数据的分析单元测试题

合集下载

四年级下册数学单元测试6.数据的表示和分析北师大版(含答案)

四年级下册数学单元测试6.数据的表示和分析北师大版(含答案)

四年级下册数学单元测试-6。

数据的表示和分析一、单选题1.在一个圆形花坛内种了三种花(如图所示),统计图( )能准确地表示各种花的占地面积。

A. B. C.2.折线统计图表示( )。

A. 数量的多少和增减变化情况B. 数量的多少C. 部分量与总量的关系3.在“书香校园”活动中,我校同学平均每人捐了5本书。

()A. 全校每个同学一定都捐了5本。

B. 可能有人捐了10本书。

4.要反映一个病人的体温变化情况,用()比较合适。

A. 条形统计图B. 折线统计图C. 统计表D. 以上三种都可以二、判断题5.条形统计图可以直观的看出每个数据的多少。

()6.:折线统计图可以清楚地表示出各部分同总数之间的关系.()7.条形统计图不但能反映数量的多少,还能反映数量的变化情况。

()8.医生通常用扇形统计图记录病人的体温变化情况。

()三、填空题9.常见的统计图有________和________。

10.甲、乙的平均数是86,甲、乙、丙的平均数是77,那么丙数是________.11.下面是3个同学1分钟跳绳情况的统计图。

请根据统计图,完成下面的问题.(1)1格代表________次。

(2)________跳的是最快,________跳的是最慢。

你想对他们说________四、解答题12.阳光少儿书店第二季度图书销售统计表。

(1)请把上表填写完整。

(2)________月份出售的书最多。

(3)第二季度平均每月出售科技书________本。

(4)这家书店准备为七月份进书,你有什么建议?13.(1)从统计图中可以得到哪些信息?(2)学校要添置一些新书,你有什么建议?说说理由.14.这是乐园水果店一个星期苹果的销售量。

时间星期一星期二星期三星期四星期五星期六星期日销售量(千克)100 120 130 150 160 180 210(1)根据统计表画出折线统计图。

(2)说一说乐园水果店这一周的销量变化趋势?(3)这一周平均每天销售水果多少千克?五、应用题15.6个人加工一批零件,前3个人平均每人加工20个,后3个人共加工66个,平均每个人加工多少个零件?参考答案一、单选题1.【答案】C【解析】【解答】根据分析可知,统计图C能准确地表示各种花的占地面积.故答案为:C.【分析】观察扇形统计图可知,花坛中一共种了三种花,玫瑰和菊花的占地面积相等,百合的占地面积是玫瑰或菊花占地面积的2倍,据此选择合适的条形统计图即可.2.【答案】A【解析】【解答】解:折线统计图表示数量的多少和增减变化情况。

第二十章 数据的分析 单元测试

第二十章 数据的分析 单元测试

2022年春人教版初中八年级数学下册第二十章数据的分析班级:________ 姓名:________ 分数:________一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况为:一班4.5 kg,二班4.4 kg,三班5.1 kg,四班3.3 kg,五班5.7 kg,则每个班级回收废纸的平均重量为( )A.5 kg B.4.8 kg C.4.6 kg D.4.5 kg2.某校为加强学生出行的安全意识,学校每月都要对学生进行安全A.95,95 B.95,96 C.96,96 D.96,973.八年级二班在一次体重测量中,小明体重54.5 kg,低于全班半数学生的体重,分析得到结论所用的统计量是()A.中位数 B.众数 C.平均数 D.方差4.现有一列数:6,3,3,4,5,4,3,增加一个数x后,这列数的中位数仍不变,则x可能是( )A.1 B.2 C.3 D.45.若一组数据:1,5,7,x的众数为5,则这组数据的平均数是( )A.6 B.5 C.4.5 D.3.56.甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( )A.甲 B.乙 C.丙 D.丁7.一家公司招考某工作岗位,只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,如果小明数学得分为80分,估计综合得分最少要达到84分才有希望,那么他的物理最少要考( ) A.86分 B.88分 C.90分 D.92分8.已知数据x1,x2,x3,x4,x5的平均数为k1;数据x6,x7,x8,x9,x10的平均数为k2;k1与k2的平均数是k;数据x1,x2,x3,…,x8,x9,x10的平均数为m,那么k与m的关系是( )A.k>m B.k=m C.k<m D.不能确定9.小明在计算一组数据的方差时,列出的算式如下:s2=1n[(7-x)2+(8-x)2+(8-x)2+(8-x)2+(9-x)2],根据算式信息,下列说法中错误的是( )A.数据个数是5 B.数据平均数是8C.数据众数是8 D.数据的方差是010.已知一组数据:2,5,x,7,9的平均数是6,则这组数据的众数是( )A.9 B.7 C.5 D.211.某楼四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据唯一的众数与平均数相等,则这组数据的中位数是( ) A.8 B.9 C.10 D.1212.近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2 000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B种支付方式的使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1 000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1 500元.其中正确的是( )A.①③ B.③④ C.①② D.②④二、填空题:每小题4分,共16分.13.某8种食品所含的热量值分别为120,134,120,119,126,120,118,124,则这组数据的众数为___.14.某公司招聘员工,对应聘者进行三项素质测试:创新能力、综合知识、语言表达,某应聘者三项得分分别为70分,80分,90分,如果将这三项成绩按照5∶3∶2计入总成绩,则他的总成绩为__ __分.15.小孔同学根据朗诵比赛中9位评委给出的分数,制作了一张表格(如图表所示).如果去掉一个最高分和一个最低分,则表中数据一16.个数,得到七个数据,并对数据进行整理和分析,得出如图表所示信据之和可能为42;④m的值可能为5.其中正确推断的序号是__ __.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)4 660,4 540,4 510,4 670,4 620,4 580,4 580,4 600,4 620,4 620.(1)全厂员工的月平均收入是__ __元;(2)平均每名员工的年薪是__ __元;(3)财务科本月应准备多少钱发工资?18.(本题满分10分)如图是交警在一个路口统计的某个时段来往的车速情况(单位:km/h).这些车的平均速度为52.28 km/h.(1)车速为54 km/h的车有____辆;(2)该样本数据的众数为__ _,中位数为__ __;(3)若某车以51.5 km/h的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.19.(本题满分10分) 某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表.(单位:分)(1)甲、乙两人“三项测试”的平均成绩分别为________分、________分;(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的成绩,请计算甲、乙两人的平20.(本题满分10分)有甲、乙两种新品种的水稻,在进行杂交配系时要选取产量高、稳定性较好的一种,种植后各抽取5块田获取数据,每亩产量分别如表:(单位:kg)(1)哪一品种平均亩产较高?(2)哪一品种稳定性较好?(3)21.(本题满分10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图所示是其中的甲、乙两段台阶的示意图.请用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)分别求出两段台阶高度的中位数;(2)哪段台阶走起来更舒服?为什么?22.(本题满分10分)云南特产褚橙味甜皮薄,每年上市后供不应求.某超市水果销售部有营业员15人,某月该超市这15名营业员销(1)(2)为了调动大多数营业员的积极性,实行“每天定额售量,超出有奖”的措施.如果你是管理者,你选择确定“定额”的统计量为________(选填“中位数”或“众数”).23.(本题满分12分) 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.(1)a=____,b=__ __;(2)从方差的角度看,__ __(选填“甲”或“乙”)种西瓜的得分较稳定;(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.24.(本题满分12分) 某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?25.(本题满分12分) 八一中学为普及抗疫防疫知识,在七、八年级举行了一次防疫知识竞赛,为了解这两个年级学生的竞赛成绩,分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析,给出了如下信息.各年级成绩分布如表:(注:成绩在60分以下为不合格,80分及以上(1)表中,a=__ __,b=___;(2)小明的成绩在此次抽样之中,与他所在年级的抽样相比,小明的成绩高于平均数,却排在了后十名,则小明是__ __(选填“七”或“八”)年级的学生;(3)请推断出哪个年级的竞赛成绩更好,并说明理由(至少从三个不同的角度说明).参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况为:一班4.5 kg,二班4.4 kg,三班5.1 kg,四班3.3 kg,五班5.7 kg,则每个班级回收废纸的平均重量为( C)A.5 kg B.4.8 kg C.4.6 kg D.4.5 kg2.某校为加强学生出行的安全意识,学校每月都要对学生进行安全知识测评,随机选取15名学生在五月份的测评成绩如表:A.95,95 B.95,96 C.96,96 D.96,973.八年级二班在一次体重测量中,小明体重54.5 kg,低于全班半数学生的体重,分析得到结论所用的统计量是( A)A.中位数 B.众数 C.平均数 D.方差4.现有一列数:6,3,3,4,5,4,3,增加一个数x后,这列数的中位数仍不变,则x可能是( D)A.1 B.2 C.3 D.45.若一组数据:1,5,7,x的众数为5,则这组数据的平均数是( C)A.6 B.5 C.4.5 D.3.56.甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( C)A.甲 B.乙 C.丙 D.丁7.一家公司招考某工作岗位,只考数学和物理,计算综合得分时,按数学占60%,物理占40%计算,如果小明数学得分为80分,估计综合得分最少要达到84分才有希望,那么他的物理最少要考( C) A.86分 B.88分 C.90分 D.92分8.已知数据x1,x2,x3,x4,x5的平均数为k1;数据x6,x7,x8,x9,x10的平均数为k2;k1与k2的平均数是k;数据x1,x2,x3,…,x8,x9,x10的平均数为m,那么k与m的关系是( B)A.k>m B.k=m C.k<m D.不能确定9.小明在计算一组数据的方差时,列出的算式如下:s2=1n[(7-x)2+(8-x)2+(8-x)2+(8-x)2+(9-x)2],根据算式信息,下列说法中错误的是( D)A.数据个数是5 B.数据平均数是8C.数据众数是8 D.数据的方差是010.已知一组数据:2,5,x,7,9的平均数是6,则这组数据的众数是( B)A.9 B.7 C.5 D.211.某楼四个绿化小组一天植树的棵数如下:10,x,10,8,已知这组数据唯一的众数与平均数相等,则这组数据的中位数是( C) A.8 B.9 C.10 D.1212.近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月A,B两种移动支付方式的使用情况,从企业2 000名员工中随机抽取了200人,发现样本中A,B两种支付方式都不使用的有10人,样本中仅使用A种支付方式和仅使用B种支付方式的使用A,B两种支付方式的为800人;②本次调查抽取的样本容量为200人;③样本中仅使用A种支付方式的员工,该月支付金额的中位数一定不超过1 000元;④样本中仅使用B种支付方式的员工,该月支付金额的众数一定为1 500元.其中正确的是( A)A.①③ B.③④ C.①② D.②④二、填空题:每小题4分,共16分.13.某8种食品所含的热量值分别为120,134,120,119,126,120,118,124,则这组数据的众数为__120__.14.某公司招聘员工,对应聘者进行三项素质测试:创新能力、综合知识、语言表达,某应聘者三项得分分别为70分,80分,90分,如果将这三项成绩按照5∶3∶2计入总成绩,则他的总成绩为__77__分.15.小孔同学根据朗诵比赛中9位评委给出的分数,制作了一张表格(如图表所示).如果去掉一个最高分和一个最低分,则表中数据一16.个数,得到七个数据,并对数据进行整理和分析,得出如图表所示信息,已知小宇投中了4个,下列判断:据之和可能为42;④m的值可能为5.其中正确推断的序号是__①④__.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分) 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)4 660,4 540,4 510,4 670,4 620,4 580,4 580,4 600,4 620,4 620.(1)全厂员工的月平均收入是__4_600__元;(2)平均每名员工的年薪是__55_200__元;(3)财务科本月应准备多少钱发工资?解:(3)从(1)得到员工的月平均收入为4 600元,工厂共有220名员工,∴财务科本月应准备4 600×220=101.2(万元).18.(本题满分10分)如图是交警在一个路口统计的某个时段来往的车速情况(单位:km/h).这些车的平均速度为52.28 km/h.(1)车速为54 km/h的车有__4__辆;(2)该样本数据的众数为__52_km/h__,中位数为__52_km/h__;(3)若某车以51.5 km/h的速度经过该路口,能否说该车的速度要比一半以上车的速度快?并说明判断理由.解:(3)不能.理由:因为由(2)知样本的中位数为52,所以可以估计该路段的车辆大约有一半的车速要快于52 km/h,该车的速度是51.5 km/h,小于52 km/h,所以不能说该车的速度要比一半以上车的速度快.19.(本题满分10分) 某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如表.(单位:分)(1)甲、乙两人“三项测试”的平均成绩分别为________分、________分;(2)根据实际需要,公司将阅读能力、思维能力和表达能力三项测试成绩按3∶5∶2的比确定每位应聘者的成绩,请计算甲、乙两人的平解:(1)85;86.(2)甲的平均成绩为86.5分,乙的平均成绩为85.8分,∴应该录取甲.20.(本题满分10分)有甲、乙两种新品种的水稻,在进行杂交配系时要选取产量高、稳定性较好的一种,种植后各抽取5块田获取数据,每亩产量分别如表:(单位:kg)(1)哪一品种平均亩产较高?(2)哪一品种稳定性较好?(3)解:(1)x甲=乙(2)s2甲=2 kg2,s2乙=3.6 kg2,∵s2甲<s2乙,∴甲品种稳定性较好.(3)应选择甲品种做杂交配系.21.(本题满分10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,如图所示是其中的甲、乙两段台阶的示意图.请用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)分别求出两段台阶高度的中位数;(2)哪段台阶走起来更舒服?为什么?解:(1)将甲路段台阶高度重新排列为14,14,15,15,16,16,乙路段台阶高度重新排列为10,11,15,17,18,19,所以甲路段高度的中位数为15+152=15, 乙路段高度的中位数为15+172=16. (2)甲路段台阶走起来更舒服一些,理由:由题意知,甲路段台阶的高度波动小于乙路段台阶高度波动,即甲路段的台阶高度方差小.22.(本题满分10分)云南特产褚橙味甜皮薄,每年上市后供不应求.某超市水果销售部有营业员15人,某月该超市这15名营业员销(1)(2)为了调动大多数营业员的积极性,实行“每天定额售量,超出有奖”的措施.如果你是管理者,你选择确定“定额”的统计量为________(选填“中位数”或“众数”).解:(1)这15名营业员该月销售量数据的平均数、中位数及众数分别为278件,180件,90件.(2)中位数.23.(本题满分12分) 某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.(1)a =__88__,b =__90__;(2)从方差的角度看,__乙__(选填“甲”或“乙”)种西瓜的得分较稳定;(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.解:(3)小明的理由为:甲种西瓜得分的众数比乙种的高.小军的理由为:乙种西瓜得分的中位数比甲种的高.24.(本题满分12分) 某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?解:(1)中位数为(6.4+6.8)÷2=6.6;从平均数与中位数的差异可得大部分居民家庭去年的月均用水量小于平均数,有节约用水观念,少数家庭用水比较浪费.(2)∵100×75%=75,第75个家庭去年的月均用水量为11 t,所以为了鼓励节约用水,要使75%的家庭水费支出不受影响,即要使75户的家庭水费支出不受影响,故家庭月均用水量应该定为11 t.25.(本题满分12分) 八一中学为普及抗疫防疫知识,在七、八年级举行了一次防疫知识竞赛,为了解这两个年级学生的竞赛成绩,分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析,给出了如下信息.各年级成绩分布如表:(注:成绩在60分以下为不合格,80分及以上(1)表中,a=__68.5__,b=__35%__;(2)小明的成绩在此次抽样之中,与他所在年级的抽样相比,小明的成绩高于平均数,却排在了后十名,则小明是__七__(选填“七”或“八”)年级的学生;(3)请推断出哪个年级的竞赛成绩更好,并说明理由(至少从三个不同的角度说明).解:(3)七年级学生成绩较好,从平均数、中位数和合格率上看,七年级均较高,且七年级的竞赛成绩较稳定,因此七年级的竞赛成绩更好.。

2023人教版下册 数据的分析 单元练习卷(原卷版)

2023人教版下册 数据的分析 单元练习卷(原卷版)

专题13 第20章《数据的分析》单元练习卷一.选择题(共10小题,共30分)1.(3分)国际数学奥林匹克竞赛旨在激发全球青年人的数学才能,中国代表队近六届竞赛的金牌数(单位:枚)分别为6,6,4,5,4,4,关于这组数据,下列说法正确的是()A.方差是0.5B.众数是6 C.中位数是4.5D.平均数是4.82.(3分)下列为某班级研究性学习小组学员出勤次数如表所示,则小组学员出勤次数的众数和中位数分别是()出勤次数45678学员人数26543A.5,6B.5,5C.6,5D.8,63.(3分)已知一组数据的方差为,则()A.这组数据有10个B.这组数据的平均数是5C.方差是一个非负数D.每个数据加3,方差的值增加34.(3分)思政课上,某小组的2023全国“两会”知识测试成绩统计如表(满分10分):成绩78910频数1342则该组测试成绩的平均数为()(单位:分)A.8.2B.8.3C.8.7D.8.95.(3分)温州银泰商场某店一天中卖出某种品牌的休闲鞋16双,它们的尺码与销售量如表所示:鞋的尺码/cm2525.52626.527销售量/双23443则这16双鞋的尺码组成的数据中,中位数()A.25.5B.26C.26.5D.276.(3分)一组数据5,8,8,10,1■中,最后一个两位数的个位数字被墨迹覆盖,则这组数据不受影响的统计量是()A.平均数B.中位数C.众数D.极差7.(3分)一位卖“运动鞋”的经销商到一所学校对200名学生的鞋号进行了抽样调查,经销商最感兴趣的是这组鞋号的()A.众数B.平均数C.中位数D.方差8.(3分)某班一合作学习小组有6人,初三上期数学期末考试成绩数据分别为114、86、95、77、110、93,则这组数据的中位数是()A.86B.95C.77D.949.(3分)为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为()A.8,8,8B.7,8,7.8C.8,8,8.7D.8,8,8.410.(3分)某校举行“喜迎中国共产党建党100周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是()A.众数是5B.中位数是90C.平均数是93D.方差是0二.填空题(共6小题,共30分)11.(5分)已知一组数据﹣1,﹣3,5,7,这组数据的极差是.12.(5分)在对某样本进行方差计算时,计算的公式是:,该样本的样本容量是.13.(5分)如图是甲、乙两人5次投篮成绩统计图(每人每次投球10个),则s甲2s乙2(填“>”,“=”或“<”).14.(5分)小丽计算数据方差时,使用公式S2=,则公式中=.15.(5分)我市某电视台招募主持人,甲侯选人的综合专业索质、普通话、才艺展示成绩如表所示.测试项目综合专业索质普通话才艺展示测试成绩908692根据实际需求,该电视台规定综合专业素质、普通话和才艺展示三项测试得分按5:3:2 的比例确定最终成绩,则甲候选人的最终成绩为分.16.(5分)现有1,2,3,…,9九个数字,甲、乙两位同学轮流从中选出一个数字,从左至右依次填入下面所示的表格中(表中已出现的数字不再重复使用),每次填数时,甲会选择填入后使表中现有数据平均数最小的数字,乙会选择填入后使表中现有数据中位数最大的数字.如图,若表中第一个数字是6,甲先填,(1)请你在表中空白处填出一种符合要求的填数结果;(2)满足条件的填法有种.6三.解答题(共7小题,共50分)17.(6分)学校组织“中国传统文化”知识竞赛,每班都有20名同学参加,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分(90分及以上属于优秀),学校将七年一班和二班的成绩整理如下:(1)填写以下表格;班级平均数众数中位数优秀率七年一班分90分分七年二班92分分90分80%(2)结合以上统计量,你认为哪个班级的竞赛成绩更加优秀?请简述理由.18.(8分)为了解决杨树花絮污染环境的难题,某公司引进优秀专利品种,建立新树种实验基地,研究组在甲、乙两个实验基地同时播下新树种,同时随机各抽取20株树苗,记录下每株树苗的长度(单位:cm),进行整理、描述和分析(用x表示树苗长度,数据分成5组:A.20≤x<30;B.30≤x<40;C.40≤x <50;D.50≤x<60;E.x≥60,50cm及以上为优等),下面给出了部分信息:【数据收集】甲实验基地抽取的20株树苗的长度:28,29,32,34,38,40,42,45,46,51,51,52,54,55,55,55,55,57,60,61.乙实验基地抽取的20株树苗中,A、B、E三个等级的数据个数相同,C组的所有数据是:42,43,46,49,49.【数据整理】甲实验基地抽取的树苗长度统计表x频数频率A20.1B a0.15C40.2D90.45E20.1【数据分析】基地平均数众数中位数E组所占百分比甲47b5110%乙4756c m%根据以上信息,解答下列问题:(1)填空:a=,b=,c=,m=;(2)根据上述数据分析,你认为甲、乙两基地哪个基地的树苗好?请说明理由(写出一条理由即可);(3)请估计2000棵乙基地的树苗为优等的树苗有多少棵?19.(8分)争创全国文明城市,从我做起.某中学开设了文明礼仪校本课程,为了解学生的学习情况,学校组织七八年级学生进行文明礼仪知识测试,两个年级均有300名学生,从七八年级各随机抽取了10名学生的测试成绩,满分100分,整理分析如下:七年级:99 98 98 98 95 93 91 90 89 79八年级:99 99 99 91 96 90 93 87 91 85整理分析上面的数据,得到如下表格:平均数中位数众数方差统计量年级七年级9394a33.7八年级93b9923.4根据以上信息,解答下列问题.(1)填空:a=,b=;(2)根据统计结果,年级的成绩更整齐;(3)七年级甲同学和八年级乙同学成绩均为93分,根据上面统计情况估计同学的成绩在本年级的排名更靠前;(4)如果在收集七年级数据的过程中将抽取的“89”误写成了“79”,七年级数据的平均数、中位数、众数中发生变化的是;(5)若成绩不低于95分的可以获奖,估计两个年级获奖的共有人.20.(8分)中国共产主义青年团是中国共产党用来团结教育青年一代的群众组织,也是党联系青年的桥梁和纽带,2022年是共青团成立100周年,某校为了解学生对共青团的认识,组织七、八年资全体团员学生进行了“团史知识竞赛”,为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:【收集数据】从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级学生的分数如下:75,90,55,60,85,85,95,100,80,85,80,85,90,75,65,60,80,95,70,75,【整理、过述数据】按如下表分数段整理、描述这两组样本数据:分数(分)x<6060≤x<7070≤x<8080≤x<9090≤x≤100七年级(人)23654八年级(人)1m475【分析数据】两组样本数据的平均数、中位数、众数如表所示:年级平均数中位数众数七年级77.57585八年级79.25b c根据以上提供的信息,回答下列问题:(1)填空:m=,b=,c=;(2)该校八年级学生有560人,假设全部参加此次竞赛,请估计八年级成绩超过平均数79.25分的人数;(3)在这次竞赛中,七八年级参加人数相同,七年级学生小明与八年级学生小亮的成绩都是75分,于是小明说:“我在年级的名次有可能高于小亮在年级里的名次”,你同意小明的说法吗?并说明理由.21.(10分)某学校从九年级学生中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表成绩/分78910人数/人1955(1)m=,甲组成绩的众数乙组成绩的众数(填“>”“<”或“=”);(2)求甲组的平均成绩;(3)这40个学生成绩的中位数是;(4)计算出甲组成绩的方差为0.81,乙组成绩的方差为0.75,则成绩更加稳定的是组(填“甲”或“乙”).22.(10分)为了解某校八年级男生在体能测试中引体向上项目的情况,随机抽查了部分男生引体向上项目的测试成绩,绘制如图统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的男生人数为,图①中m的值为;本次调查获取的样本数据的平均数为,中位数为.(2)若规定引体向上6次及以上为该项目良好,根据样本数据,估计该校320名男生中该项目良好的人数.(3)根据良好人数,为了中招体育测试能有更多人得到高分,请你给该校男生提出一些相关建议(最少两条).23.(10分)为了解学生每天的睡眠情况,某初中学校从全校2400名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:7,9,9,8,10.5,8,10,9.5,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,8,9,7,9.5,8.5,9,7,9,9,8.5,7.5,8.5,9,8,7.5,9.5,10,9,8,9,9.5,8.5.记者:胡浩教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确了中小学生必要睡眠时间,小学生每天睡眠时间应达到10h,初中生应达到9h,高中生应达到8h.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表组别睡眠时间分组人数(频数)一7≤t<87二8≤t<9a三9≤t<1018四10≤t<11b请根据以上信息,解答下列问题:(1)a=,b=,m=,n=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组;(填组别)(3)如果按照要求,学生平均每天的睡眼时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数;(4)请对该校学生“睡眠时间”的情况作出合理的评价.。

第6章数据的分析(单元重点综合测试)(原卷版)

第6章数据的分析(单元重点综合测试)(原卷版)

第6章数据的分析(单元重点综合测试)一、单选题1.已知一组数据:4,1,2,3,4,这组数据的中位数和众数分别是()A.4,4B.3.5,4C.3,4D.2,42.已知一组数据85,80,x,90的平均数是85,那么x等于()A.80B.85C.90D.953.一组数据按从小到大排列为3,4,7,x,15,17,若这组数据的中位数为9,则x是()A.9B.10C.11D.124.在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款()A.30元B.33元C.36元D.35元5.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9环,方差分别是22==0.61,0.52,S S甲乙22S S==0.53,0.42,则射击成绩比较稳定的是()丁丙A.甲B.乙C.丙D.丁6.如图是某企业2020年5~10月份月利润变化情况的折线统计图,下列说法与图中反映的信息相符的是()A.5~6月份月利润增长量大于9~10月份月利润增长量B.5~10月份月利润的中位数是700万元C.5~10月份月利润的平均数是760万元D.5~10月份月利润的众数是1000万元7.在第60届国际数学奥林匹克比赛中,中国队荣获团体总分第一名.我国参赛选手比赛成绩的方差计算(638x ++-B .我国参赛选手的平均成绩为38 D .我国选手比赛成绩的团体总分为天,好友双方的每日聊天记录的条数不低于天在该软件上聊天,条 B .中位数为二、填空题11.数据1,8,8,4,6,4的中位数为 .12.我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如下的条形统计图,则这10个样本数据的平均数是 ,众数是 ,中位数是 .13.新冠疫情期间,小李同学连续两周居家健康检测,如下图是小李记录的体温情况折线统计图,记第一周体温的方差为21s ,第二周体温的方差为22s ,试判断两者之间的大小关系21s 22s (用“>”、“=”、“<”填空).小李连续两周居家体温测量折线统计图14.小明同学在德,智,体,美,劳五项评价的成绩分别为:10分,9分,8分,9分,8分.已知这5项三、解答题19.甲、乙两名同学本学期五次某项测试的成绩(单位:分)如图所示.(1)甲、乙两名同学五次测试成绩的平均数分别是______分、______分;(2)利用方差判断这两名同学该项测试成绩的稳定性;(3)结合数据,请再写出一条与(1)(2)不同角度的结论.20.王老师为了选拔一名学生参加数学比赛,对两名备赛选手进行了10次测验,成绩如下(单位:分):甲:5,6,6,6,6,6,7,9,9,10并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;最高值,身高单位:cm,测量时精确到1cm):(1)请根据以上信息,完成下列问题:其中最低分为76分,满分率为5%,C 组成绩为89,89,86,88,89,89,89,86,89,90,89,89,88,88,89,87,回答下列问题:(1)学校共抽取了__________名同学进行测试,他们的成绩众数为__________;a .1月31日至2月20日观影人数统计图:b .1月31日至2月20日观影人数频数统计图:c .1月31日至2月20日观影人数在9020<1x ≤的数据为:91,92,93,95,97,102,110.八年级C组同学的分数分别为:91,92,93,93,94,94,94,94,94.七、八年级选取的学生竞赛成绩统计表请根据上面信息完成下列问题:(1)求加温至20C 25C t ︒≤≤︒的平均每天成本.(2)用含t 的代数式表示m .(3)计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但若欲加温到25C 37t ︒<≤摄氏度,要求成本太高,所以计划加温至20C 25C t ︒≤≤︒.请问加温多少摄氏度时增加的利润最大?并说明理由.(注:经济作物上市售出后大棚暂停使用)。

《数据的分析》单元测试题(含答案)-

《数据的分析》单元测试题(含答案)-

第二十章《数据的分析》单元测试题一、选择题)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是()A.200名运动员是总体B.每个运动员是总体C.20名运动员是所抽取的一个样本D.样本容量是202.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗B.乙苗圃的树苗; C.丙苗圃的树苗D.丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是()A.50 B.52 C.48 D.24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A.8,9 B.8,8 C.8.5,8 D.8.5,95那么,8月份这100A.1.5t B.1.20t C.1.05t D.1t6.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是() A.-2和3 B.-2和0.5 C.-2和-1 D.-2和-1.57.方差为2的是()A.1,2,3,4,5 B.0,1,2,3,5C.2,2,2,2,2 D.2,2,2,3,38某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()纸笔测试实践能力成长记录甲90 83 95乙98 90 95丙80 88 90A.甲B.乙丙C.甲乙D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.(2005,深圳)下图是根据某地近两年6•月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是_____年.12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km,在前60km内,时速为90km,在后40km内,时速为120km,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____.20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________.三、解答题(60分)21.(6分)某校规定学生期末数学总评成绩由三部分构成:卷面成绩、•课外论文成绩、平日表现成绩(三部分所占比例如图),若方方的三部分得分依次是92、80、•84,则她这学期期末数学总评成绩是多少?22.(8(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨?23.(8分)下表是某校八年级((1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.24.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?25.(8分)题中给出的条形图是截止到2002年44位费尔兹奖得主获奖时的年龄统计图.经计算费尔兹奖得主获奖时的平均年龄是35岁.根据条形图回答问题:(1)费尔兹奖得主获奖时的年龄超过..中位数的有多少人?(2)费尔兹奖得主获奖时年龄的众数是多少?(3)•费尔兹奖得主获奖时的年龄高于..平均年龄的人数占获奖人数的百分比是多少?26.(10分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)•班这三个班中推荐一个班为市级先进班集体的候选班,•现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)班级行为规范学习成绩校运动会艺术获奖劳动卫生九年级(1)班10 10 6 10 7九年级(4)班10 8 8 9 8九年级(8)班9 10 9 6 9 (1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,•设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),•按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班作为市级先进班集体的候选班.27.(12分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,•下图是其中的甲、乙两段台阶的示意图.请你用所学过的有关统计的知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(•单位:cm).并且数据15,16,16,14,14,15的方差S甲2=23,数据11,15,18,17,10,19的方差S乙2=353).答案:1.D 2.D 3.B 4.B 5.A 6.D 7.A 8.B 9.C 10.A 11.2005 12.-2•℃13.9.4分14.103 15.1500 16.3 17.100km/h 18.27.3% 19.21 20.65.•75分21.解:9070%8020%8410%70%20%10%⨯+⨯+⨯++=88.8(分)22.(1)=14(吨);(2)7000吨.23.(1)x=5,y=7;(2)a=90,b=80.24.(1)平均数:260(件)中位数:240(件)众数:240(件);(2)不合理,•因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,•尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.25.解:(1)中位数为35.5岁,•年龄超过中位数的有22人.(2)众数是38岁.(3)高于平均年龄的人数为22人,22÷44=50%.26.(1)平均数不能反映三个班的考评结果的差异,用中位数或众数可以反映.(2)行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1.x1=1.78,x4=•1.74,x8=1.8 ∴x8>x1>x4,所以推荐九年级(8)班作为市场先进班集体的候选班级合适.27.(1)相同点:两段台阶路台阶高度的平均数相同.不同点:•两段台阶路台阶高度的中位数、方差和极差均不相同.(2)甲段路走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数)使得方差为0.。

冀教版九年级数学上册《第二十三章数据的分析》单元检测卷-附答案

冀教版九年级数学上册《第二十三章数据的分析》单元检测卷-附答案

冀教版九年级数学上册《第二十三章数据的分析》单元检测卷-附答案一、选择题(本大题共10小题,每小题4分,共40分)1.某人5次射击成绩为7,x,10,8,7.若这组数据的平均数为8,则x的值为()A.7 B.8 C.9 D.102.在一次体育测试中,小芳所在小组8人的成绩分别是46,47,48,48,50,49,49,49,则这8人体育成绩的中位数、众数分别是()A.47,49 B.48,50 C.48.5,49 D.49,483.某校举办“水浒文化进校园”朗诵大赛,比赛中七位评委给某位参赛选手的分数,如果去掉一个最高分和一个最低分,则下列数据一定不发生变化的是()A.中位数B.众数C.平均数D.方差4.河北某校决定选择一批学生作为新闻播报员,现有一批学生要进行选拔考核,其中笔试、面试、实际操作成绩按照5∶2∶3的比例确定最终成绩,学生甲各项成绩(百分制)如下表,则学生甲最终的综合成绩为()笔试/分面试/分实际操作/分948090A.88分B.89分C.90分D.94分5.某中学足球队9名队员的年龄情况如下表:年龄/岁14151617人数/人1422则该队队员年龄的中位数是()A.14岁B.15岁C.16岁D.17岁6.一组数据1,x,5,7有唯一众数,且中位数是6,则平均数是()A.6 B.5 C.4 D.37.学校举行“书香校园”读书活动,某小组的五位同学在这次活动中读书的本数分别为10,11,9,10,12.下列关于这组数据的描述正确的是()A.众数为10 B.平均数为10C.方差为2 D.中位数为98.某公司职工的月工资情况如下,关于嘉嘉、淇淇的观点,下列判断正确的是()职务经理副经理职工人数 1 1 8 月工资/元 12 0008 0003 000嘉嘉的观点:平均数是数据的代表值,应该用平均数描述该公司月工资的集中趋势淇淇的观点:众数在数据中出现的次数最多,应该用众数描述该公司月工资的集中趋势 A.嘉嘉更合理B .淇淇更合理C .两人都合理D .两人都不合理9.五名同学捐款数分别是5,3,6,5,10(单位:元),捐3元的同学后来又追加了a 元.追加后的5个数据与之前的5个数据相比,中位数和众数均没有发生变化,则a 的整数值为( ) A .1B .2C .1或2D .310.为了解某小区居民的行走步数情况,文文同学调查了部分居民某天行走的步数(单位:千步),并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.①文文此次一共调查了200位居民;②行走步数为4~8千步的人数为50人;③行走步数为8~16千步的人数超过调查总人数的一半;④若该小区有3 000名居民,则行走步数为0~4千步的人数约为380人.根据统计图提供的信息,上述推断合理的是( ) A .①②③B .①②④C .①③④D .②③④二、填空题(本大题共3小题,共有5个空,每空3分,共15分)11.一组数据1,8,4,8,4,6,4的众数是________.12.3月14日是国际数学日,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息: 信息一:50名学生竞赛成绩频数分布表如下.成绩x/分50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100频数4a12204信息二:70≤x<80这一组的成绩(单位:分)是74,71,73,74,79,76,77,76,74,73,72,75.根据信息解答下列问题:70≤x<80这一组成绩的众数是______分,抽取的50名学生竞赛成绩的中位数是______分.13.已知x1,x2,x3的平均数x-=10,方差s2=3,则2x1,2x2,2x3的平均数为______,方差为______.三、解答题(本大题共4小题,共45分.解答时应写出文字说明、证明过程或演算步骤)14.(8分)某校260名学生参加植树活动,要求每人植4~7棵树,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成如图所示的条形统计图.在求这20名学生每人植树量的平均数时,小明的分析如下:第一步:求平均数的公式是x-=x1+x2+…+x nn;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:x-=4+5+6+74=5.5(棵).(1)小明的分析是从哪一步开始出现错误的?(2)请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.15.(12分)为了解某年级学生的理化生实验操作情况,随机抽查了若干名学生的实验操作得分(满分为10分),并制作了如下所示的统计图.根据以上信息,解答下列问题:(1)本次随机抽查的学生人数为________人,m=________;(2)抽取的得分数据中,平均数为________分,众数为________分,中位数为________分;(3)若该年级有800名学生,估计该年级理化生实验操作得满分的有多少人.16.(12分)某中学举行“中国梦”校园好声音歌手比赛,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,根据这10人的决赛成绩(满分为100分),制作了如图所示的统计图和统计表.平均数/分中位数/分众数/分方差初中代表队*85b70高中代表队85a100*(1)根据统计图中提供的数据填空:a的值是________,b的值是________;(2)结合两队的平均数和中位数,分析哪个队的决赛成绩更好;(3)根据题(1)中的数据,试通过计算说明,哪个代表队的成绩比较稳定.17.(13分)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175.b.16名学生身高的平均数、中位数、众数:平均数/cm中位数/cm众数/cm166.75m n(1)m=________,n=________;(2)对于不同组的学生,若一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是________(填“甲组”或“乙组”);甲组学生的身高/cm162165165166166乙组学生的身高/cm161162164165175(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168 cm,168 cm,172 cm,他们的身高的方差为329.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为________和________.参考答案一、选择题答案速查12345678910 B C A C B B A B C A二、填空题11.412.74;7813.20;12三、解答题14.解:(1)从第二步开始出现错误的.(2)x-=120×(4×4+5×8+6×6+7×2)=5.3(棵)估计这260名学生共植树5.3×260=1 378(棵).15.解:(1)40;15点拨:本次随机抽查的学生人数为4+6+11+12+7=40(人).m%=1-17.5%-10%-30%-27.5%=15%,即m=15.(2)8.3;9;8点拨:平均数为140×(4×6+6×7+11×8+12×9+7×10)=8.3(分).由统计图知,众数是9分.中位数为从小到大排名第20和第21名学生的得分的平均数,由统计图知,排名后第20和第21名学生的得分均为8分,因此中位数为8分.(3)根据题意,得17.5%×800=140(人).答:估计该年级理化生实验操作得满分的学生有140人.16.解:(1)80;85点拨:将高中代表队的成绩由低到高排列为70,75,80,100,100,所以中位数为80分,即a=80.因为初中代表队成绩为85分的有2名选手,出现的次数最多,所以众数是85分,即b=85.(2)初中代表队的平均数为x-=15×(80+75+85+85+100)=85(分),因为初中代表队和高中代表队的平均数相同,但是初中代表队的中位数高于高中代表队,所以初中代表队的决赛成绩更好.(3)高中代表队的方差为15×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160.因为70<160,所以初中代表队的成绩比较稳定.17.解:(1)166;165(2)甲组点拨:甲组学生身高的平均数是15×(162+165+165+166+166)=164.8(cm)甲组学生身高的方差是15×[(162-164.8)2+(165-164.8)2+(165-164.8)2+(166-164.8)2+(166-164.8)2]=2.16.乙组学生身高的平均数是15×(161+162+164+165+175)=165.4(cm)乙组学生身高的方差是15×[(161-165.4)2+(162-165.4)2+(164-165.4)2+(165-165.4)2+(175-165.4)2]=25.04. ∵25.04>2.16∴甲组学生舞台呈现效果更好.故答案为甲组.(3)170 cm ;172 cm 点拨:∵168,168,172的平均数为13×(168+168+172)=16913,且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329,平均数尽可能大,∴可供选择的有170 cm ,172 cm.平均数为15×(168+168+170+172+172)=170(cm) 方差为15×[(168-170)2+(168-170)2+(170-170)2+(172-170)2+(172-170)2]=3.2<329 ∴选出的另外两名学生的身高分别为170 cm 和172 cm.。

数据的分析单元考试卷

数据的分析单元考试卷

数据的分析单元测试卷一、选择题:1.如果3,2,x,5的平均数是4,那么x等于()(A)2 (B)4 (C)6 (D)82.已知一组数据10,20,80,40,30,90,50,40,50,40,它的众数和中位数分别是()(A) 40,40 (B) 40,60 (C)50,45 (D)45,40 3.一个样本数据按从小到大的顺序的排顺列为13、14、19、x、23、27、28、31,其中位数为22,则x等于()(A)21 (B)22 (C)20 (D)234.某公司销售部有营销人员25人,销售部为了制定某种商品的销售定额,统计了25人某月的销售如下表:公司营销人员该月销售的中位数是()(A)400件(B)350件(C)300件(D)360件5.某服装销售在进行市场占有率的调查时,他最应该关注的是()(A)服装型号的平均数(B)服装型号的众数(C)服装型号的在中位数(D)最小的服装型号6.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5次,射击成绩统从射击成绩的平均数评价甲、乙两人的射击水平,则()(A)甲比乙高(B)甲、乙一样(C)乙比甲高(D)不能确定7.5个整数从小到的排列,其中位数是4,如果这组数据的唯一众数是6,则这5个整数最大的和可能是()(A)21 (B)22 (C)23 (D)248.为了让人们感受丢弃塑料袋对环境造成的影响程度,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,25,31,如果该班有45名学生,那么根据上面提供的数据估计本周全班同学家中总共丢弃塑料袋的数量约为()(A)900个(B)1080个(C)1260个(D)1800个9.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为()(A)4 (B)8 (C)12 (D)2010.部队准备从新兵中组建一个升旗部队,抽查了一批新兵的身高,在这次实验中,部队最关心的是新兵身高数据的( )(A)平均数 (B)加权平均数 (C)中位数 (D)众数二、填空题:11.一个小组共有6名学生,在一次“引体向上”的测试中,他们分别做了8,10,8,7,6,9个,这6个学生平均每人做了个.12.一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是_________.13.在一节综合实践课上,六名同学做手工的数量(单位:件)分别为5,7,3,6,6,4,则这组数据的中位数为件.14.下表是食品营养成分表的一部分(每100克食品可食部分营养成分的含量).在表中提供的碳水化合物的克数所组成的数据中,中位数是,平均数。

人教版八年级下册第20章 数据的分析 单元测试卷(一)(学生版)

人教版八年级下册第20章 数据的分析 单元测试卷(一)(学生版)

人教版八下第20章数据的分析单元测试卷(二)班级:学号:姓名:一.选择题(共10小题)1.某商场试销一种新款衬衫,一周内销售情况如表所示:型号(厘米)383940414243数量(件)283036552810商场经理想了解哪种型号最畅销,下列关于型号的统计量中,对商场经理来说最有意义的是()A.平均数B.众数C.中位数D.方差2.王老师为了了解本班学生每周课外阅读时间,抽取了10名同学进行调查,调查结果统计如下:时间/小时45678人数24a b1那么这组数据的中位数和众数分别是()A.4,4B.5,4C.5,5D.都无法确定3.随着冬季的来临,流感进入高发期.某校为有效预防流感,购买了A,B,C,D四种艾条进行消毒,它们的单价分别是30元,25元,20元,18元.四种艾条的购买比例如图所示,那么所购买艾条的平均单价是()A.22.5元B.23.25元C.21.75元D.24元4.比赛中“去掉一个最高分,去掉一个最低分”后,一定不会发生变化的统计量是()A.平均数B.众数C.中位数D.极差5.方差计算公式s2=[(4﹣7)2+(6﹣7)2+(8﹣7)2+(11﹣7)2+(6﹣7)2]中,数字5和7分别表示()A.数据个数、平均数B.方差、偏差C.众数、中位数D.数据个数、中位数6.一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.727.2022年冬季奥运会将在北京市张家口举行,下表记录了四名短道速滑选手几次选拔赛成绩的平均数和方差s2:小明小红小芳小米平均数(单位:秒)53m5249方差s2(单位:秒2) 5.5n12.517.5根据表中数据,可以判断小红是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=48,n=4B.m=48,n=18C.m=55,n=4D.m=55,n=18 8.已知一组数据:2,6,4,6,7,则这组数据的中位数和众数分别是()A.4,4B.4,6C.6,6D.6,79.在一次数学测验中,甲、乙、丙、丁四位同学的成绩(单位:分)分别是80,x,80,70,若这四位同学成绩的众数与平均数恰好相等,则他们成绩的中位数是()A.90分B.85分C.80分D.75分10.在“传唱红色经典,弘扬爱国精神”比赛中,七位评委给某选手打出7个原始分.如果规定:去掉一个最高分和一个最低分,余下5个有效分的平均值作为这位选手的最后得分,则7个原始分和5个有效分这两组分数相比较,一定不会发生改变的是()A.方差B.极差C.中位数D.平均数二.填空题(共6小题)11.甲、乙两人在相同情况下各打靶8次,每次打靶的成绩如图所示,(填“甲”或“乙”)的成绩更稳定.12.一组数据21,22,23,24,25,用符号A表示,记为A=(21,22,23,24,25),加入一个数据a后,用符号B表示,记为B=(21,22,23,24,25,a).①若a=22,则A的平均数大于B的平均数;②若a=23,则A的方差等于B的方差;③若a=24,则A的中位数小于B的中位数.其中正确的序号是.13.某电视台要招聘1名记者,某应聘者参加了3项素质测试,成绩如下:测试项目采访写作计算机操作创意设计测试成绩(分)828580如果将采访写作、计算机操作和创意设计的成绩按5:2:3计算,则该应聘者的素质测试平均成绩是分.14.已知1,2,3,4,5的方差为2,则2021,2022,2023,2024,2025的方差为.15.数据﹣1,0,1的方差为.16.若一组数据的方差为,则这组数据的平均数为.三.解答题(共6小题)17.某学校开展防疫知识线上竞赛活动,九年级(1)、(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)九(1)班竞赛成绩的众数是,九(2)班竞赛成绩的中位数是.(2)哪个班的成绩较为整齐,试说明理由.18.第24届冬季奥林匹克运动会将于2022年2月在中国北京和张家口举行.为迎接本次冬奥会,某校组织初一年级学生开展“迎冬奥”知识竞赛活动(满分为50分).从竞赛成绩中随机抽取了20名男生和20名女生的成绩(单位:分)进行整理、描述和分析(成绩用x表示,共分成四个等级:A:47<x≤50,B:44<x≤47,C:41<x≤44,D:x≤41),下面是这40名学生成绩的信息:20名男生的成绩:50,46,50,50,46,49,39,46,49,46,46,43,49,47,40,48,44,43,45,44.20名女生中成绩为B等级的数据是:45,46,46,47,47,46,46.所抽取学生的竞赛成绩统计表性别平均数中位数众数男464646女46.5b48根据以上信息,解答下列问题:(1)a=,b=.(2)该校初一年级共有400名男生参与此次竞赛,估计其中等级为A的男生约有多少人?19.某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)1660,1540,1510,1670,1620,1580,1580,1600,1620,1620(1)全厂员工的月平均收入是多少?(2)平均每名员工的年薪是多少?(3)财务科本月应准备多少钱发工资?20.已知小明与小华在学校的五次数学竞赛培训时测试总成绩相同,下表是两人各次成绩的统计表,现要从这两名学生中选择一名学生去参加全国数学竞赛,需要对他们的培训成绩进行统计分析,请完成下列问题:第1次第2次第3次第4次第5次小明的成绩90708010060小华的成绩709090a70(1)a=,=;(2)请在图中完成表示小华成绩变化情况的折线;(3)S2小明=200,请你计算小华的方差;(4)根据以上数据说明选择小明或小华参加全国数学竞赛的理由.21.罗山县尚文学校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分为A,B,C,D 四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整:(2)填表:平均数(分)中位数(分)众数(分)一班90二班87.680(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析;①从平均数和中位数方面来比较一班和二班的成绩;②从平均数和众数方面来比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.22.中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?。

北师大版八年级数学上册第6章《数据的分析》单元复习测试题(含答案)

北师大版八年级数学上册第6章《数据的分析》单元复习测试题(含答案)

北师大版八年级数学上册第6章《数据的分析》单元复习测试题一、选择题(共8小题,4*8=32)1. 有一组数据:1,3,3,4,5,这组数据的众数为( )A.1B.3C.4D.52. 小明和小强同学分别统计了自己最近10次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( )A.平均数B.中位数C.方差D.众数3. 在2016年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( )A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,14. 小明在统计某市6月1日到10日每一天最高气温的变化情况时制作的折线图如图所示,则这10天最高气温的中位数和众数分别是()A.33℃,33℃B.33℃,32℃C.34℃,33℃D.35℃,33℃5. 某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时6. 丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,则表中数据不发生变化的是( )A.平均数B.众数C.方差D.中位数7. 某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差(环2)两个因素进行分析,甲、乙、丙的成绩分析如下表所示,丁的成绩如图所示.甲乙丙平均数7.9 7.9 8.0方差 3.29 0.49 1.8根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁8. 如果一组数据a1,a2,a3,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.16二.填空题(共6小题,4*6=24)9.已知某一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是__ __.10. 某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是_____________________.11. 一组数据:1,2,3,4,x,其中位数与平均数相同,则x的值为______________________.12. 为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为_______小时.13. 甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图所示,那么三人中成绩最稳定的是________.14. 某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有__ __人,投进4个球的有__ __人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 2三.解答题(共5小题,44分)15.(6分) 在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调本获取的样本数据的众数是__ __;(2)这次调查获取的样本数据的中位数是__ __;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有多少人?16.(8分) )某乡镇外出务工人员共40名,为了了解他们在一个月内的收入情况,随机抽取10名外出务工人员在某月的收入(单位:元)情况为:2500,2100,3000,2500,3000,4000,3000,2400,2400,3000.(1)求这10名务工人员在这一个月内收入的众数、中位数;(2)求这10名务工人员在这一个月内收入的平均数,并根据计算结果估计该乡镇所有务工人员在这一个月的总收入.17.(8分) 八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.18.(10分) 我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表文章阅读的篇数(篇) 3 4 5 6 7及以上人数(人) 20 28 m 16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.19.(12分) 我校准备挑选一名跳高运动员参加江东区中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛,他们的成绩(单位:cm)如下:甲:170165168169172173168167乙:160173172161162171170175(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪名运动员的成绩更为稳定?为什么?(3)若预测,跳过165cm(包括165cm)就很可能获得冠军.该校为了获得冠军,可能选哪位运动员参赛?若预测跳过170cm(包括170cm)才能获得冠军呢?参考答案1-4BCAA 5-8CBDC 9.4 10.168 cm 11.0或2.5或5 12.1.15 13.乙 14.9,3 15.解:(1)30元 (2)50元 (3)250人16.解:(1)众数为3000,中位数是2750 (2)平均数是2790,该乡镇所有务工人员在这一个月的总收入为111600元 17.解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1. (3)乙18.解:(1)被调查的总人数为16÷16%=100(人),m =100-(20+28+16+12)=24 (2)由于共有100个数据,其中位数为第50,51个数据的平均数,而第50,51个数据均为5篇,所以中位数为5篇,出现次数最多的是4篇,所以众数为4篇(3)估计该校学生在这一周内文章阅读的篇数为4篇的人数为800×28100=224(人)19.解:(1)甲的平均成绩为18(170+165+168+169+172+173+168+167)=169(cm),乙的平均成绩为18(160+173+172+161+162+171+170+175)=168(cm).(2)s 2甲=18×[(170-169)2+(165-169)2+…+(168-169)2+(167-169)2]=6(cm 2),s 2乙=18×[(160-168)2+(173-168)2+…+(170-168)2+(175-168)2]=31.5(cm 2).∵s 2甲<s 2乙,∴甲运动员的成绩更稳定.(3)若跳过165cm(包括165cm)就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参赛;若跳过170cm(包括170cm)才能获得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参赛。

人教版数学《数据的分析》单元测试A卷(含答案 )

人教版数学《数据的分析》单元测试A卷(含答案 )

人教版数学《数据的分析》单元测试A 卷一、单选题1.在学校组织的“我和我的祖国”歌咏比赛中,某年级七个班的成绩(单位:分)分别为:89,93, 94,95, 96, 96, 97.这组数据的众数和中位数分别是( ). A .95,95B .96,96C .95,96D .96,952.某校要从甲、乙、丙、丁四名学生中选出一名学生参加数学竞赛,对这四名学生进行了10次数学测试,经过数据分析4人的平均成绩均为95分,215s =甲,217.2s =乙,28.5s =丙,221.7s =丁.则应该选择( )A .甲B .乙C .丙D .丁3.一组数据1,3,2-,3,4的纵数是( ) A .1B .2-C .12D .34.一组数据1,2,3,5,4,3中的中位数和众数分别是( ) A .3,3B .5,3C .4,3D .5,105.下表是今年3月12日植树节我县6个乡镇最高气温近似值(℃)的统计结果:则这几个乡镇该日最高气温近似值的众数和中位数分别是( ) A .6,8B .8,7C .8,8D .8,66.某中学随机抽取了该校50名学生,他们的年龄如表所示:这50名学生年龄的众数和中位数分别是( ). A .13岁、14岁B .14岁,14岁C .14岁,13岁D .14岁,15岁7.某篮球队12名队员的年龄统计如图所示,则该队队员年龄的众数和中位数分别是( )A.16,15 B.15,15.5 C.15,17 D.15,168.中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为x=甲82分,x乙=82分,2s=甲245分2,2s=乙190分2.那么成绩较为整齐的是 ( )A.甲班B.乙班C.两班一样整齐D.无法确定9.某地连续10天的最高气温统计如下表:则这组数据的中位数和平均数分别为()A.24.5,24.6 B.25,26 C.26,25 D.24,2610.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数 B.中位数 C.众数 D.方差二、填空题11.在本赛季CBA比赛中,某运动员最后六场的得分情况如下:17,15,21,28,12,19,则这组数据的极差为_______.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m n个数据的平均数等于______.13.明明成绩为78分.全班共30人,其他同学的成绩为1个100分,4个90分, 22个80分,以及1个2分和1个10分.明明计算出全班的平均分为77分,他认为自己这次成绩在班上处于“中上水平”.产生错觉的原因是_________易受极端数值的影响.14.一组数据为1,2,3,4,5,6,则这组数据的中位数是______.15.有一组互不相等的数据(每个数都是整数):2,4,6,a ,8,它们的中位数是6,则整数a 是_____.16.甲、乙、丙、丁四位同学都参加了5次数学模拟测试,每个人这5次成绩的平均数都是125分,方差分别是22220.65,0.55,0.50,0.45S S S S ====甲乙丁丙,则这5次测试成绩最稳定的是_________同学.17.现要从甲、乙两个队员中挑选出一名队员参加射击比赛,两人各进行20次的射击测试,得到的平均数=x x 甲乙,方差22s s <甲乙,若要选拔出成绩比较稳定的队员参赛,则应选择 .18.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是S 甲2,S 乙2,且S 甲2<S乙2,则两个队的队员的身高较整齐的是_____.19.某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如下面的条形图所示.这15名同学进球数的众数是________.20.我市组织万人跳绳大赛,某社区对13-16岁年龄组的参赛人数统计如下表:则这年龄段参赛选手年龄的众数是______岁,中位数是_______岁.三、解答题21.某次歌唱比赛,三名选手的成绩如下表所示.(1)若根据三项测试的平均成绩,确定名次,则谁是第一名?(2)若组委会决定将歌唱表演、才艺表演、音乐知识三项测试得分按4︰3︰1的比例确定名次,此时谁是第一名?22.如果一组数据3,2,2,4,x的平均数为3.(1)求x的值;(2)求这组数据的众数.23.停课不停学,疫情期间,八(1)班30位同学参加运动线上打卡,张老师为了鼓励同学们积极锻炼,统计了这30人15天的打卡次数如下:(1)直接写出打卡次数的众数和中位数;(2)求所有同学打卡次数的平均数;(3)为了调动同学们锻炼的积极性,张老师决定制定一个打卡奖励标准,凡打卡次数达到或超过这个标准的同学将获得奖励,请你根据(1)、(2)中所求的统计量,帮助张老师制定一个较为合理的打卡奖励标准,并说明理由.24.甲、乙两个学习小组各4名学生的数学测验成绩(单位:分)如下:甲组:86,82,87,85;乙组:85,81,85,89.分别计算这两组数据的方差,并说明哪个学习小组学生的成绩比较整齐.25.一次演讲比赛中,7位评委现场给一位选手打分,评分情况如下表:(1)如果以平均分为标准,则最后得分为______;(2)如果去掉一个最高分和一个最低分,以余下得分的平均分为标准,则最后得分为______; (3)如果以中位数为标准,则得分为______; (4)如果以众数为标准,则得分为______.26.长沙市环保部门随机选取甲、乙两个区进行空气质量监测.过程如下,请补充完整. (1)(收集数据)从2018年3月初开始,连续一年对两区的空气质量进行监测,将每个月所有天数的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:甲区:110 100 95 60 90 85 80 50 50 50 45 55 乙区:100 105 90 80 90 85 90 60 90 45 60 40 整理、描述数据 按如下表整理、描述这两区空气污染指数的数据:(说明:空气污染指数50≤时,空气质量为优;50<空气污染指数100≤时,空气质量为良;100<空气污染指数150≤时,空气质量为轻微污染.)(2)(分析数据)两区的空气污染指数的平均数,中位数,众数如下表所示(表中数据均保留一位小数):(3)(得出结论)a.估计在接下来的200天甲区空气质量为优的天数为_________天(结果保留整数);b.可以推断出________(填甲、乙)区这一年中环境状况比较好,理由为________________.(至少从两个不同的角度说明推断的合理性)27.某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照4:6:5:5的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?28.某校为了了解全校400名学生参加课外锻炼的情况,随机对40名学生一周内平均每天参加课外锻炼的时间进行了调查,结果如下:(单位:分)40 21 35 24 40 38 23 52 35 6236 15 51 45 40 42 40 32 43 3634 53 38 40 39 32 45 40 50 4540 40 26 45 40 45 35 40 42 45(1)补全频率分布表和频率分布直方图.(2)填空:在这个问题中,总体是_____,样本是_____.由统计结果分析的,这组数据的平均数是38.35(分),众数是_____,中位数是______.(3)如果描述该校400名学生一周内平均每天参加课外锻炼时间的总体情况,你认为用平均数、众数、中位数中的哪一个量比较合适?参考答案1.D2.C3.D4.A5.C6.C7.D8.B9.A10.D11.1612.mx ny m n++.13.平均数14.3.515.716.丁17.甲.18.甲19.9.20.14 1521.(1)A是第一名;(2)B是第一名.22.(1)4x=;(2)2和4.23.(1)众数:8次,中位数:8.5次;(2)10次;(3)可以选择中位数,即超过9次(含9次)的获得奖励,见解析24.甲学习小组学生的成绩比较整齐.25.(1)9.3分;(2)9.4分;(3)9.5分;(4)9.6分26.(1)2,9,1;(2)70,90;(3)a.67;b.甲;甲区的平均数低于乙区,中位数低于乙区,故甲区的环境状况比较好27.选择乙.28.(1)补全频率分布表和频率分布直方图,见解析;(2)总体是全校400名学生参加课外锻炼的时间,样本是40名学生一周内平均每天参加课外锻炼的时间;众数是40,中位数是40;(3)用平均数、中位数、或众数描述该校400名学生参加课外锻炼时间的总体情况都比较合适.。

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。

第二十章 数据的初步分析 单元测试题(含答案)

第二十章    数据的初步分析  单元测试题(含答案)

数据的初步分析单元测试题一、单选题1.(本题3分)益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是262.(本题3分)在创建平安校园活动中,九年级一班举行了一次“安全知识竞赛”活动,第一小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90 B.平均数是90 C.众数是87 D.极差是93.(本题3分)已知A组数据为2、3、6、6、7、8、8、8,B组数据为4、5、8、8、9、10、10、10,则描述A、B两组数据的统计量中相等的是()A.众数 B.中位数 C.平均数 D.方差4.(本题3分)下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩根据统计图中的信息可得,下列结论正确的是A.甲队员成绩的平均数比乙队员的大 B.甲队员成绩的方差比乙队员的大C.甲队员成绩的中位数比乙队员的大 D.乙队员成绩的方差比甲队员的大5.(本题3分)在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是组员及项目甲乙丙丁戊方差平均成绩试卷第1页,总6页试卷第2页,总6页A . 88,B . 88,2C . 90,D . 90,26.(本题3分)朗读者是中央电视台推出的大型文化情感类节目,节目旨在实现文化感染人、鼓舞人、教育人的引导作用为此,某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是A . 平均数B . 中位数C . 众数D . 方差7.(本题3分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=609千克,亩产量的方差分别是2S 甲=29.6, 2S 乙=2.则关于两种小麦推广种植的合理决策是( )A . 甲的平均亩产量较高,应推广甲B . 甲、乙的平均亩产量相差不多,均可推广C . 甲的平均亩产量较高,且亩产量比较稳定,应推广甲D . 甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙8.(本题3分)如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量的描述不正确的是( )A . 众数为30B . 中位数为25C . 平均数为24D . 方差为839.(本题3分)X,X,…X的平均数为4,X,X…X的平均数为6,则X,X,…X,X…X的平均数为( )A . 5B . 4C . 3D . 8得分918992909010.(本题3分)某地区某月前两周从周一至周五每天的最低气温是单位:,和,若第一周这五天的平均气温为,则第二周这五天的平均气温为A. B. C. D.二、填空题11.(本题4分)一组数据2、4、x、2、4、3、5的众数是2,则这组数据的中位数为______.12.(本题4分)某中学规定学生的学期总评成绩满分为100分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,小明的数学三项成绩(百分制)依次为85分,80分,90分,则小明这学期的数学总评成绩是______分.13.(本题4分)某市近8日每日最高气温折线统计图如图所示,这组每日最高气温数据的位数是_____度.14.(本题4分)某班进行个人投篮比赛,受污损的下表记录了在规定时间内投进几个球的人数分布情况,已知进球3个或3个以上的人平均每人投进3.5个球,进球4个或4个以下的人平均每人投进2.5个球,则投进3个球的有____人,投进4个球的有___人.进球数n(个) 0 1 2 3 4 5投进n个球的人数 1 2 7 215.(本题4分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:1号2号3号4号5号总分甲班100 98 110 89 103 500乙班86 100 98 119 97 500(1)根据上表提供的数据填写下表:优秀率中位数方差试卷第3页,总6页三、解答题16.(本题10分)某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.17.(本题10分)某校欲招聘一名数学教师,学校对甲乙丙三位候选人进行三项能力测试,各项成绩满分均为100分,根据结果择优录用,三位候选人测试成绩如下表:(1)如果根据三项测试成绩的平均成绩,谁将被录用?为什么?(2)根据实际需要学校将三项能力测试得分按8:2:2的比例确定每人的成绩,谁将被录用?为什么?18.(本题10分)18.(本题10分)春节联欢晚会往往对"最喜欢的节目"进行调查,下面表中是戏曲类节目收集的数据试卷第4页,总6页试卷第5页,总6页名 称ABCDE喜爱(人数) 1870万 728万 12405万 68万 520万(1)调查收集的数据有用吗?(2)最受欢迎的戏曲是哪个?说明你的理由?(3)能说戏曲D不好吗?19.(本题10分)甲、乙两名队员参加射击训练,成绩分别绘制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩(环) 中位数(环) 众数(环) 方差甲 a 7 7 1.2乙 7 b 8 c(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击成绩,若选派其中一名参赛,你认为应选哪名队员?20.(本题10分)某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A 、B 、C 、D 、E 五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评结果如表所示:表1演讲答辩得分表单位:分A B C D E甲90 92 94 95 88乙89 86 87 94 91表2民主测评票数统计表单位:张“好”票数“较好”票数“一般”票数甲40 7 3乙42 4 4规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分“好”票数分“较好”票数分“一般”票数分;综合得分演讲答辩得分民主测评得分;当时,甲的综合得分是多少?如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.试卷第6页,总6页本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

人教版八年级数学下册《第二十章数据的分析》单元测试题(含答案)

人教版八年级数学下册《第二十章数据的分析》单元测试题(含答案)

第二十章数据的分析第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若一组数据有8个数,它们的平均数为12,另一组数据有4个数,它们的平均数为18,则这12个数的平均数为( )A.12 B.13C.14 D.152.在学校演讲比赛中,10名选手成绩的折线统计图如图1所示,则这10名选手成绩的众数是( )图1A.95分 B.90分C.85分 D.80分3.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,下列说法错误的是( )A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多4.图2是交警在一个路口统计的某个时段来往车辆的速度(单位:千米/时)情况,则这些车辆的车速的中位数(单位:千米/时)是( )图2A.51.5 B.52C.52.5 D.535.下列说法中,正确的有( )①在一组数据中,平均数越大,众数越大;②在一组数据中,众数越大,中位数越大;③在一组数据中,中位数越大,平均数越大;④在一组数据中,众数越大,平均数越大.A.0个 B.1个C.2个 D.3个6.在全国汉字听写大赛的热潮下,某学校进行了选拔赛,有15名学生进入了半决赛,他们的成绩各不相同,并且要按成绩取前8名进入决赛.小明只知道自己的成绩,他要判断自己能否进入决赛,可用下列哪个统计结果判断( )A.平均数 B.众数C.中位数 D.方差7.某学校教师分为四个植树小组参加植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与其他三组中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是( )A.8 B.10C.12 D.10或128.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表.对于不同的x,下列关于年龄的统计量不会发生改变的是(年龄(岁)13141516频数515x 10-xA.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差9.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表.现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权的比由2∶3∶5变成5∶3∶2,那么成绩变化情况是( )采访写作计算机创意设计小明70分60分86分小亮90分75分51分小丽60分84分72分A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩增加相同10.已知一组数据x1,x2,x3,x4,x5的平均数为8,方差为2,那么另一组数据4x1+1,4x2+1,4x3+1,4x4+1,4x5+1的平均数和方差分别为( )A.33与2B.8与2C.33与32D.8与33请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.如图3是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)图312.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为________分.13.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量为________只.14.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________.15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,某市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及方差s2如右表所示.如果选拔一名学生去参赛,应派________去.16.有5个从小到大排列的正整数,中位数是3,唯一的众数是6,则这5个数的和为________.三、解答题(共52分)(1)小谢家的小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100 km需汽油8 L,汽油每升3.45元,求出小谢家一年(按12个月计算)的汽油费用是多少元.18.(本小题6分)已知一组数据8,9,6,m的平均数与中位数相等,求m的值.19.(本小题6分)某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示.根据表格回答问题:(1)商店出售的各种规格空调中,众数是多少?(2)假如你是经理,现要进货,6月份在有限的资金下将如何安排进货?20.(本小题6分)某公司欲聘请一位员工,三位应聘者A,B,C的原始评分(单位:分)如下表:(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,择优录取,应录取谁?为什么?21.(本小题6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1)该公司“高级技工”有________名;(2)所有员工月工资的平均数x为2500元,中位数为________元,众数为________元;(3)小张到这家公司应聘普通工作人员.请你回答图4中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.图422.(本小题7分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).图5甲、乙两人射箭成绩统计表小宇的作业:解:x 甲=15×(9+4+7+4+6)=6,s 甲2=15×[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=15×(9+4+1+4+0)=3.6.(1)a =________,x 乙=________.(2)请完成图中表示乙成绩变化情况的折线.(3)①观察统计图,可看出________的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中.23.(本小题7分)某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前、后引体向上的个数进行统计分析,得到乙组男生训练前、后引体向上的平均个数分别是6个和10个,以及下面不完整的统计表和统计图.甲组男生训练前、后引体向上个数统计表(单位:个)(1)a =________,b =________,c =________;(2)甲组训练后引体向上的平均个数比训练前增长了________%; (3)你认为哪组训练效果较好?并提供一个支持你观点的理由; (4)小明说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.”你同意他的观点吗?请说明理由.图624.(本小题8分)为了迎接体育中考,九年级7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如图7.(1) 平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 91.7% 16.7% 女生1.383.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请你给出两条支持女生观点的理由;(3)体育老师说:“咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是全班优秀率达到50%.”如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?图7答案1.C 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9.B 10.C 11.甲 12.135 13.14000 14.9 15.乙 16.1817.解:(1)由表中七天的数据可知,平均每天行驶的路程为:17×(46+39+36+50+54+91+34)=50(km),故小谢家的小轿车每月(每月按30天计算)要行驶50×30=1500(km). (2)小谢家一年的汽油费用为 1500×12100×8×3.45=4968(元). 18.解:①当m 为最大值时,排序为:m ,9,8,6, 根据题意,得m +9+8+64=9+82,解得m =11;②当m 为最小值时,排序为:9,8,6,m ,根据题意,得m +9+8+64=8+62,解得m =5;③当m 既不是最大值,也不是最小值时,排序为:9,8,m ,6或9,m ,8,6,根据题意,得m +9+8+64=8+m2,解得m =7. 综上可知,m 的值为5或7或11. 19.解:(1)众数为1.2匹.(2)通过观察可得:1.2匹的空调的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.20.解:(1)A 的平均分为15×(4+5+5+3+3)=4(分),B 的平均分为15×(4+3+3+5+4)=3.8(分),C 的平均分为15×(3+3+4+4+4)=3.6(分),因此应录取A.(2)应录取B.理由:根据题意,三人的综合评分如下: A 的综合评分为4×10%+5×15%+5×20%+3×25%+3×30%=3.8(分), B 的综合评分为4×10%+3×15%+3×20%+5×25%+4×30%=3.9(分), C 的综合评分为3×10%+3×15%+4×20%+4×25%+4×30%=3.75(分). 因此应录取B.21.解:(1)该公司“高级技工”的人数=50-1-3-2-3-24-1=16(名).故答案为16.(2)工资数从小到大排列,第25个和第26个分别是1600元和1800元,因而中位数是1700元; 在这些数中,1600元出现的次数最多,因而众数是1600元. 故答案为1700,1600.(3)这个经理的介绍不能反映该公司员工的月工资实际水平. 用1700元或1600元来介绍更合理些. (4)y =2500×50-21000-8400×346≈1713(元).y 能反映该公司员工的月工资实际水平.22.解:(1)4 6 (2)如图所示:(3)①观察统计图,可看出乙的成绩比较稳定;s 乙2=15×[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.因为s 乙2<s 甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 23.解:(1)a =(8+9+6+6+7+6)÷6=7, b =4,c =(6+7)÷2=6.5. (2)(7-4)÷4×100%=75%.(3)(答案合理即可)甲组训练效果较好.理由:因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%, 甲组训练前、后平均个数的增长率大于乙组训练前后平均个数的增长率,所以甲组训练效果较好.(4)不同意.理由:因为乙组训练后的平均个数增加了50%×0+20%×7+20%×8+10%×10=4(个),所以我不同意小明的观点.24平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 7 91.7% 16.7% 女生71.3783.3%8.3%(2)从平均数上看,女生平均数高于男生;从方差上看,女生成绩的方差低于男生,波动性小(答案合理即可). (3)设男生新增优秀人数为x 人, 则2+4+x +2x =48×50%, 解得x =6, 故6×2=12.答:男生新增优秀人数为6人,女生新增优秀人数为12人.。

第六章 数据的分析单元测试卷(含解析)

第六章 数据的分析单元测试卷(含解析)

第六章数据的分析单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.一组互不相等的数据,它的中位数为80,小于中位数的数的平均数为70,大于中位数的数的平均数为96,设这组数据的平均数为,则=()A.82 B.83 C.80≤≤82 D.82≤≤832.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A.6 B.7 C.8 D.93.如图是小明进入中考复习阶段以来参加的10次物理水平测试成绩(满分70分)的统计图,那么关于这10次测试成绩,下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是544.已知三年四班全班35人身高的算术平均数与中位数都是150厘米,但后来发现其中有一位同学的身高登记错误,将160厘米写成166厘米,正确的平均数为a厘米,中位数为b厘米.关于平均数a的叙述,下列何者正确()A.大于150 B.小于150 C.等于150 D.无法确定5.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.B.C.D.6.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A.平均数B.众数C.方差D.标准差7.有15位同学参加智力竞赛,已知他们的得分互不相同,取八位同学进入决赛,小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的()A.平均数B.众数C.最高分数D.中位数8.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2 B.4 C.8 D.169.有十八位同学参加智力竞赛,且他们的分数互不相同,按分数高低选九位同学进入下一轮比赛.小华知道了自己的分数后,还需要知道哪个统计量,就能判断自己能否进入下一轮比赛()A.中位数B.众数C.方差D.平均数10.我县今年4月某地6天的最高气温如下(单位℃):32,29,30,32,30,32.则这个地区最高气温的众数和中位数分别是()A.30,32 B.32,30 C.32,31 D.32,32二.填空题(共8小题,满分24分,每小题3分)11.若一组数据6、7、4、6、x、1的平均数是5,则这组数据的众数是.12.为了了解我市七年级学生的体能状况,从某校七年级甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是甲的优秀率乙的优秀率.(填“>”“<”或“=”)13.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是分.14.若40个数据的平方和是56,平均数是,则这组数据的方差.15.某市工商局今年4月份抽查民意商场5天的营业额,结果如下(单位:万元):2.5,2.8,2.7,2.4,2.6,则(1)样本平均数为万元;(2)根据样本平均数去估计民意商场4月份的平均日营业额为万元;月营业总额为万元.16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.17.将30个数据分别减去300后,得到一组新数据的平均数是4,那么原30个数据的和是.18.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.三.解答题(共7小题,满分66分)19.(8分)某学习小组想了解某市全民健身活动的开展情况,准备采用以下调查方式中的一种进行调查:①从一个社区随机选取200名居民;②从一个城镇的不同住宅楼中随机选取200名居民;③从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象.(1)在上述调查方式中,你认为最合理的是(填序号);(2)由一种比较合理的调查方式所得到的数据制成了如图所示的条形统计图,写出这200名居民健身时间的众数是、中位数是;(3)小方在求这200名居民每人健身时间的平均数时,他是这样分析的:小方的分析正确吗?如果不正确,请求出正确的平均数;(4)若某市有300万人,估计该市每天锻炼2小时及以上的人数是多少?.20.(8分)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:景点A B C D E原价(元)1010152025现价(元)55152530平均日人数(千人)11232(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?21.(8分)某校九年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两位同学在父母的支持下各捐献了50册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数4567850人数68152(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.22.(10分)某校八年级一班20名女生某次体育测试的成绩统计如下:成绩(分)60708090100人数(人)15x y2(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;(2)在(1)的条件下,设20名学生本次测试成绩的众数是a,中位数为b,求的值.23.(10分)某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩,为了确定一个适当的目标,商场统计了每个营业员在某月的销售额(万元)如图(1)求平均的月销售额及数据的中位数和众数;(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.24.(10分)甲、乙两城市为了解决空气质量污染问题,对城市及其周边的环境污染进行了综合治理.在治理的过程中,环保部门每月初对两城市的空气质量进行监测,连续10个月的空气污染指数如图所示.其中,空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.(1)填写下表:平均数方差中位数空气质量为优的次数甲803401乙1060803(2)从以下四个方面对甲、乙两城市的空气质量进行分析.①从平均数和空气质量为优的次数来分析甲乙两城市的空气质量哪个好一些;②从平均数和中位数来分析甲乙两城市的空气质量哪个好一些;③从平均数和方差来分析甲乙两城市的空气质量变化情况;④根据折线图上两城市空气污染指数的走势来分析甲乙两城市的空气质量哪个好一些.25.(12分)为了解初二学生参加户外活动的情况,某县教育局对其中500名初二学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如下统计图.(参加户外活动的时间分为四种类别:“0.5小时”,“1小时”,“1.5小时”,“2小时”)请根据图示,回答下列问题:(1)求学生每天户外活动时间的平均数,众数和中位数;(2)该县共有12000名初二学生,请估计该县每天户外活动时间超过1小时的初二学生有多少人?参考答案与试题解析1.解:大于中位数与小于中位数的数个数相同,可以设都是m个.当这组数有偶数个时,则中位数不是这组数中的数,则这组数有2m个,则平均数是:=83;当这组数据的个数是奇数个时,则这组数有2m+1个,则平均数是:=83﹣,而m≥1,因而0<≤1∴83﹣≥83﹣1=82且83﹣<83.故82≤<83.故选:D.2.解:∵9出现了2次,出现的次数最多,∴这5个数据的众数是9;故选:D.3.解:A、把这些数从小到大排列,最中间的数是=55,则中位数是55,正确;B、60出现的次数最多,则众数是60,正确;C、D、平均数是:(40+50×3+55×2+60×4)=54,则方差是:[(40﹣54)2+3(50﹣54)2+2(55﹣54)2+4(60﹣54)2]=39;则说法错误的是C;故选:C.4.解:已知在错误登记中全班35人身高的算术平均数是150厘米,则总身高总和为35×150=5250;修改后,减少了6厘米,为5244厘米,则正确的平均数为a=≈149.8厘米.故选:B.5.解:设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则有T1=,T2=;∴平均速度===;故选:D.6.解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数,故选:B.7.解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选:D.8.解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为,新数据是在原来每个数上加上100得到,则新平均数变为+100,则每个数都加了100,原来的方差s12=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=2,现在的方差s22=[(x1+100﹣﹣100)2+(x2+100﹣﹣100)2+…+(x n+100﹣﹣100)2]=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=2,方差不变.故选:A.9.解:因为有十八位同学参加,选九位同学进入下一轮比赛,那么分数从高到低排列后,第9名的分数就是中位数,所以小华知道自己的分数和中位数后,才能判断自己能否进入下一轮比赛.故选:A.10.解:将这组数据按从小到大的顺序排列为:29,30,30,32,32,32,出现最多的数字为:32,故众数是32,中位数为:31.故选:C.11.解:∵数据6、7、4、6、x、1的平均数是5,∴=5,解得:x=6,则这组数据为数据6、7、4、6、6、1的众数为6,故答案为:6.12.解:根据甲乙两班的中位数可以初步判断乙班优秀的人数≥14人,而甲班的优秀人数≤13个,通过比较可以确定甲的优秀率<乙的优秀率.故填<.13.解:小明的数学期末成绩是=89.3(分),故答案为:89.3.14.解:由方差的计算公式可得:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=[x12+x22+…+x n2+n2﹣2(x1+x2+…+x n)]=[x12+x22+…+x n2+n2﹣2n2]=[x12+x22+…+x n2]﹣2=﹣=1.4﹣0.5=0.9.故填0.9.15.解:依题意得,(1)样本平均数=(2.5+2.8+2.7+2.4+2.6)÷5=2.6(万元);(2)根据样本平均数去估计民意商场4月份的平均日营业额为2.6万元;月营业额=2.6×30=78(万元).故答案为2.6;2.6;78.16.解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84﹣4×12=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S2=[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=,故答案为:.17.解:由题意知,将30个数据分别减去300后平均数为4,则原数据的平均数为4+300=304,那么原30个数据的和即为304×30=9120.故答案为9120.18.解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为100分,因此a=b=c=d=e=100,即C得100分.故答案为:100.19.解:(1)①、②两种调查方式具有片面性,故③比较合理;(2)1出现的次数最多,出现了94次,则众数是1;∵共有200个数,所以中位数是第100、101个数的平均数,∴中位数是2;故答案为:1,2;(3)不正确,正确的平均数:(小时),故答案为:1.88小时;(4)根据题意得:300×(52+38+16)÷200=159(万人)答:该市每天锻炼2小时及以上的人数是159万人.故答案为:159万人.20.解:(1)风景区是这样计算的:调整前的平均价格:=16(元)调整后的平均价格:=16(元)∵调整前后的平均价格不变,平均日人数不变∴平均日总收入持平;(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元)现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)∴平均日总收入增加了:×100%≈9.4%;(3)根据加权平均数的定义可知,游客的算法是正确的,故游客的说法较能反映整体实际.21.解:(1)设捐献7册的人数为x,捐献8册的人数为y,则解得答:捐献7册的人数为6人,捐献8册的人数为3人.(2)捐书册数的平均数为320÷40=8,按从小到大的顺序排列得到第20,21个数均为6,所以中位数为6.出现次数最多的是6,所以众数为6.因为平均数8受两个50的影响较大,所以平均数不能反映该班同学捐书册数的一般情况.2.解:(1)由题意,有解得.(2)由(1),众数a=90,中位数b=80.∴.23.解:(1)平均月销售额是20万元,中位数是18万元,众数是15万元;(2)这个目标可以定为每月20万元.因为从样本数据看,在平均数、众数和中位数中,平均数最大,因此,将月销售额的最大值定为20万元比较合适.24.解:(1)甲城市10个月的空气污染指数为:50、60、60、70、80、90、90、90、100、110,∴甲的中位数为=85(分),甲城市10个月的空气污染指数为:120、120、110、110、90、70、60、50、40、30,∴乙的平均数为×(120+120+110+110+90+70+60+50+40+30)=80,完成表格如下:平均数方差中位数空气质量为优的次数甲80340851乙801060803(2)①从平均数和空气质量为优的次数来分析:平均数相同,而空气质量为优的次数甲城市比乙城市少,故乙城市的空气质量好些;②从平均数和中位数来分析:平均数相同,甲的中位数大于乙的中位数,故乙城市的空气质量好些;③从平均数和方差来分析:平均数相同,S甲2<S乙2,根据方差的意义,可得空气污染指数比较稳定的城市是甲;④根据折线图上两城市的空气污染指数的走势来分析,乙城市的空气污染指数下降快比较明显,且变化无反复,故治理环境污染的效果较好的城市是乙.25.解:(1)观察条形统计图,可知这组样本数据的平均数=(80×0.5+200×1+120×1.5+100×2)=1.24,所以这组样本数据的平均数是1.24小时,众数为1小时;中位数为1小时;(2)被抽查的500名学生中,户外活动时间超过1小时的有220人,12000×=5280,所以估计该校每天户外活动时间超过1小时的学生有5280人.。

第二十章 数据的分析 单元测试(教参)

第二十章   数据的分析  单元测试(教参)

第二十章数据的分析单元测试时间:45 分,满分:100 分班级姓名分数一、选择题(每小题 6 分,共 36 分)1 .数据2 ,3 , 5 , 5 ,4 的众数是( ) .( A ) 2 ( B ) 3 ( C ) 4 ( D ) 52 .某市在一次空气污染指数抽查中,收集到 10 天的数据如下: 61 , 75 , 70 , 56 , 81 , 91,92 , 91 , 75 , 81 .该组数据的中位数是( ) .( A ) 78 ( B ) 81 ( C ) 91 ( D ) 77 . 33 .某男装专卖店老板专营某品牌夹克,店主统计了一周中不同尺码的夹克销售量如下表:如果每件夹克的利润相同,你认为该店主最关注的销售数据是下列统计量中的( ) .( A )平均数( B )方差( C )众数( D )中位数4 . 12 位参加歌唱比赛的同学的成绩各不相同,按成绩取前 6 位进人决赛,如果小颖知道了自己的成绩后,要判断能否进人决赛,小颖需要知道这 12 位同学成绩的( ) .( A )平均数( B )众数( C )中位数( D )方差5 .某学校在开展“节约每一滴水”的活动中,从七年级的 100 名同学中任选出 20 名同学汇报了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是正整数)整理如下表:请你估计这 100 名同学的家庭一个月节约用水的总量大约是( ) .( A )18Ot ( B ) 300t ( C ) 23Ot ( D ) 25Ot6 .甲、乙两班举行电脑汉字输人比赛,参赛学生每分输人汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分输人汉字个数≥50 为优秀);③甲班成绩的波动比乙班大.上述结论中正确的是( ) .( A )①②③( B )①② ( C )①③( D )②③(二)填空题(每小题 6 分,共 24 分)7 .一家鞋店在一段时间内销售了某种女鞋 30 双,各种尺码的销售量如下表:如果鞋店要购进 90 双这种女鞋,那么购进 22 cm , 24 cm 和 24 . 5 cm 三种尺码女鞋数量最合适的分别是 .8 .甲、乙两地 9 月上旬的日平均气温如图所示,则甲、乙两地这 10 天日平均气温的方差大小关系为,S 2甲 S 2乙(填>或< ) .9 .一组数据 25 , 29 , 20 , x , 14 ,它的中位数是 23 ,则这组数据的平均数为 . 10 .阅读下列材料: 为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水技能进行考核.在相同条件下,各跳了 10 次,成绩(单位:分)如下:回答下列问题:( 1 )甲成绩的平均数是 ,乙成绩的平均数是 . ( 2 )经计算知,S 2甲=13 . 2 , S 2乙=26.36这表明 (用简明的文字语言表述) .( 3 )你认为选谁去参加比赛更合适? ,理由是 . (三)解答题(每小题 10 分,共 40 分)11.国家规定“中小学生每天在校体育活动时间不低于 1h ”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内 320 名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是: A 组: t < 0 . 5h B 组:0.5h ≤t<1h c 组:1h ≤t<1.5h D 组:t ≥1.5h 请根据上述信息解答下列问题: ( 1 ) c 组的人数是 ;( 2 )本次调查数据的中位数落在 组内;( 3 )若该市辖区内约有 32 000 名初中学生,请你估计其中达国家规定体育活动时间的人约有多少.12 .一养鱼专业户为了估计池塘里有多少条鱼,先捕上 100 条作上标记,然后放回池塘里.过了一段时间,待带标记的鱼混合于鱼群后,再捕捞 5 次,记录如下:第 1 次捕捞 90 条,带标记的有11条;第 2 次捕捞 100 条,带标记的有 9 条;第 3 次捕捞 120 条,带标记的有 12 条;第 4 次捕捞 100 条,带标记的有 9 条;第 5 次捕捞 80 条,带标记的有 8 条.鱼塘内大约有多少条鱼?13 .某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力,他们的成绩(百分制)如下表:( l )如果公司根据经营性质和岗位要求,以形体、口才、专业水平、创新能力按照 5:5:4:6的比确定成绩,请计算甲、乙两人各自的平均成绩,看看谁将被录取?( 2 )如果公司根据经营性质和岗位要求,以面试成绩中形体占 5 % ,口才占 30 % ,笔试成绩中专业水平占 35 % ,创新能力占 30 %确定成绩,那么你认为该公司应该录取谁?14 .某商场统计了每个营业员在某月的销售额,绘制了如下统计图.解答下列问题:(1)设营业员的月销售额为x(单位:万元).商场规定:当 x < 15 时为不称职,当 15≤x <20时为基本称职,当 20≤x < 25 时为称职,当 x≥25 时为优秀.试求出不称职、基本称职、称职、优秀四个层次营业员人数所占百分比,并画出相应的扇形图.(2)根据( 1 )中规定,所有称职和优秀的营业员月销售额的中位数、众数和平均数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡达到或超过这个标准的营业员将受到奖励.如果要使得称职和优秀的所有营业员的半数左右能获奖,奖励标准应定为多少元?并简述其理由.。

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

第二十章《数据的分析》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.52.已知n个数据的和为108,平均数为12,则n为()A.7B.8C.9D.103.(跨学科融合)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某校为了解同学们某季度学习“青年大学习”的情况,从中随机抽取5位同学,经统计他们的学习时间(单位:分钟)分别为78,80,85,90,80,则这组数据的众数为()A.78B.80C.85D.904.在以下一列数3,3,5,6,7,8中,中位数是()A.3B.5C.5.5D.65.现有相同个数的甲、乙两组数据,经计算得x甲=x乙,且s甲2=0.35,s乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定D.无法确定6.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分7.(跨学科融合)奥林匹克官方旗舰店统计了某一段时间内各款“冰墩墩”销售情况(如下表),厂家决定多生产20 cm高的“冰墩墩”,则依据的统计量是()A.平均数8.对于一组统计数据3,3,6,5,3,下列说法错误的是()A.众数是3B.平均数是4C.方差是1.6D.中位数是69.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元10.某市举行了一次数学竞赛,分段统计参赛同学的成绩,从中抽查了50名学生的成绩如下表:A.81分B.82分C.79分D.75.5分二、填空题(共5小题,每小题3分,共15分)11.冬天某地区一周最高气温的走势图如图所示,则这组数据的众数是℃.12.某班50人一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人,则本次测验的中位数是分.13.学校组织“我的青春我做主”演讲比赛,小红演讲内容得100分,语言表达得80分,若按演讲内容占40%,语言表达占60%的比例计算总成绩,则她的总成绩是分.14.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(从“平均数、中位数、众数、方差”中选择答案).15.(创新题)某学校随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图(如图),其中条形图被墨迹遮盖了一部分,则被调查的学生读课外书册数的中位数为.三、解答题(一)(共3小题,每小题8分,共24分)16.某饮料店为了解某一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,24,31.求这6天的日销售量的众数和平均数.17.在一次大学生一年级新生训练射击比赛中,某小组10人的成绩如下表:(1)该小组射击数据的众数是,中位数是;(2)该小组的平均成绩为多少?18.在校体育集训队中,跳高运动员小军和小明的9次成绩如下(单位:m):小军:1.41,1.42,1.42,1.43,1.43,1.43,1.44,1.44,1.45;。

第20章 数据的分析单元测试卷(答案版)

第20章  数据的分析单元测试卷(答案版)

第20章数据的分析一、选择题(本大题共10小题 ,每题3分 ,共30分)1.假设1 ,3 ,x ,5 ,6五个数的平均数为4 ,那么x的值为(D) A.3B.4C.92D.52.假设m个数的平均数x ,另n个数的平均数y ,那么m+n个数的平均数是(C)A.x+y2B.x+ym+nC.mx+nym+nD.mx+nyx+y3.某校在一次歌咏比赛中 ,7位评委给各班演出的节目评分 ,在每班的7个评分中 ,去掉一个最|高分 ,再去掉一个最|低分 ,求得的平均数作为该班节目的实际得分.7位评委对该班的演出评分(单位:分)如下:9.65 ,9.70 ,9.68 ,9.75 ,9.72 ,9.65 ,9.78.那么该班节目的实际得分是(C)A.9.704分B.9.713分C.9.700分D.9.697分4.某学校九年级|一班十名同学定点投篮测试 ,每人投篮六次 ,投中的次数统计如下:5 ,4 ,3 ,5 ,5 ,2 ,5 ,3 ,4 ,1 ,那么这组数据的中位数、众数分别为(A)A.4 ,5B.5 ,4C.4 ,4D.5 ,55.在中秋节到来之前 ,学校食堂推荐了A,B,C三家月饼专卖店 ,对全校师生爱吃哪家的月饼进行调查 ,以决定最|终在哪家店采购 ,以下统计量最|值得关注的是(C)A.中位数B.平均数C.众数D.加权平均数6.在某校 "我的中国梦〞演讲比赛中 ,有9名学生参加决赛 ,他们决赛的最|终成绩各不相同.其中一名学生想要知道自己能否进入前5名 ,不仅要了解自己的成绩 ,还要了解这9名学生成绩的(D)A.众数B.方差C.平均数D.中位数7.在学校春季运动赛中李雷获得了1 000 m赛跑的第|一名.赛前他进行了刻苦训练 ,如果对他10次训练成绩进行统计分析 ,判断他的成绩是否稳定 ,那么需要知道李雷这10次成绩的(B)A.众数B.方差C.平均数D.中位数8.某学校把学生的期末测试、实践能力两项成绩分别按60% ,40%的比例计入学期总成绩 ,小明实践能力的得分是80分 ,期末测试的得分是90分 ,那么小明的学期总成绩是(C) A.80分B.85分C.86分D.90分9.假设一组数据a1 ,a2 ,… ,a n的方差是5 ,那么另一组新数据2a1 ,2a2 ,… ,2a n的方差是(B)A.50B.20C.10D.510.某校文学社成员的年龄分布如下表:A.平均数B.众数C.方差D.中位数二、填空题(本大题共7小题 ,每题4分 ,共28分)11.假设8个数的平均数是12,4个数的平均数为18,那么这12个数的平均数为__14______.12.数据3 ,3 ,4 ,7 ,8的方差是________.13.在一组数据x1 ,x2,x3,x4 ,x5中 ,数据x1,x2 ,x3 ,x4的权数分别是15% ,0.15 ,20% ,1 4 ,那么数据x5的权数是__25%______.14.为了了解学生使用零花钱的情况 ,小军随机地抽查了他们班的30名学生 ,结果如下表:这些同学每天使用零花钱的众数是__4______ ,中位数是__6______.15.2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是__2______.16.甲、乙、丙、丁四位同学在五次数学测验中 ,他们成绩的平均分相等 ,方差分别是 ,3.8 ,5.2 ,6.2 ,那么成绩最|稳定的同学是__甲______.17.七(1)班四个绿化小组植树的棵树如下:10 ,10 ,x ,8.这组数据的众数和平均数相等 ,那么这组数据的中位数是___10_____.三、解答题(本大题共5小题 ,共62分)18.(9分)某校规定学生期末数学总评成绩由三局部构成:卷面成绩、课外论文成绩、平日表现成绩(三局部所占比例如图).假设方方的三局部得分(单位:分)依次是92 ,80 ,84 ,那么她这学期期末数学总评成绩是多少?解:92×70%+80×20%+84×10%70%+20%+10%=88.8(分).那么方方这学期期末数学总评成绩是88.8分.19.(9分)某公司欲招聘一名工作人员 ,对甲、乙两位应聘者进行面试和笔试 ,他们的成绩(百分制)如下表:,谁将被录取.解:甲的平均成绩为(87×6+90×4)÷10=88.2(分) , 乙的平均成绩为(91×6+82×4)÷10=87.4(分). ∵88.2>87.4 ,∴甲将被录取.20.(12分)1 ,2 ,3 ,a 的平均数是3 ,而4 ,5 ,a ,b 的平均数是5.求: (1)a 和b (2)1 ,2 ,3 ,4 ,5 ,a ,b 这7个数的方差. 的值;解: (1 )∵1 ,2 ,3 ,a 的平均数是3 , ∴(1+2+3+a )=4×3 ,解得a =6. ∵4 ,5 ,a ,b 的平均数是5 , ∴(4+5+6+b )=4×5 ,解得b =5. ∴a 和b 的值分别是6 ,5; (2 ):∵a =6 ,b =5 ,∴1 ,2 ,3 ,4 ,5 ,6 ,5这7个数的平均数为267 ,∴方差为17×[⎝ ⎛⎭⎪⎫1-2672+⎝ ⎛⎭⎪⎫2-2672+⎝ ⎛⎭⎪⎫3-2672+⎝ ⎛⎭⎪⎫4-2672+2×⎝ ⎛⎭⎪⎫5-2672+⎝ ⎛⎭⎪⎫6-2672]≈2.78.21.(12分)在对某班的一次数学测验成绩进行统计分析中 ,各分数段(分数取正整数 ,总分值为100分)的人数如图 ,请观察图形 ,解答以下问题:(1)该班有___6_____名学生; 18______ ,频率是________; (3)请估算该班这次测验的平均成绩.解:平均成绩为160×(44.5×6+54.5×8+64.5×10+74.5×18+84.5×16+94.5×2)=70.5(分).22.(20分)在某市开展的 "好书伴我成长〞读书活动中 ,某中学为了了解八年级|300名学生的读书情况 ,随机调查了八年级|50名学生读书的册数 ,统计数据如下表:(1)求这50(2)根据样本数据 ,估计该校八年级|300名学生在本次活动中读书多于2册的人数. 解: (1 )0×3+1×13+2×16+3×17+4×150=2.那么这组数据的平均数是2 ,众数是3 ,中位数是2; (2 ):300×17+150=108(名).那么估计该校八年级|300名学生在本次活动中读书多于2册的学生有108名.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章数据的分析测试题
一选择题
1. 一组数据35,44,x,62的平均数是53,则x的值为()
A.72
B. 71
C. 69
D. 67
2. 一组数据4,3,6,9,6,5是中位数和众数分别是()
A.5和5.5
B. 5.5和6
C. 5和6
D. 6和6
3. 数据-3,-2,1,3,6,x的中位数是1,那么这组数据的众数是()
A.2
B. 1
C. 1.5
D. -2
则这些队员年龄的众数和中位数分别是()
A.15,15
B. 15,15.5,
C. 15,16
D. 16,15
5. 某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要去前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()
A. 中位数
B. 众数
C. 平均数
D. 众数和平均数
6. 下列判断中正确的个数为()
①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的中众数只有一个;④描述一组数据的平均数、中位数、众数一定是这组数据里的数;⑤一组数据中一个数的大小发生了变化,一定会影响这组数据的平均数、众数、中位数的大小变化()。

A.1
B. 2
C. 3
D.4
7. 对于数据2,2,3,2,5,2,10,2,5,2,3,有以下说法:①众数是2;②中位数与平均数相等;③众数与中位数的数值不等;④平均数与众数的数值相等。

正确的结论有()
A.1个
B.2个
C.3个
D.4个
8. 如果一组数据x1,x2,…,x n的方差是2,那么新的一组数据2x1,2x2,…,2x n的方差为()A.12 B. 2 C. 4 D. 8
x=60,方差s2甲=0.05,样本乙的平均数乙x=60,方差s2乙=0.1,那9. 已知样本甲的平均数甲
么这两组数据的波动情况为()
A.甲、乙两样本波动一样的;
B. 甲样本的波动比乙样本大;
C. 乙样本的波动比甲样本大;
D. 无法比较两样本波动的大小。

10.甲、乙两人三次都同时到个体米店买米,甲每次买m()千克,乙每次买米用去2m 元,由于市场原因,虽然这三次米店出售的是一样的米,但价格却分别为1.8元,2.2元,2.0元,那么比较甲三次买米的平均单价与乙买米的平均单价,结果是()
A.甲比乙便宜
B.乙比甲便宜
C.甲与乙相同
D.由m的值确定
二、填空题
11.山东省农村医疗保险应经全面实施,某县七个村中享受了住院医疗费用报销的人数分别为20,24,27,28,31,34,38,则这组数据的中位数是____________.
12. 已知一个样本1,3,2,5,x ,它的平均数为3,则这个样本的标准差是 。

13. 以6个连续奇数为一组数据的排列中,中位数是26,写出这6个数据: .
14. 某跳水队内集体对抗赛,每队10人,甲队因一人缺勤成绩记作零分,结果甲队的平均成绩降为8.1分,若不计缺勤者的成绩,其余九名队员的平均成绩是__ __ 分。

15. 现有一组数据6,9,11,13,11,7,10,8,12是中位数是m ,众数是n ,则关于x ,y 的方程组


⎧=-=-61010
10ny x y mx 的解是: .
则表中数据的中位数是 ;众数是 ;平均数是 。

17.某班通过一次设计测试,在甲、乙两名同学中选出一名同学代表班级参加设计比赛,这两位同学在相同的条件下个设计5次,测试成绩如下(单位:环): 甲:9.6,9.5,9.3,9.4,9.7; 乙:9.3,9.8,9.3,9.6,9.5;
根据测试成绩,你认为应该由 代表班级参赛。

18.数据组中4,7,9,5分别出现了3,6,1,2次,且除了4,7,9,5外再也没有其他数据,则众数为 ;中位数为 ;平均数为 。

三、解答题
19.为积极响应骨架“节能减排”的号召,某居民小区开展节约用水活动,根据对该小区200
20.一次数学测试结束后,学校要了解八年级(共四个班)学生的平均成绩,得知一班40名学生的平均分为85分,二班42名学生的平均分为86分,三班40名学生的平均分为88分,四班45名学生的平均分为82分。

小明这样计算该校八年级数学测试的平均成绩:
25.854
82
888685=+++=
x (分)
小明的算法正确吗?为什么?若不正确,请写出正确的计算过程。

3米3
2.5米3
1.5米3
1米3
21.济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水
(1)300户居民5月份节水量的众数是 米3,中位数是 米3; (2)扇形统计图中2.5米3对应扇形圆心角为 度; (3)该小区300户居民5月份平均每户节约用水多少米3?
22.如图是某校八年级(1)班全体同学为山区中学捐赠图书的情况统计图,请根据统计图中的信息,解答下列问题:
(1)该班有多少学生? (2)补全条形统计图;
(3)八年级(1)班全体同学所捐赠图书的中位数和众数分别是多少?
23.张明、王成两位同学在初二年级10次数学单元自我检测(成绩均为整数,且个位数为0)如图所示,利用图中提供的信息,解答下列问题:
(1)完成下表;
姓名平均成绩中位数众数方差(s2)
张明80 80
王成260
(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是;
(3)根据图表信息,请你对这两位同学各提一条不超过20字的学习建议。

相关文档
最新文档