是重要的工业设备,应用于炼油、冶金、化工、轻工等行业。

锅炉燃烧过程控制系统

锅炉燃烧过程控制系统

乘法器为燃料调节对象的一部分,选择合适的函数f(x),则可以做到不管给煤 机投入的台数如何,都可以保持燃料调节对象增益不变,这样就不必调整燃 料调节器的控制参数了。增益调整与平衡器(GAIN CHANGER & BALANCER),就是完成该功能。
三、风煤交叉限制
为了在机组增、减负荷动态过程中,使燃料得到充分燃烧就要保证有足够的风 量。需要保持一定的过量空气系数,因此,在机组增负荷时,就要求先加风 后加煤;在机组减负荷时,就要求先减煤后减风。这样就存在一个风煤交叉
~ 发电机
Pem
3UI
cos
3
EqU Xd
sin
2.汽机跟随控制方式
锅炉控制 系统
燃烧率μB
锅炉
BD
汽轮机 主控器
TD 汽轮机控制 系统
锅炉 主控器
- p0
+ pT
μT 调节阀
汽轮机
图2 汽机跟随控制方式

P0
— —
PE
~ 发电机
3.机炉协调控制方式
BD
锅炉控制 系统
燃烧率μB
锅炉
锅炉主控器
锅炉燃烧过程控制系统
第一节 概述
一、单元机组的基本控制方式
(1)锅炉跟随控制方式 (2)汽机跟随控制方式 (3)机炉协调控制方式
1.锅炉跟随控制方式
BD
锅炉控制 系统
锅炉 主控器
燃烧率μB
锅炉
+ p0 —
pT
TD
汽轮机控制 系统
μT 调节阀
汽轮机 主控器
汽轮 机
图1 锅炉跟随控制方式
+ P0
— PE
GV
(s)
KV (Ts 1)2

锅炉燃烧系统的控制系统设计

锅炉燃烧系统的控制系统设计
2)锅炉汽水系统中,给水经省煤器预热后进入锅筒,再经过与燃料系统的热交换过程,产生饱和蒸汽;然后经过多级过热器,形成具有一定气温和压力的过热蒸汽,汇集至蒸汽母管,推动单元机组的工作。
3)汽轮发电机组接受锅炉提供的过热蒸汽,推动高压汽轮机转子,进而带动发电机转子转动,产生电能。同时,温度和压力都降低的蒸汽冷凝为凝结水,又被作为给水进入锅炉汽水系统,从而加以循环利用,节约资源。
1.2 单元机组的出力控制
对电网来说,要求单元机组的出力能快速适应负荷的需求,而机组的出力大小事由锅炉和汽轮机共同决定的。两者在适应负荷变化的能力上有很大的差别:锅炉从给水到形成过热蒸汽式一个惯性较大的热交换过程,而汽轮机从蒸汽进入到产生电能是一个反应相对较快的环节。如何合理地控制锅炉和汽轮机的各自出力[3],使其彼此适应,最终满足负荷需求是出力控制的核心任务。
图1-1火力发电厂主要工艺流程图
1.1锅炉控制
锅炉是化工、炼油、发电等工业生产过程中必不可少的重要动力设备。锅炉控制的目的是供给合格的蒸汽,使锅炉产汽量适应负荷需要,同时保证燃烧的经济性、安全性[2]。要实现该控制目的,必须对锅炉生产过程中的各个主要工艺参数进行严格控制。


给水量 锅筒水位
减温水量 过热蒸汽温度
理论和实践已证明,烟气中的各种成分,如O2、CO2、CO和未燃烧烃的含量,基本上可以反映燃料燃烧的情况,最简便的方法是用烟气中的含氧量A来表示。根据燃烧时的化学反应方程式,可以计算出使燃料完全燃烧所需要的含氧量,进而可以折算出所需的空气量,称为理想空气量,用QT表示。但实际上完全燃烧时所需的空气量QP,要超过理论计算的QT,既要有一定的过剩空气量。由于烟气的热损失占锅炉热损失的绝大部分,当过剩空气量增多时,会使炉膛温度降低,同时使烟气热损失增加。因此,过剩空气量对不同的燃料都有一个最优值,以达到最优经济燃烧。

(完整版)锅炉燃烧系统的控制系统设计

(完整版)锅炉燃烧系统的控制系统设计

(完整版)锅炉燃烧系统的控制系统设计⽬录1锅炉⼯艺简介 (1)1.1锅炉的基本结构 (1)1.2⼯艺流程 (2)1.2煤粉制备常⽤系统 (3)2 锅炉燃烧控制 (4)2.1燃烧控制系统简介 (4)2.2燃料控制 (4)2.2.1燃料燃烧的调整 (4)2.2.2燃烧调节的⽬的 (5)2.2.3直吹式制粉系统锅炉的燃料量的调节 (5)2.2.4影响炉内燃烧的因素 (6)2.3锅炉燃烧的控制要求 (11)2.3.1 锅炉汽压的调整 (11)3锅炉燃烧控制系统设计 (14)3.1锅炉燃烧系统蒸汽压⼒控制 (14)3.1.1该⽅案采⽤串级控制来完成对锅炉蒸汽压⼒的控制 (14)3.2燃烧过程中烟⽓氧含量闭环控制 (17)3.2.1 锅炉的热效率 (18)3.2.2反作⽤及控制阀的开闭形式选择 (20)3.2.3 控制系统参数整定 (20)3.3炉膛的负压控制与有关安全保护保护系统 (21)3.3.1炉膛负压控制系统 (22)3.3.2防⽌回⽕的连锁控制系统 (23)3.3.3防⽌脱⽕的选择控制系统 (24)3.4控制系统单元元件的选择(选型) (24)3.4.1蒸汽压⼒变送器选择 (24)3.4.2 燃料流量变送器的选⽤ (24)4 DCS控制系统控制锅炉燃烧 (26)4.1DCS集散控制系统 (26)4.2基本构成 (27)锅炉燃烧系统的控制4.3锅炉⾃动燃烧控制系统 (31)总结 (33)致谢 (34)参考⽂献 (35)1锅炉⼯艺简介1.1锅炉的基本结构锅炉整体的结构包括锅炉本体和辅助设备两⼤部分。

1、锅炉本体锅炉中的炉膛、锅筒、燃烧器、⽔冷壁、过热器、省煤器、空⽓预热器、构架和炉墙等主要部件构成⽣产蒸汽的核⼼部分,称为锅炉本体。

锅炉本体中两个最主要的部件是炉膛和锅筒。

炉膛⼜称燃烧室,是供燃料燃烧的空间。

将固体燃料放在炉排上进⾏⽕床燃烧的炉膛称为层燃炉,⼜称⽕床炉;将液体、⽓体或磨成粉状的固体燃料喷⼊⽕室燃烧的炉膛称为室燃炉,⼜称⽕室炉;空⽓将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,⼜称流化床炉;利⽤空⽓流使煤粒⾼速旋转并强烈⽕烧的圆筒形炉膛称为旋风炉。

燃气锅炉燃烧控制系统设计与优化

燃气锅炉燃烧控制系统设计与优化

燃气锅炉燃烧控制系统设计与优化一、燃气锅炉燃烧控制系统的重要性燃气锅炉是一种非常重要的热能设备,它主要通过燃烧天然气或液化气来提供供暖和热水等热能。

而燃烧是燃气锅炉运行的核心环节,燃烧效率的高低直接影响到锅炉的能源利用效率、经济性以及环保性。

因此,在燃气锅炉的设计中,燃烧控制系统至关重要。

一般来说,燃烧控制系统包括点火系统、燃气调节系统、燃烧控制系统、排烟系统以及火焰监测系统等多个部件。

这些部件共同协作,通过自动化控制实现燃烧的精确、稳定、高效的控制,为燃气锅炉提供可靠的技术支持。

二、燃气锅炉燃烧控制系统的设计(一)燃气调节系统燃气调节系统主要通过减压阀、调压阀等部件,实现对燃气的调控、减压、稳压等操作。

在设计中,需要充分考虑天然气的控制范围、加热功率等因素,以保证系统的稳定性和可靠性。

(二)点火系统点火系统主要包括点火电极、火焰检测器等部件。

点火电极采用电弧点火的方式,需保证点火高压电源的正常使用。

火焰检测器通过监测燃烧过程中的火焰信号,保障燃烧安全。

(三)燃烧控制系统燃烧控制系统是整个燃烧控制系统的核心环节,它通过对燃气、空气的比例、流量进行调节,控制燃烧过程中的温度、压力等参数。

在设计中需要根据锅炉的功率、热效率和应用要求,合理选择燃烧控制器、比例阀、执行器等部件。

(四)排烟系统排烟系统通过对燃烧产生的烟气进行处理和净化,保证其排放符合环保标准。

在设计中需要考虑锅炉排放的烟气含量、排放的方式等因素,选用合适的净化设备。

(五)火焰监测器火焰监测器用于监测锅炉内火焰状态,及时预警燃烧故障,保障燃烧安全。

设计中需要考虑其稳定性、可靠性、精度等因素,保证监测结果的准确性和及时性。

三、燃气锅炉燃烧控制系统的优化(一)优化燃烧控制燃烧控制是燃气锅炉燃烧效率的重要影响因素,因此需要通过合理的控制方式,实现燃烧的高效率、低耗能和低排放。

其中,流量控制方式可以在燃烧过程中实现燃料和空气的匹配,提高燃烧效率;焓控制方式则通过对水的温度、压力等参数进行调节,保证热能的正常传递。

锅炉燃烧控制系统的优化设计

锅炉燃烧控制系统的优化设计

锅炉燃烧控制系统的优化设计随着人类经济社会的不断发展,能源需求日益增长,能源的利用和消耗也日渐频繁。

在众多的能源中,煤炭作为一种主流的燃料,被广泛应用于各种行业。

而作为煤炭重要的消耗领域,锅炉的燃烧过程的优化设计显得尤为重要。

锅炉燃烧过程中,燃烧控制系统的优化设计是保证锅炉稳定、高效运行的关键之一。

目前煤炭行业中普遍采用的锅炉燃烧控制系统大多采用PID控制技术。

虽然PID控制在锅炉燃烧中应用广泛,但也存在一些问题。

例如:PID控制系统的调整需要具有一定专业知识和经验,初期完善度较差、后期维护困难,受温度和湿度等因素的影响易失控等等。

为了解决这些问题,研究学者们着手对锅炉燃烧控制系统进行优化设计。

现在普遍采用的系统是模糊控制系统和神经网络控制系统。

模糊控制在锅炉燃烧过程控制中得到了广泛应用。

它通过将人类的“模糊”判断应用于控制,采取模糊逻辑运算和模糊推理来运算优化控制结果。

神经网络控制是模仿人类大脑神经网络的运算过程而发展出来的一种控制系统。

该系统可以在运行过程中学习调整,不断更新自身的参数,具有较好的自我优化能力,是目前最为先进的控制系统之一。

锅炉燃烧控制系统的优化设计,不仅仅是技术和方法的优化,同时也包括对管理流程优化、能源利用效率的提高、人员培训等多个方面的提升。

只有综合考虑,把握好锅炉燃烧控制系统的各种因素,在实践中掌握好实验规范,才能在最大程度上发挥燃烧技术的优势,提高燃煤机组的热效率,达到强化环保和能源节约的双重目的。

总之,锅炉燃烧控制系统的优化设计不仅是重要的技术问题,也是应对能源危机、保持经济机制稳定的一项重要任务。

在我们努力做好煤炭行业的同时,各界人士也需要共同努力,协力推进煤炭行业的能源优化、安全生产和环境保护事业,在创造更多人类福祉的同时最大限度地提高可持续发展的利润率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1锅炉工艺简介 (1)1.1锅炉的基本结构 (1)1.2工艺流程 (2)1.2煤粉制备常用系统 (3)2 锅炉燃烧控制 (4)2.1燃烧控制系统简介 (4)2.2燃料控制 (4)2.2.1燃料燃烧的调整 (4)2.2.2燃烧调节的目的 (5)2.2.3直吹式制粉系统锅炉的燃料量的调节 (5)2.2.4影响炉内燃烧的因素 (6)2.3锅炉燃烧的控制要求 (11)2.3.1 锅炉汽压的调整 (11)3锅炉燃烧控制系统设计 (14)3.1锅炉燃烧系统蒸汽压力控制 (14)3.1.1该方案采用串级控制来完成对锅炉蒸汽压力的控制 (14)3.2燃烧过程中烟气氧含量闭环控制 (17)3.2.1 锅炉的热效率 (18)3.2.2反作用及控制阀的开闭形式选择 (20)3.2.3 控制系统参数整定 (20)3.3炉膛的负压控制与有关安全保护保护系统 (21)3.3.1炉膛负压控制系统 (22)3.3.2防止回火的连锁控制系统 (23)3.3.3防止脱火的选择控制系统 (24)3.4控制系统单元元件的选择(选型) (24)3.4.1蒸汽压力变送器选择 (24)3.4.2 燃料流量变送器的选用 (24)4 DCS控制系统控制锅炉燃烧 (26)4.1DCS集散控制系统 (26)4.2基本构成 (27)锅炉燃烧系统的控制4.3锅炉自动燃烧控制系统 (31)总结 (33)致谢 (34)参考文献 (35)1锅炉工艺简介1.1锅炉的基本结构锅炉整体的结构包括锅炉本体和辅助设备两大部分。

1、锅炉本体锅炉中的炉膛、锅筒、燃烧器、水冷壁、过热器、省煤器、空气预热器、构架和炉墙等主要部件构成生产蒸汽的核心部分,称为锅炉本体。

锅炉本体中两个最主要的部件是炉膛和锅筒。

炉膛又称燃烧室,是供燃料燃烧的空间。

将固体燃料放在炉排上进行火床燃烧的炉膛称为层燃炉,又称火床炉;将液体、气体或磨成粉状的固体燃料喷入火室燃烧的炉膛称为室燃炉,又称火室炉;空气将煤粒托起使其呈沸腾状态燃烧、适于燃烧劣质燃料的炉膛称为沸腾炉,又称流化床炉;利用空气流使煤粒高速旋转并强烈火烧的圆筒形炉膛称为旋风炉。

炉膛的横截面一般为正方形或矩形。

燃料在炉膛内燃烧形成火焰和高温烟气,所以炉膛四周的炉墙由耐高温材料和保温材料构成。

在炉墙的内表面上常敷设水冷壁管,它既保护炉墙不致烧坏,又吸收火焰和高温烟气的大量辐射热。

炉膛的结构、形状、容积和高度都要保证燃料充分燃烧,并使炉膛出口的烟气温度降低到熔渣开始凝结的温度以下。

当炉内的温度超过灰熔点时,灰便呈熔融状态。

熔融的灰渣颗粒在触及炉内水冷壁管或其他构件时会粘在上面。

粘结的灰粒逐渐增多,遂形成渣块,称为结渣。

结渣会降低锅炉受热面的传热效果。

严重时会堵塞烟气流动的通道,影响锅炉的安全和经济运行。

一般用炉膛容积热负荷和炉膛截面热负荷或炉排热负荷表示其燃烧强烈程度。

炉膛容积热负荷是单位炉膛容积中每单位时间内释放的热量。

在锅炉技术中常用炉膛容积热负荷来衡量炉膛大小是否恰当。

容积热负荷过大,则表示炉膛容积过小,燃料在炉内的停留时间过短,不能保证燃料完全燃烧,使燃烧效率下降;同时这还表示炉墙面积过小,难以敷设足够的水冷壁管,结果炉内和炉膛出口处烟气温度过高,受热面容易发生结渣。

室燃炉的炉膛截面热负荷是单位时间内单位炉膛横截面上燃料燃烧所释放的热量。

在炉膛容积确定以后,炉膛截面热负荷过大会使局部区域的壁面温度过高而引起结渣。

层燃炉的炉排热负荷是单位时间内燃料燃烧所释放的热量与炉排面积的比值。

炉排热负荷过高会使飞灰大大增加。

炉膛设计需要充分考虑使用燃料的特性。

每台锅炉应尽量燃用原设计的燃料。

燃用特性差别较大的燃料时,锅炉运行的经济性和可靠性都可能降低。

锅筒它是自然循环和多次强制循环锅炉中接受省煤器来的给水、联接循环回路,并向过热器输送饱和蒸汽的圆筒形容器。

锅筒筒体由优质厚钢板制成,是锅炉中最重的部件之一。

锅筒的主要功能是储水,进行汽水分离,在运行中排除锅水中的盐水和泥渣,以避免含有高浓度盐分和杂质的锅水随蒸汽进入过热器和汽轮机中。

这些盐分和杂质如在过热器管和汽轮机通道上发生结垢、积盐和腐蚀,会影响设备的经济安全运行。

锅炉出口的蒸汽一般都有一定的质量标准。

锅筒内部装置包括汽水分离和蒸汽清洗装置、给水分配管、排污和加药设备等。

其中汽水分离装置的作用是将从水冷壁来的饱和蒸汽与水分离开来,并尽量减少蒸汽中携带的细小水滴。

中、低压锅炉常用挡板和缝隙挡板作为粗分离元件。

中压以上的锅炉除广泛采用多种型式的旋风分离器进行粗分离外,还用百叶窗、钢丝网或均汽板等进行进一步分离。

随着水处理技术的提高,蒸汽分离装置趋向于简化和定型化。

排污装置(包括连续排污和定期排污)能在锅炉运行中排出一部分含有较高盐分和泥渣的锅水。

锅筒上还装有水位表、安全阀等监测和保护设施。

2、辅助设备除锅炉本体外,在电站锅炉中还有许多配套的辅助设备:煤粉制备系统,把原煤磨成粉,以利煤的充分燃烧,包括给煤机、磨煤机、排粉机、粗粉分离器和煤粉管道等;送、引风系统,向锅炉供给燃烧需要的空气及将煤燃烧后的烟气排出锅炉,包括送风机、引风机和烟风道等;给水系统,包括给水泵、阀门和管道等;水处理系统(见锅炉水处理);灰渣清除系统,包括碎渣机、出渣机、除尘器等;自动控制和监测系统(见锅炉自动控制、锅炉汽温调节)。

1.2工艺流程燃烧的煤层厚度通过闸板控制,炉排转速可由交流变频调速电机控制。

尾部受热面有省煤器和空气预热器。

图1.1 锅炉结构和工艺流程示意图给水通过省煤器预热后给锅炉上水,空气经空气预热器后由炉排左右两侧留个风道进入,烟气通过除尘器除尘,由引风机送至烟囱排放,主蒸汽经过过热器送至汽柜和用汽部门。

鼓风机、引风机都是由交流变频器来控制,通过调节鼓风机、引风机的速度来实现控制鼓风量、引风量。

热电厂是利用煤和天然气作为燃料发电、产汽的,这也是目前世界上主要的电能生产方式。

生产工艺是将燃料送入炉膛内燃烧,放出的热量将水加热成为具有一定压力和温度的过热蒸汽,过热蒸汽进入汽轮机膨胀做功,高速气流冲击汽轮机叶片带动转子旋转,同时带动同轴发电机转子发电。

热电厂锅炉将经过处理后的除盐水加热至430度(根据汽机工况)左右的过热蒸汽送入汽轮机,推动汽轮机保持每分钟3000转的速度带动同轴的发电机旋转,通过同轴励磁机产生的直流电输入发电机转子,在静子上产生感应电势,同时作过功的余汽可用来当作供热源1.2煤粉制备常用系统①直吹式制粉系统:磨好的煤粉直接全部送入炉膛中燃烧,宜采用中速和高速磨煤机,适用于磨较软的烟煤和褐煤。

缺点是磨煤机的出力和煤粉细度与锅炉负荷有关,因而随着锅炉负荷的变化需调整磨煤机的运行台数,并且研磨部件容易磨损。

中速磨煤机直吹式制粉系统又分为正压式与负压式两种。

近代大容量锅炉多采用正压系统。

②中间储仓式制粉系统:特点是磨煤机的出力和煤粉细度与锅炉负荷无关,适于采用可磨制各种硬度煤种的钢球磨煤机。

缺点是设备较直吹式复杂,磨煤机耗电量较大,空载与满载时耗电量相差不大,故应使其常在满载下运行。

按煤粉燃烧器结构分类煤粉燃烧器是将煤粉送入炉膛进行燃烧的设备。

①旋流式燃烧器:携带煤粉的一次风和不带煤粉的二次风分别用不同管道与燃烧器连接。

煤粉与空气能充分混合并形成回流区。

每台锅炉可配置4~48只燃烧器。

②直流式燃烧器:喷口成狭窄形,其一、二次风在燃烧器中都不旋转。

煤粉在其中能完全燃烧。

受热面分蒸发受热面和过热受热面。

现代大、中型锅炉均以水冷壁构成炉膛,由此水冷壁(即受热面)吸收炉内辐射热使水蒸发成饱和蒸汽。

为不增加炉膛容积而增加辐射受热面,大型锅炉可采用双面曝光的水冷壁。

过热受热面可分为布置于炉膛上部的屏式过热器受热面和布置于对流烟道内的对流过热器受热面。

前者吸收炉内辐射热;后者吸收对流热。

空气预热器装于锅炉烟道尾部,用以回收烟气余热,提高助燃空气的温度。

高参数、大容量的锅炉为提高热风温度(>300℃),常需使空气预热器与省煤器分级交叉布置。

2 锅炉燃烧控制2.1燃烧控制系统简介在锅炉运行中,燃烧调整通常由燃烧控制系统来完成。

燃烧控制系统由燃料量控制系统、风量控制系统和炉膛风压控制系统三大部分组成。

燃烧控制系统的任务是根据机炉主控制器来调节燃料量、送风量和炉膛风压,使锅炉在安全、经济条件下调节至负荷指令的要求。

增减燃料量信号同时调节燃料量与送风量,使风煤流量匹配。

送风量作为炉膛风压调节的前馈信号,使引风量跟随送风量增减,燃料量、烟气氧量、炉膛风压作反馈信号改善调节品质,燃料量反馈信号用以平衡燃料量增减指令,防止过调。

氧量反馈信号用以纠正送风量,使风煤流量配合最佳。

炉膛风压反馈信号用以纠正引风量,使炉膛风压处于最佳状态。

燃烧控制的基本任务:维持蒸汽压力稳定——燃料控制保证燃烧过程的经济性——送风控制2.2燃料控制2.2.1燃料燃烧的调整不同负荷下的燃烧的调整锅炉运行中负荷的变化是最为经常的,高负荷运行时,由于炉膛温度高,着火与混合条件也好,所以然少一般是稳定的,但易产生炉膛和燃烧器结焦、过热器、再热器局部超温等问题。

燃烧调整时应注意将火球位置调整居中,避免火焰偏斜;燃烧器全部投入并均匀分配燃烧率,防止局部过大的热负荷;适当增大一次风速,推开着火点离喷口的距离。

此外,高负荷时煤粉在炉内的停留时间较短而且排烟损失较大,为此可在条件允许的情况下,适当降低过量空气系数的运行,以提高锅炉效率。

在低负荷运行时,由于燃烧减弱,投入的燃烧器数量较少,炉温较低,火焰充满度较差,使燃烧不稳定,经济性较差。

为稳定着火,可适当增大空气系数,降低一次风率和风速。

煤粉应磨得更细些,但增大炉膛氧量后会降低燃烧器的区域温度,因此,当煤质差时亦因限制其高线。

低负荷时应尽可能的集中火嘴运行,提高风中煤粉浓度,并保证最下排燃烧器的投运。

为提高炉膛温度,可以适当降低炉膛负压,以减少漏风,这样不但能稳定燃烧,也能减少不完全燃烧的损失,但此时必须注意安全,防止炉膛喷火烟伤人,此外,低负荷时保持更高些的过量空气系数对于抑制锅炉效率的过分降低也是有利的。

煤质变化时的燃烧调整无煤烟、贫烟的挥发分较低,燃烧时的最大问题是着火。

燃烧配风的原则是采取较小的一次风率和风速以增大煤粉浓度、减少着火热并是着火点提前;二次风速可以高些,这样可与增加其穿透能力,使实际燃烧切圆的直径大些,同时也有利于避免二次风过早混入一次风粉气流。

燃烧差煤时也要求将煤粉磨的更细些,以强化着火和燃尽;也要求较大的过量空气系数,以减少燃烧损失。

挥发分高的烟煤,一般火不成问题,需要注意燃烧的安全性,可适当减小二次风率,一、二次风的混合应早些进行。

煤质好时,应降低空气过量系数的运行,一提高锅炉效率。

2.2.2燃烧调节的目的炉内燃烧过程的好坏,不仅直接关系到锅炉的生产能力和生产过程的可靠性,而且在很大程度上决定了锅炉运行的经济性。

相关文档
最新文档