数学分析复习资料及公式大全.docx
数学分析总复习
(几何:斜率)
0
利用导函数: f ( x0 ) f ( x ) |x x 根据定义
二、f ( x ) 的计算
根据函数构成: 根据定义
导数的四则运算 反函数求导法则 复合函数求导法则
三、f ( n ) ( x ) 的计算
利用求导法则 ……
数学分析(一)总复习
幂指函数 对数求导法 分段函数 隐函数 参变量函数
数学分析(一)总复习 8
二、闭区间上连续函数的性质
最值定理 若 f ∈C[a, b], 则 f 在[a, b]上有最大值, 最小值.
有界性定理 若 f ∈C[a, b], 则 f 在[a, b]上有界. 介值定理 若 f ∈C[a, b] 且 f(a)≠f(b), 若 μ为介于 f(a), f(b) 之间的任何实数, 则至少存在一点x0∈(a, b) 使得 f(x0) =μ.
定理 数列{an}收敛 {an}的任何非平凡子列都收敛.
单调有界定理 单调有界数列必有极限.
lim (1
n
1 n
) e.
n
柯西收敛准则 数列{an}收敛
0 , N N , n , m N , 有 | a n ห้องสมุดไป่ตู้ a m | .
返回
数学分析(一)总复习 4
四、函数性态研究(单调、凹凸、渐近线等)
数学分析(一)总复习
返回
13
第八章
一、不定积分概念:
二、求不定积分:
不定积分
f ( x )dx F ( x ) C
① “求不定积分”是指用初等函数的形式将不定积分表示出 来.并非任何初等函数的积分都能求出来. ② 基本积分公式(p.180)
(完整版)数学分析知识点总结
(完整版)数学分析知识点总结数学分析知识点总结导数与微分- 导数的定义:导数是一个函数在某一点的斜率,表示函数的增减速度。
- 常见函数的导数公式:- 幂函数:$(x^n)' = nx^{n-1}$- 指数函数:$(a^x)' = a^x\ln(a)$- 对数函数:$(\log_a(x))' = \frac{1}{x\ln(a)}$- 微分的定义:微分是切线在某一点处的线性近似,表示函数在该点的局部变化情况。
积分与不定积分- 不定积分的定义:不定积分是对函数的原函数的求解,表示函数从某一点到变量的积分结果。
- 常见函数的基本积分公式:- 幂函数:$\int x^n dx = \frac{1}{n+1}x^{n+1}+C$- 正弦函数:$\int \sin(x) dx = -\cos(x) + C$- 余弦函数:$\int \cos(x) dx = \sin(x) + C$一元函数极限- 极限的定义:函数在某一点处的极限是函数在这一点附近的取值逐渐趋于某个固定值的情况。
- 常见函数的极限计算方法:- 算术运算法则:常数的极限是常数本身;极限的和等于极限的和;极限的乘积等于极限的乘积。
- 复合函数法则:对于复合函数,可以先求内层函数的极限,再求外层函数的极限。
泰勒级数- 泰勒级数的定义:泰勒级数是一个函数在某一点附近的展开式,由函数在该点的导数决定。
- 常见函数的泰勒级数展开:- 幂函数:$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \dots$以上是数学分析的一些基本知识点总结,希望对您有所帮助。
数学分析公式总结
数学分析公式总结数学分析是数学中的一门重要课程,它主要研究函数的性质和运算法则,以及极限、导数和积分等概念及其应用。
在学习数学分析时,我们经常会遇到各种各样的公式。
下面是对其中一些重要的数学分析公式进行总结。
一、极限公式1.常值函数的极限公式:\(\lim_{x\to a} c = c\)2.幂函数的极限公式:\(\lim_{x\to a} x^{m} = a^{m}\) (其中m为整数)3.正弦函数和余弦函数的极限公式:\(\lim_{x\to 0} \dfrac{\sin x}{x} = 1\)\(\lim_{x\to 0} \dfrac{1-\cos x}{x} = 0\)4.自然对数函数的极限公式:\(\lim_{x\to 0} \dfrac{e^{x}-1}{x} = 1\)5.无穷小替换公式:当\(x\to a\)时,若\(\lim_{x\to a} f(x) = 0\),\(\lim_{x\to a} g(x) = 0\),且\(\lim_{x\to a} \dfrac{f(x)}{g(x)}\)存在,则:\(\lim_{x\to a} \dfrac{f(x)}{g(x)} = \lim_{x\to a}\dfrac{f'(x)}{g'(x)}\)二、导数公式1.基本导数公式:\((c)'=0\)(其中c为常数)\((x^{n})' = nx^{n-1}\) (其中n为整数)\((\sin x)' = \cos x\)\((\cos x)' = -\sin x\)\((e^{x})'=e^{x}\)2.乘积法则:\((f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\)3.商法则:\((\dfrac{f(x)}{g(x)})' = \dfrac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2}\)4.链式法则:若y=f(u)和u=g(x)都可导,则\(y'(x)=f'(u)g'(x)\)三、积分公式1.基本积分公式:\(\int cdx = cx + C\) (其中c为常数,C为常数)\(\int x^{n}dx = \dfrac{x^{n+1}}{n+1} + C\) (其中n不等于-1)\(\int \sin xdx = -\cos x + C\)\(\int \cos xdx = \sin x + C\)\(\int e^{x}dx = e^{x} + C\)2.基本换元公式:\(\int f(g(x))g'(x)dx = \int f(u)du\) (其中u = g(x))四、泰勒展开公式泰勒展开公式是一种将一个函数在其中一点附近用多项式逼近的方法。
数学分析公式
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
(完整版)数值分析重点公式
第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根; 定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x llx x x lαα+-≤---≤-- 定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的()()()0,1,,1,()0j P j P ϕαϕα==-≠(Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈; ③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <; 则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:12P +=7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
数学分析理论整理
数学分析理论整理一、实数完备性:1. 关于实数完备性的基本定理◇确界原理(该教材的理论基础、最基本定理)(用实数的无限小数表示证明)◇单调有界定理(用确界原理证明)◇区间套定理(用单调有界定理证明)◇有限覆盖定理(用区间套定理证明)◇聚点定理(用区间套定理证明)推论:致密性定理◇柯西收敛准则(用区间套定理或致密性定理证明)2. 上极限和下极限◇有界点列至少有一个聚点,且存在最大聚点与最小聚点(类似聚点定理,用区间套定理证明)◇A为{a n}上极限<=> (i)存在N>0,使得当n>N时有a n<A+ε;(ii)存在子列{a nk},a nk>A-ε◇A为{a n}上极限<=>任何α>A,大于α的项有限个;任何β<A,大于β的项无限多个◇上、下极限保不等式性◇A为{a n}上极限<=>A=limsup{a k} (n→∞, k≥n)二、极限1. 收敛数列的性质:◇唯一性◇有界性◇保号性◇保不等式性◇迫敛性◇四则运算法则◇数列{a n}收敛<=>{a n}的任何非平凡子列都收敛2. 数列极限存在的条件:◇单调有界定理(用确界原理证明)◇柯西收敛准则(用区间套定理或致密性定理证明)3. 函数极限的性质◇唯一性◇局部有界性◇局部保号性◇保不等式性◇迫敛性◇四则运算法则4. 函数极限存在的条件◇归结原则◇单调有界定理(适用于单侧极限)◇柯西准则(用归结原则和数列柯西收敛准则证明)5. 无穷小量与无穷大量◇若f与g为等价无穷小量,则lim(f*h)=lim(g*h),lim(h/f)=lim(h/g)◇若f为x→x0时的无穷小量(且在空心邻域内不等于0),则1/f 为x→x0时的无穷大量◇若g为x→x0时的无穷大量,则1/g为x→x0时的无穷小量三、函数的连续性1. 连续函数的性质◇局部有界性◇局部保号性◇四则运算法则◇若f在x0连续,g在u0=f(x0)连续,则g(f(x))在x0连续◇有界性定理(适用于闭区间)(用局部有界性与有限覆盖定理证明)◇最大最小值定理(适用于闭区间)(用有界性定理和确界原理证明)◇根的存在定理(适用于闭区间)(用局部保号性和区间套定理证明)◇介值性定理(适用于闭区间)(用根的存在定理证明)◇一致连续性定理(用有限覆盖定理证明)四、导数和微分1. 导数的概念◇费马定理(可导函数极值的必要条件)(用连续函数局部保号性证明)◇导函数的介值定理(用最大最小值定理和费马定理证明)2. 求导法则◇四则运算法则◇反函数的导数◇复合函数的导数及其引理◇参变量函数的导数◇高阶导数3. 微分◇可微<=>可导,且微分AΔx中的A等于导数(用有限增量公式证明)◇微分运算法则(由导数运算法则推出)◇高阶微分◇一阶微分形式的不变性 / 高阶微分不具有形式不变性4. 微分中值定理◇罗尔中值定理(用连续函数最大最小值定理与费马定理证明)◇拉格朗日中值定理(用罗尔中值定理证明)◇导数极限定理(用拉格朗日中值定理证明)◇函数(严格)单调递增(减)的充要条件(用拉格朗日中值定理证明)◇柯西中值定理(用罗尔中值定理证明)◇洛必达法则(用柯西中值定理证明)5. 泰勒公式◇佩亚诺余项(用洛必达法则证明)◇拉格朗日余项(泰勒定理)(用柯西中值定理证明)◇积分型余项(用推广的定积分分部积分法证明)◇柯西型余项(对积分型余项使用积分第一中值定理得)6. 函数的极值◇极值的第三充分条件:设f在x0某邻域内存在n-1阶导函数,在x0处可导,且f(k)(x0)=0 (k=1,2,...,n-1),f(n)(x0)≠0,则:(i) 当n为偶数时,f在x0取极值,且当f(n)(x0) <0时取极大值,当f(n)(x0) >0时取极小值;(ii) 当n为奇数时,f在x0处不取极值(在x0处用n阶泰勒公式(佩亚诺余项)证明,极值第二充分条件可作为其推论)7. 凸函数的性质◇充要条件:对I上的任意三点x1<x2<x3,总有(f(x2)-f(x1))/(x2-x1)≤(f(x3)-f(x2))/(x3-x2)◇充要条件:对I上的任意三点x1<x2<x3,总有(f(x2)-f(x1))/(x2-x1)≤(f(x3)-f(x1))/(x3-x1)≤(f(x3)-f(x2))/(x3-x2)◇充要条件:f’为I上的增函数(用上两条(引理)证)◇充要条件:对I上的任意两点x1、x2,f(x2) ≥ f(x1)+f’(x1)(x2- x1)(用拉格朗日中值定理与上一条定理证)◇Jensen不等式(用数学归纳法证)五、积分1. 不定积分法◇换元积分法(用复合函数求导法验证)◇分部积分法(由乘积求导法推出)2. 可积性理论◇可积必有界◇上和是所有积分和的上确界,下和是所有积分和的下确界◇T’为T添加p个新分点后的分割,则S(T) ≥S(T’) ≥S(T)-(M-m)p||T||,s(T) ≤s(T’) ≤s(T)+(M-m)p||T||◇达布定理:limS(T)=S,lims(T)=s (||T||→0)(用上一条性质证明)◇可积第一充要条件:S=s(用达布定理证明)◇可积第二充要条件(可积准则):S(T)-s(T) <ε,即∑ωΔx<ε(用可积第一充要条件证明)◇可积第三充要条件:任可正数ε、η,T中ω≥ε的区间总长∑Δx <η(用可积第二充要条件证明)◇闭区间上连续函数可积(用可积准则证明)◇闭区间上有限间断点的函数可积(用可积准则证明)◇闭区间上单调函数可积(用可积准则证明)3. 定积分性质◇牛顿—莱布尼茨公式(用拉格朗日中值定理证明)◇线性性质◇f、g可积则fg可积(用可积准则证明)◇积分区间可加性(用可积准则证明)◇保号性推论:积分不等式性◇f可积则|f|也可积,且|∫fdx|<∫|f|dx(用绝对值不等式与可积准则证明)◇积分第一中值定理(用连续函数最大最小值定理和介值性定理证明)◇推广的积分第一中值定理(用连续函数最大最小值定理和介值性定理证明)◇变限积分在[a,b]上连续(用积分区间可加性和可积必有界证明)◇原函数存在定理(微积分学基本定理)(用积分第一中值定理证明)◇积分第二中值定理(用变限积分连续、连续函数最大最小值定理、介值性定理、积分区间可加性、可积准则证明)推论:[a, b]上f可积,g单调,则存在ξ使∫f(x)g(x)dx=g(a) ∫aξf(x)dx+g(b) ∫ξb f(x)dx◇换元积分法、分部积分法(类似不定积分,由微分法逆得)4. 定积分的应用◇平面图形的面积A=∫|f(x)|dx=∫|y(t)x’(t)|dt◇由平行截面面积求体积V=∫A(x)dx◇平面曲线的弧长s=∫ (x’2(t)+y’2(t))^(1/2)dt(用拉格朗日中值定理证明)◇平面曲线的曲率K=|x’y’’-x’’y’|/(x’2+y’2)^(3/2)(由弧微分推得)◇旋转曲面的面积S=2π∫y(t)(x’2(t)+y’2(t))^(1/2)dt5. 反常积分◇无穷积分收敛的充要条件:任给正数ε,存在G,只要a, b>G,|∫a b f(x)dx|<ε(即柯西准则)◇无穷积分线性性质◇无穷积分区间可加性◇无穷积分收敛的充要条件:任给正数ε,存在G,只要u>G,|∫u∞f(x)dx|<ε(由区间可加结合收敛定义证明)◇|f|收敛则f也可积,且|∫a∞fdx|<∫a∞|f|dx(用柯西收敛准则、定积分绝对值不等式、极限保不等式性证明)◇无穷积分比较法则(用单调有界定理证明)推论:(i) |f(x)| ≤1/xp且p>1时,∫a∞|f(x)|dx 收敛;(ii) |f(x)| ≥1/xp且p≤1时,∫a∞|f(x)|dx 发散◇若f和g都在[a,u]上可积,g(x) >0,且lim|f(x)|/g(x)=c,则(i)0<c<+∞时,∫a∞g(x)dx与∫a∞|f(x)|dx 同敛态;(ii)c=0时,∫a∞g(x)dx 收敛时∫a∞|f(x)|dx必收敛;(iii) ∫a∞g(x)dx发散时∫a∞|f(x)|dx必发散(用比较法则证明)推论:limxp|f(x)|=c,(i)p>1,0≤c<+∞时,∫a∞|f(x)|dx 收敛;(ii)p≤1,0<c≤+∞时,∫a∞|f(x)|dx发散◇狄里克雷判别法(用积分第二中值定理和柯西收敛准则证明)◇阿贝尔判别法(用积分第二中值定理或狄里克雷判别法证明)◇瑕积分收敛柯西准则(类似无穷积分)◇瑕积分线性性质(类似无穷积分)◇瑕积分区间可加性(类似无穷积分)◇瑕积分绝对值不等式(类似无穷积分)◇瑕积分比较法则及推论(类似无穷积分)◇瑕积分比较法则极限形式及推论(类似无穷积分)--------------------------------------------注:1. 该整理是由包晨风根据华东师大数学系编的《数学分析(上册)》完成的2. 斜体字为证明方法提示(并不唯一,只是个人觉得较方便的方法),无斜体字的均可由定义证出3. 该整理不包括任何定义,部分定理的叙述从简,并不严谨4. 该整理的编排顺序与教材不同,除了泰勒公式的积分型余项和柯西型余项,其余定理或性质的证明所需的前置定理均可在前文中找到5. 请大家多指教。
(完整版)数值分析重点公式
第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x ll x x x lαα+-≤---≤--定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠L (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
数学分析全章复习讲义
数学分析全章复习讲义
在这份文档中,我们将对数学分析的各个章节进行复,并提供一些重点思路和要点。
第一章:实数和数列
- 实数的定义和性质
- 数列的定义和性质
- 有界数列和无界数列
- 收敛数列和发散数列
第二章:极限和连续
- 极限的定义和性质
- 数列极限和函数极限
- 极限的运算法则
- 连续函数的定义和性质
- 连续函数的运算法则
第三章:导数和微分
- 函数的导数定义和性质
- 导数与连续性的关系
- 一阶导数和高阶导数
- 微分的定义和性质
- 微分中值定理和泰勒公式
第四章:积分
- 不定积分和定积分的定义和性质
- 积分中值定理和牛顿-莱布尼茨公式- 反常积分的概念和判定
- 定积分的计算方法
第五章:级数
- 级数的定义和性质
- 收敛级数和发散级数的判定方法
- 常见级数的求和
- 幂级数和泰勒级数
第六章:函数序列和一致连续性
- 函数序列的极限和一致收敛
- 一致连续性的定义和性质
第七章:多元函数的极限和连续
- 多元函数的极限定义和性质
- 多元函数的连续性定义和性质
- 偏导数和全微分的概念
第八章:多元函数的导数和微分
- 多元函数的偏导数和混合偏导数
- 多元函数的全微分和复合函数的导数
- 隐函数的导数和参数方程的导数
以上是数学分析的全章复习内容,希望对你的学习有所帮助!。
(完整版)最新数学分析知识点最全汇总(可编辑修改word版)
第一章实数集与函数§1实数授课章节:第一章实数集与函数——§1 实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质⎪1、实数⎧有理数: 任何有理数都可以用分数形式 q ( p , q 为整数且q ≠ 0) 表示,⎪p ⎨也可以用有限十进小数或无限十进小数来表示. ⎪⎩ 无理数: 用无限十进不循环小数表示.R = {x | x 一 一 一 }- - 一 一 一 一 一 一 一 .[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利 的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:例:2.001 → 2.0009999 ; 3 → 2.9999 ; -2.001 → -2.009999 -3 → -2.9999利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1) 定义 1 给定两个非负实数x = a 0 .a 1 a n , y = b 0 .b 1 b n . 其中对于正有限小数x = a 0 .a 1a 2 a n , 其中0 ≤ a i ≤ 9, i = 1, 2, , n , a n ≠ 0, a 0为非负整数,记x = a 0 .a 1 a n -1 (a n -1)9999 ;对于正整数x = a 0 , 则记x = (a 0 -1).9999 ;对于负有限小数(包括负整数) y ,则先将- y 表示为无限小数,现在所得的小数之前加负号.0 表示为 0= 0.0000a 0 ,b 0 为非负整数, a k , b k (k = 1, 2, ) 为整数, 0 ≤ a k ≤ 9, 0 ≤ b k ≤ 9 . 若有a k = b k , k = 0,1, 2, ,则称 x 与 y 相等,记为 x = y ;若a 0 > b 0 或存在非负整数l ,使得a k = b k , k = 0,1, 2, , l ,而a l +1 > b l +1 ,则称x 大于 y 或 y 小于x , 分别记为 x > y 或 y < x . 对于负实数 x 、 y , 若按上述规定分别有-x = - y 或-x > - y ,则分别称为x = y 与x < y (或 y > x ).规定:任何非负实数大于任何负实数.2)实数比较大小的等价条件(通过有限小数来比较).定义 2(不足近似与过剩近似): x = a 0 .a 1 a n 为非负实数,称 有理数 x = a .a a 为实数 x 的n 位不足近似; x = x + 1称为实数 xn0 1nn n10n的n 位过剩近似, n = 0,1, 2, .对于负实数 x = -a .a a,其n 位不足近似 x = -a .a a - 1; 0 1 nn 位过剩近似x n = -a 0 .a 1 a n .n 0 1 n10n注:实数 x 的不足近似 x n 当n 增大时不减,即有 x 0 ≤ x 1 ≤ x 2 ≤ ; 过剩近似 x n 当 n 增大时不增,即有x 0 ≥ x 1 ≥ x 2 ≥ .命题:记 x = a 0 .a 1 a n , y = b 0 .b 1 b n 为两个实数,则 x > y 的等 价条件是:存在非负整数 n ,使x n > y n (其中x n 为x 的n 位不足近似,y n 为 y 的n 位过剩近似).命题应用例 1.设x , y 为实数, x < y ,证明存在有理数r ,满足x < r < y . 证明:由 x < y ,知:存在非负整数 n ,使得x < y .令r =1(x+ y ),nn则 r 为有理数,且x ≤ x n < r < y n ≤ y .即x < r < y .2nn⎩3、实数常用性质(详见附录Ⅱ. P 289 - P 302 ).1) 封闭性(实数集R 对+, -,⨯, ÷ )四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为 0)仍是实数.2) 有序性: ∀a , b ∈ R ,关系a < b , a > b , a = b ,三者必居其一,也只居其一.3) 传递性: ∀a ,b ,c ∈ R , 若a > b , b > c ,则a > c .4) 阿基米德性: ∀a , b ∈ R , b > a > 0 ⇒ ∃n ∈ N 使得na > b .5) 稠密性:两个不等的实数之间总有另一个实数.6) 一一对应关系:实数集R 与数轴上的点有着一一对应关系.例 2.设∀a , b ∈ R ,证明:若对任何正数,有a < b +,则a ≤ b .(提示:反证法.利用“有序性”,取= a - b )二、绝对值与不等式1、绝对值的定义实数a 的绝对值的定义为| a |= ⎧ a ,a ≥ 0 .⎨-a a < 02、几何意义从数轴看,数a 的绝对值| a | 就是点a 到原点的距离.| x - a | 表示就是数轴上点x 与a 之间的距离.3、性质1)| a |=| -a |≥ 0;| a |= 0 ⇔ a = 0 (非负性);2) - | a |≤ a ≤| a | ;3)| a |< h ⇔ -h < a < h ,| a |≤ h ⇔ -h ≤ a ≤ h .(h > 0) ;abn (1 + x )n n 4)对任何a , b ∈ R 有| a | - | b |≤| a ± b |≤| a | + | b |(三角不等式);5)| ab |=| a | ⋅ | b |;6)= | a |( b ≠ 0 ).| b |三、几个重要不等式1、a 2 + b 2 ≥ 2 ab ,sin x ≤ 1. sin x ≤ x .2、均值不等式:对∀a 1, a 2 , , a n ∈ R + , 记M (a ) =a 1 + a 2 + + a n =1∑na ,(算术平均值)in n i i =11 ⎛ n ⎫ nG (a i ) = = ∏ a i ⎪ , (几何平均值)H (a ) =⎝ i =1 ⎭n = 1= n .(调和平均值) i1 + 1 + + 1 1 ∑n 1 ∑ 1 a 1 a2 a n n i =1 a i i =1 a i有平均值不等式: H (a i ) ≤ G (a i ) ≤ M (a i ), 即:n ≤≤ a 1 + a 2 + + a n1 + 1 + + 1 na 1 a 2 a n等号当且仅当a 1 = a 2 = = a n 时成立.3、Bernoulli 不等式:(在中学已用数学归纳法证明过)∀x > -1, 有不等式(1+ x )n ≥ 1+ nx ,n ∈ N .当x > -1且 x ≠ 0 , n ∈ N 且n ≥ 2 时,有严格不等式(1 + x )n > 1 + nx .证:由1 + x > 0 且1 + x ≠ 0, ⇒ (1 + x )n + n - 1 = (1 + x )n + 1 + 1 + + 1 >> n = n (1 + x ). ⇒ (1 + x )n > 1 + nx .4、利用二项展开式得到的不等式:对∀h > 0, 由二项展开式n a 1a 2 a n⎨二 绝对值与不等式 (1 + h )n = 1 + nh +n (n -1) h 2 +n (n -1)(n - 2)h 3 + + h n ,2!3!有(1 + h )n > 上式右端任何一项.[练习]P4.5 [课堂小结]:实数: ⎧一 实数及其性质.⎩[作业]P4.1.(1),2.(2)、(3),3§2 数集和确界原理授课章节:第一章实数集与函数——§2 数集和确界原理 教学目的:使学生掌握确界原理,建立起实数确界的清晰概念. 教学要求:(1) 掌握邻域的概念;(2) 理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理). 教学难点:确界的定义及其应用. 教学方法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.引 言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章§1 实数的相关内容.下面,我们先来检验一下自学的效果如何!1 、证明:对任何x ∈R 有: (1)| x -1| + | x -2 |≥ 1 ; (2)| x -1| + | x - 2 | + | x - 3 |≥ 2 .((1) x-1=1+(x-2)≥1-x-2,∴x-1+x-2≥1)((2)x -1 +x - 2 ≥1, x - 2 +x - 3 ≥1, x - 2 +x - 3 ≥ 2.三式相加化简即可)2、证明:| x | - | y | ≤| x -y |.3、设a,b∈R,证明:若对任何正数有a+b<,则a≤b.4、设x, y ∈R, x >y ,证明:存在有理数r 满足y <r <x .[引申]:①由题 1 可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一.而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用.提请注意这种差别,尽快掌握本门课程的术语和工具.本节主要内容:1、先定义实数集 R 中的两类主要的数集——区间与邻域;2、讨论有界集与无界集;3、由有界集的界引出确界定义及确界存在性定理(确界原理).一、区间与邻域1、区间(用来表示变量的变化范围)⎧有限区间设a, b ∈R 且a <b .区间⎨,其中⎩无限区间⎨⎪ ⎨ ⎪ + +⎧ ⎪ ⎪ ⎪有限区间⎪⎪ ⎪ 开区间: {x ∈ R | a < x < b } = (a , b ) 闭区间: {x ∈ R | a ≤ x ≤ b } = [a , b ]⎧⎪闭开区间: {x ∈ R | a ≤ x < b } = [a , b ) ⎪半开半闭区间⎨⎩⎪⎪⎩开闭区间: {x ∈ R | a < x ≤ b } = (a , b ]⎧ {x ∈ R | x ≥ a } = [a , +∞).⎪{x ∈ R | x ≤ a } = (-∞, a ]. 无限区间⎪{x ∈ R | x > a } = (a , +∞).⎪{x ∈ R | x < a } = (-∞, a ). ⎪⎩{x ∈ R | -∞ < x < +∞} = R .2、邻域联想:“邻居”.字面意思:“邻近的区域”.与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?(1) a 的邻域:设a ∈ R ,> 0 ,满足不等式| x - a |< 的全体实数x的集合称为点a 的邻域,记作U (a ;) ,或简记为U (a ) ,即U (a ;) = {x | x - a |< } = (a -, a +) .其中a 称为该邻域的中心,称为该邻域的半径. (2) 点a 的空心邻域U o (a ;) = {x 0 <| x - a |< } = (a -, a ) ⋃ (a , a +) U o (a ) .(3) a 的右邻域和点a 的空心右邻域U + (a ;) = [a , a +) U + (a ) = {x a ≤ x < a +};U 0 (a ;) = (a , a +) U 0 (a ) = {x a < x < a +}. (4) 点a 的左邻域和点a 的空心左邻域U - (a ;) = (a -, a ] U - (a ) = {x a -< x ≤ a }; U(a ;) = (a -, a ) U 0 (a ) = {x a -< x < a }.-+⎨ ⎬ (5) ∞ 邻域, + ∞ 邻域, -∞ 邻域U (∞) = {x | x |> M }, (其中 M 为充分大的正数); U (+∞) = {x x > M }, U (-∞) = {x x < -M }二 、有界集与无界集1、定义 1(上、下界):设S 为R 中的一个数集.若存在数M (L ) ,使得一切 x ∈ S 都有x ≤ M (x ≥ L ) ,则称 S 为有上(下)界的数集.数M (L ) 称为 S 的上界(下界);若数集 S 既有上界,又有下界,则称 S 为有界集.闭区间[a , b ] 、开区间(a , b ) (a , b 为有限数)、邻域等都是有界数集,集合 E = {yy = sin x , x ∈( - ∞ , + ∞ )}也是有界数集.若数集 S 不是有界集,则称 S 为无界集.( - ∞ , + ∞ ) , ( - ∞ , 0 ) , ( 0 , + ∞ ) 等都是无界数集,集合 E = ⎧ y ⎩ y = 1 , x x ∈ ( 0 ,1 )⎫也是无界数集.⎭注:1)上(下)界若存在,不唯一;2)上(下)界与 S 的关系如何?看下例:例 1 讨论数集N + = {n | n 为正整数} 的有界性. 解:任取n 0 ∈ N + ,显然有n 0 ≥ 1 ,所以 N + 有下界 1;但 N + 无上界.因为假设 N + 有上界 M,则 M>0,按定义,对任意n 0 ∈ N + , 都 有 n 0 ≤ M , 这 是 不 可 能 的 , 如 取n 0 = [M ] +(1 符号[M ]表示不超过M 的最大整数) 则n 0 ∈ N + ,且n 0 > M .综上所述知:N+是有下界无上界的数集,因而是无界集.例 2 证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集.[问题]:若数集S 有上界,上界是唯一的吗?对下界呢?(答:不唯一,有无穷多个).三、确界与确界原理1、定义定义 2(上确界)设S 是R 中的一个数集,若数满足:(1) 对一切x∈S,有x≤(即是S 的上界); (2) 对任何<,存在x0∈S ,使得x0>(即是S 的上界中最小的一个),则称数为数集S 的上确界,记作= sup S.从定义中可以得出:上确界就是上界中的最小者.命题 1 M = sup E 充要条件1)∀x ∈E, x ≤M ;2)∀>o, ∃x0∈S, 使得x>M -.证明:必要性,用反证法 .设 2)不成立,则∃0>0,使得∀x∈E,均有x≤M-o,与M是上界中最小的一个矛盾.充分性(用反证法),设M不是E的上确界,即∃M是上界,但M>M0.令=M-M>0,由 2),∃x∈E,使得x>M-=M,与M是E 的上界矛盾.定义 3(下确界)设S 是R 中的一个数集,若数满足:(1)对一切x∈S,有x≥(即是S 的下界);(2)对任何>,存在x0∈S ,使得x0<(即是S 的下界中最大的一个),则称数为数集 S 的下确界,记作=inf S.从定义中可以得出:下确界就是下界中的最大者.⎝ ⎭ ⎝ ⎭命题 2 = inf S 的充要条件:1) ∀x ∈ E , x ≥ ;2) ∀>0, x 0 ∈ S ,有x 0 <+.上确界与下确界统称为确界.⎧ (-1 )n ⎫例 3(1) S = ⎨1 +⎩⎬, 则sup S = 1 ; inf S = 0 . n ⎭ ( 2) E = {y y = sin x , x ∈ (0,)}. 则sup S =1; inf S =0 .注:非空有界数集的上(或下)确界是唯一的.命题 3:设数集 A 有上(下)确界,则这上(下)确界必是唯一的.证明:设= sup A ,' = sup A 且≠' ,则不妨设<'= sup A ⇒ ∀x ∈ A 有x ≤' = sup A ⇒ 对<' , ∃ x 0 ∈ A 使< x 0 ,矛盾.例: sup R - = 0 , sup ⎛n ⎫= 1, inf ⎛n ⎫ = 1n ∈Z + n +1 ⎪ n ∈Z + n +1 ⎪ 2E = {-5, 0, 3, 9,11} 则有inf E = -5 .开区间(a , b ) 与闭区间[a , b ]有相同的上确界b 与下确界a例 4 设S 和 A 是非空数集,且有S ⊃ A . 则有sup S ≥ sup A , inf S ≤ inf A ..例 5 设 A 和 B 是非空数集.若对 ∀x ∈ A 和 ∀y ∈ B , 都有 x ≤ y , 则有sup A ≤ inf B .证明: ∀y ∈ B , y 是 A 的上界, ⇒ sup A ≤ y . ⇒ sup A 是 B 的下界,⇒ sup A ≤ inf B.例 6 A 和B 为非空数集, S =A B. 试证明: inf S = min{inf A , inf B }.证明:∀x ∈S, 有x ∈A 或x ∈B, 由inf A 和inf B 分别是A 和B 的下界,有x ≥ inf A 或x ≥ inf B. ⇒x ≥ min{inf A , inf B }.即min{inf A , inf B }是数集S 的下界,⇒ inf S ≥ min{inf A , inf B }.又S ⊃A, ⇒ S 的下界就是 A 的下界,inf S 是S 的下界, ⇒ inf S 是 A 的下界, ⇒ inf S ≤ inf A; 同理有inf S ≤ inf B.于是有inf S ≤ min{inf A , inf B }.综上,有inf S = min{inf A , inf B }.1.数集与确界的关系:确界不一定属于原集合.以例3⑵为例做解释.2.确界与最值的关系:设 E 为数集.(1)E 的最值必属于E ,但确界未必,确界是一种临界点.(2)非空有界数集必有确界(见下面的确界原理),但未必有最值.(3)若max E 存在,必有max E = sup E. 对下确界有类似的结论.4.确界原理:T h1.1(确界原理).设S 非空的数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.这里我们给一个可以接受的说明 E ⊂R, E 非空,∃x ∈E ,我们可以找到一个整数p ,使得p 不是E 上界,而p +1是E 的上界.然后我们遍查p.1 , p.2 , , p.9 和p + 1 ,我们可以找到一个q0 ,0 ≤q0 ≤ 9 ,使得p.q0 不是E 上界,p.(q0 + 1) 是E 上界,如果再找第二位小数q1 , , 如此下10k去,最后得到 p .q 0 q 1q 2 ,它是一个实数,即为E 的上确界.证明:(书上对上确界的情况给出证明,下面讲对下确界的证明) 不妨设S 中的元素都为非负数,则存在非负整数n ,使得1) ∀x ∈ S ,有x > n ;2) 存在x 1 ∈ S ,有x ≤ n + 1 ; 把区间(n , n + 1] 10 等分,分点为 n.1,n.2,..,n.9, 存在n 1 ,使得 1) ∀ ∈ S ,有; x > n .n 1 ;2)存在x ∈ S ,使得x 2 ≤ n .n 1 + 1 .210再对开区间(n .n , n .n + 1] 10 等分,同理存在n ,使得111021) 对任何x ∈ S ,有x > n .n 1n 2 ;2) 存在 x 2 ,使x 2 ≤ n .n 1n 2 + 1102继续重复此步骤,知对任何k = 1,2, ,存在n k 使得1) 对任何 x ∈ S , x > n .n 1n 2 n k - 1; 2) 存在x k ∈ S , x k ≤ n .n 1n 2 n k .因此得到= n .n 1n 2 n k .以下证明= inf S .(ⅰ)对任意x ∈ S , x >;(ⅱ)对任何>,存在x ' ∈ S 使> x ' .[作业]:P9 1(1),(2); 2; 4(2)、(4);7§3 函数概念授课章节:第一章实数集与函数——§3 函数概念 教学目的:使学生深刻理解函数概念. 教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示法;(2)牢记基本初等函数的定义、性质及其图象.会求初等函数的存在域,会分析初等函数的复合关系.教学重点:函数的概念.教学难点:初等函数复合关系的分析.教学方法:课堂讲授,辅以提问、练习、部分内容可自学.教学程序:引言关于函数概念,在中学数学中已有了初步的了解.为便于今后的学习,本节将对此作进一步讨论.一、函数的定义1.定义1设D, M ⊂R ,如果存在对应法则f ,使对∀x ∈D ,存在唯一的一个数y ∈M 与之对应,则称 f 是定义在数集D 上的函数,记作f : D →Mx |→y .数集D 称为函数 f 的定义域,x 所对应的y ,称为f 在点x 的函数值,记为 f (x) .全体函数值的集合称为函数 f 的值域,记作 f (D) .即 f (D) ={y | y =f (x), x ∈D}.2.几点说明(1)函数定义的记号中“ f : D →M ”表示按法则 f 建立D 到M 的函数关系,x |→y 表示这两个数集中元素之间的对应关系,也记作x |→f (x) .习惯上称x 自变量,y 为因变量.(2)函数有三个要素,即定义域、对应法则和值域.当对应法则和定义域确定后,值域便自然确定下来.因此,函数的基本要素为两个:定义域和对应法则.所以函数也常表示为:y =f (x), x ∈D .由此,我们说两个函数相同,是指它们有相同的定义域和对应法则.例如:1)f (x) =1, x ∈R,g(x) = 1, x ∈R \ {0}. (不相同,对应法则相同,定义域不同)2)(x) =| x |, x ∈R , (x) = x2 , x ∈R.(相同,只是对应法则的表达形式不同).(3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域).此时,函数的记号中的定义域可省略不写,而只用对应法则 f 来表示一个函数.即“函数y =f (x) ”或“函数 f ”.(4)“映射”的观点来看,函数f 本质上是映射,对于a ∈D ,f (a)称为映射 f 下a 的象. a 称为 f (a) 的原象.(5)函数定义中,∀x ∈D ,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x值,可以对应多于一个y 值,则称这种函数为多值函数.本书中只讨论单值函数(简称函数).二、函数的表示方法1主要方法:解析法(公式法)、列表法(表格法)和图象法(图示法).2可用“特殊方法”来表示的函数.1)分段函数:在定义域的不同部分用不同的公式来表示.⎨ ⎩⎨0,当x 为无理数, ⎨ F (x ) = f (x ) + g (x ), x ∈ D ; G (x ) = f (x ) - g (x ), x ∈ D ;H (x ) = f (x )g (x ), x ∈ D .⎧ 1, x > 0 例如sgn x = ⎪0, x = 0 ,(符号函数)⎪-1, x < 0(借助于 sgnx 可表示 f (x ) =| x |, 即 f (x ) =| x |= x sgn x ).2) 用语言叙述的函数.(注意;以下函数不是分段函数)例 1) y = [x ] (取整函数)比如: [3.5]=3, [3]=3, [-3.5]=-4.常有 [x ] ≤ x < [x ] +1 , 即0 ≤ x -[x ] < 1.与此有关一个的函数 y = x -[x ] {x } (非负小数函数)图形是一条大锯,画出图看一看.2)狄利克雷(Dirichlet )函数D (x ) = ⎧1,当x 为有理数, ⎩这是一个病态函数,很有用处,却无法画出它的图形.它是周期函数,但却没有最小周期,事实上任一有理数都是它的周期.3)黎曼(Riemman )函数⎧ 1,当x = p ( p , q ∈ N , p为既约分数) ,R (x ) = ⎪ q q+ q ⎪⎩0,当x = 0,1和(0,1)内的无理数. 三 函数的四则运算给定两个函数 f , x ∈ D 1 , g , x ∈ D 2 ,记D = D 1 D 2 ,并设D ≠ ,定义 f 与 g 在D 上的和、差、积运算如下:若在 D 中除去使 g (x ) = 0 的值,即令 D = D \ {x g (x ) ≠ 0, x ∈ D 2 } ≠ ,⎬ 可在D 上定义 f 与 g 的商运算如下; L (x ) =f (x ), x ∈ D . g (x )注:1)若D = D 1 D 2 =,则 f 与 g 不能进行四则运算.2)为叙述方便,函数 f 与 g 的和、差、积、商常分别写为:f +g , f - g , fg ,f .g四、复合运算1.引言在有些实际问题中函数的自变量与因变量通过另外一些变量才建立起它们之间的对应关系.例:质量为 m 的物体自由下落,速度为 v ,则功率E 为E = 1 mv 2 ⎫12 v = gt ⎪ ⇒ E = ⎪⎭mg 2t 2 . 2抽去该问题的实际意义,我们得到两个函数 f (v ) = 1mv 2 , v = gt ,把2v (t ) 代入 f ,即得f (v (t )) = 1mg 2t 2 .2这样得到函数的过程称为“函数复合”,所得到的函数称为“复合函数”.[问题] 任给两个函数都可以复合吗?考虑下例;y = f (u ) = arcsin u , u ∈ D = [-1,1], u = g (x ) = 2 + x 2 , x ∈ E = R .就不能复合,结合上例可见,复合的前提条件是“内函数”的值域与“外函数”的定义域的交集不空(从而引出下面定义).2.定义(复合函数) 设有两个函数 y = f (u ), u ∈ D , u = g (x ), x ∈ E ,⎛ 1 ⎫ 2 x E = {x f (x ) ∈ D } E ,若 E ≠ ,则对每一个 x ∈ E ,通过 g 对应 D 内唯一一个值u ,而u 又通过 f 对应唯一一个值 y ,这就确定了一个定义在E 上的函数,它以 x 为自变量, y 因变量,记作 y = f (g (x )), x ∈ E 或y = ( f g )(x ), x ∈ E .简记为 f g .称为函数 f 和 g 的复合函数,并称 f 为外函数, g 为内函数, u 为中间变量.3.例子 例y = f (u ) = u , u = g (x ) = 1 - x 2 . 求( f g )(x ) = f [g (x ).]并求定义域. 例⑴f (1 - x ) = x 2 + x + 1,f (x ) =.⑵f x + = x + 1. 则⎪⎝ ⎭f (x ) = ()A . x 2 ,B . x 2 + 1,C . x 2 - 2,D .x 2 + 2.例 讨论函数 y = f (u ) = u , u ∈[0, +∞) 与函数u = g (x ) = 1- x 2 , x ∈ R 能否进行复合,求复合函数.4 说明1)复合函数可由多个函数相继复合而成.每次复合,都要验证能否进行?在哪个数集上进行?复合函数的最终定义域是什么? 例 如 : y = sin u , u = v , v = 1- x 2 , 复 合 成 :y = sin 1- x 2 , x ∈[-1,1] .2)不仅要会复合,更要会分解.把一个函数分解成若干个简单函x 2a 数,在分解时也要注意定义域的变化.①y = log a 1- x 2 , x ∈(0,1) → y = log u ,u = z , z = 1- x 2.② y = arcsin → y = arcsin u , u = v , v = x 2 +1.③ y = 2sin 2x → y = 2u , u = v 2 , v = sin x .五、反函数1.引言在函数 y = f (x ) 中把 x 叫做自变量, y 叫做因变量.但需要指出的是,自变量与因变量的地位并不是绝对的,而是相对的,例如:f (u ) = u , u = t 2 +1,那么u 对于 f 来讲是自变量,但对t 来讲, u 是因变量.习惯上说函数 y = f (x ) 中x 是自变量, y 是因变量,是基于 y 随x 的变化现时变化.但有时我们不仅要研究 y 随x 的变化状况,也要研究x随 y 的变化的状况.对此,我们引入反函数的概念. 2.反函数概念定义设 f : X → R 是一函数, 如果∀ x 1 , x 2 ∈ X , 由x 1 ≠ x 2 ⇒ f (x 1 ) ≠ f (x 2 )(或由 f (x 1 ) = f (x 2 ) ⇒ x 1 = x 2 ),则称 f 在 X 上是 1-1 的.若 f : X → Y ,Y = f ( X ) ,称 f 为满的.若 f : X → Y 是满的 1-1 的,则称 f 为 1-1 对应.f : X → R 是1-1 的意味着 y = f (x ) 对固定 y 至多有一个解x , f : X → Y 是 1-1 的意味着对 y ∈Y , y = 仅有一个解x .f (x ) 有且 x 2 +1y 2 +1 ⎨定义 设 f : X → Y 是1-1 对应. ∀y ∈Y , 由 y = f (x ) 唯 一确定一个 x ∈ X , 由这种对应法则所确定的函数称为y = f (x ) 的反函数,记为x = f -1( y ) .反函数的定义域和值域恰为原函数的值域和定义域f : X → Yf -1 : Y → X显然有f -1 f= I : X → X(恒等变换)f f -1 = I : Y → Y (恒等变换)( f -1 )-1 = f : X → Y .从方程角度看,函数和反函数没什么区别,作为函数,习惯上我们还是把反函数记为 y = f -1(x ) , 这样它的图形 与 y = f (x ) 的图形是关于对角线 y = x 对称的. 严格单调函数是 1-1 但 1-1 例子 f (x ) =⎧ x ,0 ≤ x < 1 ⎩3 - x ,1 ≤ x ≤ 2它的反函数即为它自己.实际求反函数问题可分为二步进行:1. 确定 f : X → Y 的定义域 X 和值域Y ,考虑 1-1 对应条件.固定 y ∈Y ,解方程 f (x ) = y 得出 x = f -1( y ) .2. 按习惯,自变量x 、因变量 y 互换,得y = f -1(x ) . 例 求 y = sh (x ) = e x - e - x2:R → R 的反函数.解 固定 y ,为解 e x - e - x ,令2e x = z ,方程变为 2zy = z 2 -1 z 2 - 2zy -1 = 0 z = y ±( 舍去 y - )得x = ln( y + y 2 +1) ,即 y = ln(x + x 2 +1) = sh -1(x ) ,称为反双曲正弦. 定理 给定函数 y = f (x ) ,其定义域和值域分别记为 X 和Y , 若在Y 上存在函数g ( y ) ,使得 g ( f (x )) = x , 则有g ( y ) = f -1( y ) .y 2 +1y =分析:要证两层结论:一是y =f (x) 的反函数存在,我们只要证它是 1-1 对应就行了;二是要证g( y) = f -1( y) .证要证y =f (x) 的反函数存在,只要证 f (x) 是X 到Y 的 1-1 对应.∀x1,x2∈X ,若f (x1) = g( f (x1)) =x1f (x2 ) ,则由定理条件,我们有g( f (x2 )) =x2⇒x1 =x2,即 f : X →Y是 1-1 对应.再证g( y) = f -1 ( y) .∀y ∈Y ,∃x ∈X ,使得y = f (x) .由反函数定义x =f -1( y) ,再由定理条件g( y) =g( f (x)) =x . ⇒g( y) = f -1( y)例 f : R →R ,若f ( f (x)) 存在唯一(∃| )不动点,则f (x) 也∃|不动点.证存在性,设x * = f [ f (x *)],f (x *) = f f [ f (x * )],即f (x * ) 是f f 的不动点,由唯一性 f (x * ) =x *,即存在f (x) 的不动点x *.唯一性:设x = f (x) ,x = f (x) = f ( f (x)) ,说明x 是 f f 的不动点,由唯一性,x = x *.从映射的观点看函数.设函数y =f (x), x ∈D .满足:对于值域 f (D) 中的每一个值y ,D中有且只有一个值x ,使得f (x) =y ,则按此对应法则得到一个定义在 f (D) 上的函数,称这个函数为 f 的反函数,记作f -1 : f (D) →D,( y |→x) 或x =f -1( y), y ∈f (D) .3、注释a)并不是任何函数都有反函数,从映射的观点看,函数 f 有反函数,意味着 f 是D与 f (D) 之间的一个一一映射,称 f -1为映射 f 的逆映射,它把 f (D) →D ;b) 函数 f 与f -1 互为反函数,并有: f -1( f (x)) ≡x, x ∈D, f ( f -1(x)) ≡y, y ∈f (D).c)在反函数的表示x =f -1( y), y ∈f (D) 中,是以y 为自变量,x 为因变量.若按习惯做法用x 做为自变量的记号,y 作为因变量的记号,则函数 f 的反函数 f -1可以改写为y =f -1(x), x ∈f (D).应该注意,尽管这样做了,但它们的表示同一个函数,因为其定义域和对应法则相同,仅是所用变量的记号不同而已.但它们的图形在同一坐标系中画出时有所差别.六、初等函数1.基本初等函数(6类)常量函数y=C(C为常数);幂函数y =x(∈R) ;指数函数y =a x(a > 0, a ≠ 1) ;对数函数y = logx(a > 0, a ≠ 1) ;a三角函数y = sin x, y = cos x, y =tgx, y = c tgx ;反三角函数y = arcsin x, y = arccos x, y =arctgx, y =arcctgx .注:幂函数y =x(∈R) 和指数函数y =a x(a > 0, a ≠ 1) 都涉及乘幂,而在中学数学课程中只给了有理指数乘幂的定义.下面我们借助于确界来定义无理指数幂,便它与有理指数幂一起构成实指数乘幂,并保持有理批数幂的基本性质.定义2.给定实数a > 0, a ≠ 1 ,设x 为无理数,我们规定:⎨ ⎩ { } sin( ), y a ⎧ a x = ⎪sup {a r | r 为有理数},当a > 1时, r < x ⎪i nf a r | r 为有理数 ,当0 < a < 1时. r <x这样解决了中学数学仅对有理数x定义a x 的缺陷.[问题]:这样的定义有意义否?更明确一点相应的“确界是否存在呢?”2.初等函数定义3.由基本初等函数经过在有限次四则运算与复合运算所得到的函数,统称为初等函数如: y = 2 sin x + cos 2 x , y = 1 = l o g x + x e sinx -1 x 2, y =| x | . 不是初等函数的函数,称为非初等函数.如 Dirichlet 函数、Riemann 函数、取整函数等都是非初等函数.注:初等函数是本课程研究的主要对象.为此,除对基本初等函数的图象与性质应熟练掌握外,还应常握确定初等函数的定义域.确定定义域时应注意两点.例2.求下列函数的定义域.(1) y =(2) y = ln | sin x | . 3. 初等函数的几个特例: 设函数 f (x ) 和 g (x ) 都是初等函数, 则(1) f (x ) 是初等函数, 因为 f (x ) = ( f (x ))2 .(2) Φ(x ) = max {f (x ) , g (x )} 和 (x ) = min {f (x ) , g (x )}都是初等函数, 因为 Φ(x ) = max {f (x ) , g (x )} =1 [f (x ) + g (x ) +2 f (x ) - g (x ) ] , (x ) = min {f (x ) , g (x )} = 1 [f (x ) + g (x ) - 2f (x ) -g (x ) ] . x x -1(3)幂指函数(f(x))g ( x)(f (x) > 0)是初等函数,因为(f(x))g(x)=e ln(f ( x) )g(x)=e g ( x) ln f ( x) .[作业]P:3;4:(2)、(3);5:(2);7:(3);11 15§4具有某些特性的函数授课章节:第一章实数集与函数——§4 具有某些特性的函数教学目的:熟悉与初等函数性态有关的一些常见术语.教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期.教学重点:函数的有界性、单调性.教学难点:周期函数周期的计算、验证.教学方法:有界函数讲授,其余的列出自学题纲,供学生自学完成. 教学程序:引言在本节中,我们将介绍以后常用的几类具有某些特性的函数,如有界函数、单调函数、奇偶函数与周期函数.其中,有些概念在中学里已经叙述过,因此,这里只是简单地提一下.与“有界集”的定义类似,先谈谈有上界函数和有下界函数.一、有界函数1、有上界函数、有下界函数的定义定义 1 设f 为定义在 D 上的函数,若存在数M (L) ,使得对每一个x ∈D 有f (x) ≤M ( f (x) ≥L) ,则称f 为D 上的有上(下)界函数,M (L) 称为f 在D 上的一个上(下)界.注:(1)f 在D 上有上(下)界,意味着值域f (D) 是一个有上(下)界的数集;(2又)若M(L)为f在D 上的一个(上下)界则,任何大于(M小于L)的数也是 f 在D 上的上(下)界.所以,函数的上(下)界若存在,则不是唯一的,例如:y=sin x,1 是其一个上界,下界为-1,则易见任何小于-1 的数都可作为其下界;任何大于 1 的数都可作为其上界;(3)任给一个函数,不一定有上(下)界;6 5 x 5 2 6(4) 由(1)及“有界集”定义,可类比给出“有界函数” 定义:f 在 D 上有界⇔ f (D ) 是一个有界集⇔ f 在 D 上既有上界又有下 界⇔ f 在 D 上的有上界函数,也为 D 上的有下界函数.2、有界函数定义定义 2 设 f 为定义在 D 上的函数.若存在正数M,使得对每一个 x ∈ D 有| f (x ) |≤ M ,则称 f 为 D 上的有界函数.注:(1)几何意义: f 为 D 上的有界函数,则 f 的图象完全落在 y = M 和 y = -M 之间;(2) f 在 D 上有界⇔ f 在 D 上既有上界又有下界;例子: y = sin x , y = cos x ;(3)关于函数 f 在 D 上无上界、无下界或无界的定义.3、 例题例 1 证明 f : X → R 有界的充要条件为: ∃ M , m ,使得对∀x ∈ X , m ≤ f (x ) ≤ M . 证明 如果 f : X → R 有界,按定义∃ M >0,∀x ∈ X 有f (x ) ≤ M ,即 -M ≤ f (x ) ≤ M ,取m = -M ,M = M 即可. 反之如果∃ M , m 使得∀x ∈ X , m ≤ f (x ) ≤ M ,令M 0 = max { M +1, m },则 f (x ) ≤ M 0 ,即∃ M 0 > 0 ,使得对∀x ∈ X 有界.f (x ) ≤ M 0 ,即 f : X → R 有 例 2.证明 例 3. 设 f (x ) = 1 为(0,1] 上的无上界函数. x f ,g 为 D 上 的 有 界 函 数 . 证 明 : ( 1)inf f (x ) + inf g (x ) ≤ inf { f (x ) + g (x )} ;x ∈D x ∈D x ∈D(2) s up { f (x ) + g (x )} ≤ sup f (x ) + sup g (x ) .x ∈D x ∈D x ∈D例 4 验证函数 f (x ) = 5x 2x 2+ 3在R 内有界. 解法一 由2x 2 + 3 = ( 2x )2 + ( 3)2 ≥ 2 2x ⋅ = 2 x , 当x ≠ 0 时,有f (x ) = = 2x 2 + 3 ≤ = ≤ 3. f (0) ∴ 对 = 0 ≤ 3 ,∀x ∈ R , 总有 f (x ) ≤ 3,即 f (x ) 在R 内有界.解法二 令实数根.y =5x , ⇒ 2x 2 + 3 关于x 的二次方程 2 yx 2 - 5x + 3y = 0 有 3 5x 2x 2 + 3 5 x 2 6 x5 3 tgt 3 2 tg 2t + 1 5 sin t 16 cos t sec 2 t 5 2 6 2 2 ∴ ∆ = 52 - 24 y 2 ≥ 0, ⇒ y 2 ≤ 25 ≤ 4, ⇒ 24 y ≤ 2. 解法三 令 x = 3tgt , t ∈ ⎛- ⎫ 对应x ∈ ( - ∞ , + ∞ ). 于是f (x ) = 2 5x = 2x 2 + 3 ⎛ 3 , ⎪ ⎝ ⎭= = = ⎫2 2 tgt ⎪ + 3⎝ 2 ⎭= sin 2t , ⇒ f (x ) = sin 2t ≤ 5 . 2 6二、单调函数定义 3 设 f 为定义在 D 上的函数, ∀x 1 , x 2 ∈ D , x 1 < x 2 , ( 1) 若 f (x 1 ) ≤ f (x 2 ) ,则称 f 为 D 上的增函数;若 f (x 1 ) < f (x 2 ) ,则称 f 为 D 上 的严格增函数.( 2) 若 f (x 1 ) ≥ f (x 2 ) , 则称 f 为 D 上的减函数; 若 f (x 1 ) > f (x 2 ) ,则称 f 为 D 上的严格减函数.例 5.证明: y = x 3 在(-∞, +∞) 上是严格增函数.证明:设x < x , x 3 - x 3 = (x - x )(x 2 + x x + x 2 ) 1 2 1 2 1 2 1 1 2 2如x x < 0 ,则x > 0 > x ⇒ x 3 < x 3 1 2 2 1 1 2如x x > 0 ,则x 2 + x x + x 2 > 0, ⇒ x 3 < x 3 1 2 1 1 2 2 1 2故x 3 - x 3 < 0 即得证. 1 2例 6.讨论函数 y = [x ] 在R 上的单调性.∀x 1, x 2 ∈ R ,当x 1 < x 2 时,有[x 1] ≤ [x 2 ] ,但此函数在R 上的不是严格 增函数.注:1)单调性与所讨论的区间有关.在定义域的某些部分, f 可能单调,也可能不单调.所以要会求出给定函数的单调区间;2)严格单调函数的几何意义:其图象无自交点或无平行于x 轴的部分.更准确地讲:严格单调函数的图象与任一平行于 x 轴的直线至多有一个交点.这一特征保证了它必有反函数.总结得下面的结论:定理 1.设 y = f (x ), x ∈ D 为严格增(减)函数,则 f 必有反函数 f -1 , 且 f -1 在其定义域 f (D ) 上也是严格增(减)函数. 证明:设 f 在D 上严格增函数.对∀y ∈ f (D ), 一x ∈ D , 一f (x ) = y .下面 证明这样的 x 只有一个.事实上,对于D 内任一 x 1 ≠ x , 由于 f 在D 上严格增函数,当 x 1 < x 时 f (x 1 ) < y ,当 x 1 > x 时 f (x 1 ) > y ,总之 f (x 1 ) ≠ y .即 5 3tgt 2 5 2 6⎨ ∀y ∈ f (D ), 一 一 一 一 一一 一 一x ∈ D , 一一 f (x ) = y ,从而例 7 讨论函数 y = x 2 在(-∞, +∞) 上反函数的存在性;如果 y = x 2 在 (-∞, +∞) 上不存在反函数,在(-∞, +∞) 的子区间上存在反函数否?结论:函数的反函数与讨论的自变量的变化范围有关.例8 证明: y = a x 当a > 1 时在R上严格增,当0 < a < 1时在R 上严格递减.三、奇函数和偶函数定义 4. 设 D 为对称于原点的数集, f 为定义在 D 上的函数.若 对每一个 x ∈ D 有(1) f (-x ) = - f (x ) ,则称 f 为 D 上的奇函数;(2) f (-x ) = f (x ) ,则称 f 为 D 上的偶函数.注:(1)从函数图形上看,奇函数的图象关于原点对称(中心 对称),偶函数的图象关于 y 轴对称;(2)奇偶性的前提是定义域对称,因此 f (x ) = x , x ∈[0,1] 没有必要讨论奇偶性.⎧ ⎪ (3) 从奇偶性角度对函数分类: ⎪ 奇函数: y=si nx 偶函数: y=sgnx ;⎪非奇非偶函数: y=si nx+cosx⎩⎪ 既奇又偶函数: y ≡ 0(4) 由于奇偶函数对称性的特点,研究奇偶函数性质时,只须讨论原点的左边或右边即可四、周期函数1、定义设 f 为定义在数集 D 上的函数,若存在> 0 ,使得对一切x ∈ D 有 f (x ±) = f (x ) ,则称 f 为周期函数,称为 f 的一个周期.2、几点说明:(1) 若是 f 的周期,则n (n ∈ N + ) 也是 f 的周期,所以周期若存在,则不唯一.如 y = sin x ,= 2, 4, .因此有如下“基本周期”的说法,即若在周期函数 f 的所有周期中有一个最小的周期,则称此最小周期为 f 的“基本周期”,简称“周期”.如 y = sin x ,周期为2;(2) 任给一个函数不一定存在周期,既使存在周期也不一定有基本周期,如:1) y = x +1,不是周期函数;2) y = C (C为常数),任何正数都是它的周期.第二章数列极限引 言为了掌握变量的变化规律,往往需要从它的变化过程来判断它的。
归纳最终版资料分析公式汇总完整版.docx
资料分析公式汇总速算技巧一、估算法精度要求不高的情况下,进行粗略估值的速算方式。
选项相差较大,或者在被比较的数字相差必须比较大,差距的大小将直接决定对“估算”时对精度的要求。
二、直除法在比较或者计算较复杂的分数时,通过“直接相除”的方式得到商的首位(首一位、首两位、首三位),从而得出正确答案的速算方式。
常用形式: 1.比较型:比较分数大小时,若其量级相当,首位最大∕小数为最大∕小数2.计算型:计算分数大小时,选项首位不同,通过计算首位便可得出答案。
难易梯度:1.基础直除法:①可通过直接观察判断首位的情形;②需要通过手动计算判断首位的情形。
2.多位直除法:通过计算分数的“首两位”或“首三位”判断答案情形。
三、插值法1.“比较型”插值法如果A与B的比较,若可以找到一个数C,使得A﹥C,而B﹤C,既可以判定A﹥B;若可以找到一个数C,使得A﹤C,而B﹥C,既可以判定A﹤B;2.“计算型”插值法若A﹤C﹤B,则如果f﹥C,则可以得到f=B;如果f﹤C,则可以得到f=A;若A﹥C﹥B,则如果f﹥C,则可以得到f=A;如果f﹤C,则可以得到f=B。
四、放缩法当计算精度要求不高时,可以将中间结果进行大胆的“放”(扩大)或者“缩”(缩小),从而迅速得到精度足够的结果。
常用形式:1. A﹥B,C﹥D,则有A+C﹥B+D;A-D﹥B-C;2. A﹥B﹥0,C﹥D﹥0,则有A×C﹥B×D;A÷D﹥B÷C五、割补法在计算一组数据的平均值或总和值时,首先选取一个中间值,根据中间值将这组数据“割”(减去)或“补”(追上),进而求取平均值或总和值。
常用形式:1.根据该组数据,粗略估算一个中间值;2.将该组值分别减去中间值得到一组数值;3.将得到的新数值相加得到和值,用和值除以该组数值的项数得到商值,将商值加上中间值,即为该组数值的精确平均值;4.用中间值乘以数据项数再加上最后的和值即为总和值。
数学分析知识点总结
数学分析知识点总结一、引言数学分析是研究函数、极限、导数、积分等概念的数学分支。
它是现代数学的基础,对于理解和应用更高级的数学理论至关重要。
二、极限与连续性1. 极限的定义与性质- 极限的概念- 极限的性质和运算法则- 无穷小与无穷大- 极限存在的条件2. 无穷级数- 级数的收敛性- 收敛级数的性质- 级数的极限3. 函数的连续性- 连续函数的定义- 间断点的分类- 连续函数的性质三、导数与微分1. 导数的定义- 导数的直观理解- 导数的严格定义2. 导数的计算- 导数的基本公式- 链式法则、乘积法则、商法则 - 高阶导数3. 微分- 微分的概念- 微分的几何意义- 微分的应用四、中值定理与泰勒展开1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 泰勒展开- 泰勒级数- 泰勒展开的应用- 泰勒级数的收敛性五、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法2. 定积分- 定积分的定义- 定积分的性质- 定积分的计算3. 积分的应用- 面积计算- 体积计算- 平面曲线的弧长六、级数1. 级数的收敛性- 收敛级数的定义- 收敛性的判别方法2. 幂级数- 幂级数的收敛半径- 幂级数的应用3. 傅里叶级数- 傅里叶级数的概念- 傅里叶级数的物理意义七、多元函数分析1. 多元函数的极限与连续性 - 多元函数的极限- 多元函数的连续性2. 偏导数与梯度- 偏导数的定义- 梯度的概念3. 多重积分- 二重积分的定义- 二重积分的计算方法八、结论数学分析是数学学科的基石,它的概念和方法广泛应用于物理、工程、经济等多个领域。
掌握数学分析的知识点对于理解和解决实际问题具有重要意义。
以上是数学分析的主要知识点概述。
每个部分都可以进一步扩展,包含更多的细节和例子。
这篇文章的结构旨在提供一个清晰的框架,便于读者理解和复习数学分析的核心概念。
完整版)数学分析复习资料及公式大全
完整版)数学分析复习资料及公式大全导数公式:求导是微积分的重要内容之一,掌握导数公式对于解题至关重要。
常见的导数公式如下:tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)·tan(x)csc(x)的导数为-csc(x)·cot(x)ax的导数为ax·ln(a)log_a(x)的导数为1/(x·ln(a))基本积分表:积分是微积分的重要内容之一,掌握基本积分表对于解题至关重要。
常见的基本积分表如下:arcsin(x)的导数为1/(sqrt(1-x^2))arccos(x)的导数为-1/(sqrt(1-x^2))arctan(x)的导数为1/(1+x^2)arcctan(x)的导数为-1/(1+x^2)tan(x)dx=-ln|cos(x)|+Ccot(x)dx=ln|sin(x)|+Csec(x)dx=ln|sec(x)+tan(x)|+Ccsc(x)dx=ln|csc(x)-cot(x)|+Cdx/x=ln|x|+Csin(x)dx=-cos(x)+Ccos(x)dx=sin(x)+Cdx/(x^2+a^2)=1/a·arctan(x/a)+Cdx/(a^2-x^2)=1/(2a)·ln|(a+x)/(a-x)|+C dx/(a^2+x^2)=1/a·ln|(a+x)/x|+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+C e^x dx=e^x+Csin^2(x)dx=1/2·(x-sin(x)cos(x))+C cos^2(x)dx=1/2·(x+sin(x)cos(x))+Csec(x)·tan(x)dx=sec(x)+Ccsc(x)·cot(x)dx=-csc(x)+Ca^x dx=a^x/ln(a)+Csinh(x)dx=cosh(x)+Ccosh(x)dx=sinh(x)+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+Cπ/2+πn (n为整数)lim(1+x)→∞=e=2.xxxxxxxxxxxxxxx。
数学运算、资料分析必背公式大全
数学运算、资料分析必背公式大全如果连最基本的公式都不记得的话,先不说做题速度了,绝大多数的数学运算与资料分析题你肯定都无从下手。
而行测领域中的数学运算与资料分析,其实也都涵盖了大量的公式需要你去掌握,希望所有同学能够认真梳理,并结合做过的例题发散思考。
数学运算篇以下公式源自【爆发篇--数学运算怎能轻言放弃?】行程问题路程=速度×时间1、平均速度平均速度=总路程÷总时间等时间平均速度=(V1+V2)/2等距离平均速度=2V1V2/(V1+V2)(实际上,更好的解题思路是特值法)2、相遇和追及路程和=速度和×相遇时间直线上,两人相向而行时,第n次相遇时,路程和=(2n-1)个全程环形上,两人背向而行,第n次相遇是,路程和=n个周长路程差=速度差×追及时间直线上,只会追上一次。
路程差的产生:1)两人同时但不同点出发:快的在后,慢的在前。
2)两人同点但不同时出发:慢的先出发,快的后出发环形上,可以追上n次,第n次追上,路程差=n个周长3、两岸相遇单岸:3S1+S2=2S(S1、S2分别为第1次和第2次相遇时相遇地点距离某边的距离,S是全程)两岸:3S1-S2=S(S1、S2分别为第1次和第2次相遇时相遇地点距离不同两边的距离,S是全程)4、流水行船顺水速度=船速+水速逆水速度=船速-水速顺水速度+逆水速度=2船速顺水速度-逆水速度=2水速5、火车过桥路程=桥长+车长两车错身而过:路程和=车身长之和两车追及:路程差=车身长之和变型问题—“人和队伍”问题:人追队头,路程差=队伍长度;人从队头出发和队尾相遇,路程和=队伍长6、时钟问题时针速度=0.5°/分钟;分针速度=6°/分钟重合:分针要追的度数=5.5°t垂直:分针多走的度数=5.5°t7、发车问题发车间隔=t分钟(每t分钟发一趟车),两车相隔的距离=车速×发车间隔t。
《数学分析(2)》复习要点.doc
《数学分析(2)》复习要点第五章定积分1、定积分的概念和性质(含积分中值定理)、利用定积分定义求特殊和式的极限。
2、微积分基本定理、变限积分的一般求导公式及其应用。
3、求定积分的换元积分法、利用换元法证明定积分等式、定积分的奇偶对称性。
4、求定积分的分部积分法、积分公式打打I哙二〃为人于1的奇数,『曲皿叮曲皿=气兀也一^二•仝,〃为正偶数。
nW 25、无穷积分的计算。
第六章定积分的应用(与多元积分学相结合)1、定积分应用的元索法。
2、平面图形面积的计算。
3、旋转体和平行截面面积为已知的立体体积的计算。
4、平面曲线弧长的计算。
5、旋转曲面面积的计算。
第七章空间解析几何1、向量的坐标、向量的分向量、向量在坐标轴上的投影,利用坐标求向量的模、方向余弦、线性运算。
2、数量积与向量积的概念、性质、运算律及的坐标表示式,两向量夹角的求法,向量的投影和平行四边形面积的计算。
3、平面的点法式方程与一般方程的求法,两平面的夹角和点到平面的距离。
4、直线的对称式方程、参数方程和一般方程的求法,两直线的夹角、直线与平面的夹角,点到直线的距离。
5、母线平行于坐标轴的柱面方程与旋转曲面的方程,常见二次曲面的标准方程与图形。
第八章多元函数微分法1、二元函数的概念、定义域、多元复合函数的运算。
2、二重极限与一•次极限的概念和联系,简单二重极限与二次极限的计算。
3、二元函数连续的概念,二元分段函数在分段点(坐标原点)处连续性的判别。
4、偏导数与全微分的概念,会用定义判断分段函数在分段点(坐标原点)处的可偏导性和可微性。
5、二元函数在某点连续、可偏导、可微、偏导数连续间的关系。
6、多元复合函数的求导法则。
7、隐函数的求导方法(公式法、直接法)。
8、方向导数的概念与计算方法,梯度的概念以及梯度与方向导数的关系。
9、高阶偏导数的概念、复合函数及隐函数二阶偏导数的计算。
第九章多元函数微分学的应用1、空间曲线的切线与法平面的求法。
2、曲面的切平面与法线的求法。
(完整版)数学分析复习资料及公式大全
(完整版)数学分析复习资料及公式大全-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数公式:= scc 2 x/ 2 (cfgx)'= -cscr(secx)r= secx ・tgx (esc x\ = - esc x •etgx (a x \ = a x \na(arccosx)'=——/yjl-x2— 2I n = Jsin" xdx = jcos Mxdx 0(log. x\ =1x\na(arcctgx)f=1 l + x 2基本积分表:ygxdx = - ln|cos x +C ^ctgxdx = ln|sin x +C jscc xdx = ln|scc 兀 + fgx + CJese xdx = ln|csc x - etgx +C 1 x =—arctg — +C a a = ±lnl dxcos 2 xdxsin 2x|sec 2 xdx = tgx + C jese 2 xdx = -etgx + Cdx ~2 2a +x dx 2 7 x -erdx a 2-x 2dx\la 2 -x 2x-a2ci \x + a\ 1 , ci + x 厂 =——In ---- + C2a a-x= = arcsin —+ Cajsec x • tgxdx = sec x + C |cscx-c/gxJx = -esex + Cia xdx = ———CJInezjshxdx = chx + C ^chxdx = shx + CJ 岛 T 777"^x 2+a 2dx = — y/x 2+ a 2+ — ln(x + y/x 2+a 2) + C 2_________ ____________________ 2JVx 2-a 2d x =~ J 兀2_ — In 兀 + — cz 厶+ CJJ/x = *罷 三角函数的有理式积分:2 一 + — arcsin — + C2a sinx =2u l +u 2cosx = 1 -M 21 + w 2U=tg2dx =2dul + w 2(arctgx)f = 1l + x 2/r 2(arcsin x)fsin(cr ± /?) = sin a cos /? ± cos <7sin 0cos(a ± 0) = cos a cos 0 年sin a sintga土tg0•和差化积公式:sirm + sin 0 = 2 sin cos ~~~~ sin 6Z-sin 0 = 2 cos °十X _ -X双曲正弦:shx=' r2双曲余弦:chx = C A2c/7r e x双曲正切:thx = - = ^-^ chx e +e arshx = ln(x + Vx2 +1) archx = ± ln(x + y]x2 -1)sinxlim ----- =1lim(l + -)' = ^ = 2.718281828459045... —8 %arthx = —In2三角函数公式:•诱导公式:数角彳、sin cos tg Ctg-a-sina cosa-tga-ctga90°-a cosa sina ctga tga90°+a cosa-sina-ctga-tga180°-a sina-cosa-tga-ctga180°+a-sina・ cosa tga ctga270°-a-cosa-sina ctga tga270°+a-cosa sina-ctga-tga360°-a-sina cosa-tga-ctga360°+a sina cosa tga ctga •和差角公式:tg(a±/3) =/ , °、ctga・ctg0 +\crg(d±0)= & ""sin ―—2 2r 6Z + 0 oc — (3 cos a + cos 0 = 2 ncos —-^― cos —-^― cos a - cos 0= 2 sin " + " sin —―—2 2•倍角公式:•半角公式:(济)(“)=£算严幼严Jl=0冲叫+和+汕知” +…+⑷-1)・・°"+叽心)严+・・・ + "/)2! k\中值定理与导数应用:拉格朗日中值定理:f(b)-f(a) = f^)(b-a) 柯西中值定理严)- W 以OF(b)-F(a) F©当F(Q 二x 时,柯西中值定理就是拉格朗口中值定理。
曲率:sin 2a = 2 sin a cos acos2cr = 2cos 2 a-\-1 -2sin 2 a - cos 2 «-sin 2a c c tg2a 一 1 ctg2a = ---------2ctgasin 3cr = 3 sin a -4sin 3a cos3cr = 4COS '&-3COSQtg3a =3tga tg'a \-3tg 2a• asin —=2a , /l-cos<7 1-COS6Z sin a tg — = ±A ------- = --------- = -------- 2 V 1 + coscr sin a 1 + COSQa , |l + cosQcos — = ±J ---------2 V 2a , Jl + cosa 1 + COSQ sin a ctg — = 土 J ----------------- = ----------- = ----------- 2 v 1-COS6Z sincr 1 -coscr・正弦定理:-^— = -^— = ^— = 2R sinA sinB sinC•余弦定理:c 2 = a 2 +b 2-2abcosC•反三角函数性质:arcsinx = ----- arccosx271arctgx = --- arcctgx高阶导莱布尼兹(Leibniz)公式:弧微分公式:ds = {1 +)严曲其i|y = /ga .△&:从M 点到NT 点,切线斜率的倾角变化量;As : MM 弧反。
直线:K = O;半径为a 的圆:K=-. a 定积分的近似计算:b t矩形法:丄上(儿+)>+•••+儿-)i n b>j梯形法:j/(x )« —^-[-(y 0 + 儿)+ x + …+ 儿_】]abfh — Z7抛物线法:]7(x ) u 玄-[(儿+儿)+ 2(儿+儿+…+儿—2) + 4(X +儿+…+儿-1)]a定积分应用相关公式: 功:W = F-s 水压力:F = p-A 引力:F = k^,k 为引力系数r空间解析几何和向量代数:平均曲率灭=M 点的曲率:K = \im山TO A Sdads Vo+/2)3函数的平均值»二均方根:ba空间2点的距离:〃 =|冏叽| = J (£ 一州)2 + (儿一 X )2 + G - Z |)2 向量在轴上的投影:Pr 血乔=|乔卜cos 00是乔与”轴的夹角。
Pr j u (5i +52)= Pr皿 + Pr ja 2a-b = \a\ - h cos0 = a x b x +a y h y +a.h :9是一个数量,a_ ,|c|= a -|&|sin^.例:线速度:v = vvxr.bx 伏,向量的混合积:[ahc] = (dxb)-c = h x-dy 冬 _b y b z = axh •c COSQ ,Q 为锐角时,代表平行六面体的体积。
平面的方程:1、点法式:A(x-x o ) + B(y-y o ) + C(z-z o ) = O,其中n = {A,B,C},M Q (x Q ,y Q ,z Q )厶一般方程:Ax +By+ Cz + Q = 03、截距世方程:兰+工+三=1a b c平面外任意一点到该平面的距离:〃」办。
+〃儿+5+刖V A 2 + S 2 + C 2X = X G + mt 空间直线的方程:乂也= =二英中2仙‘,“};参数方程:尸儿+mmn p二次曲面:2 2 21、 椭球而:与+件+* = 1a b “ c2 22、 抛物ffi:—4-—= Z,(p ,9同号)2p 2q3、 双曲面:2 2 2 单叶双曲面:亠+―-二=1 cr b 「 c2 2 2双叶双曲面:二-—+二=1(马鞍面)cr b 「 c_多元函数微分法及应用两向量之间的夹角:COS& =•航 +b :+b :c = axb = a x a y全微分:dz = —dx + — dy du = —dx +—dy +—dz dx dy dx dy ' dz 全微分的近似计算:"=dz = f x (x, y)Ax + f y (x, y)Ay 多元复合函数的求导法:dz dz du dz dv dt du dt dv dt当u =u(x,y\ v = v(x, y)时,隐函数的求导公式:迦—__L °(F ,G) dx J6(x, v) 里—丄 Q(F,G) Sy J 5(y,v)微分法在几何上的应用:兀=0⑴空间曲线y = 0⑴在点Mgjg)处的切线方程:导=宁汁壬 小 (P (A )) 0仏)血亿))Z = co(t) 在点M 处的法平面方程:0仏)(兀-兀0 ) + 0‘仏)(y 一儿)+少(厲)(z - Zo ) = 0若空间曲线方程为则切向量〒={Fy耳巴F v[G(“Z ) = O5 SGM GJ 负 G y曲面F(x, y, z) = 0上一点M (x 0, y Q , z 0),贝山1、 过此点的法向量:h = {F x (x 0,y (),^()),F y (x 0,y (),^()),F z (x 0,y 0,z ())}2、 过此点的切平面方程:的(兀0,儿,5)(兀-兀0)+耳(兀0』0,5)0-儿)+ 3(兀0』0忆0)(2-5)= 0方向导数与梯度:z = /[心必咻刃]dz _ dz du + dz dv dx du dx dv dx』 du . du . au =——dx-\ -- dydx dydv = ^dx^dy dx dy 隐函数F(x, y) = 0,乞)+2( -F 、\ oy■2 F y dx隐函数 F(x,y,z) = O,翌=_匕dx F_<•隐函数方程组:严』以)=0G(x,y,u,v) = 0dFdFj 0(F,G)duF FU y 5(w,v) 8GdGG u Gvdu6v过此点的法线方程:一』一EOW O M O ) y -儿 Fy (兀 o 』▲ OWoMo)& =_£vF aG)X)G1 刃, r\ F M 5(5 一一 =av一函数z = 在一点p(x,y)沿任一方向/的方向导数^J :—= —cos^? +—sin^dl dx dy其中。