完整三角函数公式表
完整三角函数公式表
三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=co tαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ22tan2sin1tan2ααα=+221tan2cos1tan2ααα-=+tan tan tan()1tan tan αβαβαβ++=-tan tan tan()1tan tan αβαβαβ--=+22tan2tan 1tan 2ααα=-半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosα cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α22tan tan 21tan ααα=- sin3α=3sinα-4sin 3α cos3α=4cos 3α-3cosα三角函数的和差化积公式三角函数的积化和差公式sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+--化a sinα ±b cosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)三角函数主要结论1.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?2.一般说来,周期函数加绝对值或平方,其周期减半.(如x y x y sin ,sin 2==的周期都是π, 但x x y cos sin +=的周期为2π.)但是,函数x y x y x y cos ,sin ,sin 2===是周期函数吗?(都不是) 3.三角函数线及应用,由三角函数线得出的几个结论:如⎪⎭⎫⎝⎛∈2,0πα,则αααtg <<sin 、1cos sin >+αα 等.4.在三角中,你知道1等于什么吗?(x x x x 2222tan sec cos sin 1-=+= 1 ====⋅=0cos 2sin4tancot tan ππx x 这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用.5.在三角的恒等变形中,要特别注意角的各种变换.(如,)(αβαβ-+=),(βααβ--=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβα222等)。
(完整版)三角函数三角函数公式表
(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
三角函数公式表大全
三角函数公式表大全以下是常用的三角函数公式表:1. 正弦函数(Sine Function):- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数与正弦函数的关系:cosθ = 邻边/斜边- 正弦函数的倒数:cosecθ = 1/sinθ- 余弦函数的倒数:secθ = 1/cosθ- 正弦函数的平方:sin^2θ + cos^2θ = 1- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ- 正弦函数的倍角公式:sin2θ = 2sinθcosθ2. 余弦函数(Cosine Function):- 余弦函数的定义:cosθ = 邻边/斜边- 正弦函数与余弦函数的关系:sinθ = 对边/斜边- 余弦函数的倒数:secθ = 1/cosθ- 正弦函数的倒数:cosecθ = 1/sinθ- 余弦函数的平方:cos^2θ + sin^2θ = 1- 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓sinαsinβ- 余弦函数的倍角公式:cos2θ = cos^2θ - sin^2θ3. 正切函数(Tangent Function):- 正切函数的定义:tanθ = 对边/邻边= sinθ/cosθ- 正切函数的倒数:cotθ = 1/tanθ = cosθ/sinθ- 正切函数与正弦、余弦的关系:tanθ = sinθ/cosθ = (对边/斜边) / (邻边/斜边) = 对边/邻边- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓tanαtanβ)4. 反三角函数:- 反正弦函数(Arcsine Function):sin⁻¹(x) = θ,其中-π/2 ≤ θ ≤ π/2- 反余弦函数(Arccosine Function):cos⁻¹(x) = θ,其中0 ≤ θ ≤ π- 反正切函数(Arctangent Function):tan⁻¹(x) = θ,其中-π/2 < θ < π/2这些是常用的三角函数公式,可以根据具体的问题和需要,灵活运用这些公式进行计算和推导。
三角函数公式及求导公式
一、诱导公式口诀:(分子)奇变偶不变,符号看象限。
1. sin (α+k•360)=sin αcos (α+k•360)=cos atan (α+k•360)=tan α2. sin(180°+β)=-sinαcos(180°+β)=-cosa3. sin(-α)=-sinacos(-a)=cosα4*. tan(180°+α)=tanαtan(-α)=tanα5. sin(180°-α)=sinαcos(180°-α)=-cosα6. sin(360°-α)=-sinαcos(360°-α)=cosα7. sin(π/2-α)=cosαcos(π/2-α)=sinα8*. Sin(3π/2-α)=-cosαcos(3π/2-α)=-sinα9*. Sin(π/2+α)=cosαcos(π/2+a)=-sinα10*.sin(3π/2+α)=-cosαcos(3π/2+α)=sinα二、两角和与差的三角函数1. 两点距离公式2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβC(α+β): cos(α+β)=cosαcosβ-sinαsinβ3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβC(α-β): cos(α-β)=cosαcosβ+sinαsinβ4. T(α+β):T(α-β):5*.三、二倍角公式1. S2α: sin2α=2sinαcosα2. C2a: cos2α=cos¬2α-sin2a3. T2α: tan2α=(2tanα)/(1-tan2α)4. C2a’: cos2α=1-2sin2αcos2α=2cos2α-1四*、其它杂项(全部不可直接用)1.辅助角公式asinα+bcosα= sin(a+φ),其中tanφ=b/a,其终边过点(a, b)asinα+bcosα= cos(a-φ),其中tanφ=a/b,其终边过点(b,a)2.降次、配方公式降次:sin2θ=(1-cos2θ)/2cos2θ=(1+cos2θ)/2配方1±sinθ=[sin(θ/2)±cos(θ/2)]21+cosθ=2cos2(θ/2)1-cosθ=2sin2(θ/2)3. 三倍角公式si n3θ=3sinθ-4sin3θcos3θ=4cos3-3cosθ4. 万能公式5. 和差化积公式sinα+sinβ= 书p45 例5(2)sinα-sinβ=cosα+cosβ=cosα-cosβ=6. 积化和差公式sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)cosαsinβ=1/2[sin(α+β)-sin(α-β)]sinαsinβ-1/2[cos(α+β)-cos(α-β)]cosαcosβ=1/2[cos(α+β)+cos(α-β)]两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2A=2sinA*cosA三倍角公式sin3a=3sina-4(sina)^3cos3a=4(cosa)^3-3cosatan3a=tana*tan(π/3+a)*tan(π/3-a)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B) )2cosAcosB=cos(A+B)+cos(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a]a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2③(sinx)' = cosx(cosx)' = - sinx(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx(cscx)'=-cotx·cscx(arcsinx)'=1/(1-x^2)^1/2(arccosx)'=-1/(1-x^2)^1/2(arctanx)'=1/(1+x^2)(arccotx)'=-1/(1+x^2)(arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2)④(sinhx)'=coshx(coshx)'=sinhx(tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx(cschx)'=-cothx·cschx(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2(artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)。
三角函数的公式大全
三角函数的公式大全1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan² A)Sin2A=2SinA•CosACos2A = Cos^2 A–Sin² A=2Cos² A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4(sinA)³;cos3A = 4(cosA)³ -3cosAtan3a = tan a • tan(π/3+a)• tan(π/3-a)4、半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA) 5、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB6、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]7、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA8、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}9、其它公式a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²;1-sin(a) = [sin(a/2)-cos(a/2)]²;10、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)11、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα14、公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα√表示根号,包括{……}中的内容18、三角函数记忆口诀三角函数是函数,象限符号坐标注。
三角函数公式大全
三角函数十组诱导公式公式一公式二sin(2kπ+x)=sin x cos(2kπ+x)=cos x tan(2kπ+x)=tan x cot(2kπ+x)=cot x sec(2kπ+x)=sec x csc(2kπ+x)=csc x sin(π+x)=-sin x cos(π+x)=-cos x tan(π+x)=tan x cot(π+x)=cot x sec(π+x)=-sec x csc(π+x)=-csc x公式三公式四sin(-x)=-sin x cos(-x)=cos x tan(-x)=-tan x cot(-x)=-cot x sec(-x)=sec x csc(-x)=-csc x sin(π-x)=sin x cos(π-x)=-cos x tan(π-x)=-tan x cot(π-x)=-cot x sec(π-x)=-sec x csc(π-x)=csc x公式五公式六sin(x-π)=-sin x cos(x-π)=-cos x tan(x-π)=tan x cot(x-π)=cot x sec(x-π)=-sec x csc(x-π)=-csc x sin(2π-x)=-sin x cos(2π-x)=cos x tan(2π-x)=-tan x cot(2π-x)=-cot x sec(2π-x)=sec x csc(2π-x)=-csc x公式七公式八sin(π/2+x)=cosx cos(π/2+x)=−sinx tan(π/2+x)=-cotx cot(π/2+x)=-tanx sec(π/2+x)=-cscx csc(π/2+x)=secx sin(π/2-x)=cosx cos(π/2-x)=sinx tan(π/2-x)=cotx cot(π/2-x)=tanx sec(π/2-x)=cscx csc(π/2-x)=secx公式九公式十sin(3π/2+x)=-cosx cos(3π/2+x)=sinx tan(3π/2+x)=-cotx cot(3π/2+x)=-tanx sec(3π/2+x)=cscx csc(3π/2+x)=-secx sin(3π/2-x)=-cosx cos(3π/2-x)=-sinx tan(3π/2-x)=cotx cot(3π/2-x)=tanx sec(3π/2-x)=-cscx csc(3π/2-x)=-secx两角和差设A(cosα,sinα),B (cosβ,sinβ),O(0,0)∴=(cosα,sinα),=(cosβ,sinβ)∴·=|| || cos (α-β) =coα cosβ + sinα sinβ∴cos(α-β)=cosαcosβ+sinαsinβ取β=-β,可得cos(α+β)=cosαcosβ-sinαsinβ和差化积积化和差二倍角公式三倍角公式sin(3α)=3sinα-4sin3α=4sinα·sin(60°+α)sin(60°-α)cos(3α)=4cos3α-3cosα=4cosα·cos(60°+α)cos(60°-α)tan(3α)=(3tanα-tan3α)/(1-3tan²α)=ta nα·tan(π/3+α)tan(π/3-α)cot(3α)=(cot3α-3cotα)/(3cot²α-1)倍角公式根据欧拉公式(cosθ+isinθ)n=cosnθ+isinnθ将左边用二项式定理展开分别整理实部和虚部可以得到下面两组公式sin(nα)=ncos n-1α·sinα-Cn 3cos n-3α·sin3α+Cn5cos n-5α·sin5α-…cos(nα)=cos nα-Cn 2cos n-2α·sin2α+Cn4cos n-4α·sin4α-…半角公式sin(α/2)=±√[(1-cosα)/2]cos(α/2)=±√[(1+cosα)/2]tan(α/2)=±√[(1-cosα)/(1+cosα)]=sinα/(1+cosα)=(1-cosα)/sinα=cscα-cotαcot(α/2)=±√[(1+cosα)/(1-cosα)]=(1+cosα)/sinα=sinα/(1-cosα)=cscα+cotαsec(α/2)=±√[(2secα/(secα+1)]csc(α/2)=±√[(2secα/(secα-1)]辅助角公式万能公式sinα=[2tan(α/2)]/[1+tan²(α/2)]cosα=[1-tan²(α/2)]/[1+tan²(α/2)]tanα=[2tan(α/2)]/[1-tan²(α/2)]三角函数降幂公式sin²α=[1-cos(2α)]/2cos²α=[1+cos(2α)]/2tan²α=[1-cos(2α)]/[1+cos(2α)]三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·ta nα)泰勒展开式sin x = x-x3/3!+x5/5!-……+(-1)(k-1)(x(2k-1))/(2k-1)!+…… (-∞<x<∞)cos x = 1-x2/2!+x4/4!-……+(-1)k(x(2k))/(2k)!+…… (-∞<x<∞)arcsinx=x+x3/(2·3)+(1·3)x5/(2·4·5)+1·3·5(x7)/(2·4·6·7)……(2k+1)/(2k!!(2k+1))+……(|x|<1) (!!表示双阶乘) +(2k+1)!!·xarccosx=π/2-(x+x3/(2·3)+(1·3)x5/(2·4·5)+1·3·5(x7)/(2·4·6·7)……)(|x|<1)arctan x = x - x3/3 + x5/5 -……(x≤1)sinh x = x+x3/3!+x5/5!+……+(x(2k-1))/(2k-1)!+…… (-∞<x<∞)cosh x = 1+x2/2!+x4/4!+……+(x(2k))/(2k)!+……(-∞<x<∞)arcsinh x =x - x3/(2·3) + (1·3)x5/(2·4·5) -1·3·5(x7)/(2·4·6·7)……(|x|<1)arctanh x = x + x3/3 + x5/5 + ……(|x|<1)导数y=sinx→y'=cosxy=cosx→y'=-sinxy=tanx→y'=1/cos²x =sec²xy=cotx→y'= -1/sin²x= - csc²xy=secx→y'=secxtanxy=cscx→y'=-cscxcotxy=arcsinx→y'=1/√(1-x²)y=arccosx→y'= -1/√(1-x²)y=arctanx→y'=1/(1+x²)y=arccotx→y'= -1/(1+x²)三角函数指数形式sinz=[e iz-e-iz]/(2i)cosz=[e iz+e-iz]/2tanx=[e iz-e-iz]/[ie iz+ie-iz]复数三角函数sin(a+bi)=sinacosbi+sinbicosa =sinachb+ishbcosacos(a-bi)=cosacosbi+sinbisina =cosachb+ishbsinatan(a+bi)=sin(a+bi)/cos(a+bi) cot(a+bi)=cos(a+bi)/sin(a+bi) sec(a+bi)=1/cos(a+bi)csc(a+bi)=1/sin(a+bi)正弦定理S=½absinC=½bcsinA=½acsinB余弦定理a² = b² + c²- 2bc·cosAb² = a² + c² - 2ac·cosBc² = a² + b² - 2ab·cosCcosC=(a² +b² -c²)/ 2abcosB=(a² +c² -b²)/ 2accosA=(c² +b² -a²)/ 2bc延伸定理:第一余弦定理a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A 正切定理(a+b)/(a-b) = tan[(A+B)/2]/tan[(A-B)/2]三角恒等式tanA+tanB+tanC=tanAtanBtanC (A+B+C=π)当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ 三角函数记忆口诀三角函数是函数,象限符号坐标注。
三角函数公式表
y cot x
y A sinx
(A、 >0) R
定义域 值域 周期性 奇偶性
R
[1,1]
R
[1,1]
x | x R且x k , k Z
R
R
A, A
2
2
2
奇函数
偶函数
奇函数
奇函数
当 0, 非奇非偶 当 0, 奇函数
(一)基本关系
公式组一 sinx·cscx=1 cosx·secx=1 tanx·cotx=1
sin x tanx= cos x
sin2x+cos2x=1 1+tan2 x =sec2x 1+cot2x=csc2x
x=
cos x sin x
公式组二 sin(2k x) sin x cos(2k x) cos x tan(2k x) tan x cot(2k x) cot x 公式组六
2
2
sin cos
公式组四 1
2
cos
1 tan 2 1 tan
2
2 2
tan
2 tan
2
1 tan2
sin 15 cos75
2
2 1 cos sin sin sin 2 1 cos cos cos cos 2 1 sin sin cos cos 2 sin sin 2 sin cos 2 2 sin sin 2 cos sin 2 2 cos cos 2 cos cos 2 2 cos cos 2 sin sin 2 2
三角函数公式大全
3.三角形中的一些结论:(不要求记忆) (1)anA+tanB+tanC=tanA· tanB· tanC (2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2) (3)cosA+cosB+cosC=4sin(A/2)· sin(B/2)· sin(C/2)+1 (4)sin2A+sin2B+sin2C=4sinA· sinB· sinC (5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ........................... 已知 sinα=m sin(α+2β), |m|<1,求证 tan(α+β)=(1+m)/(1-m)tanβ 解:sinα=m sin(α+2β) sin(a+β-β)=msin(a+β+β) sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ
+a)·tan( -a) 3 3
1 cos A A )= 2 2
1 cos A A )= 2 2
cos(
tan(
1 cos A A )= 1 cosA 2 1 cos A A )= 1 cosA 2
cot( tan(
sin A A 1 cos A )= = 1 cos A sin A 2 和差化积 ab a b sina+sinb=2sin cos 2 2
三角函数公式(最全)
正弦定理变形可得:
五、其他公式
2、余弦定理
对于如图所示的边长为a、b、c而相应角为α、β、γ的△ABC, 有:
3、降幂公式
sin²α=[1-cos(2α)]/2 cos²α=[1+cos(2α)]/2 tan²α=[1-cos(2α)]/[1+cos(2α)]
4、三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+ cosα·cosβ·sinγ-sinα·sinβ·sinγ
ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)
sin x = x-x3/3!+x5/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R
cos x = 1-x2/2!+x4/4!-…+(-1)kx2k/(2k)!+…, x∈R
arcsin x = x + x3/(2*3) + (1*3)x5/(2*4*5) + (1*3*5)x7/(2* 4*6*7)…+(2k+1)!!*x2k+1/(2k!!*(2k+1))+…, x∈(-1,1)(!!表 示双阶乘)
1
一、定义公式
三角函数公式
锐角三角函数 任意角三角函数
正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc) 正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc)
1、倒数关系
二、函数关系
三角函数推导万能公式大全
三角函数推导万能公式大全三角函数推导万能公式大全1、三角函数推导公式——万能公式推导sin2α=2sinαcosα=2sinαcosα/[cos2(α)+sin2(α)],(因为cos2(α)+sin2(α)=1)再把分式上下同除cos^2(α),可得sin2α=2tanα/[1+tan2(α)]然后用α/2代替α即可。
同理可推导余弦的万能公式。
正切的万能公式可通过正弦比余弦得到。
2、三角函数推导公式——三倍角公式推导tan3α=sin3α/cos3α=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)=[2sinαcos2(α)+cos2(α)sinα-sin3(α)]/[cos3(α)-cosαsin2(α)-2sin2(α)cosα]上下同除以cos3(α),得:tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]sin3α=sin(2α+α)=sin2αcosα+cos2αsinα=2sinαcos2(α)+[1-2sin2(α)]sinα=2sinα-2sin3(α)+sinα-2sin3(α)=3sinα-4sin3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=[2cos2(α)-1]cosα-2cosαsin2(α)=2cos3(α)-cosα+[2cosα-2cos3(α)]=4cos3(α)-3cosα即sin3α=3sinα-4sin3(α)cos3α=4cos3(α)-3cosα3、三角函数推导公式——和差化积公式推导首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb 同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2这样,我们就得到了积化和差的公式:cosasinb=[sin(a+b)-sin(a-b)]/2sinasinb=-[cos(a+b)-cos(a-b)]/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/ 2]4、同角三角函数的基本关系式倒数关系tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin2(α)+cos2(α)=11+tan2(α)=sec2(α)1+cot2(α)=csc2(α)同角三角函数关系六角形记忆法构造以“上弦、中切、下割;左正、右余、中间1”的正六边形为模型。
(完整版)三角函数常用公式表
1、角:(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; (2)、与α终边相同的角,连同角α在内,都可以表示为集合{Z k k ∈⋅+=,360|αββ}(3)、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。
2、弧度制:(1)、定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。
(2)、度数与弧度数的换算:π=180弧度,1弧度)180( =π(3)、弧长公式:r l ||α= (α是角的弧度数)扇形面积:2||2121r lr S α===3、三角函数 (1)、定义:(如图) (2)yry x r x xrx y r y ======ααααααcsc cot cos sec tan sin 4、同角三角函数基本关系式(1)平方关系: (2)商数关系: (3)倒数关系:1cos sin 22=+αα αααcos sin tan = 1cot tan =αα αα22sec tan 1=+ αααsin cos cot =1csc sin =αα αα22csc cot 1=+ 1sec cos =αα(4)同角三角函数的常见变形:(活用“1”) ①、αα22cos 1sin-=, αα2cos 1sin -±=;αα22sin 1cos -=, αα2sin 1cos -±=;②θθθθθθθ2sin 2cos sin sin cos cot tan 22=+=+,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±, |cos sin |2sin 1ααα±=±xy+ +_ _O xy++__ Oαtanxy+ +__O=r αsec αsinαtan αcotcsc5、诱导公式:(奇变偶不变,符号看象限)公式一: ααααααtan )360tan(cos )360cos(sin )360sin(=︒⋅+=︒⋅+=︒⋅+k k k公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 补充:ααπααπααπcot )2tan(sin )2cos(cos )2sin(=-=-=- ααπααπααπcot )2tan(sin )2cos(cos )2sin(-=+-=+=+ ααπααπααπcot )23tan(sin )23cos(cos )23sin(=--=--=- ααπααπααπcot )23tan(sin )23cos(cos )23sin(-=+=+-=+6、两角和与差的正弦、余弦、正切 7 .辅角公式 ⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a xb x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a(其中ϕ称为辅助角,ϕ的终边过点),(b a ,ab =ϕtan ) (多用于研究性质) 8、二倍角公式:(1)、α2S : αααcos sin 22sin = (2)、降次公式:(多用于研究性质) α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=αααα2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα (3)、二倍角公式的常用变形:①、|sin |22cos 1αα=-, |cos |22cos 1αα=+;②、|sin |2cos 2121αα=-, |cos |2cos 2121αα=+③22sin 1cos sin 21cos sin 22244ααααα-=-=+; ααα2cos sin cos 44=-;④半角:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan +-±=ααααcos 1sin sin cos 1+=-=9、三角函数的图象性质 (1)、函数的周期性:①、定义:对于函数f (x ),若存在一个非零常数T ,当x 取定义域内的每一个值时,都有:f (x +T )= f (x ),那么函数f (x )叫周期函数,非零常数T 叫这个函数的周期;②、如果函数f (x )的所有周期中存在一个最小的正数,这个最小的正数叫f (x )的最小正周期。
(完整版)初中三角函数公式表
(完整版)初中三角函数公式表一、三角函数的基本定义在初中数学中,三角函数主要涉及正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
这些函数与直角三角形的三边长度有着密切的关系。
1. 正弦函数(sin):正弦函数表示直角三角形中,对应于一个锐角的斜边与斜边与邻边之比。
公式为:sin(θ) = 对边 / 斜边。
2. 余弦函数(cos):余弦函数表示直角三角形中,对应于一个锐角的邻边与斜边之比。
公式为:cos(θ) = 邻边 / 斜边。
3. 正切函数(tan):正切函数表示直角三角形中,对应于一个锐角的斜边与邻边之比。
公式为:tan(θ) = 对边 / 邻边。
二、三角函数的相互关系1. 正弦函数和余弦函数的关系:sin(θ) = cos(90° θ),cos(θ) = sin(90° θ)。
2. 正切函数和余弦函数的关系:tan(θ) = sin(θ) / cos(θ)。
3. 正切函数和正弦函数的关系:tan(θ) = sin(θ) / cos(θ)。
三、三角函数的特殊值1. 0°:sin(0°) = 0,cos(0°) = 1,tan(0°) = 0。
2. 30°:sin(30°) = 1/2,cos(30°) = √3/2,tan(30°) =1/√3。
3. 45°:sin(45°) = √2/2,cos(45°) = √2/2,tan(45°)= 1。
4. 60°:sin(60°) = √3/2,cos(60°) = 1/2,tan(60°) = √3。
5. 90°:sin(90°) = 1,cos(90°) = 0,tan(90°) 无定义。
四、三角函数的周期性三角函数具有周期性,即函数值在一定的周期内会重复出现。
三角函数公式大全
三角函数公式大全诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tgA=tanA=sinA/cosA两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b)) 和差化积公式a-b)/2)sin(a)+sin(b)=2sin((a+b)/2)cos((sin(a)?sin(b)=2cos((a+b)/2)sin((a-b)/2) cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2) 积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 二倍角公式sin(2a)=2sin(a)cos(a)cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)半角公式sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2)) 其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b]1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2 其他非重点csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=(e^a-e^(-a))/2cosh(a)=(e^a+e^(-a))/2tgh(a)=sinh(a)/cosh(a)乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式 |a+b|?|a|+|b| |a-b|?|a|+|b| |a|?b<=>-b?a?b|a-b|?|a|-|b| -|a|?a?|a|一元二次方程的解 -b+?(b2-4ac)/2a -b-b+?(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) -1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) ctg(A+B)=(ctgActgB 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式 sin(A/2)=?((1-cosA)/2) sin(A/2)=-?((1-cosA)/2)cos(A/2)=?((1+cosA)/2) cos(A/2)=-?((1+cosA)/2)tan(A/2)=?((1-cosA)/((1+cosA)) tan(A/2)=-?((1-cosA)/((1+cosA))ctg(A/2)=?((1+cosA)/((1-cosA)) ctg(A/2)=-?((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h。
三角函数表格公式大全
三角函数表格公式大全
sin度数公式:1、sin 30= 1/2,2、sin 45=根号2/2,3、sin 60= 根号3/2。
cos度数公式:1cos 30=根号3/2,2、cos 45=根号2/2,3、cos 60=1/2。
tan度数公式:1、tan 30=根号3/3,2、tan 45=1,3、tan 60=根号3。
1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
也可以等价地用与单位圆有关的各种线段的长度来定义。
2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
3、常见的三角函数包括正弦函数、余弦函数和正切函数。
在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
4、早期对于三角函数的研究可以追溯到古代。
古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。
他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。
对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。
5、喜帕恰斯实际上给出了最早的三角函数数值表。
然而古希腊的三角学基本是球面三角学。
这与古希腊人研究的主体是天文学有关。
梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。
三角函数公式大全很详细
高中三角函数公式大全图1 三角函数的定义三角形中的定义图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数:•正弦函数•余弦函数•正切函数•余切函数•正割函数•余割函数直角坐标系中的定义图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数:•正弦函数r •余弦函数•正切函数•余切函数•正割函数•余割函数2 转化关系倒数关系平方关系2 和角公式3 倍角公式、半角公式倍角公式半角公式万能公式4 积化和差、和差化积积化和差公式证明过程首先,sinα+β=sinαcosβ+sinβcosα已证;证明过程见因为sinα+β=sinαcosβ+sinβcosα正弦和角公式则sinα-β=sinα+-β=sinαcos-β+sin-βcosα=sinαcosβ-sinβcosα于是sinα-β=sinαcosβ-sinβcosα正弦差角公式将正弦的和角、差角公式相加,得到sinα+β+sinα-β=2sinαcosβ则sinαcosβ=sinα+β/2+sinα-β/2“积化和差公式”之一同样地,运用诱导公式cosα=sinπ/2-α,有cosα+β=sinπ/2-α+β=sinπ/2-α-β=sinπ/2-α+-β=sinπ/2-αcos-β+sin-βcosπ/2-α=cosαcosβ-sinαsinβ于是cosα+β=cosαcosβ-sinαsinβ余弦和角公式那么cosα-β=cosα+-β=cosαcos-β-sinαsin-β=cosαcosβ+sinαsinβcosα-β=cosαcosβ+sinαsinβ余弦差角公式将余弦的和角、差角公式相减,得到cosα+β-cosα-β=-2sinαsinβ则sinαsinβ=cosα-β/2-cosα+β/2“积化和差公式”之二将余弦的和角、差角公式相加,得到cosα+β+cosα-β=2cosαcosβ则cosαcosβ=cosα+β/2+cosα-β/2“积化和差公式”之三这就是积化和差公式:sinαcosβ=sinα+β/2+sinα-β/2sinαsinβ=cosα-β/2-cosα+β/2cosαcosβ=cosα+β/2+cosα-β/2和差化积公式部分证明过程:sinα-β=sinα+-β=sinαcos-β+sin-βcosα=sinαcosβ-sinβcosαcosα+β=sin90-α+β=sin90-α-β=sin90-αcosβ-sinβcos90-α=cosαcosβ-sinαsinβcosα-β=cosα+-β=cosαcos-β-sinαsin-β=cosαcosβ+sinαsinβtanα+β=sinα+β/cosα+β=sinαcosβ+sinβcosα/cosαcosβ-sinαsinβ=cosαtanαcosβ+cosβtanβcosα/cosαcosβ-cosαtanαcosβtanβ=tanα+tanβ/1-tanαtanβtanα-β=tanα+-β=tanα+tan-β/1-tanαtan-β=tanα-tanβ/1+tanαtanβ•sin-a=-sina•cos-a=cosa•sinpi/2-a=cosa•cospi/2-a=sina•sinpi/2+a=cosa•cospi/2+a=-sina•sinpi-a=sina•cospi-a=-cosa•sinpi+a=-sina•cospi+a=-cosa•tgA=tanA=sinA/cosA两角和与差的三角函数•sina+b=sinacosb+cosαsinb•cosa+b=cosacosb-sinasinb•sina-b=sinacosb-cosasinb•cosa-b=cosacosb+sinasinb•tana+b=tana+tanb/1-tanatanb•tana-b=tana-tanb/1+tanatanb 三角函数和差化积公式•sina+sinb=2sina+b/2cosa-b/2•sina−sinb=2cosa+b/2sina-b/2•cosa+cosb=2cosa+b/2cosa-b/2•cosa-cosb=-2sina+b/2sina-b/2 积化和差公式•sinasinb=-1/2cosa+b-cosa-b•cosacosb=1/2cosa+b+cosa-b•sinacosb=1/2sina+b+sina-b•sin2a=2sinacosa•cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a半角公式•sin^2a/2=1-cosa/2•cos^2a/2=1+cosa/2•tana/2=1-cosa/sina=sina/1+cosa万能公式•sina= 2tana/2/1+tan^2a/2•cosa= 1-tan^2a/2/1+tan^2a/2•tana= 2tana/2/1-tan^2a/2其它公式•asina+bcosa=sqrta^2+b^2sina+c 其中,tanc=b/a•asina-bcosa=sqrta^2+b^2cosa-c 其中,tanc=a/b•1+sina=sina/2+cosa/2^2•1-sina=sina/2-cosa/2^2其他非重点三角函数•csca=1/sina•seca=1/cosa双曲函数•sinha=e^a-e^-a/2•cosha=e^a+e^-a/2•tgha=sinha/cosha常用公式表一1;乘法公式1a+b ²=a 2+2ab+b 22a-b ²=a ²-2ab+b ² 3a+ba-b=a ²-b ²4a ³+b ³=a+ba ²-ab+b ² 5a ³-b ³=a-ba ²+ab+b ²2、指数公式:1a 0=1 a ≠0 2a P -=P a 1a ≠0 3a mn=m n a 4a m a n =a n m + 5a m ÷a n =n ma a =a n m - 6a m n =a mn7ab n =a n b n8b an =n nb a 9a 2=a102a =|a| 3、指数与对数关系:1若a b =N,则N b a log = 2若10b=N,则b=lgN3若b e =N,则b=㏑N 4、对数公式:1b a b a =log , ㏑e b=b 2N a aN =log ,e Nln =N3aNN a ln ln log =4a b b e a ln = 5N M MN ln ln ln += 6N M N M ln ln ln -= 7M n M nln ln = 8㏑n M =M nln 15、三角恒等式:1Sin α²+Cos α²=1 21+tan α²=sec α²31+cot α²=csc α² 4αααtan cos sin = 5αααcot sin cos =6ααtan 1cot = 7ααcos 1csc = 8ααcos 1sec =1αααcos sin 22sin = 2ααα2tan 1tan 22tan -=3ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式降幂公式:12sin α2=2cos 1a - 22cos α2=2cos 1a +32tan α=a a sin cos 1+=a a cos 1sin +9、三角函数与反三角函数关系:1若x=siny,则y=arcsinx 2若x=cosy,则y=arccosx 3若x=tany,则y=arctanx 4若x=coty,则y=arccotx10、函数定义域求法:1分式中的分母不能为0, a 1α≠02负数不能开偶次方, a α≥0 3对数中的真数必须大于0, N a log N>0 4反三角函数中arcsinx,arccosx 的x 满足:--1≤x ≤1 5上面数种情况同时在某函数出现时,此时应取其交集;11、直线形式及直线位置关系:1直线形式:点斜式:()00x x k y y -=-斜截式:y=kx+b两点式:121121x x x x y y y y --=--2直线关系:111:b x k y l += 222:b x k y l +=平行:若21//l l ,则21k k = 垂直:若21l l ⊥,则121-=⋅k k常用公式表二1、求导法则:1u+v /=u /+v / 2u-v /=u /-v /3cu /=cu /4uv /=uv /+u /v 52v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 2、基本求导公式:1c /=0 2xa /=ax1-a 3ax /=a xlna4e x /=e x 5㏒a x /=a x ln 1 6lnx /=x 17sinx /=cosx 8cosx /=-sinx9tanx /=2)(cos 1x =secx 210cotx /=-2)(sin 1x =-cscx 211secx /=secxtanx 12cscx /=-cscxcotx13arcsinx /=211x - 14arccosx /=-211x -15arctanx /=211x + 16()211cot x x arc +-='3、微分1函数的微分:dy=y /dx2近似计算:|Δx|很小时,f ()x x ∆+0=fx 0+f/x 0x ∆4、基本积分公式1kdx=kx+c 2C x a dx x a a ++=+⎰111 3c x dx x +=⎰ln 14C aa dx a x x+=⎰ln 5⎰+=c e dx e xx 6⎰+-=C x xdx cos sin7⎰+=C x xdx sin cos 8C x dx xxdx +==⎰⎰tan cos 1sec 22 9c x dx x xdx +-==⎰⎰cot sin 1csc 2210⎰+=-cx dx x arcsin 11211c x dx x +=+⎰arctan 1125、定积分公式:1⎰⎰=babadtt f dx x f )()( 2⎰=aadx x f 0)(3()()dx x f dx x f abb a⎰⎰-= 4⎰⎰⎰+=bacabcdxx f dx x f dx x f )()()(5若fx 是-a,a 的连续奇函数,则⎰-=aadx x f 0)(6若fx 是-a,a 的连续偶函数,则:6、积分定理:1()()x f dt t f x a ='⎥⎦⎤⎢⎣⎡⎰ ⎰⎰- = aa a dx x f dx x f 02()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2 3若Fx 是fx 的一个原函数,则)()()()(a F b F x F dx x f bab a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2 ()C a xa dx x a +=+⎰arctan 11322 ()C a x dx xa +=-⎰arcsin 1422 ()C a x ax a dx a x ++-=-⎰ln 2115228.积分方法()()b ax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin =()22a x x f -=;设:t a x sec = ()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
三角函数公式大全表
三角函数公式大全表三角函数公式大全表:1、正弦函数:正弦函数的定义为:y = sin x这里x表示弧度,y表示正弦函数的值,取值范围为(-1, +1).2、余弦函数:余弦函数的定义为:y = cos x这里x表示弧度,y表示余弦函数的值,取值范围为(-1, +1).3、正割函数:正割函数的定义为:y = tan x这里x表示弧度,y表示正割函数的值,取值范围为(-∞,+∞).4、反正弦函数:反正弦函数的定义为:x = arcsin y这里x表示弧度,y表示反正弦函数的值,取值范围为(-1, +1).5、反余弦函数:反余弦函数的定义为:x = arccos y这里x表示弧度,y表示反余弦函数的值,取值范围为(-1, +1).6、反正割函数:反正割函数的定义为:x = arctan y这里x表示弧度,y表示反正割函数的值,取值范围为(-∞,+∞).7、双曲正弦函数:双曲正弦函数的定义为:y = sinh x这里x表示弧度,y表示双曲正弦函数的值,取值范围为(-∞,+∞).8、双曲余弦函数:双曲余弦函数的定义为:y = cosh x这里x表示弧度,y表示双曲余弦函数的值,取值范围为(1, +∞)9、双曲正割函数:双曲正割函数的定义为:y = tanh x这里x表示弧度,y表示双曲正割函数的值,取值范围为(-1,+1).10、反双曲正弦函数:反双曲正弦函数的定义为:x = arcsinh y这里x表示弧度,y表示反双曲正弦函数的值,取值范围为(-∞,+∞).11、反双曲余弦函数:反双曲余弦函数的定义为:x = arccosh y这里x表示弧度,y表示反双曲余弦函数的值,取值范围为(0, +∞).12、反双曲正割函数:反双曲正割函数的定义为:x = arctanh y这里x表示弧度,y表示反双曲正割函数的值,取值范围为(-1, +1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式表
同角三角函数的基本关系式
(六边形记忆法:图形结构“上弦中切下割,左正右余 中间
1”;记忆方法“对角线上两个函数的积为
1
;阴影
三角形上两顶点的三角函数值的平方和等于下顶点的三 角函数值的平方;任意一顶点的三角函数值等于相邻两 个顶点的三角函数值的乘积。
”)
诱导公式(口诀:奇变偶不变,符号看象限。
)
sin (— a )= — sin a
COS (― a)= COS a tan (— a )= — tan a COt (— a )=— COt a
sin (3 n /2 — a )=— COS a
2
1 — tan ( a /2)
tan a + tan 3
倒数关系:
tan a • cot a =1 Sin a
• C SC a =1
COS a • Sec a =1
商的关系: sin a /cos a = tan a = sec a /CSC a COS a /sin a = COt a = CSC a /sec a
平方关系:
. 2 2 ,
Sin a + COS a = 1
1 + tan a = sec a
2 2
1 + COt a = CSC a
sin ( n /2 — -a )= =CO S
a
sin ( n - -a )= =sin a
CO S ( n /2 — -a )= =sin a COS
( n - -a )= =—COS
a
tan ( n /2 — -a
)= =COt a tan ( n - -a )= =—tan a COt ( n
/2 —
-a )= =tan a
COt ( n - -a )= =—COt a
CO (3n /2 - -a ) =—
sin ( 2
n
sin a
CO ( 2 n
tan (3n /2 - -a )= =COt a 丄 ( 2
tan n
COt (3n /2 - -a )= =tan a ( 2
COt n
a )=— Sin a
a)= COS a a )= — ta n a a )=— COt a
sin ( n /2 + a ) =COS a
sin ( n + a )=—sin a
CO S
( n /2 + a ) =—sin a COS ( n + a )=—COS a tan ( n /2 + a ) =—COt a
tan ( n + a )=tan a COt (
n /2 + a ) =—tan a
COt ( n + a )=COt a
sin (3 n /2 + a )=— COS a
COS (3 n /2 + a ) = sin a tan (3 n /2 + a )=— COt a
COt (3 n /2 + a )=— tan a
sin (2k n + a )= =sin a CO S (2k n + a )= =CO S
a tan (2k n + a )= =tan a COt (2k n + a )= =COt a (其中k ;
Z)
两角和与差的三角函数公式 万能公式
sin (a + 3) =sin a COS 3 + COS a sin sin (a — 3 ) =sin a COS
3 —COS a sin CO S (a + 3 ) =COS a COS
3 —sin a sin CO S
(a — 3 ) =COS a COS 3
+ sin a sin 2tan( a /2)
sin a = -----------------
2
1 + tan ( a /2)
COS a
tan (a + B )= 2
1 + tan ( a /2)
tan (a — B )= 1 — tan a • tan B
tan a — tan B 1 + tan a • tan B
2tan( a /2)
tan a = -------------------
1 — tan 2( a /2)
半角的正弦、余弦和正切公式 三角函数的降幕公式
tan —=
sin —= 2 1 4
2
十 coscc
1 - CQSQ _ sin Ct! sin
at 1 cos a
二倍角的正弦、余弦和正切公式 sin2 a = 2sin a COS a cos2 a = cos 2 a — sin 2 a = 2cos 2 a — 1 = 1 — 2sin 2 a 2tan a tan2 a = ----------------- 1 — tan 2 a 三角函数的和差化积公式 a + B sin a + sin B = 2sin ------------- • cos ----------- 2 a + B sin a — sin B = 2cos ---------- • sin ------------ 2 a + B cos a + cos B = 2cos ---------- • COS --------- 2 a + B
B cos a — cos B = — 2sin • sin -
2
.T 1 - cos2ce
sin a ■ ----------------
2
1+ cos lot
cc>s a ■ --------------
2
三倍角的正弦、余弦和正切公式
3
sin3 a = 3sin a — 4sin a
cos3 a = 4cos? a — 3COS
a
3tan a — tan 3 a
tan3 a = --------------------
1 — 3tan a
三角函数的积化和差公式
sin
cos
cos
sin
-cos -sin -cos -sin B = -[sin B = -[sin B = -[cos B=— -[cos 化asin a ± bcos a 为一个角的一个三角函数的形式(辅助角的三角函数的公式)
+ sin
—sin
+ cos
1
(a + B ) — cos ( a — B )]
2
a sin x 十沪別门〔工丈◎]
〔其中①角所在象限由禺3的符号确定g角的值由tanG二确定)
a
特殊角的三角函数值表
三角形中三角函数基本定理
Tag:三角函数点击:直1522【正弦定理】
闺】・3
sin 14 sin 月sinC*
式中R 为二ABC 的外接圆半径(图1.3). a 2 = b 2 - 2&c cos A £ = c 2 - 2cacos5 c = a +占-Zs/icosC
【勾股定理】 在直角三角形(C 为直角)中,勾方加股方等于弦方(图1.4),即 勾股定理也称商高定理,外国书刊中称毕达哥拉斯定理 【正切定理】
亠 A-B a-b C
tan ------- = ------- c ot — 2
C+A
tan =£+£
A- B Q - b\ B- C b-c \ C- A c-a tan -------
tan -------
tan ------
2 2 2
【半角与边长的关系公式】
p
p 2 2 2
.A sin —= 2
A
cos —= ------ -- ------ -.sin —二
& 2 P (P —心 &
.COS —= 2 2 \ be A r tan —=— 2 p —U_ r - ](@ 一 7) 2 p-c \ p(p-c) 式中
P - +B+C )
耳
ca P (P -
c
加-C
----------- ,cos — = ■ ------------- ca --------- 2 8 r p(p- a) 2 p -b ab
,r 为一ABC 的内切圆半径,且
A^B
B+C tan
— " +八袒丁 b +c
【余弦定理】
式中S为二ABC的面积.
Welcome !!! 欢迎您的下载, 资料仅供参考!。