均值不等式的实际应用
均值不等式及其应用详解
![均值不等式及其应用详解](https://img.taocdn.com/s3/m/e0a82d00b7360b4c2e3f6478.png)
解:设DQ长为y(m),则
x 4 xy 200
2
A
M
N
B
故:
200 x y 4x
2
E
F
(2)解: x 0
s 4200x 210 4xy 80 2 y 400000 2 38000 4000 x x2
2
2
400000 S 38000 4000 x x2
分析二、 挖掘隐含条件
∵3x+1-3x=1为定值,且0<x<1 则1-3x>0; 3 1 可用均值不等式法 ∵0<x< ,∴1-3x>0 3 1 1 3 x 1 3 x 1 2 ∴y=x(1-3x)= 3x(1-3x)≤ ( ) 3 12 当且仅当 3x=1-3x 即x=1 时 y
3
2
x 4000 当且仅当 200吨时,每吨的平均成本最低
不等式定理及其重要变形:
(定理) a b 2ab(a, b R)
2 2
ab ab (推论) 2
( a, b R )
ab
ab 2 ( ) 2
1 例1、已知:0<x< ,求函数y=x(1-3x)的最大值 3 分析一、 原函数式可化为:y=-3x2+x, 利用二次函数求某一区间的最值
y 2x 3 x y 3 2 2
当且仅当
y 2 x 即: y 2 x 时取“=”号 x y
即此时
1 y 2x x 而 2 2 2 x y 1 2 y 2 2
ymin 3 2 2
本题小结: 用均值不等式求最值时,要注意检验最值存在的 充要条件,特别地,如果多次运用均值不等式求
最值,则要考虑多次“≥”(或者“≤”)中取
高中数学 均值不等式
![高中数学 均值不等式](https://img.taocdn.com/s3/m/3dcef453178884868762caaedd3383c4ba4cb453.png)
高中数学均值不等式高中数学中学习到的均值不等式一直是学习数学的学生们最关注的部分之一,对于它的掌握程度有直接的影响是考试成绩,也影响了学习数学的基础。
均值不等式是有关统计学中描述统计数据分布和大小关系的一类不等式。
它在实际应用中能够解决下面的问题:(1)计算出一组数据的取值范围;(2)确定一组数据的取值情况;(3)计算出数据的最小值和最大值;(4)计算出数据的中位数、众数和众数线;(5)计算出数据的平均数。
均值不等式主要有高斯均值不等式和拉格朗日均值不等式两类,它们在经典相关性统计中主要有下面的表现:(1)高斯均值不等式:对任意的实数n>1,满足:a + b >= n*(a2+b2)的关系。
(2)拉格朗日均值不等式:对任意的实数n>1,满足:a + b n*sqrt(ab)的关系。
高斯均值不等式和拉格朗日均值不等式都可以用于求解几何问题。
高斯均值不等式可以用来求解椭圆问题,拉格朗日均值不等式可以用来求解矩形问题。
此外,均值不等式也可以用于求解数学问题,比如确定最优解、最大值、最小值和平均值等问题。
同时,均值不等式可以用来推导信息论中的各种关系,比如香农熵的大小关系、数据的去重性等。
在利用均值不等式解决问题的过程中,如果要解决多个均值不等式,可以采用同余技巧,将多个均值不等式的解组合起来求解整个问题,从而获得最优解。
归纳起来,均值不等式在统计学和数学领域都有重要的应用,是学习高中数学必备的知识,也是考试必考重点之一。
它可以帮助学生统计数据、求出范围大小、求出最优解、求出最小值和最大值等,而且它可以解决几何问题。
只要掌握了均值不等式的使用,就可以帮助学生们更好地解决高中数理问题,取得更好的成绩。
平均值不等式的应用
![平均值不等式的应用](https://img.taocdn.com/s3/m/0b62eeacb0717fd5360cdcaf.png)
答案:当x=1时,y取得最大值2 (2)已知x>0,y>0,且5x+7y=20,求xy的最 大值 10 答案:当且仅当5x=7y=10时,即x=2, y 7 时,取得最大值 20 7 1 1 (3)已知x,y∈R+ 且 x+2y=1,求 的最小值 x y
2 x 2 1 , y 1 答案:当 2
(1) 当xy=p时,有
x y p 2
,得 x y 2 p
上式当且仅当x=y时取“=”号,因此当x=y时,和 2 p x+y有最小值 1 2 S xy S xy (2)当x+y=s时,有 4 2 , 上式当且仅当x=y时取“=”号,因此当x=y时,积 1 2 xy有最大值 S
4
1 1 时, x y 取得
最小值 3 2 2
探索1:已知x,y∈R+且xy-x-y-1=0,则x+y的最 小值是 2 2 2.
探索2:已知0<x<π,试求
y sin x
2 sin x
的最值
小结: 平均值定理在求函数的最值方面的应用
1.两个正数的和为定值时,它们的积有最大值. 即已知x、y是正数,且x+y=s( 定值 ), 则当且仅 S2 当x=y时,xy有最大值
1 1 例2:(1)已知x>0,则当x= 时,函数 y x x 的最小值是 2 .
1 (2)已知x<0,则当x= -1 时,函数 y x x 的最大值是 -2 .
(3)已知a,b∈R,且a+b=3,那么2a+2b的最 小值是 4 2 .
5 例3:(1)已知x< 4
1 ,求 y 4 x 1 的最大值 4x 5
问题:求周长为8的矩形面积的最大值 解:设3;b=4,求S=ab的最大值 ∵ a,b∈R+ ∴
均值不等式在初中数学中的应用
![均值不等式在初中数学中的应用](https://img.taocdn.com/s3/m/967e1c1982c4bb4cf7ec4afe04a1b0717fd5b3aa.png)
均值不等式在初中数学中的应用均值不等式是中学数学中解决多个量之间关系的重要工具,它比较容易被初中生所接受,也可以用于解决复杂的问题。
均值不等式是一组不等式,它的形式为:$ n \le \overline{x} \le p $其中,$\overline{x}$代表某组数的平均数,n、p是这组数的最小值和最大值。
在初中数学中,均值不等式可以用来用于解决一些问题,如:1. 假设学校有30个学生,其中每个学生的考试成绩都在0~100分之间,求学校学生平均考试成绩最少应该多少分?通过均值不等式可以得出:只要最低分数少于平均成绩,其他分数就可以比平均成绩高一些。
由于这里最低分数是0分,根据均值不等式,我们可以得出学校学生平均考试成绩最少要得30分。
2. 假设有一个班级有30个学生,他们的体重范围都在50kg~80kg 之间,求这个班级学生的平均体重?同样的,由于这组数据的最低值是50kg,所以根据均值不等式,我们可以得出这个班级学生的平均体重至少是50kg。
即:$ 50 \le \overline{x} \le 80 $,故$ \overline{x} = 65 kg $。
此外,均值不等式还可以用来解决某些组合问题,如:假设把一组数据分成两组,每组数据平均值相等,这组数据最少有多少个?由均值不等式可知:一组数据的最大值一定大于两组数据的平均值,最小值一定小于两组数据的平均值,结合最少有的要求,我们可以得出,这组数据最少有4个,且满足以下条件:$ n + p + q = 2 \overline{x} \\n \le \overline{x} \le p \\p \le \overline{x} \le q $从上面可以看出,均值不等式是一种重要的数学工具,在初中数学中也可以被广泛运用,它可以帮助我们更好、更准确地解决复杂问题,让初中生更好地理解数学知识,进而深化学习。
均值不等式在生活中的应用
![均值不等式在生活中的应用](https://img.taocdn.com/s3/m/dc057effb8f3f90f76c66137ee06eff9aef8497e.png)
均值不等式在生活中的应用
平均值不等式是一种重要的数学不等式,它的应用非常广泛,在生活中也有着重要的作用。
首先,平均值不等式可以用来分析一组数据的分布情况,它可以用来确定一组数据的中位数、众数、最大值和最小值等。
例如,在一组数据中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来确定这组数据的中位数、众数、最大值和最小值。
其次,平均值不等式可以用来分析一个系统的稳定性。
例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的稳定性,从而判断这个系统是否稳定。
此外,平均值不等式还可以用来分析一个系统的可靠性。
例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的可靠性,从而判断这个系统是否可靠。
最后,平均值不等式还可以用来分析一个系统的效率。
例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的效率,从而判断这个系统的效率是否达到预期的要求。
总之,平均值不等式在生活中有着重要的作用,它可以用来分析一组数据的分布情况,也可以用来分析一个系统的稳定性、可靠性和效率等。
人教B版数学必修第一册2.2.4均值不等式及其应用课件
![人教B版数学必修第一册2.2.4均值不等式及其应用课件](https://img.taocdn.com/s3/m/a13813756d175f0e7cd184254b35eefdc9d31548.png)
及- ≤x
<0上均为减函数,在x≥ 及x≤- 上都是增函数.求此
函数的最值时,若所给的范围含± 时,可用均值不等
式,不包含± 时,可用函数的单调性求解(后面第三章
3.2函数的基本性质中学习).
跟踪训练
3.某单位用2160万元购得一块空地,计划在该地块上建造一
栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建
跟踪训练
1
2.已知a>0,b>0,a+2b=1,求
1
法一
1
+
1
=(
2
=1+
1
+
+
)·1=
1
(
+2=3+
1
+
2
+
1
的最小值.
)·(a+2b)
+
≥3+2
2
⋅ =3+2
2,
= 2−1
即ቐ
2 时等号成立.
=1−
+ 2 = 1
2
2
当且仅当൝
1
1
达使用均值不等式的三个条件,需要通过配凑、裂项、
转化、分离常数等变形手段,创设一个合适应用均值不
等式的情境.
本课小结
2.不等式的应用题大都与函数相关联,在求最值时,
均值不等式是经常使用的工具,但若对自变量有限制,
一定要注意等号能否取到.
通过本节课,
你学会了什么?
4
小
(2)若xy=p(积为定值),则当x=y时,和x+y取得最_____值2
均值不等式推广的应用举例
![均值不等式推广的应用举例](https://img.taocdn.com/s3/m/5832cb241fb91a37f111f18583d049649b660ee8.png)
均值不等式推广的应用举例以均值不等式推广的应用举例:1. 优化生产过程:假设某公司有多个工厂,每个工厂的产量不同。
为了提高整体产量,可以将生产任务分配给产量较低的工厂,以提高整体平均产量。
2. 管理团队的绩效评估:假设一个公司有多个部门,每个部门的绩效不同。
为了提高整体绩效,可以将资源和项目分配给绩效较低的部门,以提高整体平均绩效。
3. 资源分配:假设一个国家有多个地区,每个地区的发展水平不同。
为了促进整体发展,可以将资源和投资分配给相对较落后的地区,以提高整体平均水平。
4. 教育资源的分配:假设一个城市有多所学校,每所学校的教育质量不同。
为了提高整体教育水平,可以将更多的教育资源分配给教育质量较差的学校,以提高整体平均水平。
5. 投资组合优化:在投资组合中,不同的资产具有不同的收益和风险水平。
为了降低整体风险,可以将资金分配给风险较低的资产,以提高整体平均风险水平。
6. 健康管理:假设一个社区中有多个家庭,每个家庭的健康状况不同。
为了改善整体健康水平,可以将医疗资源和健康服务优先提供给健康状况较差的家庭,以提高整体平均健康水平。
7. 环境保护:假设一个地区有多个工业企业,每个企业的环境影响不同。
为了改善整体环境质量,可以加强对环境影响较大的企业的监管和管理,以提高整体平均环境质量。
8. 城市规划:在城市规划中,不同的地区具有不同的功能和发展潜力。
为了实现整体均衡发展,可以将资源和投资分配给发展潜力较大的地区,以提高整体平均发展水平。
9. 食品安全:假设一个国家有多个农田,每个农田的农产品质量不同。
为了保障整体食品安全,可以加强对农产品质量较低的农田的监管和管理,以提高整体平均食品质量。
10. 社会福利分配:假设一个社会有多个群体,每个群体的福利水平不同。
为了实现整体社会公平,可以将福利资源分配给福利水平较低的群体,以提高整体平均福利水平。
以上是以均值不等式推广的应用举例,通过合理的资源分配和管理,可以提高整体水平,实现更好的平衡和发展。
均值不等式的应用(新版教材)
![均值不等式的应用(新版教材)](https://img.taocdn.com/s3/m/8a84ed0a1a37f111f0855b99.png)
均值不等式的应用类型 用均值不等式证明不等式 ┃┃典例剖析__■1.无附加条件的不等式的证明典例1 已知a ,b ,c >0,求证:a 2b +b 2c +c 2a≥a +b +c .思路探究:由条件中a ,b ,c >0及待证不等式的结构特征知,先用均值不等式证a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c ,再进行证明即可. 解析:∵a ,b ,c >0,∴利用均值不等式可得a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,∴a 2b +b 2c +c 2a +a +b +c ≥2a +2b +2c ,故a 2b +b 2c +c 2a ≥a +b +c ,当且仅当a =b =c 时,等号成立.归纳提升:利用均值不等式证明不等式的注意点: (1)多次使用均值不等式时,要注意等号能否成立.(2)累加法是不等式证明中的一种常用方法,证明不等式时注意使用.(3)对不能直接使用均值不等式的证明可重新组合,达到使用均值不等式的条件. 2.有附加条件的不等式的证明典例2 已知a >0,b >0,a +b =1,求证:(1+1a )(1+1b)≥9.思路探究:本题的关键是把分子的“1”换成a +b ,由均值不等式即可证明. 解析:方法一:因为a >0,b >0,a +b =1, 所以1+1a =1+a +b a =2+ba .同理1+1b =2+ab.故(1+1a )(1+1b )=(2+b a )(2+a b )=5+2(b a +ab )≥5+4=9.所以(1+1a )(1+1b )≥9,当且仅当a =b =12时取等号.方法二:(1+1a )(1+1b )=1+1a +1b +1ab =1+a +b ab +1ab =1+2ab ,因为a ,b 为正数,所以ab ≤(a +b 2)2=14,所以1ab ≥4,2ab≥8.因此(1+1a )(1+1b )≥1+8=9,当且仅当a =b =12时等号成立.归纳提升:利用均值不等式证明不等式的两种题型(1)无附加条件的不等式的证明.其解题思路:观察待证不等式的结构形式,若不能直接使用均值不等式,则结合左、右两边的结构特征,进行拆项、变形、配凑等,使之达到使用均值不等式的条件.(2)有附加条件的不等式的证明.观察已知条件与待证不等式之间的关系,恰当地使用已知条件,条件的巧妙代换是一种较为重要的变形. ┃┃对点训练__■1.已知x >0,y >0,z >0,求证:(y x +z x )(x y +z y )(x z +yz )≥8.证明:∵x >0,y >0,z >0, ∴y x +z x ≥2yz x >0,x y +z y ≥2xz y >0, x z +y z ≥2xy z>0, 当且仅当x =y =z 时,以上三式等号同时成立. ∴(y x +z x )(x y +z y )(x z +y z )≥8yz ·xz ·xy xyz =8, 当且仅当x =y =z 时等号成立. 类型 利用均值不等式解决实际问题 ┃┃典例剖析__■典例3 如图所示,动物园要围成相同的长方形虎笼四间,一面可利用原来的墙,其他各面用钢筋网围成.(1)现有36 m 长的钢筋网,则每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?思路探究:设每间虎笼长为x m ,宽为y m ,则问题(1)是在4x +6y =36的前提下求xy 的最大值;而问题(2)是在xy =24的前提下求4x +6y 的最小值,因此可用均值不等式来解决. 解析:设每间虎笼长为x m ,宽为y m ,每间虎笼的面积为S m 2. (1)由条件知4x +6y =36,即2x +3y =18,S =xy . 方法一:由2x +3y ≥22x ·3y =26xy , 得26xy ≤18,解得xy ≤272,S ≤272,当且仅当2x =3y 时,等号成立. 由⎩⎪⎨⎪⎧2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =92,y =3.故每间虎笼长为92 m ,宽为3 m 时,可使每间虎笼面积最大.方法二:由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =(9-32y )y =32(6-y )·y .∵0<y <6,∴6-y >0. ∴S ≤32·[(6-y )+y 2]2=272.当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5,故每间虎笼长为4.5 m ,宽为3 m 时,可使每间虎笼面积最大. (2)由条件知S =xy =24.设钢筋网总长为l m ,则l =4x +6y . 方法一:∵2x +3y ≥22x ·3y =26xy =24,∴l =4x +6y =2(2x +3y )≥48,当且仅2x =3y 时等号成立.由⎩⎪⎨⎪⎧ 2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长为6 m ,宽为4 m 时,可使钢筋网总长最小. 方法二:由xy =24,得x =24y. ∴l =4x +6y =96y +6y =6(16y+y )≥6×216y·y =48.当且仅当16y =y ,即y =4时,等号成立,此时x =6.故每间虎笼长为6 m ,宽为4 m 时,可使钢筋网总长最小. 归纳提升:求实际问题中最值的一般思路 1.读懂题意,设出变量,列出函数关系式. 2.把实际问题转化为求函数的最大值或最小值问题.3.在定义域内,求函数的最大值或最小值时,一般先考虑用均值不等式,当用均值不等式求最值的条件不具备时,再考虑利用第三章要学习的函数的单调性求解. 4.正确地写出答案. ┃┃对点训练__■2.某公司计划建一面长为a 米的玻璃幕墙,先等距安装x 根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6 400元,一块长为m 米的玻璃造价为(50m +100m 2)元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为y 元(总造价=立柱造价+玻璃造价). (1)求y 关于x 的函数关系式;(2)当a =56时,怎样设计能使总造价最低? 解析:(1)依题意可知a m =x -1,所以m =ax -1,y =6 400x +⎣⎢⎡⎦⎥⎤50a x -1+100⎝ ⎛⎭⎪⎫a x -12(x -1) =6 400x +50a +100a 2x -1(x ∈N ,且x ≥2).(2)y =6 400x +50a +100a 2x -1=100⎣⎢⎡⎦⎥⎤64(x -1)+a 2x -1+50a +6 400. ∵x ∈N ,且x ≥2,∴x -1>0. ∴y ≥20064(x -1)·a 2x -1+50a +6 400=1 650a +6 400,当且仅当64(x -1)=a 2x -1,即x =a8+1时,等号成立.又∵a =56,∴当x =8时,y min =98 800.所以,安装8根立柱时,总造价最低. 易混易错警示 忽略等号成立的条件┃┃典例剖析__■典例4 求函数y =x (1-x ),x ∈[23,1)的最大值.错因探究:由23≤x <1,易知1-x >0,从而错解为y =x (1-x )≤[x +(1-x )2]2=14.而x =1-x 在x =12时才能取“=”,但23≤x <1,因而不等式取不到等号,从而最大值为14是错误的. 解析:y =x (1-x )=-x 2+x =-(x -12)2+14,当x =23时,y max =23×(1-23)=29.误区警示:利用均值不等式求最值时,等号必须取得到才能求出最值,若题设条件中的限制条件使等号不能成立,则要转换到另一种形式解答. 学科核心素养 与不等式有关的恒成立问题 ┃┃典例剖析__■不等式恒成立问题的实质是已知不等式的解集求不等式中参数的取值范围.对于求不等式成立时参数的范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.常见求解策略是将不等式恒成立问题转化为求最值问题,即 y ≥m 恒成立⇔y min ≥m ; y ≤m 恒成立⇔y max ≤m .但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.典例5 已知函数y =-1a +2x ,若y +2x ≥0在(0,+∞)上恒成立,则实数a 的取值范围是__(-∞,0)∪[14,+∞)__.解析:∵y +2x ≥0在(0,+∞)上恒成立, 即-1a +2x +2x ≥0在(0,+∞)上恒成立,∴1a ≤2(x +1x )在(0,+∞)上恒成立. 当a <0时,不等式恒成立;当a >0时,∵2(x +1x )≥4,当且仅当x =1时,等号成立,∴0<1a ≤4,解得a ≥14.∴a <0或a ≥14.课堂检测·固双基1.若实数a ,b 满足ab >0,则a 2+4b 2+1ab 的最小值为( C )A .8B .6C .4D .2解析:直接利用关系式的恒等变换和均值不等式求出结果.实数a ,b 满足ab >0,则a 2+4b 2+1ab ≥4ab +1ab ≥4,当且仅当a =2b ,且ab =12时,等号成立,故选C . 2.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( D ) A .1ab ≤14B .1a +1b ≤1C .ab ≥2D .a 2+b 2≥8解析:4=a +b ≥2ab (当且仅当a =b 时,等号成立),即ab ≤2,ab ≤4,1ab ≥14,A ,C 不成立;1a +1b =a +b ab =4ab≥1,B 不成立;a 2+b 2=(a +b )2-2ab =16-2ab ≥8.3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__25_m 2__. 解析:设矩形的一边为x m , 则另一边为12×(20-2x )=(10-x )m ,所以y =x (10-x )≤[x +(10-x )2]2=25,当且仅当x =10-x ,即x =5时,y max =25 m 2. 4.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为__32__.解析:由x >a ,知x -a >0,则2x +2x -a =2(x -a )+2x -a +2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32.A 级 基础巩固一、单选题(每小题5分,共25分)1.若0<x <12,则y =x 1-4x 2的最大值为( C )A .1B .12C .14D .18解析:因为0<x <12,所以1-4x 2>0,所以x1-4x 2=12×2x ×1-4x 2≤12×4x 2+1-4x 22=14,当且仅当2x =1-4x 2即x =24时等号成立,故选C . 2.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( D )A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]解析:由于x >1,所以x -1>0,1x -1>0,于是x +1x -1=x -1+1x -1+1≥2+1=3,当1x -1=x -1即x =2时等号成立, 即x +1x -1的最小值为3,要使不等式恒成立,应有a ≤3,故选D .3.(2019·江苏南京师大附中高二期中)函数y =x 2+2x +2x +1 (x >-1)的图像的最低点的坐标是( D ) A .(1,2) B .(1,-2) C .(1,1)D .(0,2)解析:∵x >-1,∴x +1>0.∴y =(x +1)2+1x +1=(x +1)+1x +1≥2,当且仅当x +1=1x +1,即x =0时等号成立,即当x =0时,该函数取得最小值2.所以该函数图像最低点的坐标为(0,2). 4.若对所有正数x ,y ,不等式x +y ≤a x 2+y 2都成立,则a 的最小值是( A ) A .2 B .2 C .22D .8解析:因为x >0,y >0, 所以x +y =x 2+y 2+2xy ≤2x 2+2y 2=2·x 2+y 2, 当且仅当x =y 时等号成立, 所以使得x +y ≤ax 2+y 2对所有正数x ,y 恒成立的a 的最小值是 2.故选A .5.若点A (-2,-1)在直线mx +ny +1=0上,其中m ,n 均大于0,则1m +2n 的最小值为( C )A .2B .4C .8D .16解析:因为点A 在直线mx +ny +1=0上, 所以-2m -n +1=0,即2m +n =1.因为m >0,n >0,所以1m +2n =2m +n m +4m +2n n =2+n m +4mn +2≥4+2·n m ·4mn=8,当且仅当m =14,n =12时取等号.故选C .二、填空题(每小题5分,共15分)6.已知x ≥52,则y =x 2-4x +52x -4的最小值是__1__.解析:f (x )=(x -2)2+12x -4=x -22+12x -4=2x -44+12x -4≥22x -44·12x -4=1. 当且仅当2x -44=12x -4,即x =3时取“=”.7.(2019·辽宁本溪高级中学高二期中)若两个正实数x ,y 满足1x +4y =1,且不等式x +y4<m 2-3m 有解,则实数m 的取值范围是__(-∞,-1)∪(4,+∞)__.解析:∵不等式x +y 4<m 2-3m 有解,∴(x +y 4)min <m 2-3m .∵x >0,y >0,且1x +4y =1,∴x +y4=(x+y 4)(1x +4y )=4x y +y4x+2≥24x y ·y 4x +2=4,当且仅当4x y =y4x,即x =2,y =8时取等号,∴(x +y4)min =4,∴m 2-3m >4,即(m +1)(m -4)>0,解得m <-1或m >4,故实数m 的取值范围是(-∞,-1)∪(4,+∞).8.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是__[9,+∞)__;a +b 的取值范围是__[6,+∞)__.解析:①∵正数a ,b 满足ab =a +b +3, ∴ab =a +b +3≥2ab +3, 即(ab )2-2ab -3≥0,解得ab ≥3,即ab ≥9,当且仅当a =b =3时取等号. ∴ab ∈[9,+∞).②∵正数a ,b 满足ab =a +b +3,∴a +b +3=ab ≤(a +b2)2,即(a +b )2-4(a +b )-12≥0,解得a +b ≥6, 当且仅当a =b =3时取等号,∴a +b ∈[6,+∞). 三、解答题(共20分)9.(6分)(2019·湖北华中师大一附中高二检测)已知a ,b ,c 为不全相等的正实数,且abc =1.求证:a +b +c <1a 2+1b 2+1c2.解析:因为a ,b ,c 都是正实数,且abc =1, 所以1a 2+1b 2≥2ab =2c ,1b 2+1c 2≥2bc =2a , 1a 2+1c 2≥2ac=2b , 以上三个不等式相加,得2(1a 2+1b 2+1c 2)≥2(a +b +c ),即1a 2+1b 2+1c 2≥a +b +c . 因为a ,b ,c 不全相等,所以上述三个不等式中的“=”不都同时成立. 所以a +b +c <1a 2+1b 2+1c2.10.(7分)a >b >c ,n ∈N 且1a -b +1b -c ≥na -c ,求n 的最大值.解析:∵a >b >c ,∴a -b >0,b -c >0,a -c >0. ∵1a -b +1b -c ≥n a -c , ∴n ≤a -c a -b +a -c b -c .∵a -c =(a -b )+(b -c ),∴n ≤(a -b )+(b -c )a -b +(a -b )+(b -c )b -c ,∴n ≤b -ca -b +a -bb -c +2.∵b -c a -b +a -b b -c≥2(b -c a -b )·(a -b b -c)=2(2b =a +c 时取等号). ∴n ≤4.∴n 的最大值是4.11.(7分)已知a ,b ,c 都是正实数,且a +b +c =1, 求证:(1-a )(1-b )(1-c )≥8abc . 解析:∵a +b +c =1,∴(1-a )(1-b )(1-c )=(b +c )(a +c )(a +b ). 又a ,b ,c 都是正实数,∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. ∴(a +b )(b +c )(a +c )8≥abc .∴(1-a )(1-b )(1-c )≥8abc , 当且仅当a =b =c =13时,等号成立.B 级 素养提升一、单选题(每小题5分,共10分)1.某工厂第一年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则( B ) A .x =a +b2B .x ≤a +b2C .x >a +b 2D .x ≥a +b2解析:由条件知A (1+a )(1+b )=A (1+x )2, 所以(1+x )2=(1+a )(1+b )≤[(1+a )+(1+b )2]2,所以1+x ≤1+a +b 2,故x ≤a +b2.2.已知正实数m ,n 满足m +n =1,且使1m +16n 取得最小值.若y =5m ,x =4n 是方程y =x α的解,则α=( C ) A .-1 B .12C .2D .3解析:1m +16n =(1m +16n )(m +n )=1+16m n +n m +16=17+16m n +nm ≥17+216m n ·nm=25. 当且仅当16m n =n m ,又m +n =1,即m =15,n =45时,上式取等号,即1m +16n 取得最小值时,m =15,n =45,所以y =25,x =5,25=5α. 得α=2.二、多选题(每小题5分,共10分)3.设a >0,b >0,下列不等式恒成立的是( ABC )A .a 2+1>aB .(a +1a )(b +1b )≥4C .(a +b )(1a +1b)≥4 D .a 2+9>6a解析:由于a 2+1-a =(a -12)2+34>0, ∴a 2+1>a ,故A 恒成立;由于a +1a ≥2,b +1b≥2, ∴(a +1a )(b +1b)≥4,当且仅当a =b =1时,等号成立,故B 恒成立; 由于a +b ≥2ab ,1a +1b ≥21ab , ∴(a +b )(1a +1b)≥4,当且仅当a =b 时,等号成立,故C 恒成立; 当a =3时,a 2+9=6a ,故D 不恒成立;故选ABC .4.设a ,b ∈R ,且a ≠b ,a +b =2,则必有( BD )A .ab >1B .ab <1C .a 2+b 22<1 D .a 2+b 22>1 解析:因为ab ≤(a +b 2)2,a ≠b ,所以ab <1, 又1=(a +b )24=a 2+b 2+2ab 4<a 2+b 22, 所以a 2+b 22>1,所以ab <1<a 2+b 22. 三、填空题(每小题5分,共10分)5.如图有一张单栏的竖向张贴的海报,它的印刷面积为72 dm 2(图中阴影部分),上下空白各宽2 dm ,左右空白各宽1 dm ,则四周空白部分面积的最小值是__56__dm 2.解析:设阴影部分的高为x dm ,则宽为72xdm ,四周空白部分的面积是y dm 2. 由题意,得y =(x +4)(72x +2)-72=8+2(x +144x)≥8+2×2x ·144x=56(dm 2). 当且仅当x =144x,即x =12 dm 时等号成立. 6.设a +b =2,b >0,则12|a |+|a |b取最小值时a 的值为__-2__. 解析:因为a +b =2, 所以12|a |+|a |b =24|a |+|a |b =a +b 4|a |+|a |b= a 4|a |+b 4|a |+|a |b ≥a 4|a |+2b 4|a |×|a |b =a 4|a |+1, 当且仅当b 4|a |=|a |b时等号成立. 又a +b =2,b >0,所以当b =-2a ,a =-2时,12|a |+|a |b取得最小值. 四、解答题(共10分)7.某厂家拟在2019年举行促销活动,经调查测算,某产品的年销售量(也即该产品的年产量)x 万件与年促销费用m (m ≥0)万元满足x =3-k m +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2019年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数.(2)该厂家2019年的促销费用投入多少万元时,厂家的利润最大?解析:(1)由题意知,当m =0时,x =1,∴1=3-k ,即k =2,∴x =3-2m +1,每件产品的销售价格为1.5×8+16x x(元), ∴2019年该产品的利润y =1.5x ·8+16x x -8-16x -m =-[16m +1+(m +1)]+29(m ≥0). (2)∵m ≥0,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当 16m +1=m +1,即m =3时,y max =21.故该厂家2019年的促销费用投入3万元时,厂家的利润最大,最大利润为21万元.。
均值不等式应用(技巧)
![均值不等式应用(技巧)](https://img.taocdn.com/s3/m/6573057e25c52cc58bd6be23.png)
均值不等式应用(技巧)应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
技巧三: 分离 例3. 求2710(1)1x x y x x ++=>-+的值域。
技巧四:换元 例4(同例3)技巧五:注意:在应用均值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x=+的单调性。
例5:求函数2y =的值域。
练习.1.求下列函数的最小值,并求取得最小值时,x 的值.(1)231,(0)x x y x x++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈2.已知01x <<,求函数y =.; 3.203x <<,求函数y =.条件求最值1.若实数满足2=+b a ,则ba 33+的最小值是 .变式:若44log log 2x y +=,求11x y+的最小值.并求x,y 的值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。
2:已知0,0x y >>,且191x y+=,求x y +的最小值。
变式: (1)若+∈R y x ,且12=+y x ,求yx11+的最小值(2)已知+∈R y x b a ,,,且1=+yb x a ,求y x+的最小值技巧七、已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值.技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值.变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。
2.若直角三角形周长为1,求它的面积最大值。
均值不等式及其应用
![均值不等式及其应用](https://img.taocdn.com/s3/m/32b83a3787c24028915fc34e.png)
6.2 均值不等式及其应用【考纲要求】1. 会用均值不等式解决简单的最大(最小)值问题。
2. 会应用均值不等式解决一些简单的实际应用问题。
【知识链接】1.算术平均数、几何平均数定理定理1:ab b a R b a 2,22≥+⇒∈(当且仅当b a =时取“=”号).定理2:b a ,是正数ab b a ≥+⇒2(当且仅当b a =时取“=”号) b a ,是正数2)2(b a ab +≤⇒(当且仅当b a =时取“=”号) 两个正数的算术平均数不小于它们的几何平均数;两个正数的等差中项不小于它们的等比中项。
2.利用均值不等式求最大、最小值问题 (1)如果,x y R +∈,且xy P =(定值),那么当x y =时,x y +取得___值;(2)如果,x y R +∈,且x y S +=(定值),那么当x y =时,xy 取得___值;也就是:求两个正变数积的最大值常考虑和为定值;求两个正变数和的最小值常考虑积为定值。
【预习检测】1.设x ≥5,函数y=x+3x 的最小值是_____________。
2. 已知数列{a n }的通项公式为a n =290n n +,n ∈N*,则数列中的最大项是_________。
3.过点(2,1)的直线l 分别交x 轴,y 轴的正半轴于A 、B 两点,则△AOB 的面积的最小值为___________。
【课堂互动】探究1 利用均值不等式求最值例1. (1)若0x >,求12()3f x x x =+的最小值;(2)若0x <,求12()3f x x x=+最大值.变式训练1:(1)已知+∈R y x ,,且满足143=+y x ,则xy 的最大值为_________________ (2)已知2x >,求1()12f x x x =++-的最小值。
探究2 均值不等式的实际应用例2经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系式为y=292031600v v v ++(v>0) (1)在该段时间内,当汽车的平均速度为多少时车流量最大?(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?变式训练:2. (1)用长度为n 的细线围成一个矩形,则矩形的最大面积是__________________。
均值不等式及其应用-高一数学教学课件(人教B版2019必修第一册)
![均值不等式及其应用-高一数学教学课件(人教B版2019必修第一册)](https://img.taocdn.com/s3/m/50c5320711a6f524ccbff121dd36a32d7375c71f.png)
引入新课
要做一段周长为200米的的栅栏,如何使其面积最大?
新知讲解
思考:一般地,对于任意实数 x、y,我们有
x2 y2 2xy ,当且仅当 x=y 时等号成立.
你能给出它的证明吗?
证明: x2 y2 - 2xy = x;0 ,当 x y 时,等号成立.
sin x
有同学这样解0 x ,sin x 0, 4 0,
sin x
y sin x 4 2 sin x 4 4
sin x
sin x
所以, y sin x 4 最小值为4. sin x
反思:研究函数
最值的处理思路是:
(1)可以用基本不等式求解;(2)不能用基本不等式时就用单 调性求解。
因为 OD CD , 所以 a b ab 2
当且仅当 C 与 O 重合,即 a b 时,等号成立.
D
ab
2
ab
O
C
B
例 1 设 a, b 均为正数,证明不等式
ab
1
2
1
.
ab
证明 因 a, b 均为正数,由基本不等式,可知
11 a b
1
2
ab
也即
ab
1
2
1
,当且仅当 a
b 时,等号成立.
(1)求x,y的函数关系式,并求x的取值范围; (2)问框架的横边长x为多少时用料最省?
x y
反思:根据图形,建立总长L(米)与横边长x(米)之间的函数 关系式,再用数学方法(本例用基本不等式)求最小值,解题 过程中要关注x的取值范围对问题解答的影响。
实际问题 数学问题 实际问题
小结
1.基本不等式的定义和应用; 2. 均值不等式链
均值不等式在解三角形问题中的应用
![均值不等式在解三角形问题中的应用](https://img.taocdn.com/s3/m/3e6eb472366baf1ffc4ffe4733687e21af45ffbc.png)
均值不等式在解三角形问题中的应用在数学中,均值不等式是一种常见的不等式,它可以被广泛地应用于各种数学问题中,包括三角形几何。
均值不等式提供了一种有效的方法来解决三角形中的一些问题,特别是在涉及到三角形的边长、角度或面积时。
在本文中,我们将探讨均值不等式在解三角形问题中的应用,并举例说明其在实际问题中的作用。
首先,让我们回顾一下均值不等式的基本概念。
均值不等式是指对于任意一组非负实数,它们的算术平均数永远不会小于它们的几何平均数,这就是均值不等式的基本形式。
具体而言,对于任意一组非负实数 a1, a2, ..., an,均值不等式可以表示为:( a1 + a2 + ... + an ) / n ≥ ( a1 a2 ... an )^(1/n)。
这个不等式告诉我们,对于给定的一组非负实数,它们的算术平均数不会小于它们的几何平均数。
这个性质在三角形几何中有着重要的应用。
在三角形中,我们经常需要比较三角形的边长、角度或面积。
均值不等式可以帮助我们对这些量进行比较,并且在解决一些三角形问题时提供了简洁而有效的方法。
例如,我们可以利用均值不等式来证明三角形中任意两边之和大于第三边的基本不等式。
假设 a, b, c 分别表示三角形的三条边长,根据均值不等式,我们有:(a + b) / 2 ≥ √(ab)。
(b + c) / 2 ≥ √(bc)。
(c + a) / 2 ≥ √(ca)。
将以上三个不等式相加得到:(a + b + c) / 2 ≥ √(ab) + √(bc) + √(ca)。
这个不等式告诉我们,三角形的任意两边之和不会小于第三边。
这是三角形中一个非常重要的性质,而均值不等式为我们提供了一个简洁的证明方法。
除了边长之和的比较外,均值不等式还可以在三角形的角度或面积比较中发挥作用。
例如,我们可以利用均值不等式来证明三角形内角的平均值大于60度,或者证明三角形的面积与边长之间的关系。
这些都是三角形几何中常见的问题,而均值不等式为我们提供了一种简单而有效的方法来解决这些问题。
均值不等式的实际应用
![均值不等式的实际应用](https://img.taocdn.com/s3/m/8f17fce69e31433239689372.png)
作答.
答 当该楼房建造 15 层时, 可使楼房每平方米的平均综 合费用最少,最少值为 2 000 元.
例2 (2000全国)如图,为处理含某种杂质的污水,要制造一底宽为2 m的无盖长方体沉淀箱。污水从A孔流入,经沉淀后从B孔流出,设箱 体的长度为a m,高度为b m,已知流出的水中,设杂质的质量分数与 a,b的乘积ab成反比,现有制箱材料60m2,问a,b各为多少时,经沉淀后 流出的水中,该杂质的质量分数最小.
3.4均值不等式的
实际应用
回顾与复习:
ab 如果 a , b R , 那么 ab 2 (当且仅当 a b 时 , 取 " " 号)
均值不等式及其使用注意事项:
1.利用均值不等式求最值结论:积一定,和有最小值;
和一定, 积有最大值。
2. 利用均值不等式求最值的条件:一正,二定,三相等。
因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造是 297600元.
变式训练 某单位用 2 160 万元购得一块空地,计划在该空 地上建造一栋至少 10 层,每层 2 000 平方米的楼房.经测 算,如果将楼房建为 x (x≥10)层,则每平方米的平均建 筑费用为 560+48x (单位:元). (1)写出楼房平均综合费用 y 关于建造层数 x 的函数关系 式; (2)该楼房应建造多少层时,可使楼房每平方米的平均综 合费用最少?最少值是多少? (注:平均综合费用=平均建筑费用+平均购地费用,平 购地总费用 均购地费用= ) 建筑总面积
例 1某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为 3m,如果池底每1m2的造价为150元,池壁每1m2的造价为120元, 问怎样设计水池能使总造价最低,最低总造价是多少元? 4800 解:设水池底面一边的长度为x m,则另一边的长度为 m. 3x
均值不等式在实际生活中的应用
![均值不等式在实际生活中的应用](https://img.taocdn.com/s3/m/61db5bec2dc58bd63186bceb19e8b8f67c1cef8d.png)
均值不等式在实际生活中的应用
均值不等式是一种数学定理,它是一种统计学中用来计算、衡量和分析数据的有用工具。
它主要用于描述数据之间的变化和相关性,从而有助于我们更好地理解数据。
因此,均值不等式在实际生活中也有多种应用。
例如,在投资业务中,投资人可以利用均值不等式来估算投资风险。
他们可以计算投资项
目的收益率,然后用均值不等式分析投资的可能收益情况,从而决定投资的安全性和可行性。
均值不等式还可以用于消费者心理分析。
研究发现,不同消费者对价格和服务质量之间的
平衡程度不尽相同,但通常会采用“更好的价格,更好的服务”的原则。
在此基础上,市场营销专家可以利用均值不等式对消费者的满意程度作出估计,从而帮助商家更好地把握顾客的需求,以便更好地进行营销活动。
另外,均值不等式还可用于保险行业。
投保人在采用保险前,必须先仔细评估投保风险,
以确定最佳的投保方案。
保险行业专家可以使用均值不等式来计算投保人支付保险费用和最终获得赔偿金额之间的关系,从而帮助投保人做出投保决定。
此外,均值不等式还可以用于贷款业务。
银行和金融机构在发放贷款时,有时需要考虑贷款利息与本金之间的关系,以确定最优的贷款金额。
这时,就可以使用均值不等式来计算贷款利息,从而为贷款发放者提供有用的参考。
总之,均值不等式在实际生活中有着广泛的应用。
它可以帮助我们分析数据,估算投资风险,理解消费者心理,进行保险行业分析,以及计算贷款利息等。
高中数学均值不等式的十一大方法与八大应用(解析版)
![高中数学均值不等式的十一大方法与八大应用(解析版)](https://img.taocdn.com/s3/m/b8753252f56527d3240c844769eae009581ba290.png)
均值不等式的“十一大方法与八大应用”目录一、重难点题型方法11.方法一:“定和”与“拼凑定和”方法二:“定积”与“拼凑定积”方法三:“和积化归”方法四:“化1”与“拼凑化1”方法五:“不等式链”方法六:“复杂分式构造”方法七:“换元法”方法八:“消元法”方法九:“平方法”方法十:“连续均值”方法十一:“三元均值”应用一:在常用逻辑用语中的应用应用二:在函数中的应用应用三:在解三角形中的应用应用四:在平面向量中的应用应用五:在数列中的应用应用六:在立体几何中的应用应用七:在直线与圆中的应用应用八:在圆锥曲线中的应用二、针对性巩固练习重难点题型方法方法一:“定和”与“拼凑定和”【典例分析】典例1-1.(2021·陕西省神木中学高二阶段练习)若x>0,y>0,且2x+3y=6,则xy最大值为( )A.9B.6C.3D.32【答案】D【分析】由x>0,y>0,且2x+3y为定值,利用基本不等式求积的最大值.【详解】因为x>0,y>0,且2x+3y=6,所以xy=16×2x⋅3y≤162x+3y22=32,当且仅当2x=3y,即x=32,y=1时,等号成立,即xy的最大值为3 2.故选:D.典例1-2.(2022·湖南·雅礼中学高三阶段练习)已知x>0,y>0,且x+y=7,则1+x2+y的最大值为( )A.36B.25C.16D.9【答案】B【分析】由x+y=7,得x+1+y+2=10,再利用基本不等式即可得解.【详解】解:由x+y=7,得x+1+y+2=10,则1+x2+y≤1+x+2+y22=25,当且仅当1+x=2+y,即x=4,y=3时,取等号,所以1+x2+y的最大值为25.故选:B.【方法技巧总结】1.公式:若a,b∈R*,则a+b≥2ab(当且仅当a=b时取“=”)推论:(1)若a,b∈R,则a2+b2≥2ab(2)a+1a≥2(a>0)(3)ba+ab≥2(a,b>0)2.利用基本不等式求最值时,要注意其必须满足的三个条件:“一正二定三相等”(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致.3.技巧:观察积与和哪个是定值,根据“和定积动,积定和动”来求解,不满足形式的可以进行拼凑补形。
均值不等式的应用_数学教育
![均值不等式的应用_数学教育](https://img.taocdn.com/s3/m/f75fe8fda0c7aa00b52acfc789eb172ded639902.png)
均值不等式的应用_数学教育
均值不等式是数学中常用的一种不等式关系,通常用于证明其
他数学问题或优化问题的解。
以下是一些常见的均值不等式的应用:
1. 在证明两个数不等式关系时,可以使用均值不等式。
例如,
证明$ (a + b)^2 \\geq 4ab$,可以应用均值不等式得到
$\\frac{(a+b)}{2} \\geq \\sqrt{ab}$,然后平方得到结果。
2. 在优化问题中,可以使用均值不等式来求解最优解。
例如,
求点到平面距离最小值时,可以使用均值不等式得到最优解。
3. 在概率论中,均值不等式是刻画随机变量几何平均值和数学
期望之间的不等关系的工具。
4. 在矩阵理论中,依据谁的均方根较小来确定矩阵的谱半径时,可以使用均值不等式。
总体上讲,均值不等式可以应用于各种数学问题,特别是那些
涉及到优化和不等式的问题。
平均值不等式及其应用
![平均值不等式及其应用](https://img.taocdn.com/s3/m/7ba6f286be1e650e53ea996e.png)
平均值不等式及其应用摘要:本文利用平均值不等式的特点,通过实例介绍了平均值不等式在电场强度、以及势能计算题中的应用。
关键词:算术平均值;几何平均值;电场强度;引力场强度;引力势能保守力;机械能守恒;质点作者简介:康洪庆,任教于云南腾冲县第一中学。
由于中学阶段的学生不具备高等代数知识,所以在应用中只能以初等代数为工具。
一、平均值不等式二、平均值不等式的应用结论:行星C从静止开始且从无限远处沿质量相等的A、B两行星连线的中垂线运动到O点的过程中,先做加速度逐渐增大的加速运动,后做加速度逐渐减小的加速运动,到达O点加速度为零,速度达到最大,动能达到最大。
到P点时,加速度最大。
三、引发的思考可见用平均值不等式求解和用微积分知识求解结果相同,殊途同归。
同理可求出引力场强度。
①微元法:定义:电荷在电场中某点的电势能等于把电荷从该点移到电势能为零的点电场力所做的功,选无限远处电势能为零,电荷的电势能为零,电场的电势也为零。
电场中某点的电势等于把单位电荷从该点移送到电势为零的点电场力做的功。
按以上相同的方法引力场强度的极值和取极值的条件可用微分知识求解,行星在另一个行星产生的引力场中的引力势能,可用微元法和积分知识求解。
引力势能是负值。
通常说的重力势能也属于引力势能。
但重力势能的是以地面附近的物体作参考点,故重力势能可能为正值,亦可能为负值,离参考点距离越大,势能绝对值就越大,相对行星的一个物体的势能是以无限远处为参考点,行星在引力场中的势能为负值,离行星越远势能越大,绝对值越小,最大势能为零。
参考文献:[1] 范斯明.平均值不等式的引申公式及应用[J].中学理科参考资料,1998(7).[2] 平红云.平均值不等式的应用[J].中国科教创新导刊,2010(25).作者单位:云南腾冲县第一中学 679100。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目标函数: S=2πr2 +2πr h
且V = πr2
2r
h
h
如图所示,已知圆锥的底面半径为R, 高为H,在其中有一个高为x,下底半径 与上底半径之比为k(0<k<1)的内接圆 台,试问:当x为何值时,圆台的体积 最大?并求出这个最大的体积。
课堂小结
1.解应用题的方法与步骤
2.均值不等式求函数的最值
≤
3
=2· (20)3 =16000 (cm)3
当 且 仅 当 30-x=2x 即 x=10 时 , Vmax =16000(cm) 3 答:截去小正形的边长为10cm时,水箱 容积最大,最大容积为16000(cm)3
例2 : 一块长方形的铁皮长为 80厘米,宽为50厘米,从四角处 截掉四个同样大小的正方形,然 后做成一个无盖的小箱,问截去 小正方形的边长为多少时,水箱 容积最大。 80cm
由同学们来完成下列练习:
用总长29.6m的钢条制做一个长 方体的容器的框架,如果所制做容 器的底面一边比另一边长1m,那么 高为多少时容器的容积最大?并求 出它的最大容积。
D A1 D A B
1
C1
B1 C
解:已知量: 长方体的12条棱长之和 为 29.6 m ,需设量:长方体的底面两 边长为:x 和(x+1) m,高为hm最终要 研究的量:体积(V)=底面面积×高
a+b=2 且ax = bx + b = 6.4-2x
解得 a=1.2,b=0.8,x=2此时
V= 1.2x· (0.8x+0.8) · (6.4-2x)/0.96 ≤[(1.2x + 0.8x + 0.8 + 6.4 - 2x)/3] 3 / 0.96 =(7.2/3) 3/0.96 =14.4m 3 答:当高h=6.4-2×2=2.4m时,Vmax =14.4m3
例3:制做圆柱形的罐头盒,如果 容积一定,它的尺寸怎样取,所用的 材料最少? 分析:所用的材料最 少的本质是什么意思?
或者说从数学的角度来 说是什么意思?
分析出来实质是圆柱体的表面 积
已知量: 体积 V(假定为定值) 需设量: 底半径r,高 h 最终要研究的量: 表面积 S=两个底面积 + 侧面积
目标函数: V= x·(x+1) ·h
而4x+4(x+1)+4h=29.6 即 h = 6.4 - 2x V=x ·(x+1) ·(6.4 - 2x)
D1 A1
h
C1 B1
x
D A
x+1
C
B
V=x· (x+1) · (6.4 - 2x)
=ax· (bx+b) · (6.4-2x)/ab
其中 a,b是待定的正常数且满足
②和为定值,积有最大;积为定值,和有最小值 ③利用上述重要不等式求最值时注意三点:各项为 正,和或积为定值,当且仅当上述不等式取等号时 未知数的取值必须在允许值范围内。
例1:用边长为60厘米的正方 形铁皮做一个无盖的水箱,先在 四角分别截去一个小正方形,然 后把四边形翻转90°,再焊接而 成,问截去小正方形的边长为多 少时,水箱容积最大,最大的容 积为多少?
50cm
解:已知量: 长为80 cm,宽为50cm
需设量: 截去小正方形的边长为:x cm
最终要研究的量:体积(V)=底面面积×高
目标函数: V= (80-2x) · (50-2x) ·x 此题若按例1的解法来解 当且仅当 80-2x = 50-2x
80-2x 50-2x xcm xcm
这样的x不存在!!
解:
V = (80-2x) (50-2x) x
= 2 (40-x) (50-2x) · x
=18000(cm) 3
当且仅当40-x=50-2x=3x即小正方形边长x=10时, Vmax=18000 (cm) 3
解法:V=4(40-x) · (25-x) · x
= (40a bx) · x ·(4/ab)
教学重点:利用均值不等
式解决实际问题 教学难点:实际问题数学 化(建模)
利用均值不等式 求函数的最值
复习旧知识
①均值不等式a2+ b2≥2ab,a+b≥2 ·2√ab (当且仅当a=b时上述各式取等号); a3+ b3 + c3≥3abc,a+ b+ c≥3 ·3√abc (当且仅当a=b=c时上述各式取等号)。
1、弄清已知量、确定目标变量。
2、根据题设建立目标函数。 3、选定求解方法。
60cm
60-2x 60cm
60-2x xcm xcm x 60-2x 60-2x
解:已知量: 边长为60 cm的正方形铁皮。
需设量: 四角截去的小正方形的边长为:x cm
最终要研究的量:体积(V)=底面面积×高
所求几何体的体积V=( 60-2x )· ( 60-2x ) ·x
目标函数:
V=(60-2x)· (60-2x)· x =2· (30-x)· (30-x) ·2x
若满足
-
ax)
· (25b
-
Hale Waihona Puke 解得a=1/3,b=2/3,x=10
V=18 (40/3-x/3) · (50/3-2x/3) · x
≤18· [(40/3-x/3+50/3-2x/3+x)/3] 3 =18000 当且仅当40/3 - x/3=50/3 - 2x/3 = x 即x=10时 V max =18000(cm) 3