变电站自动化系统的发展与应用
变电站自动化系统设计与应用

变电站自动化系统设计与应用随着科技的进步和电力行业的发展,变电站自动化系统在电力系统中的应用越来越广泛。
自动化系统不仅提高了变电站的运行效率和可靠性,还提供了更多的功能和便利性。
本文将从变电站自动化系统的设计和应用两个方面进行探讨。
一、变电站自动化系统的设计1. 变电站自动化系统的概念和作用变电站自动化系统是指利用先进的电气设备、控制器和计算机技术,将变电站的运行、监测、控制和保护等功能自动化的系统。
其作用主要体现在以下几个方面:(1) 提高运行效率:自动化系统能够实现对变电站各项设备的智能管理和自动控制,提高了人工操作的效率和准确性。
(2) 提高运行可靠性:自动化系统能够对变电站进行实时监测和故障诊断,及时发现和排除隐患,提高了变电站的运行可靠性和稳定性。
(3) 提供更多功能:自动化系统可以实现对变电站的多个功能的集成,如监测、计量、保护、通信等,提高了系统的整体性能。
2. 变电站自动化系统的组成和架构变电站自动化系统主要由以下几个部分组成:(1) 电力设备:包括变压器、断路器、接触器等各种电气设备,是实现自动化控制的基础。
(2) 控制器:通过对电力设备的监测和控制,实现对变电站运行状态的自动管理。
(3) 通信系统:用于与上级监控中心和其他变电站之间的数据交换和通信。
(4) 计算机系统:包括服务器、工作站和各种软件系统,用于数据处理、分析和显示。
(5) 人机界面:包括触摸屏、显示器、按键等设备,用于人机交互和操作界面的显示。
3. 变电站自动化系统的设计原则在设计变电站自动化系统时,应遵循以下原则:(1) 易于维护:系统应具有良好的可维护性,能够及时诊断和排除故障,并保持系统的可靠性和稳定性。
(2) 安全可靠:系统应具有良好的安全性和可靠性,能够保证变电站的正常运行和人员的安全。
(3) 灵活可扩展:系统应具有良好的灵活性和可扩展性,能够适应不断变化的电力系统需求和技术发展。
(4) 高效节能:系统应具有高效节能的特点,能够最大限度地提高能源利用效率和降低电力损耗。
变电站自动化系统的功能及其发展

变电站自动化系统的功能及其发展摘要:变电站是智能电网“潮流、信息流、业务流”的焦点,在电网中起着关键作用。
变电站自动化系统技术对提高变电站运行的安全性和稳定性具有重要意义。
尤其是在智能电网的背景下,为了实现对电网更加及时准确的监控和灵活的控制,必须更加重视变电站自动化系统。
关键词:智能电网;智能变电站;自动化引言自20世纪80年代中期变电站自动化系统在我国投运以来,变电站自动化系统已广泛应用于变电站中。
30年的运行实践表明,变电站自动化系统不仅提高了变电站自身的自动化水平,而且对电网调度的可控性和电网运行的安全性起到了巨大的推动作用。
目前,智能电网是电网未来发展趋势已成为国内外众多学者的共同认识。
在智能电网背景下,发展智能化的变电站自动化系统是实现电能输送大容量低损耗、电网运行高稳定高可靠、电能损耗低损耗的技术保证。
1智能变电站继电保护及自动化系统的概述1.1智能变电站的特点自我国的电网工程进入智能化和自动化构建阶段之后,智能变电站就是我国现阶段电网工程的重要组成部分。
因此现阶段就要对智能变电站进行分析,智能变电站的特点主要体现在以下的3个方面,这3个方面都是智能变电站所拥有的发展优势:第一个特点就是在使用智能变电站的过程中现阶段可以初步的实现了电力的传递和交互;第二个特点就是智能变电站的设备比一般的电网价格高,而且装备更加先进;第三个特点就是智能变电站的电子传感器等设备正在逐步步入全智能化。
1.2智能变电站继电保护的特点智能变电站的建设不仅仅是变电站发展的主要目的,同时智能变电站继电保护装置在实际的工作中还存在一定的特殊性,就是数据信息提供的渠道变得更加的广阔,同时智能变电站继电保护装置具有灵活性高的特点,技术人员在使用智能变电站继电保护装置的过程中要从其特点出发,进而实现智能变电站继电保护装置能力的最大化。
2智能变电站继电保护及自动化系统的功能2.1变压器保护设置一直以来,在使用电力的时候,电力的输入和输出情况都是有一定的限定标准。
变电站自动化发展综述

三.变电站自动化系统关键技术
1.网络技术 2.防误闭锁技术 3.分散式同期合闸技术 4.时钟同步技术 5.分散式故障录波技术 6.分技术
7.分散式低周减载技术 8.分散式母线保护技术 9.电压无功控制技术 10.保护信息管理技术
1.网络技术 网络层完成信息传递和系统对时等功能 流行两种网络层结构:即双层网和单层网结构
现场总线是面向底层设备的通信网络,解决IED 之间通信的低端应用
●
以太网最初是应用于上层(管理层)的通信网络 的高端应用
●
随着工业以太网发展,以太网设备成本下降,正 在走向低端产品,用以太网一统网络世界为时不 远
●
2.防误闭锁技术
╌何为“五防”:
(1) 防止误分、误合开关 (2) 防止带负荷拉、合隔离刀闸 (3) 防止带电挂(合)接地线(接地刀闸) (4) 防止带接地线(接地刀闸)合开关(隔离刀闸) (5)防止误入带电间隔
大多按电压等级110KV为界划分
110KV及以下变电站综合自动化系统典型结构图
监控工作站
GPS 路由器 MODEM
调度
对时总线
总控通信单元 (远动工作站)
总控通信单元 (远动工作站)
RS232/422/485
现场总线
测控装置
保护装置
保护测控装置
第三方智能设备
110KV部分
35KV,10KV部分
110KV及以下变电站综合自动化系统典型结构图
国际电工委员会解释为“在变电站内提供包括通信基础 设施在内的自动化系统 (SAS-Substation Automation System: The SAS provides Automation in a Substation including the Communication infrastructure)”
电力系统自动化发展趋势及新技术的应用

电力系统自动化发展趋势及新技术的应用近年来,随着技术的进步和社会的发展,电力系统自动化已经发展到一定的高度,在电力系统的运行管理和调度中发挥着重要作用。
自动化系统为电力系统优化调度和节约能源带来了诸多方面的好处,其发展和应用也是未来几年电力系统研究的热点话题。
一、电力系统自动化的发展趋势1、技术向智能化发展。
智能电网、智能变电站、智能变压器、智能电表、智能电力系统等技术的发展,将使网供电的效率得到极大的提升,有利于优化调度和节约能源。
2、应用开源软件及系统平台。
现代自动化系统已经由传统的封闭型软件升级为开源软件,已经实现了全面的数字技术应用,从而使得系统的可靠性和可维护性大大提高,使电力公司的管理更加高效灵活。
3、实现系统的可靠性提升。
自动化系统越来越智能,已经达到了对电网布置及运行状况建模,快速响应,客户自我受理等效果,使电力系统的可靠性大大提高,实现了“安全”、“高效”、“方便”等形式。
4、实现远程管控。
自动化系统可以通过远程管控实现复杂电力系统资源的及时调整和维护,实现电力系统的有效管理及高效运行。
二、新技术的应用及其实施1、采用物联网技术。
物联网技术可以实现电力系统的节能安全监控,通过传感器及其他数据采集技术,实现对电力系统运行状态的实时监测,进行节能安全管理。
2、智能控制系统的应用。
采用智能控制系统,可以通过系统的自动调整,实现负荷的稳定,提高设备的使用率,节省能源,降低运行成本。
3、人工智能技术的应用。
可以采用深度学习算法、多层安全授权等技术,实现电力系统的精准分析,以了解电力系统的运行状态,提高电力系统的安全性和可靠性。
4、采用大数据分析技术。
大数据技术可以根据电力系统实时运行情况及历史数据,对电力系统进行统计分析和预测,进一步提升电力系统的精准性和可靠性。
三、应用步骤1、建立智能电网系统。
建立新一代智能电网系统,根据电力系统实际运行情况,科学设置控制参数,以满足系统的安全性要求。
浅述变电站电气自动化控制系统及其应用

浅述变电站电气自动化控制系统及其应用变电站电气自动化控制系统指的是通过现代电气自动化技术,对变电站设备和电力系统进行自动监测、操作和控制的系统。
该系统通过集成各种传感器、执行器、控制器、通信设备等硬件设备,以及相关的软件系统,实现了对变电站设备和电力系统的远程监测、智能操作和精细控制。
1. 远程监测:系统可以实时监测变电站设备的运行状态,包括电压、电流、温度、湿度等参数的监测。
通过远程监测,可以及时发现设备故障和异常,避免因未及时发现导致的事故和损失。
2. 智能操作:系统可以通过集成各种传感器和执行器,实现对变电站设备的自动化操作。
可以通过集成的温度传感器和电动执行器,实现对变压器的温控,及时调整冷却风扇的转速,保证变压器的正常运行。
3. 精细控制:系统可以对电力系统的各个参数进行实时监测和控制,实现对电力系统的精细调节。
可以根据负荷情况自动调节变压器的输出电压,以保证整个电力系统的稳定运行。
4. 安全可靠:系统具有完善的安全保护措施,可以及时发现并处理电力系统的故障和异常。
系统还具有自动切换和自动备份功能,确保电力系统在故障情况下能够及时切换到备用设备,保证供电的连续性和可靠性。
5. 数据统计和分析:系统可以对变电站设备和电力系统的各种数据进行统计和分析,生成各种报表和趋势图,为电力系统的管理和优化提供科学依据。
变电站电气自动化控制系统在电力系统中的应用非常广泛,主要应用于电网调度、电力生产、输配电和维护管理等方面。
传统的变电站操作需要大量的人力投入,不仅工作量大,而且存在一定的安全风险。
而通过电气自动化控制系统,可以实现对变电站设备的远程监测和智能操作,不仅提高了工作效率,减少了人力投入,而且增强了变电站的安全性和可靠性,降低了操作的风险。
变电站电气自动化控制系统还可以与其他系统进行集成,如智能电网、配电自动化系统等,实现对整个电力系统的统一管理和优化控制。
通过数据的共享和协同,可以实现电力系统的智能化和高效运行,为实现绿色、低碳的电力供应提供了重要支持。
自动化技术在电力系统中的应用与发展

自动化技术在电力系统中的应用与发展自动化技术在电力系统领域的应用与发展,为电力行业带来了巨大的变革和进步。
随着科技的不断发展和人工智能的广泛应用,自动化技术已经成为电力系统中不可或缺的一部分。
本文将从以下几个方面来探讨自动化技术在电力系统中的应用与发展。
一、自动化在电力系统监控中的应用电力系统监控是电力行业中至关重要的一环,通过实时监测和掌握电力系统的各项指标和状态,可以及时发现故障和问题,并采取相应的措施。
自动化技术在电力系统监控中发挥着重要作用,可以实现远程监控、数据采集和分析等功能,大大提高了电力系统的监控效率和准确性。
二、自动化在电力生产中的应用电力生产是整个电力系统中最关键的环节之一。
自动化技术的应用可以实现电力生产的智能化、集中化和自动化控制,提高电力生产的效率和质量。
例如,自动化技术可以应用于机组控制系统,实现对机组的自动开关、运行状态监测和调度控制。
同时,自动化技术还可以应用于电网调度控制系统,实现对电网的自动监控和调度,提高电力系统的稳定性和可靠性。
三、自动化在电力输配电中的应用电力输配电是将电力从发电厂输送到用户的过程。
自动化技术在电力输配电中的应用,可以实现电力的远程监测、控制和管理。
例如,自动化技术可以应用于变电站的自动化控制系统,实现对变电站的自动监测和操作控制。
同时,自动化技术还可以应用于配电网的自动化管理,实现对配电网的自动故障检测和恢复,提高电力输配电的可靠性和安全性。
四、自动化对电力系统的发展影响自动化技术在电力系统中的应用,不仅提高了电力系统的效率和质量,还推动了电力系统的智能化和数字化发展。
自动化技术可以实现电力系统的远程监控、智能预测和故障诊断,提高电力系统的运行效率和可靠性。
同时,自动化技术还可以应用于电力系统的能源管理,实现对电力系统的能源消耗的实时监测和调整,提高电力系统的能源利用效率。
综上所述,自动化技术在电力系统中的应用与发展是不可忽视的趋势。
随着自动化技术的不断进步和发展,电力系统将迎来更加智能化和高效率的未来。
电力系统自动化技术的应用现状及发展趋势

电力系统自动化技术的应用现状及发展趋势电力系统自动化技术是指通过计算机、通信和控制技术实现电力系统运行的自动化和智能化,具有节能、安全、高效、可靠的优点。
本文从应用现状和发展趋势两个方面探讨电力系统自动化技术。
一、应用现状1、智能变电站智能变电站利用计算机、网络通信、控制技术等手段,实现对变电站的监测、控制和自动化管理,以及对变电站设备状态的实时监测,包括开关、变压器、电缆等。
同时,智能变电站还能根据网络负荷情况和能源调度指令进行自动控制和调度。
2、智能配网智能配网利用计算机、通信和控制技术实现基础设施的自动化智能化,能够实时监测设备状态和供电质量,呈现出配网的全过程,支持实时控制和经营管理决策。
3、智能电力安全监测智能电力安全监测是指利用计算机、通信和控制技术实现对电力系统的安全监测,包括电力网络在线监测、电力设备在线监测等。
4、数字化变电设备数字化变电设备是将变电设备实现信息化,通过数字化技术将实际信号传递到计算机,并对数据进行分析计算,并进行对策控制,从而对电力系统进行自动化控制。
二、发展趋势1、物联网技术应用随着物联网技术的发展,电力系统自动化技术的应用将进一步推广。
物联网技术可实现设备和系统的互联互通,其基本优势在于实现高效的智能化监控和数据分析。
2、人工智能技术应用人工智能技术可实现大量数据的学习和计算,从而实现对电力系统的系统分析和故障诊断,提高电力系统的效率和可靠性。
3、大数据技术应用大数据技术可以实现多个数据源的集成,通过数据挖掘、分析和决策,深挖数据价值,达到实时预警、健康管理、节能减排、成本控制等目的,进一步提高电力系统的水平。
4、云计算平台应用云计算平台可实现设备和系统的在线监测和云化管理和控制等一系列业务服务,推动电力系统的智能化和自动化,减轻维护的负担,提高了效率和可靠性,并实现了经济效益的最大化。
综上所述,电力系统自动化技术已经广泛应用,未来还有很大的发展空间。
随着科技的快速发展,电力系统将不断提高能源效率、降低能源消耗,实现更加智慧、安全、可靠的运营。
变电站自动化技术的现状与未来

变电站自动化技术的现状与未来在现代电力系统中,变电站作为电力传输和分配的关键节点,其自动化技术的发展对于提高电力系统的可靠性、稳定性和运行效率具有至关重要的意义。
随着科技的不断进步,变电站自动化技术也在不断革新和完善,为电力行业带来了诸多变革。
一、变电站自动化技术的现状(一)智能化的一次设备如今,智能化的一次设备在变电站中得到了广泛应用。
例如,智能变压器能够实时监测自身的运行状态,包括油温、油位、绕组温度等参数,并通过智能传感器将这些数据传输至控制系统,实现对变压器的智能化控制和保护。
此外,智能断路器具备自动检测故障电流、快速切断故障等功能,大大提高了电力系统的故障处理能力。
(二)先进的二次设备二次设备是变电站自动化系统的核心组成部分。
目前,微机保护装置、测控装置等二次设备的性能不断提升。
这些设备具有高精度的测量、快速的运算处理能力和强大的通信功能,能够实现对变电站内各种电气量的精确测量和控制。
同时,基于数字信号处理技术的继电保护装置,能够更准确地识别故障类型和位置,提高保护动作的可靠性。
(三)通信技术的发展通信技术是实现变电站自动化的关键。
当前,以太网、光纤通信等高速通信技术在变电站中得到了广泛应用。
通过这些通信技术,变电站内的各种设备能够实现高速、可靠的数据传输,为实现变电站的智能化控制和管理提供了有力支持。
此外,IEC 61850 标准的推广应用,使得不同厂家的设备之间能够实现无缝通信和互操作,进一步提高了变电站自动化系统的开放性和兼容性。
(四)监控与管理系统变电站的监控与管理系统也日益完善。
通过计算机监控系统,运行人员可以实时掌握变电站内设备的运行状态、电气参数和告警信息,并能够远程控制设备的操作。
同时,管理系统能够对变电站的运行数据进行分析和处理,为设备的维护检修、运行管理提供决策依据。
二、变电站自动化技术面临的挑战(一)数据安全与隐私保护随着变电站自动化程度的提高,大量的敏感数据在网络中传输和存储,数据安全和隐私保护成为了一个重要问题。
智能变电站的发展及现状

智能变电站的发展及现状在当今科技飞速发展的时代,电力系统作为现代社会的重要基础设施,也在不断经历着变革和创新。
智能变电站作为电力系统中的关键环节,其发展对于提高电力供应的可靠性、安全性和经济性具有至关重要的意义。
智能变电站的概念最早出现在 21 世纪初,它是在传统变电站的基础上,融合了先进的信息技术、传感器技术、自动控制技术和通信技术等,实现了变电站的智能化运行和管理。
与传统变电站相比,智能变电站具有诸多优势。
首先,智能变电站采用了智能化的一次设备,如智能断路器、智能变压器等。
这些设备能够实时监测自身的运行状态,并将相关数据上传至监控系统,从而实现了设备的状态检修,大大提高了设备的可靠性和使用寿命,降低了维护成本。
其次,智能变电站拥有强大的信息采集和处理能力。
通过大量的传感器和智能监测装置,可以实时获取变电站内各种电气量、非电气量等数据,并对这些数据进行快速分析和处理,为变电站的运行控制提供准确的依据。
再者,智能变电站实现了高度的自动化控制。
通过智能控制策略和自动化系统,能够自动完成变电站的倒闸操作、电压调节、无功补偿等功能,减少了人工干预,提高了操作的准确性和效率。
在通信方面,智能变电站采用了标准化的通信协议和网络架构,实现了站内设备之间的高效通信和信息共享。
这不仅提高了变电站的运行管理水平,还为电网的智能化调度和控制奠定了基础。
回顾智能变电站的发展历程,可以分为几个重要的阶段。
早期的探索阶段,主要是对相关技术的研究和试点应用。
随着技术的不断成熟,逐步进入了大规模推广阶段。
如今,智能变电站已经成为新建变电站的主流选择,并在对传统变电站的智能化改造方面取得了显著成果。
在技术方面,智能变电站的发展也取得了许多重要突破。
例如,在传感器技术方面,精度和可靠性不断提高,能够更准确地监测设备的运行状态;在智能控制算法方面,不断优化和创新,提高了变电站的自动化控制水平;在信息安全技术方面,加强了对变电站数据的保护,防止了网络攻击和数据泄露。
变电站自动化系统

变电站自动化系统标题:变电站自动化系统引言概述:变电站自动化系统是指利用先进的电子技术和计算机技术,对变电站的运行状态进行监控、控制和管理的一种系统。
它能够提高变电站的运行效率和可靠性,降低事故风险,实现电网的智能化管理。
本文将从五个方面详细阐述变电站自动化系统的重要性和应用。
一、监控功能1.1 实时监测变电站设备状态:自动化系统能够实时监测变电站各个设备的运行状态,包括变压器、断路器、隔离开关等。
通过传感器和监测装置,可以获取设备的电流、电压、温度等参数,及时发现异常情况。
1.2 故障诊断和预警:自动化系统通过分析设备的运行数据,可以进行故障诊断和预警。
一旦发现设备存在故障风险,系统会自动发送警报,提醒操作人员进行维修和保养,避免事故的发生。
1.3 远程监控和操作:自动化系统支持远程监控和操作功能,操作人员可以通过计算机或移动终端实时查看变电站的运行情况,并进行远程控制。
这样可以减少人员的巡检工作量,提高工作效率。
二、控制功能2.1 自动调节电压和电流:自动化系统可以根据电网负荷情况,自动调节变压器的输出电压和电流,以保持电网的稳定运行。
这样可以避免因电压波动过大而对设备造成损害,同时提高电能的利用效率。
2.2 自动切换备用电源:自动化系统能够根据电网的负荷情况,自动切换备用电源。
一旦主电源发生故障,系统会自动将备用电源接入,保证供电的连续性和可靠性。
2.3 调度和优化能源分配:自动化系统可以根据电网的负荷需求和能源供应情况,进行调度和优化能源分配。
通过智能算法和优化策略,系统可以实现电能的最优分配,降低能源消耗和成本。
三、管理功能3.1 数据管理和分析:自动化系统能够对变电站的运行数据进行管理和分析。
通过建立数据库和数据挖掘技术,可以提取有价值的信息,为决策提供科学依据。
3.2 历史数据查询和回放:自动化系统可以存储和管理变电站的历史数据,操作人员可以随时查询和回放历史数据,以便进行事故分析和故障排查。
变电站综合自动化系统

变电站综合自动化系统一、引言变电站是电力系统的重要组成部分,起到将高压电能转换为低压电能、配电给用户的作用。
为了提高变电站的运行效率、可靠性和安全性,人们逐渐引入综合自动化系统来实现对变电站的智能化管理和控制。
本文将介绍变电站综合自动化系统的基本概念、组成部分以及在实际运行中的应用。
二、综合自动化系统概述变电站综合自动化系统是指通过现代信息技术和自动化控制技术,对变电站进行实时监测、智能控制和故障处理的系统。
它由多个子系统组成,包括监控与管理子系统、保护与自动化控制子系统、通信与信息系统等。
2.1 监控与管理子系统监控与管理子系统是变电站综合自动化系统的核心部分,主要负责对变电站各种设备的状态进行实时监测和管理。
通过采集各种传感器和仪表的数据,监控与管理子系统可以实时显示变电站的运行状态,并对异常情况进行报警和处理。
同时,它还提供了人机界面,使操作人员可以直观地了解变电站的运行情况,进行远程操作和控制。
2.2 保护与自动化控制子系统保护与自动化控制子系统主要负责对变电站的设备和线路进行保护和控制。
它通过采集各种信号,判断设备和线路的状态,当发生故障或异常情况时,保护与自动化控制子系统能够及时做出反应,采取相应的措施进行保护和控制。
同时,它还可以实现变电站的自动化控制,根据不同的工况要求,实现自动调节和控制设备的运行。
2.3 通信与信息系统通信与信息系统是变电站综合自动化系统的重要组成部分,它负责变电站内部各个子系统之间以及与外部系统之间的数据交换和通信。
通过网络和通信设备,通信与信息系统能够实现数据的传输和共享,确保变电站各个子系统之间的协调运行。
同时,它还可以提供数据存储和处理的功能,为变电站的管理和决策提供支持。
三、变电站综合自动化系统应用案例3.1 变电站设备监测变电站综合自动化系统可以实时监测变电站各种设备的运行状态,包括变压器、开关设备、熔断器等。
通过采集各种传感器和仪表的数据,监控与管理子系统能够实时显示设备的参数和运行状态,并对异常情况进行报警。
变电站自动化系统的发展

浅析变电站自动化系统的发展【关键词】变电站;自动化系统;发展1.变电站自动化系统的概念与发展状况1.1变电站自动化系统的概念变电站自动化系统是电力系统的一部分,其功能是变换电压等级、汇集配送电能,主要包括变压器、母线、线路开关设备、建筑物及电力系统安全和控制所需的设施。
变电站自动化系统是将变电站的二次设备应用到现代通信技术手段和计算机科学技术中去,经过功能重新组合和优化设计,对变电站实行全自动测量、控制、监视、维护和协调,以及与调度通信等综合性的自动化系统。
其主要特点是一次设备智能化、二次设备网络化、运行管理系统自动化。
建设变电站自动化系统,可以保证电网系统安全、可靠、经济的运行,减少基础设施的投资,降低人工成本。
特别是随着网络技术、信息技术、计算机技术的快速发展,变电站逐步向数字化电气量测、智能电气设备、全职能系统等方向发展。
1.2变电站自动化系统的发展状况国外研究变电站自动化系统,开始于20世纪80年代后期,20世纪90年代发展较快。
著名的制造企业有很多,企业之间一开始就十分注重变电站电气设备的技术标准和规范的制度和协调,并且注重技术创新和研究。
国外变电站自动化系统技术已经相当成熟,基本能够保证电网系统的安全、可靠运行。
我国变电站自动化的研究工作开始于20世纪80年代中期,1987年清华大学研制成功第一个变电站自动化系统,并在威海望岛变电站成功投入运行。
该项技术为国内首创,填补了国内一项空白,并达到当时国际先进水平。
其运行效果表明:微机技术可以全面、系统、可靠地应用于变电站的自动化工程中,变电站自动化系统对提高变电站的运行、管理和技术水平、缩小占地面积、减少值班员操作,以及减少维护工作量等方面有显著的优越性。
随后投入变电站自动化研究的高等院校、研究单位和生产厂家逐步增加,到20世纪90年代,变电站自动化系统建设已成为热门话题,研究成果和产品如雨后春笋般涌现。
2.变电站数字化的主要技术特征2.1数据采集数字化数字化变电站是由智能化一次设备(电子式互感器、智能化开关等)和网络化二次设备分层(过程层、间隔层、站控层)构建,建立在iec61850通信规范基础上,能够实现变电站内智能电气设备间信息共享和互操作的现代化变电站。
变电站综合自动化

变电站综合自动化标题:变电站综合自动化引言概述:变电站是电力系统中重要的组成部分,其作用是将高压输电线路的电能转换为适合城市、工矿企业和居民生活使用的低压电能。
随着科技的发展,变电站的自动化程度也在不断提高,变电站综合自动化系统的应用越来越广泛。
本文将从多个方面介绍变电站综合自动化的相关内容。
一、提高运行效率1.1 自动化控制系统自动化控制系统可以实现对变电站设备的远程监控和操作,提高了运行效率和安全性。
1.2 数据采集与处理通过数据采集与处理系统,可以实时监测变电站各个设备的运行状态,及时发现问题并采取措施,避免事故发生。
1.3 智能化运维管理智能化运维管理系统可以对变电站设备进行预测性维护,延长设备的使用寿命,减少维修成本。
二、提高供电质量2.1 负荷预测与调度通过负荷预测系统,可以准确预测用电负荷,合理调度发电设备,保障供电质量。
2.2 智能配电管理智能配电管理系统可以实现对供电网络的动态调整,提高供电质量和稳定性。
2.3 故障自动定位故障自动定位系统可以快速定位变电站故障点,缩短故障处理时间,减少停电时间。
三、提高安全性3.1 安全监测系统安全监测系统可以实时监测变电站设备的运行状态,及时发现安全隐患并采取措施。
3.2 防雷保护系统防雷保护系统可以有效防止雷击对变电站设备的损坏,提高设备的可靠性和安全性。
3.3 紧急应急系统紧急应急系统可以在发生突发事件时快速响应,采取紧急措施,保障变电站和周边区域的安全。
四、节能减排4.1 节能监测系统节能监测系统可以对变电站设备的能耗进行监测和分析,找出节能潜力,实现节能减排。
4.2 智能能效管理智能能效管理系统可以对能源利用情况进行优化调整,提高能源利用效率,减少能源浪费。
4.3 绿色发电通过绿色发电技术,如太阳能、风能等,可以减少对传统能源的依赖,降低碳排放,保护环境。
五、未来发展趋势5.1 人工智能技术人工智能技术的应用将进一步提高变电站综合自动化系统的智能化水平,实现更精准的运行管理。
变电站自动化技术的现状与发展

变电站自动化技术的现状与发展在当今的电力系统中,变电站作为电力传输和分配的关键环节,其自动化技术的发展对于提高电力系统的可靠性、稳定性和经济性具有至关重要的意义。
随着科技的不断进步,变电站自动化技术也在不断革新和完善,为电力行业带来了新的机遇和挑战。
一、变电站自动化技术的现状1、智能化的一次设备目前,智能化的一次设备在变电站中得到了广泛应用。
例如,智能断路器、智能变压器等设备能够实现自我监测、诊断和控制功能。
这些设备通过内置的传感器和智能模块,实时采集运行数据,并将其传输至监控系统,从而实现对设备状态的实时掌握和故障的提前预警。
2、先进的二次系统二次系统是变电站自动化的核心部分。
当前,基于微机保护和自动化装置的二次系统已经相当成熟。
微机保护装置具有高精度、高可靠性和快速动作的特点,能够有效地保护电力设备和线路。
同时,自动化装置能够实现对变电站的测量、控制、监视和保护等功能,大大提高了变电站的运行管理水平。
3、通信技术的应用通信技术在变电站自动化中发挥着关键作用。
以太网、光纤通信等高速通信技术的应用,使得变电站内各种设备之间能够实现快速、准确的数据传输。
此外,IEC 61850 标准的推广应用,为不同厂家设备之间的互操作性提供了保障,促进了变电站自动化系统的集成和优化。
4、监控与管理系统监控与管理系统是变电站运行人员的重要工具。
目前,这些系统具备了强大的功能,包括实时数据显示、历史数据查询、故障分析与处理、操作票管理等。
同时,图形化的界面和友好的人机交互方式,使得运行人员能够更加直观、便捷地掌握变电站的运行状况。
二、变电站自动化技术的发展趋势1、高度集成化未来的变电站自动化系统将朝着高度集成化的方向发展。
通过将一次设备和二次设备进行深度融合,实现测量、控制、保护等功能的一体化,减少设备之间的接口和连线,提高系统的可靠性和稳定性。
2、智能化水平的提升随着人工智能、大数据等技术的不断发展,变电站自动化系统的智能化水平将得到进一步提升。
数字化变电站自动化技术的应用

数字化变电站自动化技术的应用随着电力系统的发展,数字化变电站的自动化技术越来越成为发展趋势,旨在提高电网的可靠性和安全性。
数字化变电站自动化技术是指通过电力信息技术手段,将变电站中的各种设备、监测、自动调控、保护、安全措施等集成起来,实现变电站的智能化、信息化、绿色化,从而保障电网的安全、稳定、高效运行。
本文将从数字化变电站的概念、数字化变电站自动化技术的发展历程、数字化变电站自动化技术的应用、数字化变电站自动化技术的发展趋势等多个方面进行详细论述。
一、数字化变电站的概念数字化变电站简称DAS(Digital Substation Automation System),是以数字化设备、通信技术、自动控制技术为核心,以监测、调度等管控功能为目标,对变电站的监测、控制、保护、通信和安全做出最佳综合管理的一种技术体系。
数字化变电站是一种以数字化设备为核心的变电站自动化,它构成了变电站数字化化和智能化的重要环节。
数字化变电站的概念中包含了数字化、自动化、集成化等多个概念。
数字化是指将传统的模拟设备转换为数字化设备,数字化设备可以进行高速、精确的运算、控制和通讯;自动化是指通过程序控制,实现变电站的自动化操作,实现从变电站设备到电网实时监视与控制;集成化是指将变电站内的各种设备,监测、自动调控、保护、安全措施等集成起来,以数字化技术为基础实现集成控制,并通过网络与发电厂、电力公司等机构进行通讯,实现电力信息平台的组建。
数字化变电站的出现,意味着变电站将具备智能化、信息化、绿色化等更高的特点,从而提升电力系统的安全性、可靠性、高效性和可持续性。
二、数字化变电站自动化技术的发展历程数字化变电站自动化技术起源于上个世纪80年代,当时数字化变电站自动化的概念已经出现,但是由于计算机技术、通信技术、数字化技术等不成熟的因素,数字化变电站自动化技术并没有广泛应用。
到了上世纪90年代,数字化变电站自动化技术渐渐得到了广泛应用。
电力系统中自动化技术的应用及发展方向

电力系统中自动化技术的应用及发展方向电力系统自动化技术是指将计算机、通信和自控技术应用于电力系统的运行和管理中。
其主要目的是提高电力系统的稳定性、可靠性和经济性,优化电力系统的运行和管理,提高电力系统工作效率和质量,同时降低人为操作错误可能带来的安全风险。
1.监控系统电力系统监控系统是整个电力系统中最重要的自动化控制系统之一。
它通过传感器和监控设备对电力系统各个环节的电量、温度、压力等关键指标进行实时监控,并将监测数据实时传输到控制中心。
控制中心利用计算机和通信技术对监测数据进行处理和分析,指导操作人员对异常情况及时处理和调整。
2.变电站自动化系统变电站是电力系统输电、配电的重要节点,变电站自动化系统包括开闭所自动化、故障电路自动割合、保护自动装置等多个方面。
该系统可以实现变电站设备的远程控制、远程监测和自动检修等功能,有效提高电网运行效率和可靠性。
3.调度自动化调度自动化是电力系统中比较复杂的自动化控制系统。
其主要功能是实现电力系统的运行管理和调度控制,包括电能计量管理、负荷预测、机组调度等多个方面。
调度自动化系统可以协调各个部门之间的信息交流和协作,从而实现优化电力系统运行和管理的目标。
1.智能化和自适应控制未来的电力系统将越来越智能化,电力系统自动化技术也将更加自适应、智能。
基于人工智能、大数据等技术,电力系统将可以实现自适应控制、快速响应和智能分析等功能,从而提高电力系统的运行效率和可靠性。
2.数字化和网络化随着ICT技术的快速发展,电力系统也将逐渐实现数字化和网络化。
电力系统中的各个设备和环节将通过数字化技术实现信息采集和处理,并通过互联网和相关通信技术共享信息和资源。
这将为电力系统的智能化和自适应化提供更加广泛和高效的支持。
3.绿色化和可持续发展未来的电力系统还将趋向于绿色化和可持续发展。
随着可再生能源的普及,电力系统将实现由传统的燃煤发电向清洁能源发电的转型。
同时,电力系统将通过节能技术和能源利用效率的提高,实现可持续发展的目标。
综述变电站自动化系统的应用及发展

综述变电站自动化系统的应用及发展摘要变电站综合自动化一直是我国乃至国际电力系统行业的热点之一。
我国的变电站综合自动化技术经过二十多年的发展,已经到达了一定的水平,更为高级或者先进的变电站综合自动化技术是该领域发展的必然趋势。
本文分析了变电站自动化系统的应用现状,指出了变电站自动化系统目前存在的一些问题,并阐述变电站自动化系统的未来发展。
关键词变电站;自动化系统;应用;发展中图分类号tm44 文献标识码a 文章编号 1674-6708(2010)33-0055-021变电站自动化系统的发展阶段变电站内二次设备传统按功能可分为6大类:继电保护、测控装置、自动装置、故障录波、当地监控和远动。
6大类产品的不断发展及其功能相互渗透,推动了变电站自动化系统的发展,产生了多种多样的系统模式,按系统模式出现的时间顺序可将变电站自动化系统的发展分为3个阶段。
第1阶段:面向功能设计的集中式rtu加常规继电保护模式。
20世纪80年代是以rtu为基础的远动装置及当地监控为代表。
该类系统是在常规的继电保护及二次接线基础上增设rtu装置,完成与远方调度主站通信实现“四遥”(遥测、遥信、遥调、遥控),继电保护及自动装置与系统联结采用硬接点状态接入。
此类系统特点是功能简单、整体性能指标较低、系统联结复杂,不便于运行管理与维护,为自动化系统的初级阶段。
第2阶段:面向功能设计的分布式测控装置加微机保护模式。
20世纪90年代初期,微机保护及按功能设计的分布测控装置得以广泛应用,保护与测控装置相对独立,通过通信管理单元能够将各自信息送到当地监控机或调度主站。
此类系统的出现是由于当时国内电力系统保护和远动分属于不同部门和专业,另外对继电保护与测控装置在技术上如何融合没有达成一致的认识,故相当一部分尤其是110kv及以下电压等级自动化系统采用此类模式。
该模式没有做到面向对象设计,信息共享程度不高,另外系统的二次电缆互联较多,扩展性不好,不利于运行管理和维护。
智能变电站技术的发展与应用前景分析

智能变电站技术的发展与应用前景分析近年来,智能变电站技术在电力行业中得到了广泛的应用和重视。
智能变电站技术通过集成先进的信息和通信技术,使传统的变电站实现了数字化、自动化和智能化的功能,为电力系统的运行和管理提供了更高效、更可靠的解决方案。
本文将对智能变电站技术的发展进行分析,并探讨其应用前景。
一、智能变电站技术的发展趋势1. 信息和通信技术的广泛应用:随着信息和通信技术的不断进步,智能变电站技术也在不断发展。
如今,智能变电站可以实现与电力系统各个层级的数据交互和共享,提供可靠的远程监控和控制功能。
2. 网络化和互联互通:智能变电站技术借助互联网、云计算和大数据等先进技术,实现了变电站之间的网络化和互联互通。
这样可以更好地实现对系统设备的综合管理,提高运行效率和安全性。
3. 智能化设备的广泛应用:智能变电站通过引入各类智能化设备,如智能断路器、智能配电柜等,实现了设备间的智能配合和协同工作。
这些设备具备自动检测和故障诊断的能力,能够提前预警和排除潜在故障,提高设备的可靠性和运行效率。
二、智能变电站技术的应用前景1. 提高电力系统的安全性和可靠性:智能变电站技术可以实时监测变电设备的运行状态,及时发现并处理潜在故障,保证电力系统的稳定运行。
同时,智能变电站还可以通过自动化技术实现对电力系统设备的智能控制,提高操作的准确性和可靠性。
2. 优化能效和降低能耗:智能变电站技术通过对电力设备和系统进行精确的数据采集和分析,能够发现电能消耗的潜在问题并进行优化调整。
此外,智能变电站还可以实现设备的自动化控制和智能化管理,减少了人工干预,降低了能耗。
3. 推动电力系统的可持续发展:智能变电站技术具有较高的灵活性和可扩展性,可以根据电力系统的需求进行自主调整和优化。
通过智能化技术的应用,可以更好地利用可再生能源,提高电力系统的可持续发展水平。
4. 促进电网和能源互联互通:智能变电站技术的应用可以实现电网和能源的互联互通,提高能源传输和分布的灵活性。
35kV变电站综合自动化

35kV变电站综合自动化标题:35kV变电站综合自动化引言概述:随着电力系统的不断发展,35kV变电站作为电力系统的重要组成部分,其自动化水平也日益提高。
本文将详细介绍35kV变电站综合自动化的相关内容,包括自动化系统的优势、主要功能、应用范围、发展趋势等方面。
一、自动化系统的优势1.1 提高运行效率:自动化系统能够实现设备的远程监控和控制,提高了变电站的运行效率。
1.2 提高安全性:自动化系统能够实时监测设备状态,及时发现问题并采取措施,提高了变电站的安全性。
1.3 降低人工成本:自动化系统减少了人工操作的需求,降低了人工成本。
二、自动化系统的主要功能2.1 远程监测:自动化系统能够实时监测变电站设备的运行状态,包括电压、电流、温度等参数。
2.2 远程控制:自动化系统能够远程控制设备的开关、调节参数等操作,实现远程操作。
2.3 数据存储与分析:自动化系统能够对变电站运行数据进行存储和分析,为运维人员提供参考依据。
三、自动化系统的应用范围3.1 变电站监控:自动化系统可用于35kV变电站的监控,实时监测设备的运行状态。
3.2 设备保护:自动化系统可实现对设备的保护功能,当设备出现异常时能够及时采取措施。
3.3 负荷调度:自动化系统可用于负荷调度,实现对电力系统的优化管理。
四、自动化系统的发展趋势4.1 云平台应用:未来自动化系统将更多地应用云平台技术,实现数据的实时共享和处理。
4.2 人工智能技术:自动化系统将逐渐引入人工智能技术,实现更智能化的运行管理。
4.3 多元化应用:自动化系统将向多元化方向发展,不仅应用于35kV变电站,还将涉及电力系统的其他领域。
五、结论35kV变电站综合自动化是电力系统发展的必然趋势,其优势、功能、应用范围和发展趋势都将为电力系统的运行管理带来更多便利和效率提升。
随着技术的不断进步,自动化系统将不断完善和创新,为电力系统的稳定运行和安全保障提供更多支持。
变电站综合自动化系统的现状与发展

二 、变 电站综合 自动化 系统 的基本 功能
变 电站综合 自动化技术所涉及 的面非常广泛 ,牵扯
到 多 个 技 术 领 域 ,其 完 成 的 功 能 也 非 常 强 大 ,具 体 有 以下 主 要 几 个 方 面 :运 行 设 备 “ 遥 ”量 的采 集 ,如 三 电压 、 电流 、功 率 、 断 路器 位 置 、 远 方 就 地 把 手 位 置 等 诸 多 模 拟 量 和 状 态 量 。 同 时 ,还 能 够 实 现 对 运 行 设 备 的控 制 、保 护 等功 能 。
E 电力 l 技术
e t i we c e r c Po rTe hno og l y
变 电站综合 自动化 系统 的现状 与发展
黄 英 李 凌 芝
( 国石 油 兰州 石化 公 司动 力厂 , 肃 兰 州 7 0 6 中 甘 3 0 0)
●
摘 要 : 当今 企业 的发展 中 ,供 电 系统 日益增 大 ,满足 各 类装置 的 用 电需要是 供 电 系统 要 实现 的 目 。针 对 在 标 这种情况 ,电力系统的发展和进步只能依靠科技手段。文章讨论 了电力 系统 中变电站综合 自动化技术的现状 和发展 状 况 , 自动化 技 术在 电力 系统 的运行控 制 方 面起 着重要 的作 用 ,是今 后供 电 系统发展 所必 需的技 术 。
满足系统发展 的需要 ,变 电站综合 自动化技 术正在 向 数字化、智能化方 向发展。 ( 变电站综合 自动化 系统的发展趋势 二) 随着电子技术 、通信技术的飞速发展,数字化理念 已经全面在 电力系统 中得 以运用 ,变 电站 综合 自动化 技术在这种情况下 ,也在朝着数字化方 向发展,并且
高 。当前,变电站综合 自 动化技术已经逐步由晶体管
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变电站自动化系统的发展与应用
发表时间:2016-04-05T16:13:30.517Z 来源:《基层建设》2015年23期供稿作者:韦元显
[导读] 对保证电网安全稳定运行具有重大的意义。
随着技术的进步和硬件软件环境的改善,它的优越性必将进一步体现出来。
韦元显
摘要:本文通过回顾变电站自动化系统的发展,结合变电站自动化系统的现状,对系统结构、通讯方式和能实现的基本功能及变电站自动化的发展趋势进行初步探讨。
对实际中出现的一些问题进行分析并提出了解决问题的建议。
关键词:变电站自动化系统;发展现状;系统结构;实现功能;存在的问题
变电站综合自动化是一项提高变电站安全、可靠稳定运行水平,降低运行维护成本,提高经济效益,向用户提供高质量电能服务的一项措施。
随着自动化技术、通信技术、计算机和网络技术等高科技的飞速发展,一方面综合自动化系统取代或更新传统的变电站二次系统,已经成为必然趋势。
另一方面,保护本身也需要自检查、故障录波、事件记录、运行监视和控制管理等更强健的功能。
发展和完善变电站综合自动化系统,是电力系统发展的新的趋势。
一、变电站自动化系统的发展现状
变电站自动化系统集变电站保护、测量、监视和远方控制于一体,替代了常规的变电站保护、仪表、中央信号、远动装置(RTU)等二次设备,由集中控制式RTU,即通过变送器及一些数字接口电路对变电二次系统的一些测量和信号进行采集,采集量送至单片机或工控机进行集中处理。
通过变电站各种设备间相互交换信息、数据共享,实现对变电站运行的自动监视、管理、协调和控制,提高了变电站保护和控制性能,从而改善和提高了电网的控制水平;使变电站设计合理、布局紧凑、运行安全可靠。
更为重要的是变电站综合自动化的发展,为电网综合自动化的发展和深入提供了广阔的天地。
随着电子技术、计算机技术与通信技术的飞速发展,现今变电站将各独立的间隔控制器和间隔继电保护装置通过高速的通信网络组合起来,实现各间隔层独立工作、数据共享,上位机对共享数据进行集中处理和传输,形成了一个集电气量的采集、电气设备(如断路器)的状态的监视、控制和调节、变电站的正常运行的监视和操作、事故时瞬态电气量的采集、监视和控制(由继电保护、故障录波等所完成)、事故后的变电站恢复正常运行的操作于一体的强大的综合系统。
二、国内外变电站自动化系统的结构形式
目前,国内外变电站自动化系统设计上大体可分为以下3种结构形式:
(1)集中式结构:集中式结构是将设备按其功能归类划分,形成若干个独立系统,各系统分别采用集中装置来完成自身的功能。
集中式结构一般由1个或2个CPU实现对整个变电站的保护、监视、测量、远动的集中控制。
集中式控制系统的优点是构成较简单、主机控制系统集中、便于分配调度各种实时任务、响应速度快、节省投资;缺点是主机系统负荷繁重、主机单CPU可靠性不高。
为了提高可靠性,一般采用双系统互为备用。
(2)分散式结构:这种结构方式一般是按一次回路进行设计。
首先将设备按一次安装单位划分成若干单元,将控制单元、微机保护单元、数据采集单元安装在户外高压断路器附近或户内开关柜内。
然后将各分布单元用网络电缆互联,构成一个完整的分散式综合自动化系统。
其优点:各个功能单元上既有通信联系,又能相对独立,便于系统扩展,便于维护管理,当某一环节发生故障时,不至于相互影响;此外,它的抗电磁干扰能力强、可靠性高,在二次系统设计上能最大限度地减少二次设备的占地面积并节省大量电缆及接线。
(3)集中与分散结合式结构:这种结构方式介于集中式与分散式两种结构之间,形式较多。
目前国内应用较多的是分散式结构集中式组屏。
这种结构方式具有分散式结构的全部优点,由于采用了集中式组屏,有利于系统的设计、安装与维护管理。
因为中低压变电站的一次设备比较集中,宜采用此种结构方式。
三、变电站自动化系统应能实现的功能
1.数据采集及处理功能。
包括状态数据,模拟数据和脉冲数据。
2.控制和操作功能。
操作人员可通过后台机屏幕对断路器,隔离开关,变压器分接头,电容器组的投切进行远方操作。
为了防止系统故障时无法操作被控设备,在系统设计时应保留人工直接跳合闸手段。
3.微机保护。
对站内所有电气设备进行保护,包括线路保护,变压器保护,母线保护,电容器保护及设备自投,低频减载等安全自动装置。
4.数据处理和记录。
历史数据的形成和存储是数据处理的主要内容,它包括上一级调度中心,变电管理和保护专业要求的数据,主要有:
(1)断路器动作次数、切除故障时截断容量和跳闸操作次数的累计数;
(2)输电线路的有功、无功,变压器的有功、无功、母线电压定时记录的最大,最小值及其时间;
(3)独立负荷有功、无功,每天的峰谷值及其时间;
(4)控制操作及修改整定值的记录。
根据需要,该功能可在变电站当地全部实现,也可在远动操作中心或调度中心实现;
(5)人机联系系统的自诊断信息。
5.系统的自诊断功能。
系统内各插件应具有自诊断功能,并把数据送往后台机和远方调度中心。
对装置本身实时自检功能,方便维护与维修,可对其各部分采用查询标准输入检测等方法实时检查,能快速发现装置内部的故障及缺陷,并给出提示,指出故障位置。
四、存在的问题及解决问题的思考
由于变电站自动化系统是一个多专业合作的事业,涵盖了保护、自动化、通信等多个专业,系统在运行中存在许多方面的问题亟待解决:
1、数据采集方面的问题:
系统对数据采集的要求是不失真地传送交流量的前提下保证数据的精确度。
而保护和测控所要求的有所不同:保护装置要求在任何情况下不失真(包括事故情况下的大的交流量),而对数据的精确度要求不是太高(大于0.5级即可);测控装置要求较高的精确度(大于0.2级),而故障情况下的大的交流量不要求精确传送。
现在的低压(35KV、10KV)装置将保护和测控做到了一体化,即共用了一个数据
采集模块,保护和测控要求不同的矛盾就将体现,在优先满足保护要求的前提下必将牺牲精确度。
为了解决这一矛盾,建议采用双采样模块,将保护和测控的交流采样分开。
2、通信方面的问题:
(1)通信电源故障造成整个通信中断时有发生,其影响极大。
所以建立通信电源监控系统和加强通信电源维护,提高通信电源稳定性意义极大。
(2)通信通道问题,尽管通信通道故障率低,但通道故障往往发生在系统故障多发时,一旦中断,给系统的事故判断和处理带来难以想象的困难。
(3)通信规约的问题。
1801规约的数据位12位,而变电站数据16位,造成数据采集误差;遥控有时存在不明原因的拒动;有的变电站开关变位信号有时捕捉不到,直流系统、电压无功优化系统等小系统的规约与综合自动化规约配合不够顺畅。
3、抗干扰的问题:
现场对开关量输入、输出回路的干扰,造成误发遥信的问题比较普遍,这也是当前要解决的主要问题。
(1)系统波动时,如系统运行方式变化、负荷变化、雷击、各种故障情况下,误发遥信的问题;(2)系统故障点较多时,信息传输量较大,造成通道阻塞,有重复信息、无用信息、误发信息上传,而有用信息上传滞后或不能上传。
解决问题的几点建议:
(1)加强站内通信网络的抗干扰和防雷措施。
间隔层与站控层的通信是通过站内构建以太网、LAN网或其他,现在对其的抗干扰或防雷我们考虑极少或根本不考虑,造成变电站在系统波动时信息误发、通信网卡雷击损坏。
(2)各专业均衡协调,对信息量规范管理。
现在我们的变电站信息量少则几百点,多则上千点,这在站内通信有高速以太网、LAN网或其他,不存在问题,但在自动化主站和子站的通信数据流大时,问题就明显暴露。
结束语:变电站自动化系统是一个多专业合作的事业,需要我们统一规划、多专业协调合作、规范通信规约和系统管理,通过各专业的共同努力来发现和解决存在的问题。
变电所综合自动化对于实现电网调度自动化和现场运行管理现代化,提高电网的安全和经济运行水平起到了很大的促进作用,它将能大大加强电网一次、二次系统的效能和可靠性,对保证电网安全稳定运行具有重大的意义。
随着技术的进步和硬件软件环境的改善,它的优越性必将进一步体现出来。
参考文献:
[1]杨奇逊.变电站综合自动化技术发展趋势.电力系统自动化.
[2]袁季修.保护通信接口标准介绍(一)(二).电力系统自动化.。