沪科版八年级数学上册期末测试卷

合集下载

沪科版八年级上册数学期末测试卷完整版

沪科版八年级上册数学期末测试卷完整版

沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在如图所示的4×4的正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数为()A.330°B.315°C.310°D.320°2、如图,在中,,于,,则()A. B. C. D.3、在中,平分,交于点,于,且,则的周长为()A. B. C. D.不能确定4、如图,Rt△ABC中,∠B=90°,AB=9,BC=6,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长等于()A.3B.4C.5D.65、下列命题中,是真命题的是()A.有两条边相等的三角形是等腰三角形B.同位角相等C.如果,那么 D.等腰三角形的两边长是2和3,则周长是76、若一次函数y=kx+b,当x的值增大1时,y值减小3,则当x的值减小3时,y值()A.增大3B.减小3C.增大9D.减小97、如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是()A.①②B.①④C.①②④D.①③④8、如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为()A.6B.8C.10D.129、直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3B.x≥3C.x≥﹣3D.x≤010、已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14B.16C.10D.14或1611、已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于弧PQ点M,N;(3)连接OM,MN. 根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠CODB.若OM=MN,则∠AOB=20°C.MN∥CDD.MN=3CD12、如图,四边形ABCD中,∠C= ,∠B=∠D= ,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为().A. B. C. D.13、课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)14、若一次函数y=(k-3)x-1的图像不经过第一象限,则()A.k<3B.k>3C.k>0D.k<015、如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°二、填空题(共10题,共计30分)16、已知线段AB,点A的坐标是(3,2),点B的坐标是(2,﹣5),将线段AB平移后,得到点A的对应点A′的坐标是(5,﹣1),则点B的对应点B′的坐标为________.17、如图,已知AB∥CD,E,F分别为AC,BD的中点,若AB=10,CD=6,则EF 的长是________.18、已知等腰三角形两条边的长分别是5和6,则它的周长等于________.19、将矩形ABCD沿AE折叠,得到如图的图形.已知∠CEB′=50°,则∠AEB′= ________°.20、如图所示,在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,则BD的长为________.21、如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF 沿AF折叠.当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为________.22、若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T 2, T3……是标准抛物线,且顶点都在直线y= x上,T1与x轴交于点A 1(2,0),A2(A2在A1右侧),T2与x轴交于点A2, A3, T3与x轴交于点A3,A 4,……,则抛物线Tn的函数表达式为________.23、如图,在直角△ABC中,∠C=90°,AC=12cm,BC=5cm,AB=13cm,则点C 到边AB距离等于________ cm.24、圆是轴对称图形,它的对称轴是________25、如图,在△ABC中,BD是高,BE是角平分线,BF是中线,则图中相等的角有________对,相等的线段有________对.三、解答题(共5题,共计25分)26、化简÷ ﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.27、如图所示,将图中的点(﹣5,2),(﹣3,4),(﹣1,2),(﹣4,2),(﹣2,2),(﹣2,3),(﹣4,3)做如下变化:(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?(3)求出以点(﹣5,2),(﹣3,4),(﹣1,2)为顶点的三角形的面积?28、如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,若AC=12,AD=8,求点D到AB的距离.29、某种产品的商标如图所示,O是线段AC、BD的交点,并且AO=DO.请你在不作辅助线的情况下添加一个条件,证明△ABO和△DCO全等.添加条件证明:30、一根80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1kg可使弹簧增长2厘米(1)写出弹簧总长度y(厘米)与所挂物体的质量x(kg)之间的数量关系.(2)若在这根弹簧上挂上某一物体后,弹簧总长为96厘米,求所挂物体的质量?参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、C5、6、C7、C8、C9、A10、D11、D13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、30、。

沪科版八年级数学上册试题 期末综合测试卷(含解析)

沪科版八年级数学上册试题 期末综合测试卷(含解析)

期末综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0)B.(1,4)C.(5,4)D.(5,0)2.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是图中的( )A.B.C.D.3.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S=12cm2,则阴影ΔABC部分面积S=( )cm2.A.1B.2C.3D.44.如图,顺次连接同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC=120°,若∠ABC的平分线BE经过点D,则∠ABE的度数为()A.25°B.30°C.35°D.40°5.如图,点P是∠AOB内部一点,点P′,P″分别是点P关于OA,OB的对称点,且P′P″=8cm,则△PMN的周长为()A.5cm B.6cm C.7cm D.8cm6.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB=8,则DE 的长度是()A.6B.2C.3D.47.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t 之间的函数关系如图所示.下列说法中正确的有( )①A、B两地相距120千米;②出发1小时,货车与小汽车相遇③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A .1个B .2个C .3个D .4个8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△O A 3A 2022的面积是( )A .504m 2B .10092m 2C .505m 2D .10112m 29.在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n ),其中m >a ,a <1,n >0,若△ABC 是等腰直角三角形,且AB =BC ,则m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >310.已知:如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90° ,AB =AC ,AD=AE ,点C 、D 、E 三点在同一直线上,连接BD ,BE ;以下四个结论:①BD=CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180° ;其中结论正确的个数有( )A .1B .2C .3D .4二.填空题(共6小题,满分18分,每小题3分)11.已知AB ∥x 轴,A 的坐标为(3,-2),并且AB=4,则点B 的坐标是____________.12.函数y =(k −1)x −3(k 是常数,k ≠1)的图象上有两个点A (x 1,y 1),B (x 2,y 2),且(x 1−x 2)(y 1−y 2)<0,则k 的取值范围为______.13.在平面直角坐标系中,点A (2,m )在直线y =−2x +1上,点A 关于y 轴对称的点B 恰好落在直线y =kx +1上,则k 的值为___.14.如图,ΔABC 中,∠ACB =90°,AC =6,BC =8.点P 从A 点出发沿A →C →B 路径向终点B点运动;点Q从B点出发沿B→C→A路径向终点A点运动.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.点P运动________秒时,ΔPEC与ΔQFC全等.15.如图,已知∠MON=30°,点A1,A2,A3,……在射线ON上,点B1,B2,B3,……在射线OM上,ΔA1B1A2,ΔA2B2A3,ΔA3B3A4,……均为等边三角形,若O A1=2,则ΔA6B6A7的边长为___________.16.如图,在四边形ABCD中,AC是四边形的对角线,∠CAD=30°,过点C作CE⊥AB于点E,∠B=2∠BAC,∠ACD+∠BAC=60°,若AB的长度比CD的长度多2,则BE的长为_______________.三.解答题(共9小题,满分72分)17.(6分)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式|a+b−c|+|b−a−c|=_______.(2)若∠B=∠A+18°,∠C=∠B+18°,求△ABC的各内角度数;18.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作∠CBA的角平分线BD,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在上图中,若BD=10cm,求DC的长19.(6分)已知△ABC三个顶点坐标分别为A(2,5),B(-1,2),C(4,0),在直角坐标系中,正方形网格的单位长度为1.(1)若△ABC内部一点P(a,b),直角坐标系中有点P'(a−3,b−5),请平移△ABC,使点P与点P'重合,画出平移后的△A'B'C';(2)直接写出△A'B'C'的三个顶点的坐标;(3)求出△ABC在平移过程中扫过的面积.20.(8分)已知一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),与坐标轴的交点分别是A 、B 、C 、D .(1)直接写出方程组{ax −y =−6y +x =b的解;(2)求△PCD 的面积;(3)请根据图象直接写出当y 1>y 2时x 的取值范围.21.(8分)如图,在△ABC 中,已知∠1=∠2,BE =CD .(1)证明:AB=AC;(2)AB=5,AE=2,求CE的长.22.(9分)A校和B校分别有库存电脑12台和6台,现决定支援给C校10台和D校8台,从A校运一台电脑到C校的运费是40元,到D校是80元;从B校运一台电脑到C校的运费是30元,到D校是50元.设A校运往C校的电脑为x台,总运费为W元.(1)写出W关于x的函数关系式;(2)从A、B两校调运电脑到C、D两校有多少种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?23.(9分)如图1,在ΔABC中,过点B作BD⊥AB,且BD=AB,连接CD.(问题原型)(1)若∠ACB=90°,且AC=BC=8,过点D作的ΔBCD的BC边上的高DE,易证△ABC≌△BDE,从而得到ΔBCD的面积为______.(变式探究)(2)如图2,若∠ACB=90°,BC=a,用含a的代数式表示△BCD的面积,并说明理由.(拓展应用)(3)如图3,若AB=AC,BC=16,则△BCD的面积为______.24.(10分)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠ADC=90°. E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法:延长FD到点G,使DG=BE.连接AG.先证明△ABE≌△ADG,再证△AEF≌△AGF,可得出结论,他的结论应是.【灵活运用】(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°, F、F分别是BC、CD上的点.且EF=BE+FD,上述结论是否仍然成立?请说明理由.【延伸拓展】(3)如图③,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.25.(10分)如图,△ABC为等边三角形,点D是△ABC外一点,连接AD,BD,CD,AB与CD 相交于点G,且∠DAC+∠DBC=180°.图1 图2(1)请求出∠ADB的度数;(2)请写出AD,BD,CD之间的数量关系,并说明理由;(3)如图2,点E为CD的中点,连接BE并延长,交AC于点F,当BF与CD的夹角∠FEC=60°时,△ABC的面积为12,直接写出△CEF的面积.答案解析一.选择题1.D【分析】根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.【详解】解:将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).故选:D.2.C【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【详解】解:注水量一定,即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.A.容器的底面积大,中,小,则函数图象的走势是平缓,稍陡,陡,故此选项不符合题意;B.容器的底面积小,大,中,则函数图象的走势是陡,平缓,稍陡,故此选项不符合题意;C.容器的底面积中,大,小,则函数图象的走势是稍陡,平缓,陡,故此选项符合题意;D.容器的底面积小,中,大,则函数图象的走势是陡,稍陡,平缓,故此选项不符合题意;故选:C.3.C【分析】根据三角形面积公式由点D为BC的中点得到SΔABD =SΔADC=12SΔABC=6,同理得到SΔEBD=SΔEDC=12SΔABD=3,则SΔBEC=6,然后再由点F为EC的中点得到SΔBEF=12SΔBEC=3.【详解】解:∵点D为BC的中点,∴SΔABD =SΔADC=12SΔABC=6,∵点E为AD的中点,∴SΔEBD =SΔEDC=12SΔABD=3,∴SΔBEC =SΔEBD+SΔEDC=6,∵点F为EC的中点,∴SΔBEF =12SΔBEC=3,即阴影部分的面积为3.故选:C.4.B【分析】首先根据三角形的外角性质得∠ADC=∠A+∠C+∠ABC,从而求出∠ABC,最后根据角平分线的定义即可解决问题.【详解】解:∵∠ADE=∠ABD+∠A,∠EDC=∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120∘=40∘+20∘+∠ABC,∴∠ABC=60∘,∵BE平分∠ABC,∴∠ABE=12∠ABC=30∘,故选:B.5.D【分析】根据点P′,P″分别是P关于OA,OB的对称点,得到PP′被OA垂直平分,PP″被OB垂直平分,根据线段垂直平分线的性质得到MP=MP′,NP=NP″,即可得出△PMN的周长.【详解】∵点P′,P″分别是P关于OA,OB的对称点,∴PP′被OA垂直平分,PP″被OB垂直平分,∴MP=MP′,NP=NP″,∴△PMN的周长=MN+MP+NP=MN+MP′+NP″=P′P″=8(cm).故选:D.6.D【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD=∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD=DF ,根据平行线的性质得到BE=ED ,EA=ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD 平分∠BAC ,AD ⊥BD ,∴∠BAD=∠FAD ,∠ADB=∠ADF=90°,在△BAD 和△FAD 中,{∠BAD =∠FADAD =AD ∠ADB =∠ADF =90°,∴△BAD ≌△FAD (ASA ),∴∠ABD=∠F ,∵DE ∥AC ,∴∠EDB=∠F ,∠EDA=∠FAD ,∴∠ABD=∠EDB ,∠EDA=∠EAD ,∴BE=ED ,EA=ED ,∴BE=EA=ED ,∴DE=12AB=12×8=4,故选:D .7.D【分析】根据图象中t =0 时,s =120 可得A 、B 两地相距的距离,进而可判断①;根据图象中t =1 时,s =0可判断②;由图象t =1.5 和t =3的实际意义,得到货车和小汽车的速度,从而可判断④;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断③,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①正确;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷ 1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故④正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故③正确.∴正确的说法有①②③④四个.故选:D.8.B【分析】从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,则第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),点A2020的坐标(1010,0),则点A2022的坐标(1011,1),点A3的坐标(2,1),则A3A2022=1009(m),则△OA3A2023的底边为A3A2022,高为1m,则根据三角形面积公式就可以求得.【详解】解:从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,2023÷4=505…2,∴第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),∴点A2020的坐标(1010,0),∴点A2022的坐标(1011,1),∵点A3的坐标(2,1),则A3A2022=1009(m),∴△OA3A2022的面积是12×1×1009=10092m2,故选:B.9.B【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a ,即可求解.【详解】解:如图,过点C 作CD ⊥x 轴于D ,∵点A (0,2),∴AO =2,∵△ABC 是等腰直角三角形,且AB =BC ,∴∠ABC =90°=∠AOB =∠BDC ,∴∠ABO+∠CBD =90°∠ABO+∠BAO =90°,∴∠BAO =∠CBD ,在△AOB 和△BDC 中,{∠AOB =∠BDC∠BAO =∠CBD AB =BC,∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB+BD =2+a =m ,∴2<m <3,故选:B .10.D【分析】①由AB =AC ,AD =AE 利用等式的性质得到夹角相等,从而得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD =CE ,本选项正确;②由三角形ABD 与三角形ACE 全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC =45°,进而得到∠ACE +∠DBC =45° ,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD⊥CE,本选项正确;④利用周角减去两个直角可得答案;【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD 即:∠BAD=∠CAE在△BAD和△CAE中{AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°∴∠ABD+∠DBC=45°∵△BAD≌△CAE∴∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°∴∠ACE+∠DBC=45°∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°即:BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°∴∠BAE+∠DAC=360°−90°−90°=180°,本此选项正确;故选:D.二.填空题11.(-1,-2)或(7,-2)##(7,-2)或(-1,-2)【分析】根据点B与点A的位置关系分类讨论,分别求解即可.【详解】解:∵AB∥x轴,A的坐标为(3,−2),并且AB=4,∴点B的纵坐标为−2,若点B在点A的左侧,则点B的坐标为(3-4,-2)=(-1,-2)若点B在点A的右侧,则点B的坐标为(3+4,-2)=(7,-2)故答案为:(-1,-2)或(7,-2).12.k<1【分析】先根据(x1−x2)(y1−y2)<0可得出{x1−x2>0y1−y2<0或{x1−x2<0y1−y2>0两种情况讨论求解即可.【详解】解:∵点A(x1,y1),B(x2,y2)在函数y=(k−1)x−3(k是常数,k≠1)的图象上,且(x1−x2)(y1−y2)<0,∴{x1−x2>0 y1−y2<0或{x1−x2<0 y1−y2>0∴函数值y随x的增大而减小,∴k−1<0解得,k<1故答案为:k<113.2【分析】根据直线y=−2x+1的解析式求出m,再求出点A关于y轴的对称点,再将对称点带入y=kx+1求出k.【详解】解:点A(2,m)在直线y=−2x+1上,∴m=−3,点 A(2,-3)关于y轴对称的点为(-2,-3),∴−3=−2k+1,∴k=2,故答案为:2.14.1或3.5或12【分析】根据题意分为五种情况,根据全等三角形的性质得出CP=CQ,代入得出关于t的方程,解方程即可.【详解】解:分为五种情况:①如图1,P在AC上,Q在BC上,则PC=6−t,QC=8−3t,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,∵ΔPCE≅ΔCQF,∴PC=CQ,即6−t=8−3t,t=1;②如图2,P在BC上,Q在AC上,则PC=t−6,QC=3t−8,∵由①知:PC=CQ,∴t−6=3t−8,t=1;t−6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6−t=3t−8,t= 3.5;④当Q到A点停止,P在BC上时,如图4,AC=PC,t−6=6时,解得t=12.⑤P和Q都在BC上的情况不存在,因为P的速度是每秒1,Q的速度是每秒3;答:点P运动1或3.5或12秒时,以P、E、C为顶点的三角形上以O、F、C为顶点的三角形全等.故答案为:1或3.5或12.15.64【分析】由等边三角形的性质得到∠BA1A2=60°,A1B1=A1A2,再由三角形外角的性质求1出∠AB1O=30°,则A1B1=A1A2=O A1,同理得A2B2=A2A3=O A2=2O A1,A3B3=A3A4= 122⋅O A1,A4B4=A4A5=23⋅O A1,由此得出规律A n B n=A n A n+1=2n-1⋅O A1=2n,即可求解.【详解】解:∵ΔAB1A2为等边三角形,1∴∠BA1A2=60°,A1B1=A1A2,1∴∠AB1O=∠B1A1A2-∠MON=60°-30°=30°,1∴∠AB1O=∠MON,1∴AB1=O A1,1∴AB1=A1A2=O A1,1同理可得AB2=A2A3=O A2=2O A1,2∴AB3=A3A4=O A3=2O A2=22⋅O A1,3A4B4=A4A5=O A4=2O A3=23⋅O A1,…∴AB n=A n A n+1=2n-1⋅O A1=2n,n∴ΔAB6A7的边长:A6B6=26=64,6故答案为:64.16.1【分析】在AE上截取EF=BE,连接CF,则CE垂直平分BF,结合题意推出AF=CF,过点F作FM ⊥AC,交AC于点M,过点C作CN⊥AD,交AD的延长线于点N,则有∠AMF=∠N=90°,AC=2AM,进而得出AM=CN,根据题意及三角形外角性质推出∠MAF=∠NCD,利用ASA判定△AFM ≌△CDN,根据全等三角形的性质得到AF=CD,结合题意即可得解.【详解】解:在AE上截取EF=BE,连接CF,∵CE⊥AB,∴CE垂直平分BF,∴BC=FC,∴∠B=∠BFC,∵∠B=2∠BAC,∴∠BFC=2∠BAC,∵∠BFC=∠BAC+∠ACF,∴∠ACF=∠BAC ,∴AF=CF ,过点F 作FM ⊥AC ,交AC 于点M ,过点C 作CN ⊥AD ,交AD 的延长线于点N ,则有∠AMF=∠N=90°,AC=2AM ,∵∠CAD=30°,∠N=90°,∴AC=2CN ,∴AM=CN ,∵∠ACD+∠BAC=60°,∴∠ACD=60°-∠BAC ,∴∠CDN=∠ACD+∠CAD=60°-∠BAC+30°=90°-∠BAC ,∴∠NCD=90°-∠CDN=90°-(90°-∠BAC )=∠BAC ,∴∠MAF=∠NCD ,在△AFM 和△CDN 中,{∠MAF =∠NCDAM =CN ∠AMF =∠N,∴△AFM ≌△CDN (ASA ),∴AF=CD ,∵AB 的长度比CD 的长度多2,∴AB- CD=AB- AF=2BE=2,∴BE=1,故答案为:1.三.解答题17.(1)解:∵在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∴a +b >c ,b −a <c ,∴a +b −c >0,b −a −c <0,∴|a +b −c|+|b −a −c|=a +b −c −(b −a −c )=a +b −c −b +a +c=2a,故答案为:2a;(2)解:∵∠B=∠A+18°,∠C=∠B+18°,∴∠C=∠A+18°+18°=∠A+36°,∵∠A+∠B+∠C=180°,∴∠A+∠A+18°+∠A+36°=180°,解得∠A=42°,故∠B=42°+18°=60°,∠C=60°+18°=78°,故△ABC的各内角度数分别为42°,60°,78°.18.(1)如图所示:(2)∵△ABC中,∠C=90°,∠A=30°∴∠ABC=90°-∠A=90°-30°=60°∵BD平分∠ABC∴∠DBC=12×60∘=30∘∵△DBC中,∠C=90°,∠CBD=30°∴CD=12BD=12×10=5cm答:CD长5cm19.(1)解:由题意可知,只需要将点A、B、C的坐标分别向左平移3个单位长度,向下平移5个单位长度,画出图形即可,△A'B'C'如图所示:(2)解:坐标内同一个图形中点的坐标的平移方式一致,故A'(−1,0),B'(−4,−3),C'(1,−5)(3)解:如图,△ABC在平移过程中扫过的面积为△ABC的面积与四边形B B'C'C的面积和,即8×10−2×12×3×5−12×2×5−3×3−12×3×3−12×2×5=41.5,即△ABC在平移过程中扫过的面积为41.520.(1)解:∵一次函数y1=ax+6和y2=﹣x+b的图象交于点P(1,2),∴方程组{ax −y =−6y +x =b 的解为{x =1y =2;(2)∵一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),∴{a+6=2−1+b =2 ,解得{a =−4b =3 ,∴y 1=﹣4x+6,y 2=﹣x+3,当y =0时,0=﹣4x +6,解得x =32,当y =0时,0=﹣x+3,解得x =3,∴C (32,0),D (3,0),∴CD =32,∴S △PCD =12×32×2=32.即△PCD 的面积为32;(3)根据图象可知当在P 点左边时y 1>y 2,∴y 1>y 2时x 的取值范围为x <1.21.(1)证明:在△ABE 和△ACD 中,∵{∠A =∠A∠1=∠2BE =CD,∴△ABE ≌△ACD ,∴AB =AC .(2)解:∵△ABE ≌△ACD ,∴AB =AC ,∵AB =5,AE =2,∴CE =AC -AE =5-2=3.22.(1)解:设A校运往C校的电脑为x台,则A校运往D校的电脑为(12−x)台,从B校运往C校的电脑为(10−x)台,运往D校的电脑为8−(12−x)=(x−4)台,由题意得,W=40x+80(12−x)+30(10−x)+50(x−4),=−20x+1060,由{12−x≥010−x≥0x−4≥0解得4≤x≤10,所以,W=1060−20x(4≤x≤10);(2)∵4≤x≤10∴0≤x−4≤6共有7种调运方案,即B到D的可以是0,1,2,3,4,5,6这7种情况.(3)∵k=−20<0,∴W随x的增大而减小,∴当x=10时,W最小,最小值为:−20×10+1060=860元.答:总运费最低方案:A校给C校10台,给D校2台,B校给C校0台,给D校6台,最低运费是860元.23.解:(1)∵在△ABC中,∠ACB=90°,过点B作BD⊥AB且过点D作的△BCD的BC边上的高DE,∴∠DEB=∠ACB =∠ABD =90°∴∠ABC+∠DBE =90°∵∠DBE+∠BDE =90°∴∠ABC =∠BDE .在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠ABC =∠BDE AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =8∴S ΔBCD =12CB ⋅DE =12×8×8=32故答案为:32(2)S ΔBCD =12a 2理由:过点D 作DE ⊥CB 延长线于点E ∴∠DEB=∠ACB =90°∵BD ⊥AB ,∠1+∠2=90°∵∠2+∠A =90°∴∠A =∠1.在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠A =∠1AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =a ∴S ΔBCD =12CB ⋅DE =12a 2(3)如图3中,∵AB =AC∴BF =12BC =12×8=4.过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E,∴∠AFB=∠E =90°,∴∠FAB+∠ABF =90°.∵∠ABD=90°,∴∠ABF+∠DBE =90°,∴∠FAB =∠EBD .在△AFB 和△BED 中,{∠AFB =∠E∠FAB =∠EBD AB =BD,∴△AFB ≌△BED(AAS),∴BF =DE =4.∵S △BCD =12BC ⋅DE ,∴S △BCD =12×8×4=16∴△BCD 的面积为16.故答案为:1624.解:(1)∠BAE+∠FAD=∠EAF .理由:如图1,延长FD 到点G ,使DG=BE ,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°−1∠DAB.2证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°−1∠DAB.225.(1)解:∵四边形ACBD,∴∠DAC+∠DBC+∠ADB+∠ACB=360°.∵△ABC为等边三角形,∴∠ACB=60°.又∵∠DAC +∠DBC =180°,∴∠ADB =120°.(2)AD +BD =CD ,理由如下:如图,延长BD 至点H ,使得DH =AD ,连接AH .∵由(1)可知∠ADB =120°,∴∠ADH =60°.又∵DH =AD ,∴△ADH 为等边三角形.∴∠HAD =60°.AD =AH =DH .∵△ABC 为等边三边形,∴∠HAD +∠DAB =∠BAC +∠DAB .即∠HAB =∠DAC .在△HAB 与△DAC 中,{AH =AD ∠HAB =∠DAC AB =AC ∴△HAB ≅△DAC(SAS),∴CD =BH .又∵BH =BD +DH =BD +AD ,∴AD +BD =CD .(3)由(1)可知∠ABD=∠ACG,∵∠DGB=∠AGC,∴∠BDG=∠CAG=60°,∵∠CEF=∠BED=60°,∴△BDE是等边三角形,∴BE=DE,∵DE=EC,∴BE=EC,∵∠BEC=120°,∴∠EBC=∠ECB=30°,∵∠ABC=∠ACB=60°,∴∠ABF=∠CBF=30°,∠ACE=∠BCE=30°,∵BA=BC,∴BF⊥AC,AF=CF,∴EC=2EF,∴BE=2EF,∵△ABC 的面积为12,∴S△CEF =13S△BCF=16S△ABC=2.。

沪科版八年级上册数学期末测试卷(参考答案)

沪科版八年级上册数学期末测试卷(参考答案)

沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在平面直角坐标系中,点( ,)关于轴对称的点的坐标是()A.(,)B.(,)C.(,)D.(,)2、点M(2,-1)向上平移2个单位长度得到的点的坐标是()A.(2,0)B.(2,1)C.(2,2)D.(2,)3、在同一平面直角坐标系中,函数y=mx+m与y= (m≠0)的图象可能是()A. B. C. D.4、如图,函数=2 和= +4的图象相交于点A(,3),则不等式2 <+4的解集为()A. <B. <3C. >D. >35、把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有()( 1 )∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A.1个B.2个C.3个D.46、平面直角坐标系y轴上有一点P(m-1,m+3),则P点坐标是()A.(-4,0)B.(0,-4)C.(4,0)D.(0,4)7、如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F.若S=12,DF=2,AC=3,则AB的长是()△ABCA.2B.4C.7D.98、如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P 的横坐标为-1,则一次函数y=(a-b)x+b的图象大致是()A. B. C. D.9、如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=4,则图中阴影部分的面积为()A. +B. +2C. +D.2 +10、下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等; C.等腰三角形的底角可以是直角; D.直角三角形的两锐角互余.11、如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2B.y=-x-2C.y=x+2D.y=x-212、如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(-8,0)B.(8,-8)C.(-8,8)D.(0,16)13、如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=65°,∠E=60°,则∠BAC的大小为( )A.60°B.75°C.85°D.95°14、函数y=﹣中的自变量x的取值范围是()A.x≥0B.x<0且x≠1C.x<0D.x≥0且x≠115、如图,在中,.若,,则的度数是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是________.(填写序号)17、如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=________.18、如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为________.19、如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=14cm,BC=12cm,S=52cm2,则DE=________ cm.△ABC20、如图,平行四边形ABCD的对角线AC,BD交于点O,△AOD是正三角形,AD=4,则平行四边形ABCD的面积为________.21、如图,和都是等腰直角三角形,若,,,则________.22、已知:如图,△ABC是等边三角形,延长AC到E,C为线段AE上的一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC.以下五个结论:①AD=BE;②AP=BO;③PQ//AE;④∠AOB=60°;⑤OC平分∠AOE;结论正确的有________(把你认为正确的序号都填上)23、三角形两边的长分别是3和4,第三边的长是方程的根,则该三角形的周长为________.24、如图,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A、B两点,D、E分别是AB,OA上的动点,当△CDE周长最小时,点D坐标为________.25、在平面直角坐标系中,点A的坐标为(5,0),点C的坐标为(0,4),四边形ABCO为矩形,点P为线段BC上的一动点,若△POA为等腰三角形,且点P在双曲线y= 上,则k值可以是________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、如图.AB=AD,∠ABC=∠ADC,求证:BC=DC.28、如图,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图,连接AE和GC. 你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.29、C、B、E三点在一直线上,AC⊥CB,DE⊥BE,∠ABD=90°,AB=BD,试证明:AC+DE=CE.30、已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、A5、D6、D8、D9、B10、C11、C12、C13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

完整版沪科版八年级上册数学期末测试卷

完整版沪科版八年级上册数学期末测试卷

沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图所示,两函数y1=k1x+b和y2=k2x的图象相交于点(﹣1,﹣2),则关于x的不等式 k1x+b>k2x的解集为()A.x>﹣1B.x<﹣1C.x<﹣2D.无法确定2、如图,将边长为5cm的等边三角形ABC沿边BC向右平移3cm,得到△DEF,则四边形ADFB的周长为()cm.A.20B.21C.22D.233、对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小;B.当x<0时,y<4C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与y轴的交点坐标是(0,4)4、如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是()A.HLB.ASAC.SASD.AAS5、等边三角形的一边长为6cm,则以这边上高线为边长的正方形的面积为()A.36cm 2B.27cm 2C.18cm 2D.12cm 26、如图,任意△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC 交AB于点D,交AC于点E,那么下列结论:①∠A=2∠BFC﹣180°;②DE﹣BD =CE;③△ADE的周长等于AB与AC的和;④BF>CF.其中正确的有()A.①B.①②C.①②③D.①②③④7、如图,直线y=kx+b交坐标轴于两点,则不等式kx+b<0的解集是()A.x>-2B.x>3C.x<-2D.x<38、如图,AC、BD是⊙O的两条相交弦,∠ACB=∠CDB=60°,AC=,则⊙O的直径是()A.2B.4C.D.9、一次函数+b 中,随的增大而减小,b> 0, 则这个函数的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限10、在平面直角坐标系中,已知A(1,2)、B(3,0),AB=2 .在坐标轴上找点P,使A、B、P三点构成等腰三角形,这样的点P有()个.A.5B.6C.7D.811、如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1B,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A 3,…,按此做法进行下去,点A5的坐标为( )A.(16,0)B.(12,0)C.(8,0)D.(32,0)12、用长为4cm,5cm,6cm的三条线段围成一个三角形,该事件是()A.随机事件B.必然事件C.不可能事件D.无法确定13、一次函数y=(k﹣2)x+3的图象如图所示,则k的取值范围是()A.k>2B.k<2C.k>3D.k<314、如图,在△ABC中,AB=AC,∠C=65°,AB的垂直平分线MN交于AC于D 点,则∠DBC的度数是()A.15°B.20°C.25°D.30°15、一次函数y=x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图,在△ABC 中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△BDC的周长为22,那么AB=________17、P(m﹣4,1﹣m)在x轴上,则m=________.18、如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是________度19、如图,在中,,线段的垂直平分线交于点M,交于点N,若的周长为7,则________.20、如图所示,在△ABC与△DEF中,如果AB=DE,BC=EF,只要再找出∠________=∠________,就可证明这两个三角形全等.21、命题“如果a>0,那么a2>0”的逆命题为________.22、已知一次函数的图象经过第一、二、四象,请你写出一个满足条件的值________.23、如图,△ABC是等边三角形,AD是BC边上的高,E是AC上一点,且AE=AD,则∠AED的度数为________。

沪科版八年级上册数学期末测试卷(含解析)

沪科版八年级上册数学期末测试卷(含解析)

沪科版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、△ABC中,∠ABC=30°,边AB=10,边AC可以从4,5,7,9,11取一值.满足这些条件的互不全等三角形的个数是()A.6B.7C.5D.42、若点在第二象限内,则点()在()A. 轴正半轴上B. 轴负半轴上C. 轴正半轴上D. 轴负半轴上3、下列线段长能构成三角形的是()A.3、4、8B.2、3、6C.5、6、11D.5、6、104、下列图形中,是中心对称图形但不是轴对称图形的是( )A. B. C. D.5、圆的周长公式为C=2πr,下列说法正确的是()A.π是自变量B.π和r都是自变量C.C、π是变量D.C、r 是变量6、一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。

用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是( )A. B. C. D.7、小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:① 的距离为120米;②乙的速度为60米/分;③ 的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有()个A.1B.2C.3D.48、如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是()A.6B.5C.10D.89、下列图形中阴影部分面积相等的是()A.①②B.②③C.①④D.③④10、如图所示,为的切线,切点为点A,交于点C,点D在上,若的度数是32°,则的度数是( )A.29°B.30°C.32°D.45°11、下列图形中,对称轴最多的是()A.正方形B.线段C.圆D.等腰三角形12、如图,过点Q(0,3.5)的一次函数的图象与正比例函数的图象相交于点P ,能表示这个一次函数图象的方程是()A. B. C. D.13、如图(1),在矩形ABCD中,动点P从点B出发,沿着BC、CD、DA运动到点A停止,设点P运动的路程为x,△ABP的面积为y,如果y与x的函数图象如图(2)所示,则△ABC的周长为()A.9B.6C.12D.714、用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,,则该等腰三角形的腰长为()A.4cmB.6cmC.4cm或6cmD.4cm或8cm15、如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m-1)D. (m-2)二、填空题(共10题,共计30分)16、如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD 的中点,若AD=10,则CP的长为________.17、如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移2个单位后,得到△AʹBʹCʹ,连接AʹC,则△AʹBʹC的周长为________.18、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,△ADE的顶点D在BC上运动,且∠DAE=90°,∠ADE=∠B,F为线段DE的中点,连接CF,在点D运动过程中,线段CF长的最小值为________.19、如图,直线y=mx﹣4m(m<0)与x,y轴分别相交于A,B两点,将△AOB 绕点O逆时针转90°得到△COD,E为AB中点,F为CD中点,连接EF,G为EF 中点,连接OG.若OG=,则m的值为________ .20、如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为________.21、如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;② ;③∠ADF=2∠ECD;④;⑤CE=DF.其中正确结论的序号是________.22、现以A(0,4),B(﹣3,0),C(3,0)三点为顶点画平行四边形,则第四个顶点D的坐标为________.23、如图,在中,AB=AC=10,BC=12,AD=8,A D⊥BC.若P、Q分别是AD 和AC上的动点,则PC+PQ的最小值是________.24、已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=________.25、若点(a,-2)与点(-3,b)关于x轴对称,则a+b= ________三、解答题(共5题,共计25分)26、如图,△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠A=56°,求∠EDF.27、如图,已知.相交于点.求证:.28、如图,E是□ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.29、在同一平面直角坐标系中,观察以下直线:y=2x,y=﹣x+6,y=x+2,y=4x ﹣4图象的共同特点,若y=kx+5也有该特点,试求满足条件的k值.30、在△ABC中,AB=AC,AB边上的中线CD把三角形的周长分成6和15的两部分,求三角形腰和底的长.参考答案一、单选题(共15题,共计45分)1、A2、A3、D4、B5、D6、B7、C8、B10、A11、C12、D13、C14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

(完整word版)八年级数学上册六套期末试卷(沪科版带答案)

(完整word版)八年级数学上册六套期末试卷(沪科版带答案)

八年级数学上册六套期末试卷(沪科版带答案)山八年级数学第一学期期末测试卷(三)一、(本题共10小题,每小题4分,满分40分)1、已知a是整数,点A(2a+1,2+a)在第二象限,则a的值是…………………………………()A.-1 B.0 C.1 D.22、如果点A(2-n,5+)和点B(2n-1,-+n)关于y 轴对称,则、n的值为…………()A.=-8,n=-5 B.=3,n=-5 C.=-1,n=3 D.=-3,n=13、下列函数中,自变量x的取值范围选取错误的是………………………………………………()A.y=2x2中,x取全体实数 B.中,x取x≠-1的所有实数C.中,x取x≥2的所有实数 D.中,x取x≥-3的所有实数4、幸福村办工厂,今年前5个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图1所示,则该厂对这种产品来说………………………………………………………………………()A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产5、下图中表示一次函数y=ax+b与正比例函数y=abx(a,b 是常数,且ab≠0)图象是……()A. B. C. D.6、设三角形三边之长分别为3,8,1-2a,则a的取值范围为……………………………………()A.-627、如图7,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE。

下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE。

其中正确的有()A. 1个B. 2个C. 3个D. 4个8、如图8,AD=AE,BE=CD, ADB= AEC=100°, BAE=70°,下列结论错误的是………………()A. △ABE≌△ACDB. △ABD≌△ACEC. ∠DAE=40°D. ∠C=30°9、下列语句是命题点是………………………………………………………………………………()A、我真希望我们国家今年不要再发生自然灾害了B、多么希望国际金融危机能早日结束啊C、钓鱼岛自古就是我国领土不容许别国霸占D、你知道如何预防“H1N1”流感吗10、将一张长方形纸片按如图10所示的方式折叠,为折痕,则的度数为………()A. 60°B. 75°C. 90°D. 95°二、题(本题共4小题,每小题5分,满分20分)11、已知一次函数y=kx+b的图象如图11所示,当x 四、填空题(本题共2小题,每小题8分,满分16分)17、一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式。

沪科版数学八年级上册期末考试试卷含答案

沪科版数学八年级上册期末考试试卷含答案

沪科版数学八年级上册期末考试试题一、选择题(共10小题)1.在平面直角坐标系内,下列的点位于第四象限的是()A.(﹣2,1)B.(﹣2,﹣1)C.(2,﹣1)D.(0,﹣1)2.下列图案中,属于轴对称图形的有()A.5个B.3个C.2个D.4个3.若点(2,y1)和(﹣2,y2)都在直线y=﹣x+3上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定4.为了估计池塘A,B两点之间的距离,小明在池塘的一侧选取一点C,测得AC=3m,BC=6m,则A,B两点之间的距离可能是()A.11m B.9m C.7m D.3m5.下列命题中是假命题的是()A.全等三角形的对应角相等B.三角形的外角大于任何一个内角C.等边对等角D.角平分线上的点到角两边的距离相等6.如图,∠ABD=∠CBD,现添加以下条件不能判定△ABD≌△CBD的是()A.∠A=∠C B.∠BDA=∠BDC C.AB=CB D.AD=CD7.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D.若∠A=30°,AE=10,则CE的长为()A.5 B.4 C.3 D.28.若ab<0且a<b,则一次函数y=ax+b的图象可能是()A.B.C.D.9.如图,过点A1(2,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称;过点A2(4,0)作x轴的垂线,交直线y=2x于点B2;点A3与点O关于直线A2B2对称;过点A3作x轴的垂线,交直线y=2x于点B3;…,按此规律作下去,则点B2021的坐标为()A.(22021,22020)B.(22021,22022)C.(22022,22021)D.(22020,22021)10.2020年12月22日8时38分,G8311次动车组列车从合肥南站始发,驶向沿江千年古城安庆.这标志着京港高铁合肥至安庆段正式开通运营.运行期间,一列动车匀速从合肥开往安庆,一列普通列车匀速从安庆开往合肥,两车同时出发,设普通列车行驶的时间为x(h),两车之间的距离y(km),图中的折线表示y与x之间的函数关系,下列说法正确的有()①合肥、安庆两地相距176km,两车出发后0.5h相遇;②普通列车到达终点站共需2h;③普通列车的平均速度为88km/h;④动车的平均速度为250km/h.A.1个B.2个C.3个D.4个二、填空题(共5小题,每小题4分,满分20分)11.函数y=中自变量x的取值范围是.12.已知点A(3,0)和B(1,3),如果直线y=kx+1与线段AB有公共点,那么k的取值范围是.13.已知一次函数y=kx+3(k>0)的图象与两坐标轴围成的三角形的面积为3,则一次函数的表达式为.14.已知C,D两点在线段AB的垂直平分线上,且∠ACB=50°,∠ADB=86°,则∠CAD 的度数是.15.如图,在△ABC中,∠BAC=124°,分别作AC,AB两边的垂直平分线PM,PN,垂足分别是点M,N.以下说法正确的是(填序号).①∠P=56°;②∠EAF=68°;③PE=PF;④点P到点B和点C的距离相等.三、(本大题共2小题,每小题8分,满分16分)16.如图,在平面直角坐标系中,已知点A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)画出△ABC向右平移5个单位,再向上平移4个单位得到的△A1B1C1,其中点C1的坐标为;(2)在x轴上画出点P,使PA+PB最小,此时点P的坐标为.17.如图,在△ABC中,∠BAC=62°,∠B=78°,AC的垂直平分线交BC于点D.(1)求∠BAD的度数;(2)若AB=8,BC=11,求△ABD的周长.四、(本大题共2小题,每小题10分,满分20分)18.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.19.定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是;(3)若(1)中两个函数图象与y轴围成的三角形的面积为4,求b的值.五、(本大题满分10分)20.如图,在△ABC中,AB=BC,∠B=90°,AD是∠BAC的平分线,CE⊥AD于点E.求证:AD=2CE.六、(本大题共2小题,每小题12分,满分24分)21.许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?22.数学模型学习与应用:(1)学习:如图1,∠BAD=90°,AB=AD,BC⊥AC于点C,DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D;又∠ACB=∠AED=90°,可以通过推理得到△ABC≌△DAE,进而得到AC=,BC=.我们把这个数学模型称为“一线三等角”模型.(2)应用:如图2,在△ABC中,AB=AC,点D,A,E都在直线l上,并且∠BAD =∠AEC=∠BAC=α.若DE=a,BD=b,求CE的长度(用含a,b的代数式表示);(3)拓展:如图3,在(2)的条件下,若α=120°,且△ACF是等边三角形,试判断△DEF 的形状,并说明理由.参考答案一、选择题(共10小题).1.C.2.D3.A.4.C.5.B.6.D.7.A.8.B.9.B.10.C.二、填空题(本大题共5小题,每小题4分,满分20分)11.函数y=中自变量x的取值范围是x≥﹣且x≠1.解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.12.已知点A(3,0)和B(1,3),如果直线y=kx+1与线段AB有公共点,那么k的取值范围是﹣≤k≤2.解:由y=kx+1可知直线经过点(0,1),当k>0时,y=kx+1过B(1,3)时,3=k+1,解得k=2,∴直线y=kx+1与线段AB有公共点,则k≤2;当k<0时,y=kx+1过A(3,0),0=3k+1,解得k=﹣,∴直线y=kx+1与线段AB有公共点,则k≥﹣.综上,满足条件的k的取值范围是﹣≤k≤2;故答案为﹣≤k≤2.13.已知一次函数y=kx+3(k>0)的图象与两坐标轴围成的三角形的面积为3,则一次函数的表达式为y=x+3.解:一次函数y=kx+3与y轴的交点A的坐标为(0,3),则OA=3,由题意得,×OB×3=3,解得,OB=2,则点B的坐标为(﹣2,0),∴﹣2k+3=0,解得,k=,∴一次函数的表达式为y=x+3,故答案为:y=x+3.14.已知C,D两点在线段AB的垂直平分线上,且∠ACB=50°,∠ADB=86°,则∠CAD 的度数是18°或112°.解:∵C、D两点在线段AB的中垂线上,∴CA=CB,DA=DB,∵CD⊥AB,∴∠ACD=∠ACB=×50°=25°,∠ADC=∠ADB=×86°=43°,当点C与点D在线段AB两侧时,∠CAD=180°﹣∠ACD﹣∠ADC=180°﹣25°﹣43°=112°,当点C与点D′在线段AB同侧时,∠CAD′=∠AD′C﹣∠ACD′=43°﹣25°=18°,故答案为:18°或112°.15.如图,在△ABC中,∠BAC=124°,分别作AC,AB两边的垂直平分线PM,PN,垂足分别是点M,N.以下说法正确的是①②④(填序号).①∠P=56°;②∠EAF=68°;③PE=PF;④点P到点B和点C的距离相等.解:∵PM垂直平分AC,PN垂直平分AB,∴∠PMA=∠PNA=90°,∴∠P=360°﹣90°﹣90°﹣124°=56°,①说法正确;∵∠BAC=124°,∴∠B+∠C=180°﹣124°=56°,∵PM垂直平分AC,PN垂直平分AB,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAF=∠BAC﹣∠EAC﹣∠FAB=∠BAC﹣(∠B+∠C)=124°﹣56°=68°,②说法正确;△ABC不一定是等腰三角形,∴PE与PF的大小无法确定,③说法错误;连接PC、PA、PB,∵PM垂直平分AC,PN垂直平分AB,∴PC=PA,PB=PA,∴PB=PC,即点P到点B和点C的距离相等,④说法正确,故答案为:①②④.三、(本大题共2小题,每小题8分,满分16分)16.如图,在平面直角坐标系中,已知点A(﹣2,﹣2),B(﹣4,﹣1),C(﹣4,﹣4).(1)画出△ABC向右平移5个单位,再向上平移4个单位得到的△A1B1C1,其中点C1的坐标为(1,0);(2)在x轴上画出点P,使PA+PB最小,此时点P的坐标为(﹣,0).【解答】解(1)如图所示:△A1B1C1,即为所求,点C1的坐标为(1,0);故答案为:(1,0);(2)作A点关于x轴对称点A′,则A′(﹣2,2),故设直线BA′的解析式为:y=kx+b,则,解得:,故直线BA′的解析式为:y=x+5,当y=0时,x=﹣,此时点P的坐标为:(﹣,0).故答案为:(﹣,0).17.如图,在△ABC中,∠BAC=62°,∠B=78°,AC的垂直平分线交BC于点D.(1)求∠BAD的度数;(2)若AB=8,BC=11,求△ABD的周长.解:(1)∵∠BAC=62°,∠B=78°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣62°﹣78°=40°,∵DE垂直平分AC,∴AD=CD,∴∠CAD=∠C=40°,∴∠BAD=∠BAC﹣∠CAD=62°﹣40°=22°;(2)∵AD=CD,AB=8,BC=11,∴△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=8+11=19.四、(本大题共2小题,每小题10分,满分20分)18.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.解:猜想:CD=BE,CD⊥BE,理由如下:∵AD⊥AB,AE⊥AC,∴∠DAB=∠EAC=90°.∴∠DAB+∠BAC=∠EAC+∠BAC,即∠CAD=∠EAB,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∵∠AGD=∠FGB,∴∠BFD=∠BAD=90°,即CD⊥BE.19.定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是y=﹣bx+2;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1;(3)若(1)中两个函数图象与y轴围成的三角形的面积为4,求b的值.解:(1)由题意可得,一次函数y=2x﹣b的交换函数是y﹣bx+2,故答案为:y=﹣bx+2;(2)由题意可得,当2x﹣b=﹣bx+2时,解得x=1,即当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,故答案为:x=1;(3)函数y=2x﹣b与y轴的交点是(0,﹣b),函数y=﹣bx+2与y轴的交点为(0,2),由(2)知,当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,∵(1)中两个函数图象与y轴围成的三角形的面积为4,∴=4,解得b=6或b=﹣10,即b的值是6或﹣10.五、(本大题满分10分)20.如图,在△ABC中,AB=BC,∠B=90°,AD是∠BAC的平分线,CE⊥AD于点E.求证:AD=2CE.【解答】证明:延长AB、CE交于点F,∵∠ABC=90°,CE⊥AD,∠ADB=∠CDE,∴∠BAD=∠ECD,在△ABD和△CBF中,,∴△ABD≌△CBF(SAS),∴AD=CF,∵AD是∠BAC的平分线,∴∠CAE=∠FAE,在△CAE和△FAE中,,∴△CAE≌△FAE(ASA),∴CE=EF,∴AD=CF=2CE.六、(本大题共2小题,每小题12分,满分24分)21.许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A、B两种型号的口罩,共不少于5.8万只,其中A型口罩只数不少于B型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A型口罩,3天生产B型口罩,一共可以生产4.6万只;如果3天生产A型口罩,2天生产B型口罩,一共可以生产4.4万只,并且生产一只A型口罩可获利0.5元,生产一只B型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A型口罩或B型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A型口罩和B型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?解:(1)设该厂每天能生产A型口罩x万只或B型口罩y万只.根据题意,得,解得,答:该厂每天能生产A型口罩0.8万只或B型口罩1万只.(2)设该厂应安排生产A型口罩m天,则生产B型口罩(7﹣m)天.根据题意,得,解得≤m≤6,设获得的总利润为w万元,根据题意得:w=0.5×0.8m+0.3×1×(7﹣m)=0.1m+2.1,∵m=0.1>0,∴w随m的增大而增大.∴当m=0.6时,w取最大值,最大值=0.1×6+2.1=2.7(万元).答:当安排生产A型口罩6天、B型口罩1天,获得2.7万元的最大总利润.22.数学模型学习与应用:(1)学习:如图1,∠BAD=90°,AB=AD,BC⊥AC于点C,DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D;又∠ACB=∠AED=90°,可以通过推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型称为“一线三等角”模型.(2)应用:如图2,在△ABC中,AB=AC,点D,A,E都在直线l上,并且∠BAD =∠AEC=∠BAC=α.若DE=a,BD=b,求CE的长度(用含a,b的代数式表示);(3)拓展:如图3,在(2)的条件下,若α=120°,且△ACF是等边三角形,试判断△DEF 的形状,并说明理由.解:(1)∵∠1+∠2=∠2+∠D=90°,∴∠1=∠D,在△ABC和△DAE中,,∴△ABC≌△DAE(AAS),∴AC=DE,BC=AE,故答案为:DE,AE;(2)∵∠BAD=∠BAC=α,∴∠DBA+∠BAD=180°﹣α=∠BAD+∠CAE,∴∠CAE=∠ABD,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,∵DE=a,BD=b,∴CE=DE﹣BD=a﹣b;(3)△DEF是等边三角形,理由如下:由(2)知:△ABD≌△CAE,∴BD=AE,∠ABD=∠CAE,∵△ACF是等边三角形,∴∠CAF=60°,AB=AF,∴△ABF是等边三角形,∴∠ABD+∠ABD=∠CAE+∠CAF,即∠DBF=∠FAE,在△BDF和△AEF中,,∴△BDF≌△AEF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠AFD+∠AFE=∠AFD+∠BFD=60°,∴△DEF是等边三角形.。

沪科版八年级数学上册期末试卷【含答案】

沪科版八年级数学上册期末试卷【含答案】

沪科版八年级数学上册期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果一个三角形的两边分别是5cm和12cm,那么第三边的长度可能是多少?A. 7cmB. 8cmC. 17cmD. 18cm3. 下列哪个数是质数?A. 21B. 23C. 27D. 294. 已知一组数据:2, 5, 7, 10, 12,那么这组数据的平均数是多少?A. 5B. 6C. 7D. 85. 如果一个圆的半径是4cm,那么这个圆的面积是多少平方厘米?A. 16πB. 32πC. 64πD. 128π二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()2. 一个三角形的三个角的度数和一定是180度。

()3. 0是最小的自然数。

()4. 如果一个数的因数只有1和它本身,那么这个数一定是质数。

()5. 任何一个正方形的对角线长度都大于它的边长。

()三、填空题(每题1分,共5分)1. 一个正方形的边长是6cm,那么它的面积是______平方厘米。

2. 如果一个数的平方根是9,那么这个数是______。

3. 一个等腰三角形的底边长是8cm,腰长是5cm,那么这个三角形的周长是______厘米。

4. 下列哪个数既是偶数又是质数?______5. 如果一个圆的直径是10cm,那么这个圆的半径是______厘米。

四、简答题(每题2分,共10分)1. 请简述平行线的定义及其性质。

2. 请简述勾股定理的内容及其应用。

3. 请简述因式分解的意义及其方法。

4. 请简述概率的定义及其计算方法。

5. 请简述函数的定义及其性质。

五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。

2. 如果一个等腰三角形的底边长是8cm,腰长是5cm,求这个三角形的面积。

3. 解方程:2x + 3 = 11。

4. 已知一组数据:2, 5, 7, 10, 12,求这组数据的方差。

八年级沪科版数学上学期期末测试卷及答案

八年级沪科版数学上学期期末测试卷及答案

八年级数学(沪科版)(上)期末测试卷考试时间:120分钟 满分150分一、精心选一选(本大题共10小题,每小题4分,共40分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题目后的括号内. 1、下列各条件中,能作出惟一的ABC ∆的是 ( )A 、AB=4,BC=5,AC=10B 、AB=5,BC=4 40A ︒∠= C 、90A ︒∠=,AB=8 D 、60A ︒∠=,50B ︒∠= ,AB=52、在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ). A 、 4cm B 、 5cm C 、9cm D 、 13cm3、李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )A 、x 与y 的和等于0吗?B 、不平行的两条直线有一个交点C 、两点之间线段最短D 、对顶角不相等。

5、在下图中,正确画出AC 边上高的是( ).(A ) (B ) (C ) (D ) 6、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b < 7、在以下四个图形中。

对称轴条数最多的一个图形是( ).8、如图(8),已知在△ABC 中,AD 垂直平分BC ,AC=EC ,点B 、D 、C 、E 在同一直线BBBBEE A B C D上,则下列结论○1AB=AC ○2∠CAE=∠E ○3AB+BD=DE ○4∠BAC=∠ACB 正确的个数有( )个A 、1B 、2C 、3D 、49、已知如图(9),AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( ) A 、BD+ED=BC B 、DE 平分∠ADB C 、AD 平分∠EDC D 、ED+AC>AD10、如图(10),在△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕点P 旋转时,下列结论错误的有( )A 、EF=APB 、△EPF 为等腰直角三角形C 、AE=CFD 、12ABC AEPF S SΔ四边形二、细心填一填(本大题共6小题,每小题5分,共30分)把答案直接写在题中的横线上. 11、写一个图象交y 轴于点(0,-3),且y 随x 的增大而增大的一次函数关系式________ . 12、如图(12)在等腰△ABC 中,AB=BC ,∠A=360,BD 平分∠ABC ,问该图中等腰三角形有___个13、如图13,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”。

沪科版八年级上册数学期末测试卷及含答案学生专用(考试真题)

沪科版八年级上册数学期末测试卷及含答案学生专用(考试真题)

沪科版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若与成正比例,则y是x的()A.一次函数B.正比例函数C.没有函数关系D.以上答案都不正2、下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形3、如图,为估计池塘岸边A、B的距离,甲、乙二人在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离可能是()A.5米B.15米C.25米D.30米4、如图,正方形网格中,网格线的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得为等腰三角形,则点C的个数有A.4个B.6个C.8个D.10个5、下列图案中,不是轴对称图形的是()A. B. C. D.6、小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A.12分钟B.15分钟C.25分钟D.27分钟7、如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3B.4C.6-D.3 -18、A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B地.其中正确的个数是()A.1B.2C.3D.49、将一幅直角三角板(,,,点在边上)按图中所示位置摆放,两条斜边为,,且,则等于()A. B. C. D.10、若一个三角形的面积是3a3b4c,它的一条边长是2abc,则这个三角形这条边上的高为( )A. a 2b 3B. a 2b 3C.3a 2b 3D.3ab 311、如图,等腰△ ABC中,AB=AC,∠A=20°。

沪科版八年级上册数学期末测试卷及含答案

沪科版八年级上册数学期末测试卷及含答案

沪科版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是()A.x<﹣1B.x>2C.﹣1<x<0,或x>2D.x<﹣1,或0<x <22、函数y=与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.3、如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A. B. C.9 D.4、如图,在平面直角坐标系中,点A的坐标为(2,7),点B的坐标为(5,0),点C是y轴上一个动点,且点A,B,C三点不在同一条直线上,当△ABC 的周长最小时,点C的坐标是()A. B. C. D.5、如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C. P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点6、在平面直角坐标系中,点A(5,6)与点B关于x轴对称,则点B的坐标为( )A.(5,6)B.(-5,-6)C.(-5,6)D.(5,-6)7、“奔跑吧,兄弟!”节目组,预设计一个新的游戏:“奔跑”路线需经A、B、C、D四地.如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C地在A地北偏东75°方向.且BD=BC=30m.从A地到D地的距离是()A.30 mB.20 mC.30 mD.15 m8、在数学课上,同学们在练习画边上的高时,出现下列四种图形,其中正确的是()A. B. C.D.9、已知如图,中,,,D为线段上一点,将线段绕点A逆时针旋转得到线段,F为中点,直线交射线于点G.下列说法:①若连接,则;②;③;④若,则.其中正确的有()A.1个B.2个C.3个D.4个10、如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x的解集是()A.0<x<B. <x<6C. <x<4D.0<x<311、下列函数中,是一次函数的有()个.①y=x;②y=;③y=+6;④y=3﹣2x;⑤y=3x2.A.1B.2C.3D.412、如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF,EG分别交BC,DC于点M,N,若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为( )A. B. C. D.13、方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.15C.12或15D.17或1114、如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是( )A.HLB.ASAC.AASD.SAS15、已知点(m,﹣2)关于原点对称的点落在直线y=x﹣3上,则m的值为()A.﹣5B.﹣2C.1D.2二、填空题(共10题,共计30分)16、如图,△ABC中,∠C=90°,AC=BC,AD=16cm,BE=12cm,点P是斜边AB 的中点.有一把直角尺MPN,将它的顶点与点P重合,将此直角尺绕点P旋转,与两条直角边AC和CB分别交于点D和点E.则线段PD和PE的数量关系为________,线段DE=________ cm。

(完整)沪科版数学八年级上学期期末试卷(答案)

(完整)沪科版数学八年级上学期期末试卷(答案)

八年级数学试题一、选择题(本题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P(-1,4)一定在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4) 3.一次函数y=﹣2x ﹣3不经过 ( ) A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4.下列图形中,为轴对称图形的是 ( ) 5.函数y=21x 的自变量x 的取值范围是 ( ) A .x≠2 B. x <2 C. x≥2 D. x >26在△ABC 中,∠A ﹦31∠B ﹦51∠C ,则△ABC 是 ( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定7.如果一次函数y ﹦kx ﹢b 的图象经过第一象限,且与y 轴负半轴相交,那么( ) A. k ﹥0,b ﹥0 B. k ﹥0,b ﹤0 C. k ﹤0,b ﹥0D. k ﹤0, b ﹤08.如图,直线y ﹦kx ﹢b 交坐标轴于A ,B 两点,则不等式kx ﹢b ﹥0的解集是( ) A. x ﹥-2 B. x ﹥3 C. x ﹤-2 D. x ﹤39.如图所示,OD=OB,AD ∥BC,则全等三角形有 ( ) A. 2对 B. 3对 C. 4对 D. 5对 10. 两个一次函数y =-x +5和y =﹣2x +8的图象的交点坐标是( ) A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)得分评卷人二、填空题(本题共4小题,每小题5分,满分20分)11.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,则点B’的坐标是.12.如图所示,将两根钢条A A’、B B’的中点O连在一起,使A A’、B B’可以绕着点O自由转动,就做成了一个测量工具,则A’ B’的长等于内槽宽AB,那么判定△OAB≌△OA’ B’的理由是.13.2008年罕见雪灾发生之后,灾区急需帐篷。

沪科版八年级数学上册期末试卷及答案六套

沪科版八年级数学上册期末试卷及答案六套

(3)ACE BD八年级数学(上学期)期末试题(一)姓名__________得分________一、填空题:(本题满分30分,每小题3分)1、若点(x ,y)的坐标满足y =2x - , 则这个点在 ____ 象限或_____。

2、点(5,-3)左平移3个单位,下平移2个单位坐标后的坐标是_______3、如图(1), 直线L, m 的解析式分别是 ___________________________4、某长途汽车客运公司规定按如图方法收取旅客行李费,问:旅客最多可免费携带行李_______kg ?5、函数 y =1x -+ (x-2)°中,x 的取值范围是_______________. 6、若10个数的平方和是370,方差是33那么这10个数的平均数为_______ 7、在∆ABC 中,BC = 10,AB = 6, 那么 AC 的取值范围是______________. 8、说明“对应角相等的两个三角形全等“是假命题的反例是______________________________________________________________ 9、腰长为12cm ,底角为15︒的等腰三角形的面积为____________。

10、上图(3),在∆ABC 中,∠ACB = 90︒,∠B= 30︒, DE 垂直平分BC ,BD = 5, 则∆ACD 的周长为_________。

二、选择题:(本题满分18分,每小题3分)1、若 y -1 与 2x +3 成正比例,且 x = 2 时, y = 15,则 y 与 x 间的函数解析式是 ( )A :y =2x +3B :y = 4x + 7C :y =2x +2D :y =2x +152、若函数y = ax + b ( a ≠0) 的图象如图(4)所示不等式ax + b ≥0的解集x(4) oy = ax+b22 yAEBCD(5)ABD C y (元)是 ( )A :B :x ≤C :x = 2D :x ≥ - b a3,若量得∠∠D =∠E = 35︒, 那么∠A = ( ) A :35︒ B : 45︒ C :40︒ D :50︒ 4、下列命题是真命题的是: ( )A : 面积相等的两个三角形全等B :三角形的外角和是360︒C : 有一个角是30︒的等腰三角形底角为75︒D :角平分线上的点到角的两边上的点的距离相等5、直线y = x , y = 3 , x = - 1所围成的三角形面积是 ( ) A :9 B : 5 C :6 D :86、三角形三内角平分线的交点到( )距离相等A :三顶点B :三边C :三边中点D :三条高三、证明题:(本题满分16分,每小题8分)1、已知:如图,在三角形ABC 中AB = AC ,O 是三角形ABC 内一点,且OB = OC , 求证:AO ⊥ BC2、如图,在∆ABC 中,AB = AC, ∠BAC =120︒,且BD = AD, 求证:CD = 2BD四、(本题满分20分,每小题10分)1、下图是某企业职工养老保险个人月缴费y(元),随个人月工资x (百元)变化的图象:请你根据图象解答问题:(1) 张工程师5月份工资3500元,这个月他应缴养老金多少元?(2) 李师傅5月份缴养老金80元?他这个 月工资多少元?2、已知等腰三角形周长为24cm ,若底边长为y(cm),一腰长为x(cm), (1) 写出y 与x 的函数关系式 (2) 求自变量x 的取值范围 (3) 画出这个函数的图象五、作图题(本题满分8分)求作一点P ,使PC = PD, 并且使点P 到AOB 两边的距离相等 (保留痕迹,不写作法)六、(本题满分8分)一组数据从小到大排列为a, 3, 4, 6, 7, 8, b ,其平均数为6,极差是8,求这组数据的方差答案: 一、1、第二象限 原点2、 (2,-5)3、L :y = x +3 m : y = - 2x4、 305、 x > 1且 x ≠ 26、 27、 4< x < 168、边长不等的两个等边三角形 9、 36 10、 15二、 1、B 2、B 3、C 4、B 5、D 三、提示:1、证明AO 是等腰三角形的顶角平分线2、利用直角三角形中30︒角所对的边等于斜边的一半四、1、(1)200 (2) 10002、(1)y = -2x + 24 (2)6< x < 12 五、作∠AOB 的平分线与CD 的垂直平分线相交,交点为P六、 6沪科版八年级数学第一学期期末测试题(二)一、认真选一选(本题共10小题,每题3分,共30分)1、函数12+=x y 中自变量x 的取值范围是 【 】 A .21≥x B. 0≥x C. 21-≥x D. 21->x 2、已知点P (a,-b )在第一象限,则直线y=ax+b 经过的象限为 【 】 A .一、二、三象限 B..一、三、四象限 C .二、三、四象限D .一、二、四象限3、下列一次函数中,y的值随着x的值增大而减小的是【】A.y=x B.y=x+1 C.y=x-1 D.y=-x+1 4、一个等腰三角形,周长为9,其余各边均为整数,则腰长为【】A.4或3或2 B. 4或3 C.4 D.35、如图,已知点P到BE、BD、AC的距离恰好相等,则P点的位置:①在∠B的平分线上②在∠DAC的平分线上③在∠ECA的平分线上④恰好是∠B、∠DAC、∠ECA的三条角平分线的交点。

(完整word版)沪科版八年级上册数学期末测试卷——含答案(免费)

(完整word版)沪科版八年级上册数学期末测试卷——含答案(免费)

x(h)4321摩托车汽车y(km)180200(4)(3)(2)(1) 八年级上期末试卷(制卷严安)一、选择题1.若某四边形顶点的横坐标变形为原来的相反数,而纵坐标不变,此时图形位置也不变,则这个四边形一定不是( )A .长方形B .直角梯形C .正方形D .等腰梯形2.一辆汽车和一辆摩托车分别从A 、B 两地去同一城市,它们离A 地的路程随时间变化的图像如图所示,则下列结论错误的是( )A .摩托车比汽车晚到1hB .A 、B 两地的路程为20kmC .摩托车的速度为45km/hD .汽车的速度为60 km/h3、如图,已知直线y 1=x +m 与y 2=kx -1相交于点P (-1,1),则关于x 的不等式x +m >kx -1的解集是 ( )A .x >1B .x <1C .x >-1D .x <-14.若一个三角形三个内角度数的比为2:3:4,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .等边三角形5.若一次函数y =kx +b ,当x 得值减小1,y 的值就减小2,则当x 的值增加2时,y 的值 ( )A .增加4B .减小4C .增加2D .减小26.如图,在长方形ABCD 中,AB =4,BC =3,点P 从起点B 出发,沿BC 、CD 逆时针方向终点D 匀速运动,设点P 所走过的路程为x ,则线段AP 、AD 与长方形的边所围成的图形的面积为y ,则下列图像中能大致反映y 与x 函数关系的是( )7.下面是某条公共汽车线路收支差额y 与乘客量x 的图像(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出两条建议:①不改变车标价格,减少支出费用;②不改变支出费用,提高车票价格.下面给出四个图像(实线表示改进后的收支差额,虚线表示改进前的收支差额),则下列叙述正确的是( )A .图像(1)反映了建议②,图像(3)反映了建议①B .图像(1)反映了建议①,图像(3)反映了建议②C .图像(2)反映了建议①,图像(4)反映了建议② D .图像(4)反映了建议①,图像(2)反映了建议②F E D CB A 第8题图8.△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6,则△DEB 的周长是( )A 、3B 、4C 、6D 、22 9.将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95°10.将一副三角板按图中的方式叠放,则角α等于( )A .75°B 60°C .45°D .30°二、填空题11.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1),N (0,1),将线段MN 平移后得到线段M ′,N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为12.如图,一次函数y =kx +b 的图像如图所示,当y <3时,x 的取值范围是13.△ABC 中,AB =AC =x ,BC =6,则腰长x 的取值范围是 .14.已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个. 三、解答题15.你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O 上下转动,立柱OC 与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA ′、BB ′有何数量关系?为什么?16.某家庭装修房屋,由甲乙两个装修公司合作完成先由甲装修公司单独装修3天,剩下的工作由甲乙两个公司合作完成.工程进度满足如图所示的函数关系(x 为天数,y 为工作量),该家庭共支付工资8000元,若按完成工作量的多少支付工资,装修完后甲装修公司应得多少元?四、17. 已知:在梯形ABCD 中,AB //CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F . 求证:AB =CF . 23C O B′A′B A 530.50.25A B C E D 第8题图 B C D 第9题图α第10题图F ED C B A18.如图,在△ABC 中,D 是BC 边上的点(不与B 、C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE ,请你添加一个条件,使△BDE ≌△CDF (不再添加其它线段,不再标注或使用其它字母),并给出证明.(1)你添加的条件是: (2)证明:五、19.如图,∠BAC =∠ABD ,AC =BD ,点O 是AD 、BC 的交点,点E 是AB 的中点,试判断OE 和AB 的位置关系,并给出证明.20.(1)点(0,7)向下平移2个单位后的坐标是 ,直线y =2x +7向下平移2个单位后的解析式是 .(2)直线y =2x +7向右平移2个单位后的解析式是 .(3)如图,已知点C (a ,3)为直线y =x 上在第一象限内一点,直线y =2x +7交y 轴于点A ,交x 轴于点B ,将直线AB 沿射线OC 方向平移|OC |个单位,求平移后的直线解析式.EO CD B A X OA B C(a ,3)y六、21.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?七、22.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。

沪科版八年级上册数学期末考试试题

沪科版八年级上册数学期末考试试题

沪科版八年级上册数学期末考试试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P (1,1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.下列长度的三条线段能组成三角形的是( )A . 5 cm ,3 cm ,1 cmB .2 cm ,5 cm ,8 cmC .1 cm ,3 cm ,4 cmD .1.5 cm ,2 cm ,2.5 cm3.下列交通标志是轴对称图形的是( )A .B .C .D .4.如图,直线OA 是某正比例函数的图象,下列各点在该函数图象上的是( )A .(-4,16)B .(3,6)C .(-1,-1)D .(4,6)5.如图,ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB 于D 、E 两点,并连接BD 、DE .若∠A=30°,AB=AC ,则∠BDE 的度数为( )A. 67.5°B. 52.5°C. 45°D. 75°6.已知11P (3,)y -,22P (2,)y 是一次函数2y x b =-的图象上的两个点,则12y y ,的大小关系是( )A .12y y <B .12y y =C .12y y >D .不能确定7.如图,在△ABC 中,边BC 的垂直平分线l 与AC 相交于点D ,垂足为E ,如果△ABD 的周长为10 cm ,BE =3 cm ,则△ABC 的周长为( )A .9 cmB .15 cmC .16 cmD .18 cm8.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示.下列说法错误的是( )A .小明中途休息用了20分钟B .小明休息前爬山的平均速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度9.如图,在△ABC 和△DEC 中,AB DE =,若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是A .BC EC =,B E ∠=∠ B .A D ∠=∠,AC DC =C .B E ∠=∠,BCE DCA ∠=∠D .BC EC =,A D ∠=∠10.如图,在△ABC 中,点D ,E ,F 分别在三边上,点E 是AC 的中点,AD ,BE ,CF 交于一点G ,BD =2DC ,A .25B .30C .35D .40二、填空题(本大题共4小题,每小题5分,满分20分)11. 函数241x y x +=-的自变量x 取值范围是 .12.“对顶角相等”这个命题的逆命题是____________________,它是一个________命题(填“真”或“假”).13.如图,在△ABC 中,∠B=63°,∠C=51°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数__________________°14.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y (米)与挖掘时间x (天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有 .(在横线上填写正确的序号)三、(本大题共2小题,每小题8分,满分16分)15.在△ABC 中,∠A+∠B=∠C ,∠B=2∠A ,(1)求∠A 、∠B 、∠C 的度数;(2)△ABC 按边分类,属于什么三角形?△ABC 按角分类,属于什么三角形?16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(−3,5),B(−4,3),C(−1,1).(1)画出△ABC关于x轴对称的△A1B1C1;并填写出△A1B1C三个顶点的坐标.A1 (_________,_________);B1 (_________,________);C1 (_________,_________).(2)求△ABC的面积.四、(本大题共2小题,每小题8分,满分16分)17已知一次函数y=kx+3的图象经过点(1,4),试求出关于x的不等式kx+3≤6的解集.18.如图,已知OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.求证:OP是线段AB的垂直平分线.五、(本大题共2小题,每小题10分,满分20分)19.有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度数.20.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.21.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE。

八年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)(一)

八年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)(一)

八年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()2.已知正比例函数y=(k+3)x,若y随x的增大而减小,则k的取值范围是() A.k>-3B.k<-3C.k>3D.k<33.函数y=x-2x-3的自变量x的取值范围是()A.x≠3B.x>0且x≠3C.x≥0且x≠3D.x≥2且x≠3 4.若长度分别是a,5,9的三条线段能组成一个三角形,则a的值可以是() A.15B.14C.8D.45.若点M(2-a,3a+6)到两坐标轴的距离相等,则点M的坐标为() A.(6,-6)B.(3,3)C.(-6,6)或(-3,3)D.(6,-6)或(3,3)6.下列命题:①内错角相等;②两个锐角的和是钝角;③a,b,c是同一平面内的三条直线,若a∥b,b∥c,则a∥c;④a,b,c是同一平面内的三条直线,若a⊥b,b⊥c,则a∥c,其中真命题的个数是()A.1个B.2个C.3个D.4个7.如图,已知∠1=∠2,添加一个条件,使得△ABC≌△ADC,下列条件添加错误的是()(第7题)A .∠B =∠D B .BC =DC C .AB =AD D .∠3=∠48.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.下列说法错误的是()A .该汽车的蓄电池充满电时,电量是60千瓦时B .蓄电池剩余电量为35千瓦时时汽车已行驶了150千米C .当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时D .25千瓦时的电量,汽车能行驶150km(第8题)(第9题)(第10题)9.如图,△ABC 的面积是2,AD 是△ABC 的中线,AF =13AD ,CE =12EF ,则△CDE 的面积为()A.29 B.16 C.23 D.4910.如图,在等边三角形ABC 中,BD 是中线,点P ,Q 分别在AB ,AD 上,且BP =AQ =QD =1,动点E 在BD 上,则PE +QE 的最小值...为()A .2B .3C .4D .5二、填空题(本大题共4小题,每小题5分,满分20分)11.如果点A (-3,a )和点B (b ,2)关于x 轴对称,那么ab 的值是____________.(第12题)12.如图,在△ABC 中,BD 是一条角平分线,CE 是AB 边上的高线,BD ,CE相交于点F,若∠EFB=60°,∠BDC=70°,则∠A=_______________________________________.13.在一次函数y=1x+3的图象上,到y轴的距离等于2的点的坐标是2____________.(第14题)14.如图,△ADB,△BCD都是等边三角形,E,F分别是AB,AD上两个动点,满足AE=DF.BF与DE交于点G,连接CG.(1)∠EGB的度数是____________;(2)若DG=3,BG=5,则CG=____________.三、(本大题共2小题,每小题8分,满分16分)15.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移5个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是什么?(第15题) 16.从①∠1+∠2=180°,②∠3=∠A,③∠B=∠C三个条件中选出两个作为题设,另一个作为结论可以组成三个命题.从中选择一个真命题,写出已知、求证,并证明.如图,已知:________,求证:________.(填序号)(第16题)证明:四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=kx+b的图象经过点(-2,10),(3,0)和(1,m).(1)求m的值;(2)当-4≤y≤8时,求x的取值范围.18.如图,在Rt△ABC中,∠C=90°,请用尺规作图:(不要求写作法,保留作图痕迹)(1)在线段AB上找一点E,使得E点到边BC的距离与到边AC的距离相等.(2)在线段BC 上找一点D ,使得S △ABD =S △ACD.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.下面是某数学兴趣小组在项目学习课上的方案策划书,请仔细阅读,并完成相应的任务.项目课题探究用全等三角形解决“不用直接测量,得到高度”的问题问题提出墙上点A 处有一灯泡,在无法直接测量的情况下,如何得到灯泡的高度(即OA 的长,灯泡的大小忽略不计)?项目图纸解决过程①标记测试直杆的底端点D ,测量OD 的长度.②找一根长度大于OA 的直杆,使直杆斜靠在墙上,且顶端与点A 重合.③使直杆顶端缓慢下滑,直到∠DCO =∠ABO .④记下直杆与地面的夹角∠ABO .项目数据……任务:(1)由于项目记录员粗心,记录排乱了“解决过程”,正确的顺序应是()A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①(2)请你说明他们作法的正确性.20.如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°.(1)求证:AC=BD;(2)AC与BD相交于点P,求∠APB的度数.(第20题)六、(本题满分12分)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式(k-3)x+b>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线,交y=3x于点N,当MN=2DO时,求M点的坐标.(第21题)七、(本题满分12分)22.要从甲、乙两仓库向A,B两地运送水泥.已知甲仓库可运出100t水泥,乙仓库可运出80t水泥.A地需70t水泥,B地需110t水泥.两仓库到A,B两地的路程和运费如下表:路程/km运费/[元/(t·km)]甲仓库乙仓库甲仓库乙仓库A地2015 1.2 1.2B地252010.8(1)设从甲仓库运往A地水泥x t,求总运费y关于x的函数表达式,并画出图象.(2)当从甲仓库运往A地多少吨水泥时,总运费最省?最省的总运费是多少?八、(本题满分14分)23.如图,△ABC是边长为12cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,其中点P运动的速度是1cm/s,点Q 运动的速度是2cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t s,解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t的值;若不能,请说明理由.(3)当t为何值时,△BPQ是直角三角形?(第23题)答案一、1.A 2.B3.C4.C5.D6.B7.B8.D9.A 10.B 思路点睛:作点P 关于BD 的对称点P ′,连接P ′Q 交BD 于E ,此时PE+EQ 的值最小.二、11.612.40°13.(2,4)或(-2,2)14.(1)60°(2)8三、15.解:(1)如图,△A 1B 1C 1即为所求.(第15题)(2)如图,△A 2B 2C 2即为所求.(3)(m -5,-n ).16.解:(答案不唯一)①②;③∵∠1+∠2=180°,∴AD ∥EF ,∴∠3=∠D .∵∠3=∠A ,∴∠A =∠D ,∴AB ∥CD ,∴∠B =∠C .四、17.解:(1)∵一次函数y =kx +b 的图象经过点(-2,10),(3,0),∴2k +b =10,k +b =0,=-2,=6,∴一次函数的表达式为y =-2x +6,∴m =-2×1+6=4.(2)∵-2<0,∴y 随x 的增大而减小.当y =-4时,-4=-2x +6,解得x =5;当y =8时,8=-2x +6,解得x =-1.∴当-4≤y ≤8时,x 的取值范围为-1≤x ≤5.18.解:(1)如图,点E 为所作.(第18题)(2)如图,点D为所作.五、19.解:(1)D(2)在△ABO和△DCO ∠AOB=∠DOC,∠ABO=∠DCO,AB=DC,∴△ABO≌△DCO,∴OA=OD.即测量OD的长度,就等于OA的长度,即点A的高度.20.(1)证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD.∵OA=OB,OC=OD,∴△AOC≌△BOD,∴AC=BD.(2)解:设AC与BO交于点M,则∠AMO=∠BMP.∵△AOC≌△BOD,∴∠OAC=∠OBD,∴180°-∠OAC-∠AMO=180°-∠OBD-∠BMP,∴∠APB=∠AOM=60°.六、21.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(-2,6)和(1,3),-2k+b=6,k+b=3,k=-1,b=4.(2)x<1.(3)由(1)知,直线AB的表达式为y=-x+4,当x=0时,y=-x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,-m+4),N(m,3m),∴MN=3m-(-m+4)=4m-4.∵MN=2DO,∴4m-4=8,解得m=3,∴M点坐标为(3,1).11七、22.解:(1)由题意得y =1.2×20x +1×25×(100-x )+1.2×15×(70-x )+0.8×20×[80-(70-x )]=-3x +3920,即所求的函数表达式为y =-3x +3920,其中0≤x ≤70,其图象如图所示.(第22题)(2)当x =70时,y 的值最小.∴当从甲仓库运往A 地70t 水泥时,总运费最省,最省的总运费为3710元.八、23.解:(1)当点Q 到达点C 时,PQ 与AB 垂直.理由如下:∵AB =BC =AC =12cm ,∴当点Q 到达点C 时,t =122=6,∴AP =6×1=6(cm),∴点P 为AB 的中点.∵△ABC 是等边三角形,∴AC =BC ,∴PQ ⊥AB .(2)能.∵△BPQ 是等边三角形,∴BP =PQ =BQ .由题意得AP =t cm ,BQ =2t cm ,∴BP =(12-t )cm ,∴2t =12-t ,解得t =4.∴当t =4时,△BPQ 是等边三角形.(3)易知AP =t cm ,BQ =2t cm ,BP =(12-t )cm.当∠BQP =90°时,∵∠PBQ =60°,∴∠BPQ =30°,∴BQ =12BP ,即2t =12(12-t ),解得t =2.4;当∠BPQ =90°时,同理可得12×2t =12-t ,解得t =6.综上所述,当t =2.4或t =6时,△BPQ 是直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪科版八年级数学上册期末测试
一、选择题(本大题共10小题,共40分)
1. 点,1(P )2-关于y 轴对称的点的坐标是( )
A. (1,2)
B. (-1,2)
C. (-1,-2)
D. (-2,1)
2. 有一个角是的等腰三角形,其它两个角的度数是( )
A. 36°,108°
B. 36°,72°
C. 72°,72°
D. 36°,108°或72°,°72°
3. 点P 在x 轴的下方,且距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标 为( )
A. (4,-3)
B. (3,-4)
C. (-3,-4)或(3,-4)
D. (-4,-3)或(4,-3)
4. 若三条线段中3=a ,5=b ,c 为奇数,那么由a 、b 、c 为边组成的三角形共有( )
A. 1个
B. 3个
C. 无数多个
D. 无法确定
5. 在同一直角坐标系中,若直线3+=kx y 与直线b x y +-=2平行,则( )
A.2-=k ,3≠b
B.2-=k ,3=b
C.2-≠k ,3≠b
D.2-≠k ,3=b
6. 当0>k ,0<b 时,函数b kx y +=的图象大致是( )
A. B. C. D.
7. 有以下四个命题:其中正确的个数为( )
(1)两条对角线互相平分的四边形是平行四边形;
(2)两条对角线相等的四边形是矩形;
(3)两条对角线互相垂直的平行四边形是菱形;
(4)有一组邻边相等且有一个角是直角的四边形是正方形;
A. 1
B. 2
C. 3
D. 4
8. 如图,OP 是∠AOB 的平分线,点P 到OA 的距离为3,点
N 是OB 上的任意一点,则线段PN 的取值范围为( )
A. 3<PN
B. 3>PN
C. 3≥PN
D. 3≤PN
9. 如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C
落在C '处,折痕为EF ,若1=AB ,2=BC ,则△ABE
和F C B '的周长之和为( )
A. 3
B. 4
C. 6
D. 8
10.有下列四个命题:①相等的角是对顶角;②同位角相等;
③若一个角的两边与另一个角的两边互相平行,则这两个 角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离
其中是真命题的个数有( )
A. 0个
B. 1个
C. 2个
D. 3个
二、填空题(本大题共6小题,共18分)
11. 如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的
坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”
笑脸右眼B 的坐标_______________ .
12. 如图,在平面直角坐标系xOy 中,△C B A '''由△ABC 绕点P 旋转得到,则点P 的 坐标为_______________.
第8题图
第9题图 第12题图
13. 已知函数2)1(+--=n x m y 是正比例函数,则=n _________
14. 如图,DC AB =,请补充一个条件:_________________使△ABC ≌△DCB (填其中一种即可)
15. 已知:如图,AE AC =,21∠=∠,AD AB =,若︒=∠25D ,则B ∠的度数为
_____________________ .
16. 如图,已知OC 平分AOB ∠,OB CD ∥,若
cm OD 6=,则CD 的长等于____________ .
三、计算题(本大题共5小题,共30分)
17. 在直角坐标平面内,已点A (3,0)、
B (-5,3),将点A 向左平移6个单
位到达C 点,将点B 向下平移6个单位
到达D 点.
(1)写出C 点、D 点的坐标:C __________,
D ____________ ;
(2)把这些点按A D C B A ----顺次连
接起来,这个图形的面积是__________. 第14题图 第15题图
18. 已知点)12,1(-+a a P 关于x 轴的对称点在第一象限,求a 的取值范围.
19. 如图是屋架设计图的一部分,其中︒=∠30A ,点D 是斜梁AB 的中点,BC 、DE 垂直于
横梁AC ,cm AB 8=,则立柱BC ,DE 要多长?
20. 我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分
段收费标准,右图反映的是每月收取水费y 元与用水量x 吨之间的函数关系.
(1) 小明家五月份用水8吨,应交水费______ 元;
(2) 按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比
三月份节约用水多少吨?
21. 设一次函数)0(≠+=k b kx y 的图象经过A (1,3)、B (0,-2)两点,求此函数的
解析式.
四、解答题(本大题共3小题,共32分)
22. 小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书
店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图(10分). 根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是________米
(2)小明在书店停留了___________分钟.
(3)本次上学途中,小明一共行驶了__
______ 米,一共用了______ 分钟.
(4)在整个上学的途中_________(哪个时间段)小明骑车速度最快,最快的速度是______
_____________米/分.
23. 已知y 是关于x 的一次函数,且当3=x 时,2-=y ;当2=x 时,3-=y .(10分)
(1)求这个一次函数的表达式;
(2)求当3-=x 时,函数y 的值;
(3)求当2=y 时,自变量x 的值;
(4)当1>y 时,自变量x 的取值范围.
24.种植草莓大户张华现有22吨草莓等待出售,有两种销售渠道,一是运往省城直接批发
给零售商,二是在本地市场零售,受客观因素影响,张华每天只能采用一种销售渠道,而且草莓必须在10天内售出(含10天)经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见右表:(12分)
(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x(吨)之间的函数关
系式;
(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.
参考答案
1. C
2. D
3. D
4. B
5. A
6. D
7. B
8. C9.C10. A
11.
12.
13. 2
14.
15.
16. 6cm
17. ;;18
18. 解:依题意得p点在第四象限,

解得:,
即a的取值范围是.
19. 解:,

、DE垂直于横梁AC,
,又D是AB的中点,

答:立柱BC要要2m.
20. 解:根据图象可知,10吨以内每吨水应缴元所以元.
解法一:
由图可得用水10吨内每吨2元,10吨以上每吨元
三月份交水费26元元所以用水:吨
四月份交水费18元元,所以用水:吨
四月份比三月份节约用水:吨
解法二:
由图可得10吨内每吨2元,当时,知
当时,可设y与x的关系为:
由图可知,当时,时,可解得
与x之间的函数关系式为:,
当时,知,有,解得,
四月份比三月份节约用水:吨.
直接根据图象先求得10吨以内每吨水应缴元,再求小明家的水费;
根据图象求得10吨以上每吨3元,3月份交水费26元元,故水费按照超过10吨,每吨3元计算;四月份交水费18元元,故水费按照每吨2元计算,分别计算用水量做差即可求出节约的水量.
主要考查了一次函数的实际应用和读图的基本能力解题的关键是能根据函数图象得到函数类型,并根据函数图象上点的实际意义求解.
21. 解:把、代入得,解得,
所以此函数解析式为.
22. 1500;4;2700;14;12分钟至14分钟;450
23.. 解:设一次函数的表达式为由题意,得

解得.
所以,该一次函数解析式为:;
当时,;
当时,,解得.
当时,,解得
24. 解:由题意可得,

即销售22吨草莓所获纯利润元与运往省城直接批发零售商的草莓量吨之间的函数关系式是;
草莓必须在10天内售出含10天,

解得,,

在函数中,y随x的增大而减小,
当时,y取得最大值,此时,

即用4天时间运往省城批发,6天在本地零售,可以使张华所获纯利润最大,最大利润为31200元.
当时,,解得。

相关文档
最新文档