极坐标与直角坐标的互化
极坐标与直角坐标的互化推导公式
极坐标与直角坐标的互化推导公式在数学中,极坐标和直角坐标是两种不同的坐标系,它们可以互相转换并描述同一点的位置。
下面将通过推导公式,介绍极坐标与直角坐标之间的转换关系。
极坐标与直角坐标的基本概念首先,我们先来了解一下极坐标和直角坐标的基本概念。
•极坐标:极坐标使用极径和极角来表示平面上的点的位置。
其中,极径表示点到原点的距离,极角表示点与正半轴之间的角度。
•直角坐标:直角坐标使用横坐标和纵坐标来表示平面上的点的位置。
其中,横坐标表示点在 x 轴上的投影,纵坐标表示点在 y 轴上的投影。
极坐标转直角坐标接下来,我们将推导出将极坐标转换为直角坐标的公式。
设点 P 在极坐标系中的坐标为(r, θ),在直角坐标系中的坐标为 (x, y)。
利用三角函数的关系可得:$$x = r \\cos(\\theta)$$$$y = r \\sin(\\theta)$$这两个公式将极坐标系中的点的坐标转换为直角坐标系中的坐标。
直角坐标转极坐标同样地,我们也可以推导出将直角坐标转换为极坐标的公式。
设点 P 在直角坐标系中的坐标为 (x, y),在极坐标系中的坐标为(r, θ)。
利用三角函数的反函数可得:$$r = \\sqrt{x^2 + y^2}$$$$\\theta = \\arctan\\left(\\frac{y}{x}\\right)$$这两个公式将直角坐标系中的点的坐标转换为极坐标系中的坐标。
推导过程下面,我们将推导出上述的转换公式。
极坐标转直角坐标首先,考虑直角三角形 OPX,如下图所示:|| O|-----------|-----r | x||P根据三角函数的定义,我们可以得到:$$\\cos(\\theta) = \\frac{x}{r}$$$$\\sin(\\theta) = \\frac{y}{r}$$将上面两个等式进行整理,可以得到:$$x = r \\cos(\\theta)$$$$y = r \\sin(\\theta)$$这就是将极坐标转换为直角坐标的公式。
二重积分极坐标与直角坐标的互化
二重积分极坐标与直角坐标的互化
极坐标与直角坐标的互化是指将一个二重积分由一种坐标系转换为另一种坐标系来进行计算。
下面是极坐标与直角坐标的互化公式:
极坐标到直角坐标的转换:
x = r * cosθ
y = r * sinθ
直角坐标到极坐标的转换:
r = sqrt(x^2 + y^2)
θ = arctan(y/x)
其中,r 表示极径,θ 表示极角,(x, y) 表示直角坐标系中的点。
在进行二重积分时,通过使用这些转换公式,可以将被积函数在一个坐标系下的积分转化为另一个坐标系下的积分。
通过这种转换,可以简化计算,尤其是当被积函数在另一种坐标系下的表达形式更简单或对称性更强时。
1.2.2极坐标和直角坐标的互化
例1.
2 将点M的极坐标 (5, ) 3
化成直角坐标.
2 5 解: x 5 cos 3 2 2 5 3 y 5 sin 3 2 5 5 3 ) 所以, 点M的直角坐标为( , 2 2
已知下列点的极坐标,求它们的直 角坐标。
17 ) 6
D. (3,
5 - 6
)
2.在极坐标系中,与(ρ,θ)关于极轴对称 的点是( ) B A.(ρ,θ) B.(ρ, - θ) C.(ρ,θ+π) D.(ρ,π-θ)
3.在极坐标系中,与点(8, )关于极 6
点对称的点 的一个坐标是( A )
A.(- 8, 6 )
5 B. (- 8, - ) 6
练习: 已知点的直角坐标, 求它们 的极坐标.
A ( 3, 3 )
B (1, 3 )
C (5,0) E ( 3,3)
D (0,2)
F (3,0)
题组三 1. 在极坐标系中,与点 (3, )重合 6 的点是( A ) 13 A.(3, 6 ) B. (3, - 6 )
C. (3,
5 C. (-8, 6 )
D.(-8, - ) 6
A ( 3, ) 6
B ( 2, ) 2
C (1, ) 2
3 3 D ( , ) E ( 2, ) 2 4 4
3 F (0, ) 4
例2. 将点M的直角坐标
( 3, 1)
化成极坐标.
( 1 )2 解: ( 3 )
2 2
1 3 tan 3 3 7 因为点在第三象限, 所以 6 7 因此, 点M的极坐标为( 2, ) 6
直线极坐标与直角坐标的互化问题
直线极坐标与直角坐标的互化问题直线极坐标和直角坐标是数学中常见的两种坐标系,它们在表示平面上的点或空间中的物体位置时具有不同的优势和应用场景。
直线极坐标系由极径和极角两个参数组成,可以描述一个点到原点的距离和与正半轴的夹角;而直角坐标系则由直角坐标轴上的横轴和纵轴两个参数组成,可以描述一个点在平面上的具体位置。
因此,如何将直线极坐标和直角坐标互相转换是一个重要的问题。
1.直线极坐标转直角坐标直线极坐标转换为直角坐标可以简化为以下步骤: - 根据给定的极角θ和极径r,计算出直线极坐标系下的点的横坐标x和纵坐标y。
- 利用三角函数的关系,x = r * cos(θ),y = r * sin(θ)。
2.直角坐标转直线极坐标直角坐标转换为直线极坐标可以简化为以下步骤: - 根据给定的直角坐标系下的点的横坐标x和纵坐标y,计算出直线极坐标系下的极径r和极角θ。
- 利用三角函数的反函数,r = √(x2+y2),θ = arctan(y/x)。
综上所述,直线极坐标与直角坐标的互化问题可以通过以上步骤进行转换。
这种转换在不同的数学问题和应用中具有重要的意义和作用。
例如,在工程计算中,直角坐标系常用于描述平面上的工程结构,而直线极坐标系则用于描述圆形或者具有对称结构的工程问题。
在同一个工程问题中,可能需要在直角坐标系和直线极坐标系之间进行转换,以便更好地分析和解决工程问题。
比如,在计算机图形学中,直线极坐标系可以优化圆形图形的表示和计算,而直角坐标系则适合表示和计算任意形状的图形。
总之,直线极坐标与直角坐标的互化问题是数学中的基本问题之一,它们在数学、工程、物理等领域都有广泛的应用。
了解如何进行直线极坐标和直角坐标的转换,可以帮助我们更好地理解和应用不同坐标系下的数学模型和理论。
极坐标系与直角坐标的互化 课件
点的极坐标和直角坐标的互化 1.互化背景:把直角坐标系的原点作为极点 ,x 轴的正半轴作为 极轴 ,并在两
种坐标系中取相同的 长度单位 ,如图所示.
2.互化公式:设 M 是坐标平面内任意一点,它的直角坐标是(x,y),极坐标是(ρ, θ)(ρ≥0),于是极坐标与直角坐标的互化公式如表:
故点的极坐标为2
2,34π.
(2)由 ρ= x2+y2=1,
tan θ=xy=- 33,
且角 θ 的终边经过点 23,-12, 当 θ∈[0,2π)时,θ=116π,
故点的极坐标为1,116π. (3)由 ρ= x2+y2= 6,且角 θ 的终边经过点(0,- 6),当 θ∈[0,2π)时,θ=32π,
故点的极坐标为
6,32π.
点的直角坐标化为极坐标的注意事项 化点的直角坐标为极坐标时,一般取 ρ≥0,θ∈[0,2π),即 θ 取最小正角,由 tan θ=xy(x≠0)求 θ 时,必须根据角 θ 的终边经过点(x,y)所在的象限来确定 θ 的值.
2.已知点的直角坐标分别为 A(3,- 3),B0, 35,C(-2,2 3),求它们的极坐标, 其中极角 θ∈[0,2π). 解析:根据 ρ2=x2+y2,tan θ=xy(x≠0),
[解析] (1)∵x=ρcos θ=2cosπ3=1, y=ρsin θ=2sinπ3= 3, ∴点的极坐标2,π3化为直角坐标为(1, 3). (2)∵x=ρcos θ=4cos-π2=0, y=ρsin θ=4sin-π2=-4, ∴点的极坐标4,-π2化为直角坐标为(0,-4).
(3)∵x=ρcos θ=5cos(-5)=5cos 5, y=ρsin θ=5sin(-5)=-5sin 5, ∴点的极坐标(5,-5)化为直角坐标为(5cos 5,-5sin 5).
极坐标和直角坐标的互化
极坐标和直角坐标的互化1.极坐标系的概念(1)定义:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox 叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的正方向. (3)图示:2.极坐标(1)极坐标的定义:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).(2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O 的极坐标是(0,θ),(θ∈R),若点M 的极坐标是M (ρ,θ),则点M 的极坐标也可写成M (ρ,θ+2k π)(k ∈Z).若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系.3.极坐标与直角坐标的互化公式如图所示,把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且长度单位相同,设任意一点M 的直角坐标与极坐标分别为(x ,y ),(ρ,θ).(1)极坐标化直角坐标⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θW. (2)直角坐标化极坐标⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0).1.极坐标系中,与点⎝⎛⎭⎪⎫3,π6相同的点是( )A.⎝ ⎛⎭⎪⎫3,13π6B.⎝ ⎛⎭⎪⎫3,-π6C.⎝ ⎛⎭⎪⎫3,176πD.⎝ ⎛⎭⎪⎫3,-5π6解析:选A.因为极坐标(ρ,θ)与(ρ,θ+2k π)(k ∈Z)表示同一个点,故选A. 2.关于极坐标系的下列叙述:①极轴是一条射线; ②极点的极坐标是(0,0); ③点(0,0)表示极点;④点M ⎝ ⎛⎭⎪⎫4,π4与点N ⎝⎛⎭⎪⎫4,5π4表示同一个点; ⑤动点M (5,θ)(θ∈R)的轨迹是以极点为圆心,半径为5的圆.其中,所有正确的叙述的序号是________.解析:结合极坐标系概念可知①③⑤正确,其中,②极点的极坐标应为(0,θ),θ为任意实数,②不正确;④点M ,N 关于极点对称,所以不正确.答案:①③⑤3.在极坐标系中,已知点A ⎝⎛⎭⎪⎫1,5π12,B ⎝⎛⎭⎪⎫2,-7π12,则|AB |=________. 解析:由于5π12与-7π12的终边互为反向延长线,所以|AB |=1+2=3.答案:3由极坐标确定点的位置在极坐标系中,画出点A ⎝⎛⎭⎪⎫1,π4,B ⎝ ⎛⎭⎪⎫2,32π,C ⎝⎛⎭⎪⎫3,-π4,D ⎝ ⎛⎭⎪⎫4,194π. [解] 在极坐标系中先作出射线θ=π4,再在射线θ=π4上截取|OA |=1,这样可得到点A ⎝ ⎛⎭⎪⎫1,π4. 同样可作出点B ⎝⎛⎭⎪⎫2,3π2,C ⎝⎛⎭⎪⎫3,-π4. 由于194π=3π4+4π,故点D ⎝ ⎛⎭⎪⎫4,194π可写成D ⎝⎛⎭⎪⎫4,3π4,如图位置.(1)由极坐标确定点的位置的方法建立极坐标系―→作出极角的终边―→以极点为圆心,以极径为半径分别画弧―→确定点的位置.(2)由极坐标确定点的位置应注意的问题由极坐标确定点的位置,常常首先由θ的值确定射线(方向),再由ρ的值确定位置.如果θ的值不在[0,2π)范围内,先根据θ=θ0+2k π(k ∈Z)确定出θ0∈[0,2π)的值再确定方向.1.在极坐标系中,下列各点中与⎝⎛⎭⎪⎫2,π6不表示同一个点的是( ) A.⎝⎛⎭⎪⎫2,-116π B .⎝ ⎛⎭⎪⎫2,136π C.⎝ ⎛⎭⎪⎫2,116π D .⎝⎛⎭⎪⎫2,-236π 解析:选C.与极坐标⎝ ⎛⎭⎪⎫2,π6相同的点可以表示为⎝ ⎛⎭⎪⎫2,π6+2k π(k ∈Z),只有⎝⎛⎭⎪⎫2,116π不合适.2.如图,在极坐标系中, (1)作出以下各点:A (5,0),B ⎝ ⎛⎭⎪⎫3,π6,C ⎝ ⎛⎭⎪⎫4,3π2,D ⎝⎛⎭⎪⎫2,-3π2.(2)求点E ,F 的极坐标(ρ,θ)(ρ≥0,θ∈R).解:(1)如图,在极坐标系中,点A ,B ,C ,D 的位置是确定的.(2)由于点E 的极径为4,在θ∈[0,2π)内,极角θ=7π6,又点的极坐标(ρ,θ)(ρ≥0,θ∈R),所以点E 的极坐标为⎝⎛⎭⎪⎫4,2k π+7π6(k ∈Z). 同理,点F 的极坐标为⎝ ⎛⎭⎪⎫3,2k π+2π3(k ∈Z). 点的极坐标与直角坐标的互化(1)分别将下列点的极坐标化为直角坐标.①⎝ ⎛⎭⎪⎫4,π4;②⎝ ⎛⎭⎪⎫2,53π.(2)分别将下列点的直角坐标化为极坐标(ρ>0,0≤θ<2π). ①(-1,1);②(4,-43);③⎝ ⎛⎭⎪⎫3π2,3π2;④(-6,-2). [解] (1)①ρ=4,θ=π4,所以x =ρcos θ=4cos π4=22,y =ρsin θ=4sin π4=22,所以点(4,π4)的直角坐标为(22,22).②因为x =2cos 5π3=1,y =2sin 5π3=- 3.所以点⎝ ⎛⎭⎪⎫2,5π3的直角坐标为(1,-3).(2)①ρ=(-1)2+12=2,tan θ=-1,θ∈[0,2π), 由于点(-1,1)在第二象限,所以θ=3π4,所以点(-1,1)的极坐标为⎝⎛⎭⎪⎫2,3π4. ②ρ=42+(-43)2=8,tan θ=-434=-3,θ∈[0,2π),由于点(4,-43)在第四象限,所以θ=5π3,所以点(4,-43)的极坐标为⎝⎛⎭⎪⎫8,5π3.③ρ=⎝ ⎛⎭⎪⎫3π22+⎝ ⎛⎭⎪⎫3π22=32π2,tan θ=3π23π2=1,θ∈[0,2π),由于点⎝ ⎛⎭⎪⎫3π2,3π2在第一象限,所以θ=π4,所以点⎝ ⎛⎭⎪⎫3π2,3π2的极坐标为⎝ ⎛⎭⎪⎫32π2,π4. ④ρ=(-6)2+(-2)2=22,tan θ=-2-6=33,θ∈[0,2π),由于点(-6,-2)在第三象限,所以θ=7π6,所以点(-6,-6)的极坐标为⎝⎛⎭⎪⎫22,7π6.(1)点的极坐标化为直角坐标的方法将极坐标(ρ,θ)化为直角坐标(x ,y )的公式是x =ρcos θ,y =ρsin θ. (2)点的直角坐标化为极坐标的方法将直角坐标(x ,y )化为极坐标(ρ,θ)的公式是ρ2=x 2+y 2,tan θ=y x(x ≠0),在利用此公式时要注意ρ和θ的取值范围.1.点P 的直角坐标为(-2,2),那么它的极坐标可表示为( )A.⎝ ⎛⎭⎪⎫2,π4B.⎝ ⎛⎭⎪⎫2,3π4C.⎝ ⎛⎭⎪⎫2,5π4D.⎝ ⎛⎭⎪⎫2,7π4解析:选B.点P (-2,2)在第二象限,与原点的距离为2,且与极轴夹角为3π4.2.若以极点为原点,极轴为x 轴正半轴建立直角坐标系.(1)已知点A 的极坐标⎝⎛⎭⎪⎫4,5π3,求它的直角坐标; (2)已知点B 和点C 的直角坐标为(2,-2)和(0,-15),求它们的极坐标(ρ>0,0≤θ<2π).解:(1)因为x =ρcos θ=4·cos5π3=2. y =ρsin θ=4sin5π3=-2 3. 所以A 点的直角坐标为(2,-23). (2)因为ρ=x 2+y 2=22+(-2)2=22, tan θ=-22=-1.且点B 位于第四象限内,所以θ=7π4,所以点B 的极坐标为⎝ ⎛⎭⎪⎫22,7π4. 又因为x =0,y <0,所以ρ=15,θ=32π.所以点C 的极坐标为⎝⎛⎭⎪⎫15,3π2. 极坐标系中的对称问题和距离问题(1)A ,B 两点的极坐标分别为A ⎝⎛⎭⎪⎫5,π3,B ⎝⎛⎭⎪⎫2,-π6,则A ,B 两点的距离为|AB |=________.(2)设点A ⎝⎛⎭⎪⎫2,π3,直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴,直线l ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π).[解] (1)如图所示,|OA |=5,|OB |=2,∠AOB =π3-(-π6)=π2.所以|AB |=|OA |2+|OB |2=5+4=3.故填3.(2)如图所示,关于极轴的对称点为B ⎝⎛⎭⎪⎫2,-π3.关于直线l 的对称点为C ⎝ ⎛⎭⎪⎫2,23π. 关于极点O 的对称点为D ⎝⎛⎭⎪⎫2,-23π. 四个点A ,B ,C ,D 都在以极点为圆心,2为半径的圆上.(1)极坐标系中点的对称问题点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π-θ);关于极点的对称点是(ρ,π+θ);关于过极点且垂直于极轴的直线的对称点是(ρ,π-θ).(2)极坐标系中两点间的距离问题求极坐标系中两点间的距离应通过由这两点和极点O 构成的三角形求解,也可以运用两点间距离公式|AB |=ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中A (ρ1,θ1),B (ρ2,θ2),注意当θ1+θ2=2k π(k ∈Z)时,|AB |=|ρ1-ρ2|.当θ1+θ2=2k π+π(k ∈Z)时,|AB |=|ρ1+ρ2|.1.点M 的极坐标是⎝⎛⎭⎪⎫-2,-π6,它关于直线θ=π2的对称点的极坐标是( )A.⎝ ⎛⎭⎪⎫2,11π6 B .⎝ ⎛⎭⎪⎫-2,7π6 C.⎝ ⎛⎭⎪⎫2,-π6 D .⎝ ⎛⎭⎪⎫-2,-11π6解析:选B.因为ρ=-2<0,所以找点(-2,-π6)时,先找到角-π6的终边,再在其反向延长线找到离极点2个单位的点,就是(-2,-π6),如图,故M ⎝⎛⎭⎪⎫-2,-π6关于直线θ=π2的对称点为M ′⎝⎛⎭⎪⎫2,π6,但是选项没有这样的坐标.又因为M ′⎝⎛⎭⎪⎫2,π6的坐标还可以写成M ′⎝⎛⎭⎪⎫-2,7π6,故选B.2.已知M ⎝⎛⎭⎪⎫5,5π6,N ⎝⎛⎭⎪⎫8,-17π6,则|MN |=________. 解析:因为N ⎝⎛⎭⎪⎫8,-17π6也可写为N ⎝⎛⎭⎪⎫8,7π6,所以|MN |=82+52-2×8×5cos ⎝ ⎛⎭⎪⎫7π6-5π6=64+25-80cos π3=7.答案:73.极坐标系中,分别求下列条件下点M ⎝⎛⎭⎪⎫3,π3关于极轴的对称点M ′的极坐标: (1)ρ≥0,θ∈[0,2π);(2)ρ≥0,θ∈R.解:因为M ⎝⎛⎭⎪⎫3,π3与M ′(ρ,θ)关于极轴对称, 所以ρ=3,θ=-π3+2k π(k ∈Z).(1)当θ∈[0,2π)时,θ=5π3, 所以M ′(3,5π3). (2)当θ∈R 时,M ′(3,2k π-π3)(k ∈Z).1.对极坐标系的理解(1)在平面上建立一个极坐标系时,四个要素(极点;极轴;长度单位;角度单位及它的正方向)缺一不可.(2)一般地,不作特别说明时,我们认为ρ≥0,θ可取任意实数.其中极点的极径ρ=0,极角θ可取任意值.(3)极坐标系下的点与它的极坐标不是一一对应关系,一个点可以有多个极坐标.可统一表示为(ρ,θ+2k π),其中ρ≥0,k ∈Z.2.极坐标与直角坐标的区别与联系(1)极坐标与直角坐标互化的前提条件是①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴非负半轴重合;③两种坐标系中取相同的长度单位.(2)由ρ2=x 2+y 2确定ρ时,ρ不取负值;由tan θ=yx(x ≠0)确定θ时,根据点(x ,y )所在的象限取最小正角.当x ≠0时,θ角才能由tan θ=yx按上述方法确定.当x =0时,tan θ没有意义,这时又分三种情况:①当x =0,y =0时,θ可取任何值; ②当x =0,y >0时,θ=π2;③当x =0,y <0时,θ=32π.1.极坐标系中,点A (2 016,2 017π)的直角坐标为( )A .(2 016,π)B .(2 016,0)C .(0,2 016)D .(-2 016,0)解析:选D.因为ρ=2 016,θ=2 017π,所以x =ρcos θ=2 016cos π=-2 016,y =ρsin θ=2 016sin 2 017π=2 016sin π =2 016×0=0,所以A 点的直角坐标为A (-2 016,0).2.极坐标系中,极轴的反向延长线上一点M 与极点的距离为2,则点M 的极坐标的下列表示:①(2,0);②(2,π);③(2,-π);④(2,2k π)(k ∈Z).其中,正确表示的序号为____________. 解析:因为|OM |=2,即ρ=2, 又M 点在极轴反向延长线上,所以θ=π+2k π(k ∈Z),当k =0时,θ=π,当k =-1时,θ=-π. 所以M 点的极坐标为(2,π)或(2,-π). 答案:②③3.(1)把点A 的极坐标⎝⎛⎭⎪⎫2,7π6化成直角坐标; (2)把点P 的直角坐标(1,-3)化成极坐标.(ρ>0,0≤θ<2π). 解:(1)x =2cos7π6=-3, y =2sin7π6=-1, 故点A 的直角坐标为(-3,-1). (2)ρ=12+(-3)2=2,tan θ=-31=- 3. 又因为点P 在第四象限且0≤θ<2π,得θ=5π3.因此点P 的极坐标是⎝⎛⎭⎪⎫2,5π3. 4.在极坐标系中,如果A ⎝⎛⎭⎪⎫2,π4,B ⎝ ⎛⎭⎪⎫2,5π4为等边三角形ABC 的两个顶点,求顶点C的极坐标.解:点A ,B 的直角坐标分别为(2,2),(-2,-2),设点C 的直角坐标为(x ,y ),由△ABC 为等边三角形,故|BC |=|AC |=|AB |,得(x +2)2+(y +2)2=(x -2)2+(y -2)2=(2+2)2+(2+2)2.即⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16,解得⎩⎨⎧x =6,y =-6或⎩⎨⎧x =-6,y = 6.点C 的直角坐标为(6,-6)或(-6,6), 故ρ=6+6=23,tan θ=-1, 故θ=7π4或3π4.故点C 的极坐标为⎝ ⎛⎭⎪⎫23,7π4或⎝ ⎛⎭⎪⎫23,3π4.[A 基础达标]1.点M 的直角坐标是(3,-1),在ρ≥0,0≤θ<2π的条件下,它的极坐标是( )A.⎝ ⎛⎭⎪⎫2,11π6 B .⎝ ⎛⎭⎪⎫2,5π6 C.⎝ ⎛⎭⎪⎫3,π6 D .⎝⎛⎭⎪⎫2,11π6解析:选A.ρ= x 2+y 2=3+1=2,tan θ=y x =-13=-33.又因为点(3,-1)在第四象限,且0≤θ<2π. 所以θ=11π6,所以M 点的极坐标是⎝ ⎛⎭⎪⎫2,11π6.2.在极坐标系中,已知A ⎝⎛⎭⎪⎫2,π6,B ⎝⎛⎭⎪⎫6,-π6,则OA ,OB 的夹角为( ) A.π6 B .0 C.π3 D .5π6解析:选C.OA 与OB 的夹角∠AOB =π6-⎝ ⎛⎭⎪⎫-π6=π3,故选C.3.在极坐标系中,已知点P 1⎝⎛⎭⎪⎫6,π4,P 2⎝ ⎛⎭⎪⎫8,3π4,则|P 1P 2|等于( ) A .9 B .10 C .14 D .2 解析:选B.因为∠P 1OP 2=3π4-π4=π2,所以△P 1OP 2为直角三角形,由勾股定理可得 |P 1P 2|=OP 21+OP 22=62+82=10,故选B.4.在极坐标系中,点⎝⎛⎭⎪⎫2,π3和圆(x -1)2+y 2=1的圆心的距离为( )A. 3 B .2 C.1+π29D .4+π29解析:选A.法一:因为(x -1)2+y 2=1的圆心坐标为(1,0),化为极坐标是(1,0), 所以点(2,π3)到圆心的距离d =ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)=22+12-2×2×1×cos π3=4+1-2= 3.法二:将点(2,π3)化为直角坐标是(1,3)又(x -1)2+y 2=1的圆心的坐标是(1,0),所以点(2,π3)到圆心的距离d =(1-1)2+(3-0)2= 3.5.在极坐标系中,点M ⎝⎛⎭⎪⎫3,π12关于直线θ=π4(ρ∈R)对称的点的一个极坐标是( ) A.⎝ ⎛⎭⎪⎫3,π6 B .⎝ ⎛⎭⎪⎫3,π3 C.⎝ ⎛⎭⎪⎫3,5π12 D .⎝⎛⎭⎪⎫3,7π12解析:选C.如图所示,设点M 关于直线θ=π4(ρ∈R)对称的点为N ,则|ON |=|OM |,∠xON =π4+π4-π12=5π12,所以点N 的极坐标为⎝⎛⎭⎪⎫3,5π12.6.已知A ,B 两点的极坐标为⎝ ⎛⎭⎪⎫6,π3,⎝ ⎛⎭⎪⎫8,4π3,则线段AB 中点的直角坐标为____________.解析:因为A ,B 两点的极坐标为⎝⎛⎭⎪⎫6,π3,⎝⎛⎭⎪⎫8,4π3, 所以A ,B 两点的直角坐标是(3,33),(-4,-43), 所以线段AB 中点的直角坐标是⎝ ⎛⎭⎪⎫-12,-32.答案:⎝ ⎛⎭⎪⎫-12,-327.极坐标系中,点A 的极坐标是⎝⎛⎭⎪⎫3,π6,则 (1)点A 关于极轴的对称点的极坐标是________;(2)点A 关于极点的对称点的极坐标是________;(3)点A 关于过极点且垂直于极轴的直线的对称点的极坐标是________.(本题中规定ρ>0,θ∈[0,2π))解析:(1)点A ⎝ ⎛⎭⎪⎫3,π6关于极轴的对称点的极坐标为⎝ ⎛⎭⎪⎫3,11π6;(2)点A 关于极点的对称点的极坐标为⎝⎛⎭⎪⎫3,7π6; (3)点A 关于过极点且垂直于极轴的直线的对称点的极坐标为⎝⎛⎭⎪⎫3,5π6.答案:(1)⎝⎛⎭⎪⎫3,11π6 (2)⎝ ⎛⎭⎪⎫3,7π6 (3)⎝ ⎛⎭⎪⎫3,5π68.平面直角坐标系中,若点P ⎝ ⎛⎭⎪⎫3,7π2经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=13y 后的点为Q ,则极坐标系中,极坐标与Q 的直角坐标相同的点到极轴所在直线的距离等于________.解析:因为点P ⎝ ⎛⎭⎪⎫3,7π2经过伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=13y 后的点为Q ⎝ ⎛⎭⎪⎫6,7π6,则极坐标系中,极坐标与Q 的直角坐标相同的点到极轴所在直线的距离等于6⎪⎪⎪⎪⎪⎪sin7π6=3. 答案:39.在极坐标系中,O 为极点,已知两点M ,N 的极坐标分别为⎝ ⎛⎭⎪⎫4,2π3,⎝ ⎛⎭⎪⎫2,π4,求△MON 的面积.解:sin ∠MON =sin ⎝ ⎛⎭⎪⎫2π3-π4=sin 2π3cos π4-cos 2π3·sin π4=32×22+12×22=6+24. 故S △MON =12×4×2×6+24=3+1.10.已知定点P ⎝⎛⎭⎪⎫4,π3. (1)将极点移至O ′⎝⎛⎭⎪⎫23,π6处极轴方向不变,求P 点的新坐标; (2)极点不变,将极轴顺时针转动π6角,求P 点的新坐标. 解:(1)设P 点新坐标为(ρ,θ),如图所示,由题意可知|OO ′|=23,|OP |=4,∠POx =π3,∠O ′Ox =π6,所以∠POO ′=π6. 在△POO ′中,ρ2=42+(23)2-2·4·23·cos π6=16+12-24=4,所以ρ=2. 又因为sin ∠OPO ′23=sin ∠POO ′2,所以sin ∠OPO ′=sinπ62·23=32,所以∠OPO ′=π3. 所以∠OP ′P =π-π3-π3=π3,所以∠PP ′x =2π3.所以∠PO ′x ′=2π3. 所以P 点的新坐标为⎝⎛⎭⎪⎫2,2π3. (2)如图,设P 点新坐标为(ρ,θ),则ρ=4,θ=π3+π6=π2.所以P 点的新坐标为(4,π2).[B 能力提升]11.设点P 对应的复数为-3+3i ,以原点为极点,实轴的正半轴为极轴,则点P 的极坐标为( )A.⎝⎛⎭⎪⎫23,π4 B .⎝ ⎛⎭⎪⎫2,π4 C.⎝ ⎛⎭⎪⎫32,3π4 D .⎝ ⎛⎭⎪⎫2,2k π+3π4(k ∈Z)解析:选C.因为点P 对应的复数为-3+3i ,所以点P 的直角坐标为(-3,3),点P 到原点的距离为32,且点P 在第二象限的角平分线上,故极角等于3π4,故点P 的极坐标为⎝⎛⎭⎪⎫32,3π4,选C. 12.已知两点的极坐标为A ⎝⎛⎭⎪⎫3,π2,B ⎝ ⎛⎭⎪⎫3,π6,则|AB |=________,直线AB 的倾斜角为________.解析:在极坐标系Ox 中作出点A ⎝ ⎛⎭⎪⎫3,π2和B ⎝⎛⎭⎪⎫3,π6,如图所示,则|OA |=|OB |=3,∠AOx =π2,∠BOx =π6, 所以∠AOB =π3.所以△AOB 为正三角形,从而|AB |=3,直线AB 的倾斜角为π-⎝ ⎛⎭⎪⎫π2-π3=5π6.答案:35π613.如果对点的极坐标定义如下:当已知M (ρ,θ)(ρ>0,θ∈R)时,点M 关于极点O 的对称点M ′(-ρ,θ). 例如,M ⎝ ⎛⎭⎪⎫3,π3关于极点O 的对称点M ′⎝ ⎛⎭⎪⎫-3,π3,就是说⎝ ⎛⎭⎪⎫3,π3+π与⎝ ⎛⎭⎪⎫-3,π3表示的就是同一点.已知A 点的极坐标是⎝⎛⎭⎪⎫6,5π3,分别在下列给定条件下,写出A 点的极坐标: (1)ρ>0,-π<θ≤π. (2)ρ<0,0≤θ<2π. (3)ρ<0,-2π<θ≤0.解:如图所示,|OA |=|OA ′|=6,∠xOA ′=2π3,∠xOA =5π3, 即点A 与A ′关于极点O 对称. 由极坐标的定义知(1)当ρ>0,-π<θ≤π时,A ⎝ ⎛⎭⎪⎫6,-π3.(2)当ρ<0,0≤θ<2π时,A ⎝ ⎛⎭⎪⎫-6,2π3. (3)当ρ<0,-2π<θ≤0时,A ⎝ ⎛⎭⎪⎫-6,-4π3.14.(选做题)某大学校园的部分平面示意图为如图所示的矩形.其中|OC |=600 m .建立适当的极坐标系,写出点C 与点F 的极坐标并求点C 到点F 的直线距离.解:以点O 为极点,OA 所在的射线为极轴Ox (单位长度为1 m),建立极坐标系,如图所示.由|OC |=600,∠AOC =π6,所以点C 的极坐标为⎝⎛⎭⎪⎫600,π6,由图形得|OF |=|OD |=|AC |=600×sin π6=300(m). 所以点F 的极坐标为(300,π). 在△COF 中,∠COF =π-π6=56π.根据余弦定理,得 |CF |=|OC |2+|OF |2-2|OC |·|OF |·cos 56π=6002+3002-2×600×300×⎝ ⎛⎭⎪⎫-32 =3005+23(m).所以点C 到点F 的直线距离为3005+2 3 m.。
点的极坐标与直角坐标的互化
(2)∵ρ= 62+- 22=2 2, tan θ=xy=- 33,θ∈R. 由于点( 6,- 2)在第四象限,所以 θ=161π+2kπ,(k ∈Z). ∴点的直角坐标( 6,- 2)化为极坐标为 (2 2,161π+2kπ),(k∈Z).
在极坐标系中, A(2,π4),B(2,54π),且△ABC 为等腰直角三角形,如何求直角顶点 C 的极坐标与该三角形 的面积?
2.互化公式
设 M 是坐标平面内任意一点,它的直角坐标是(x,y),
极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如
下表:
点 M 直角坐标(x,y) 极坐标(ρ,θ)
互化公式
x=ρcos θ y= ρsin θ
ρ2= x2+y2 tan θ=xy(x≠0)
在一般情况下,由 tan θ 确定角时,可根据点 M 所在的
(2013·洛阳质检)把下列各点的极坐标化为直角坐标,并 判断所表示的点在第几象限.
(1)(2,43π);(2)(2,23π);(3)(2,-3π);(4)(2,-2).
【解】 (1)由题意知 x=2cos43π=2×(-12)=-1,y= 2sin43π=2×(- 23)=- 3.
∴点(2,43π)的直角坐标为(-1,- 3),是第三象限内 的点.
2.将直角坐标化为极坐标时如何确定 ρ 和 θ 的值?
【提示】 由 ρ2=x2+y2 求 ρ 时,ρ 不取负值;由 tan θ =yx(x≠0)确定 θ 时,根据点(x,y)所在的象限取得最小正角.当 x≠0 时,θ 角才能由 tan θ=yx按上述方法确定.当 x=0 时, tan θ 没有意义,这时又分三种情况:(1)当 x=0,y=0 时,θ 可取任何值;(2)当 x=0,y>0 时,可取 θ=2π;(3)当 x=0, y<0 时,可取 θ=32π.
直角坐标方程和极坐标方程的互化公式
直角坐标方程和极坐标方程的互化公式在数学中,直角坐标系和极坐标系是两种常见的坐标系统。
直角坐标系以直线为基准,通过横向的x轴和纵向的y轴来描述点的位置。
而极坐标系则以原点为基准,通过极径和极角来描述点的位置。
在不同的问题中,我们可能需要在这两种坐标系之间进行转换。
为了实现这一目的,我们可以使用互化公式。
1. 从直角坐标方程到极坐标方程假设我们有一个点P(x,y)在直角坐标系中的坐标为(x,y),想要将其转换到极坐标系中。
我们可以使用以下公式:极径$r = \\sqrt{x^2 + y^2}$极角$\\theta = \\arctan(\\frac{y}{x})$这里,r表示点P到原点的距离,$\\theta$表示点P与正x轴之间的夹角。
2. 从极坐标方程到直角坐标方程假设我们有一个点P(r,$\\theta$)在极坐标系中的坐标为(r,$\\theta$),想要将其转换到直角坐标系中。
我们可以使用以下公式:$x = r \\cdot \\cos(\\theta)$$y = r \\cdot \\sin(\\theta)$这里,x和y表示点P在直角坐标系中的坐标。
需要注意的是,在进行这两种坐标系之间的转换时,角度$\\theta$的单位可以是弧度制或度数制。
如果我们使用弧度制,$\\theta$的取值范围是$[0,2\\pi)$;如果我们使用度数制,$\\theta$的取值范围是[0,360)。
3. 示例让我们通过一个具体的示例来展示直角坐标方程和极坐标方程的互化公式。
假设我们有一个直角坐标系中的点P(3,4),我们想要将其转换为极坐标系中的坐标。
根据互化公式,我们可以计算极径r:$r = \\sqrt{3^2 + 4^2} = 5$接下来,我们可以计算极角$\\theta$:$\\theta = \\arctan(\\frac{4}{3}) ≈ 0.93$ (弧度制)若我们使用度数制,可以将弧度制转换为度数制。
极坐标和直角坐标的互化 课件
(2)A舰发射炮弹的仰角θ应为多少? (注:射程公式 s v02sin 2 )
g
【解题探究】1.如何求旋转后的点B的极坐标与向量的直角坐
标?
2.如何建立直角坐标系定位目标的直角坐标以及极坐标?
探究提示:
1.极坐标中的ρ不变,角度θ再由 加6上 即2得, .向量
OB
的坐标即终点B的直角坐标.
2.根据直线与二次曲线的交点的直角坐标定位目标,联想二
极坐标和直角坐标的互化
极坐标与直角坐标的互化公式 以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,且 在两坐标系中取相同的长度单位.平面内任意一点M的直角坐 标与极坐标分别为(x,y)和(ρ,θ),则由三角函数的定义可 以得到如下两组公式:
图示
直角坐标(x,y)
极坐标(ρ,θ)
x _ρ__c_o_s__θ___, y _ρ__s_i_n__θ___
x2 y2
2,且tan角θ的xy终边1,经
当θ∈[0,2π)时, 由于,θ∈R,
4
故点的极坐标为 (
2, 4
2k ), k
Z.
答案: (
2, 4
2k ), k
Z
2.(1)由
x2 y2
2,t且an角θ的y 终-边1,经过
x
点(1,-1),
当θ∈[0,2π)时,
7, 4
故点的极坐标为 (
2, 7 ). 4
2.将下列点的极坐标化为直角坐标:
(1)(2,0).(2)(2, 2 ).(3)(3, 3 ).
3
2
(4)(4,-3 ).(5)(5,6).(6)(4, ).
2
12
【解题探究】1.点的极坐标化为直角坐标惟一吗? 2.点的极坐标化为直角坐标的公式是什么? 探究提示: 1.极坐标化为直角坐标是惟一的. 2.x=ρcos θ,y=ρsin θ.
极坐标和直角坐标系的互化公式
极坐标和直角坐标系的互化公式1. 引言在数学中,坐标系是一种描述点的位置的系统。
常见的坐标系有直角坐标系和极坐标系。
直角坐标系使用平面上的两个垂直轴表示点的位置,而极坐标系使用极径和极角来表示点的位置。
本文将介绍极坐标和直角坐标系之间的互化公式。
2. 极坐标系和直角坐标系简介2.1 极坐标系极坐标系是一种使用极径和极角来表示点的位置的坐标系。
极径(r)表示点到极点(如原点)的距离,而极角(θ)表示点与特定轴(如x轴)之间的夹角。
通常,极径为非负数,极角可以使用度数或弧度进行表示。
2.2 直角坐标系直角坐标系是一种使用平面上的两个垂直轴来表示点的位置的坐标系。
通常,水平轴表示为x轴,垂直轴表示为y轴。
一个点在直角坐标系下的位置由该点与x轴和y轴之间的水平和垂直距离确定。
3. 极坐标系转换为直角坐标系极坐标系可以通过以下公式转换为直角坐标系:•x = r * cos(θ)•y = r * sin(θ)其中,x和y分别是点在直角坐标系下的坐标,r是极径,θ是极角。
4. 直角坐标系转换为极坐标系直角坐标系可以通过以下公式转换为极坐标系:•r = sqrt(x^2 + y^2)•θ = atan2(y, x)其中,r是点到原点的距离,θ是点与x轴之间的夹角,atan2(y, x)是一个函数,表示点(x, y)与x轴正向的夹角。
需要注意的是,atan2函数可以得到完整的360度范围内的夹角。
5. 示例5.1 极坐标转换为直角坐标假设我们有一个点P,其极坐标为(r = 2, θ = π/4)。
我们可以使用公式:•x = 2 * cos(π/4) = √2•y = 2 * sin(π/4) = √2因此,点P在直角坐标系下的坐标为(x = √2, y = √2)。
5.2 直角坐标转换为极坐标假设我们有一个点Q,其直角坐标为(x = -3, y = 3)。
我们可以使用公式:•r = sqrt((-3)^2 + 3^2) = sqrt(18) = 3√2•θ = atan2(3, -3)根据实际计算结果,我们可以得到θ的值为π/4 + π = 5π/4。
极坐标与直角坐标的互换
例2 把下列点的直角坐标化为极坐标:
(1) P( 6, 2); 解:由互化公式得
( 6)2 ( 2)2 2 2,
tan 2 3
63
?
又点P在第一象限,得
6
因此点P的极坐标是
(2 2, )
6
(2) Q( 6, 2); (3) R( 2, 2);
解:(2)由互化公式
M (8, 5 )
3
此时:x 8cos5
3
4,
y 8sin 5 4
3
3,
同样得到点M的直角坐标是 (4,4 3)
变式训练 在极坐标系中,求两点间距离:
5
(1) A(5, ), B(12, );
4
4
A(5, )
5
4
12 O
x
B(12, 5 )
4
| AB | 5 12 17
4
因此点R的极坐标是 (2, 7 )
4
课堂练习
在极坐标系中,已知三点 判断 M,N,P三点是否在一条直线上.
解:由互化公式得M,N,P三点的直角坐标 系分别为
M (1, 3), N (2,0), P(3, 3)
由此得 MN (1, 3) NP
所以M,N,P三点在一条直线上.
小结
极坐标与直角坐标的互化公式
4
(1)x
8
cos
2
3
4,
y 8sin 2
3
4
3,
点M的直角坐标是 (4,4 3)
(2)x
6 cos 7
4
3
2,
y 6sin 7 3
4
2,
极坐标直角坐标互化公式
极坐标直角坐标互化公式极坐标和直角坐标是两种常见的坐标系统,它们在数学和物理学等领域中广泛应用。
极坐标直角坐标互化公式是将一个点在极坐标和直角坐标之间进行转换的公式。
本文将介绍极坐标和直角坐标的基本概念,并详细阐述极坐标直角坐标互化公式的推导和应用。
一、极坐标和直角坐标的基本概念1. 极坐标:极坐标是一种使用极径和极角来表示点的坐标系统。
在极坐标中,点的位置由极径r和极角θ唯一确定。
其中,极径r表示点到原点的距离,极角θ表示点与正半轴的夹角。
2. 直角坐标:直角坐标是一种使用横坐标和纵坐标来表示点的坐标系统。
在直角坐标中,点的位置由横坐标x和纵坐标y唯一确定。
其中,横坐标x表示点在x轴上的投影,纵坐标y表示点在y轴上的投影。
1. 极坐标转直角坐标:设点P在极坐标中的坐标为(r, θ),则点P在直角坐标中的坐标为(x, y)。
根据三角函数的定义,可以得到以下关系式:- x = r * cosθ- y = r * sinθ2. 直角坐标转极坐标:设点P在直角坐标中的坐标为(x, y),则点P在极坐标中的坐标为(r, θ)。
根据三角函数的反函数定义,可以得到以下关系式:- r = √(x^2 + y^2)- θ = arctan(y/x)三、极坐标直角坐标互化公式的应用1. 计算点的坐标:通过极坐标直角坐标互化公式,可以方便地计算出点在不同坐标系统中的坐标。
例如,已知点P在极坐标中的坐标为(r, θ),可以使用公式x = r * cosθ和y = r * sinθ计算出点P在直角坐标中的坐标。
2. 描述曲线方程:通过极坐标直角坐标互化公式,可以将直角坐标系下的曲线方程转换为极坐标系下的方程,或者将极坐标系下的方程转换为直角坐标系下的方程。
这种转换可以简化曲线的描述和计算。
3. 解决相关问题:在物理学、工程学和计算机图形学等领域,常常需要在不同坐标系统中进行计算和分析。
通过极坐标直角坐标互化公式,可以将问题转化为更简单或更适合分析的形式,从而解决问题。
计算器极坐标与直角坐标的互化
计算器极坐标与直角坐标的互化计算器中常见的两种坐标系统分别是极坐标和直角坐标。
极坐标系统使用极径和极角来描述点的位置,直角坐标系统则使用横坐标和纵坐标来描述点的位置。
在进行计算或者图形表示时,有时候需要将一个坐标系统中的点转换到另一个坐标系统中。
下面将分别介绍极坐标转直角坐标和直角坐标转极坐标的方法。
1. 极坐标转直角坐标:极坐标中的点由一个极径(r)和一个极角(θ)表示。
将一个极坐标点(P)转换为直角坐标系中的点(x, y)的方法是:- x = r * cos(θ)- y = r * sin(θ)这里的x和y分别是直角坐标系中的横坐标和纵坐标。
2. 直角坐标转极坐标:直角坐标系中的点由横坐标(x)和纵坐标(y)表示。
将一个直角坐标系中的点(P)转换为极坐标点(r, θ)的方法是:- r = √(x^2 + y^2)- θ = arctan(y / x)这里的r表示点到原点的距离,θ表示点与正x轴的夹角。
通过这些转换公式,我们可以很方便地在极坐标和直角坐标之间进行转换。
在计算器上进行这些转换的时候,可以直接使用相关的函数和操作符。
例如,在大多数计算器上,可以使用sin、cos、sqrt和tan的函数按钮,以及乘法、除法和加减按钮来进行转换计算。
当我们在计算器上进行极坐标和直角坐标之间的转换时,可以使用以下步骤:- 极坐标转直角坐标:1. 将极径 r 和极角θ输入计算器。
2. 使用cos函数计算x = r * cos(θ) 的值。
3. 使用sin函数计算y = r * sin(θ) 的值。
4. 得到直角坐标系中的点 (x, y)。
- 直角坐标转极坐标:1. 将横坐标 x 和纵坐标 y 输入计算器。
2. 使用sqrt函数计算r = √(x^2 + y^2) 的值。
3. 使用arctan函数计算θ = arctan(y / x) 的值。
需要注意的是,在计算arctan时,应该考虑每个象限的特殊情况。
4. 得到极坐标系中的点 (r, θ)。
极坐标与直角坐标的互化dxdy
极坐标与直角坐标的互化引言在数学中,坐标系是描述点在平面上或空间中位置的工具。
常见的坐标系有直角坐标系和极坐标系。
直角坐标系使用水平轴和垂直轴来表示点的位置,而极坐标系则使用极径和极角来表示点的位置。
本文将介绍极坐标与直角坐标的互化关系,并解释如何在两种坐标系之间进行转换。
直角坐标系直角坐标系,也称笛卡尔坐标系,是最常用的坐标系之一。
它由两条相互垂直的坐标轴组成,通常被标记为x和y。
在直角坐标系中,任意一点的位置可以通过一个有序数对 (x, y) 来表示,x 表示点在x轴方向上的位置,y 表示点在y轴方向上的位置。
其中,x 轴是水平的,正方向向右,y 轴是垂直的,正方向向上。
极坐标系极坐标系则是以极径和极角来描述点的位置。
在极坐标系中,一个点的位置可以表示为一个有序数对(r, θ),其中 r 表示点离原点的距离,θ 表示点与正x轴之间的夹角。
极径 r 的值必须大于等于零,而极角θ 的取值范围通常是从0到2π(或者-π到π)。
极角的正方向通常是顺时针方向。
极坐标与直角坐标的转换极坐标系和直角坐标系之间的转换可以通过一些简单的公式来实现。
从极坐标到直角坐标通过给定的极径 r 和极角θ,可以将点的位置从极坐标系转换为直角坐标系。
转换公式如下:x = r * cos(θ)y = r * sin(θ)其中,cos(θ) 表示角度θ 的余弦值,sin(θ) 表示角度θ 的正弦值。
这两个函数可以在数学库中找到。
从直角坐标到极坐标同样地,也可以通过给定的直角坐标 (x, y) 将点的位置从直角坐标系转换为极坐标系。
转换公式如下:r = sqrt(x^2 + y^2)θ = atan2(y, x)其中,sqrt 表示开平方运算,atan2 表示反正切运算,它可以根据 x 和 y 的值来计算角度θ。
这些函数也可以在数学库中找到。
结论极坐标系和直角坐标系之间的转换关系使用简单的公式进行计算。
通过这些公式,我们可以方便地在两种坐标系之间进行转换。
直角坐标和极坐标的互化公式
直角坐标和极坐标的互化公式1. 引言在数学和物理学中,直角坐标系和极坐标系是两种常用的坐标系。
它们可以相互转化,通过互化公式可以方便地在不同坐标系下描述出同一个点。
2. 直角坐标系直角坐标系是平面上最常见的坐标系。
它由两个相互垂直的坐标轴组成,通常表示为x轴和y轴。
每个点都可以由一个有序数对(x, y)来表示,其中x代表点在x轴上的位置,y代表点在y轴上的位置。
3. 极坐标系极坐标系是另一种描述平面上点位置的坐标系。
在极坐标系中,每个点由一个有序数对(r, θ)表示,其中r代表点到原点的距离,θ代表从x轴逆时针旋转到点所需的角度。
4. 直角坐标和极坐标的转化公式4.1 极坐标转直角坐标给定一个极坐标点P(r, θ),要将其转化为直角坐标系下的点(x, y),可以使用以下公式:x = r * cos(θ)y = r * sin(θ)其中,cos和sin分别是余弦和正弦函数。
4.2 直角坐标转极坐标给定一个直角坐标系下的点(x, y),要将其转化为极坐标系下的点P(r, θ),可以使用以下公式:r = sqrt(x² + y²)θ = arctan(y / x)其中,sqrt代表平方根,arctan代表反正切函数。
5. 举例说明为了更好地理解直角坐标和极坐标的互化公式,以下举例说明。
例1:将极坐标点P(3, π/4)转换为直角坐标系下的点。
根据公式可得:x = 3 * cos(π/4) ≈ 2.12y = 3 * sin(π/4) ≈ 2.12因此,极坐标点P(3, π/4)在直角坐标系下的表示为(x, y) ≈ (2.12, 2.12)。
例2:将直角坐标系下的点(-1, -1)转换为极坐标系下的点。
根据公式可得:r = sqrt((-1)² + (-1)²) ≈ 1.41θ = arctan((-1) / (-1)) ≈ π + π/4 ≈ 5π/4因此,直角坐标点(-1, -1)在极坐标系下的表示为P(1.41, 5π/4)。
高三数学极坐标和直角坐标的互化
牛 刀 小 试
半径为a的圆的圆心坐标为C (a , 0)(a 0). 求它的极坐标方程。 2 2 2 解:直角坐标系下( x a ) y a
x cos , y sin ( cos a ) ( sin ) a 化简得
又 极坐标方程是曲线上 任意点( , )满足的关系式
根据前面直角坐标与 极坐标的转化公式
1( 1) x y 1 此圆的极坐标方程为 1
2 2
x cos , y sin
2
思考
刚才的求圆的极坐标方程的解题 思想是什么?它是如何实施的?
故所求射线的极坐标方程为 o
x
4
( 0)
思考:
5 1、求过极点,倾斜角为 的射线的极坐标方程。 4
易得
5 ( 0) 4
2、求过极点,倾斜角为 的直线的极坐标方程。 4 5 ( 0) 和 ( 0) 4 4
和前面的直角坐标系里直线方程的表示形 式比较起来,极坐标系里的直线表示起来很不 方便,要用两条射线组合而成。原因在哪?
思考:
平面内一点M的直角坐标是 (1, 3) , 其极坐标如何表示? 2 点Q的极坐标为 (5, ) ,其直角坐 3 标如何表示?
互化公式的三个前提条件:
1、极点与直角坐标系的原点重合;
2、极轴与直角坐标系的x轴的正半轴重合;
ห้องสมุดไป่ตู้
极坐标与直角坐标的互化公式:
设点M的直角坐标是 (x, y) 极坐标是 (ρ,θ)
sin 1 0
2 2
(3)直角坐标方程x y 9的极坐标
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《极坐标与直角坐标的互化》教学设计
一、教材分析
《极坐标与直角坐标的互化》是高中新教材人教版选修4-4第一讲第二节的内容,是在学生已经学习过平面极坐标系的前提下,通过生活实例、学生之间相互讨论进行探究,在老师的引导下自主完成极坐标与直角坐标的互化的公式,并进行极坐标与直角坐标的互化.为后面学习简单曲线的极坐标方程及参数方程奠定基础.
二、学情分析
通过前面对极坐标的学习,学生已经对极坐标系以及点的极坐标表示有了了解.用坐标表示方位的思想已经普遍存在于日常生活中,所以学生对于极坐标与直角坐标的互化学习应该很容易接受.
三、教学目标分析
1.知识与技能:能够写出极坐标平面内点的极坐标的表示;学生自己探究出平面内一点极坐标与平面直
角坐标的互化公式,能够利用互划公式解决相关习题.
2.过程与方法:通过自主探究体会数形结合、类比的数学思想方法;通过探究活动培养学生合作、观察、
分析、比较和归纳能力.
3.情感态度与价值观:通过数学家的浪漫故事引入,提升学生的学习兴趣,通过生活中的具体事例引入
极坐标与平面直角坐标的互化,使学生认识极坐标与平面直角坐标的互化来描述实际问
题的方便性及实用性,体验数学的实际应用价值.通过对问题的探究使学生享受到成功的
喜悦.
四、教学重难点:
重点:掌握极坐标和直角坐标的互化关系式.
难点:实现极坐标和直角坐标之间的互化.
五、教学方法:
情境引入法,体会数学之美
实际问题设问,贴近生活
小组合作研究法,解决相关问题
谈话式教学法,老师提问学生回答
六、教学基本流程
七、教学过程
1、复习引入:
情境1:百岁山矿泉水广告
情境2: 17 世纪著名的法国哲数学家笛卡尔,美丽的瑞典公主拉夏贝尔的爱情故事引出心形曲线)sin 1(θρ-=a .
师生活动:讲述百岁山矿泉水广告里含有的故事,从而引出心型曲线,如果有学生知道就让学生来讲.
设计意图:情境引入,引起学生的兴趣,渗透数学史.
情境3:
每一年的四月都会在安宁区仁寿山举行“桃花节”,会吸引来自于各地的游客前去观赏,某天,一旅客到达
仁寿山顶入口处想去八卦台和寿台游览,但不认识路,刚巧遇到了两个当地人,分别询问了八卦台和寿仙
台的位置. 甲回答:从入口处向东走3200米,再向北走200米就到八卦台了.
乙回答:从入口处向东偏北︒60方向走400米就到寿仙台了.
请问(1)甲、乙两人分别用到了什么数学思想回答旅客的问路?
(2)我们如何能知道这名从入口出发游览两处景点后再回到入口共走了多少路程呢?
师生互动:分别请两名同学在黑板上画出直角坐标系下和极坐标系下甲乙两人为游客所指的路,从而引出
课题极坐标系和直角坐标系下的坐标互划问题.
设计意图:通过现实生活中的实际问题引入问题,引发学生思并引入课题.
2、新课探究:
探究问题1:
(1)极坐标与直角坐标互化时需要满足什么条件?
(2)可以有几种方案解决上述问题?请你给出具体的解题过程.
(3)请你总结出第一象限点的直角坐标和极坐标的互划公式.
结论:直角坐标系的原点0为极点,x 轴的正半轴为极轴,且在两坐标系中取相同的长度单位.平面内
任意一点P 的直角坐标与极坐标分别为),(y x 和),(θρ,则由三角函数的定义可以得到如下两组公式: {θρθρsin cos ==y x { x y y x =+=θρtan 222
说明(1)上述公式即为极坐标与直角坐标的互化公式
(2)通常情况下,将点的直角坐标化为极坐标时,取ρ≥0,0≤θ≤π2.
(3)互化公式的三个前提条件
(1)极点与直角坐标系的原点重合;
(2)极轴与直角坐标系的x 轴的正半轴重合;
(3)两种坐标系的单位长度相同.
设计意图:通过引例中的问题的探究让同学们感受到直角坐标和极坐标的不同,具体解决问题中需要统一
形式,从而引发学生研究解决问题的兴趣,小组合作学习提高学习效率,能很好的提升学习效果,解决问
题的过程中培养和提高学生的发现能力和总结归纳能力.
探究问题2:上面推导出来的公式是否适合平面内任意一个位置的点呢?
师生互动:教师提问,学生小组讨论回答.
设计意图:利用类比的思想将公式推广平面内任意的点.在活动中培养学生小组互动探究学习的合作精神.
3.举例应用:
例1、【课本P10页例2题】把M 的极坐标)3
2,5(π化成直角坐标
.
例2、【课本P11页例3】已知M 的直角坐标)1,3(--化成极坐标.
师生互动:学生板演,教师针对问题讲评.
设计意图:本环节设计帮助学生更好的理解点的极坐标和直角坐标互划公式,在具体的操作中体会数形结合的思想、在板演中规范学生的答题格式.
4.课堂练习:
课本练习4、5
师生互动:学生完成课本练习并回答,教师做出相应的点评.
设计意图:学生练习,熟悉并记忆公式.
5.拓展提高:
在极坐标系中,已知三点
)6
,32(),0,2(),3,2(π
πP N M -.判断P N M ,,三点是否在一条直线上. 师生互动:学生完成并回答,教师做出相应的点评.
设计意图:学生练习,树立一题多解的解题模式.
6.当堂小结:
(1)极坐标与直角坐标互换的前提条件;
(2)互换的公式;(3)互换的基本方法.
7.课后作业:
(1)课本P 12页习题1.2 第4、5题
(2)ρ=2表示什么图形?
(3)课后思考题:我们之前已经学习了圆的直角坐标方程,圆有极坐标方程么?是什么样的呢?
7.板书设计:
《极坐标与直角坐标互划》推荐点评
一、本节课能够体现先进的教育教学思想、教育观念。
一是关于学生的观念。
本节课前对学生的任职情况做出了准确的分析,课程设计允许学生可以用自己的方法学习数学。
教师引导学生用适当的方法理解数学问题,同时,教师也应当允许学生用自己的方法去探索和解决问题。
有的方法从成人的角度看是好的,而不同的学生可能有不同的感受。
可以引导学生对不同的方法加以比较,但不应把某一种方法强加给学生作为必须使用的方法。
二是关于教学的观念。
(一)让学生在活动中学习。
学生的数学学习过程不只是接受现成的数学知识,而是一个以学生已有的知识和经验为基础的主动建构的过程。
教师十分关注学生的学习过程,向学生展示了知识的发生发展过程。
学生的亲身体验和感知有利于获得感性经验,从而实现其认识的内化,促成理解力和判断力的发展,学生正是通过建模问题的解决,获得关于客体的表象,进而上升为理性认识。
(二)让学生在合作交流中学习。
教学中学生之间的互动提高了学生的学业成绩和社交能力,改善了人际关系,形成良好的学习品质。
在课堂教学中,增进了教师与学生、学生与学生之间的相互作用,讨论和以小组为单位的学习非常恰当。
在设计教学计划和组织课堂教学中,给学生提供了合作与交流的机会,使学生在合作的过程中学习别人的方法和想法,表达自己对问题的看法,从而学会从不同的角度认识数学;养成与别人合作与交流的习惯。
(三)让学生在不断"反思"中学习。
本节课上学生在探索过程中遇到障碍或出现错误时,教师提出一些针对性的、具有启发性的问题引导学生主动地反思探索过程;当数学活动结束后,教师引导学生反思整个探索过程和所获得结论的合理性,获得成功的体验。
三是关于教师作用的观念。
本节课教师创造性地组织教学,成为课程与教学的决策者。
教师成为了课堂教学过程的组织者、指导者和参与者。
学生在教学活动中处于主体地位,教师则成为学生学习活动的促进者,而并非单纯的知识传授者,教师创设了有趣的情境以刺激学生的动机,教师也提出了适当的问题以启发学生的思考。
在教学的过程中,教师不再是"居高临下"的指导者,而应成为一个"平等的"参与者。
二、本节课做到了构思新颖,有实用高效的教学思路。
课前引入部分设置了数学史小故事,利用几何画板展示心型曲线,通过数学建模问题的引入解决不断地激发学生的学习兴趣,通过课堂教学,教师掌握了学生的年龄特点和认知发展水平,努力改变教学内容的呈现方式和学生的学习方式,把适合教师讲解的内容尽可能变成适合学生探讨研究问题的素材。
让学生"动"起来,让课堂"活"起来,这样促使学生逐步从"学会"到"会学",最后达到"好学"的境界。
三、本节课重视现代化手段的运用。
在高中数学教学中,根据教学内容灵活地运用多媒体这一手段,对于激发学生学习兴趣,突破教学难点,提高课堂教学效率都是很有好处的。
运用多媒体计算机辅助教学,
能较好地处理大与小,远与近,动与静,快与慢,局部与整体的关系,能吸引学生的注意力,使学生形成鲜明的表象,启迪学生的思维,扩大信息量,提高教学效率。
可以说,现代教学技术和手段的推广使用为教学方法的改革发展开辟了广阔的天地。