理论生态学 考点
生态学知识点
生态学知识点1.物质循环的特点:物质不灭,循环往复;物质循环与能量流动不可分割,相辅相成;物质循环的生物富集;生态系统对物质循环有一定的调节能力;物质循环中的生物作用。
各物质循环过程相互联系,不可分割。
2.影响物质循环速率的因素:有机物质腐烂的速率。
人类活动影响。
元素的性质。
生物的生长速率。
3.生物地球化学循环的类型:气体型循环、沉积型循环、水循环。
4.碳循环:c的存在形式:co2、无机盐、有机碳。
主要循环过程:生物的同化和异化过程。
大气和海洋间的co2交换。
碳酸盐的沉淀作用。
5.温室效应:大气中对长波辐射具有屏蔽作用的温室气体浓度增加使较多的辐射能被截留在地球外表而导致气温上升。
温室气体:CO2\CH4\N2O\SF6\CFCs\HFCs。
温室效应影响:海平面上升,淹没陆地。
全球气候常发生暴雨或干旱。
土地沙漠化,生态环境改变。
6.N循环:生物可利用的N的形式:NO3-\NO2-\NH4+。
N循环的主要过程:固氮作用、氨化作用、硝化作用、反硝化作用。
固氮作用意义:平衡反硝化作用。
对局部缺氮环境有重要意义。
使N进入生物循环。
氨化作用:由氨化细菌和真菌的作用将有机氮分解成为氨和氨化合物,氨溶水成为NH4+,为植物利用。
硝化作用:在通气良好的土壤中,氨化合物被亚硝酸盐细菌和硝酸盐细菌氧化为亚硝酸盐和硝酸盐,供植物吸收利用。
反硝化作用:反硝化细菌将亚硝酸盐转变成氮气,回到大气库中。
7.P循环:典型的沉积循环。
P以不活泼的地壳作为主要的储存库。
v磷的循环过程岩石经土壤风化释放的磷酸盐和农田中施用的磷肥,被植物吸收进入植物体内。
沿食物链传递,并以粪便、残体或直接以枯枝落叶、秸秆归还土壤。
含磷有机化合物经土壤微生物的分解,转变为可溶性的磷酸盐,可再次供应植物吸收利用,这是磷的生物小循环。
一局部磷脱离生物小循环进入地质大循环:•动植物遗体在陆地外表的磷矿化•磷受水的冲蚀进入江河,流入海洋。
8.赤潮:氮和磷的浓度大于0.2和0.02mg/L时,会引起水体的富营养性变化,促使藻类大量繁殖,在水面上聚集成大片的水华〔湖泊〕或赤潮〔海洋〕。
生态学知识点大全
生态学知识点大全生态学是研究生物与环境之间相互关系的学科,它探讨了生物群落的结构和功能以及生物与环境之间的相互作用。
在本文中,我们将介绍生态学的各个关键知识点。
1. 生态系统生态系统是由生物群落和其所处的非生物环境组成的。
它包括生物群落中的各种生物个体、不同物种之间的相互作用以及它们与环境的相互作用。
生态系统可分为陆地生态系统和水域生态系统。
2. 生物群落生物群落是由共同生活在同一区域的不同物种组成的。
它们通过食物链和食物网相互联系,共同维持着一个相对稳定的生态平衡。
生物群落由植物、动物和微生物组成。
3. 生态位生态位描述了一个物种在生态系统中的角色和职责。
物种的生态位由其对资源的利用方式、与其他物种的相互关系以及其对环境的适应能力等因素决定。
4. 生态位分化生态位分化指的是当一种或多种物种通过进化适应不同的生态位,减少彼此竞争的过程。
这样可以提高物种的适应性和生存能力。
5. 生物多样性生物多样性是指某一地区或生态系统内存在的不同物种的数量和多样性。
生物多样性对维持生态平衡、促进生态系统的稳定性和提供生态服务至关重要。
6. 传粉传粉是指植物通过借助外部媒介(如昆虫、鸟类或风)将花粉传递到其他植物上的过程。
传粉对植物繁殖起着至关重要的作用。
7. 激素调节激素调节是指生物体内激素分泌和代谢的过程,以维持其生长、发育和行为。
植物和动物都依赖激素调节来适应环境的变化。
8. 能量流动能量在生态系统中通过食物链的方式流动。
植物通过光合作用将太阳能转化为化学能,再被食草动物所摄取,最终流向其他食物链的环节。
9. 共生关系共生关系是指两个或多个物种之间相互依存的关系。
共生关系可以是互利共生、寄生共生或捕食共生。
10. 生态足迹生态足迹表示一个地区或个体对生态系统资源的需求和利用程度。
它衡量了人类对资源的消耗与生态系统的再生能力之间的平衡。
11. 氮循环氮循环是指在生态系统中氮元素的各种转化过程,包括氮固定、氮释放、氮捕获和氮沉积等。
生态学的知识点
生态学的知识点生态学是研究生物与环境之间相互作用的科学领域。
它关注着生态系统的结构、功能和演化,以及人类活动对自然环境的影响。
本文将介绍生态学的几个重要知识点,包括生态系统的组成、能量流动、物种多样性和生态位。
一、生态系统的组成生态系统是由生物群落和非生物环境组成的。
生物群落包括所有生物种类的群体,它们在特定地点上共同生活并相互作用。
非生物环境包括土壤、水、气候等因素,它们为生物提供生存条件。
生态系统的组成元素相互依赖,共同构成一个复杂的生态网络。
二、能量流动能量在生态系统中通过食物链的形式流动。
光能被光合作用转化为化学能,从而被植物吸收。
植物通过光合作用将化学能转化为生物量,并成为其他生物的食物来源。
这种能量转移在不同层级的食物链中不断进行,直到最终被消耗者利用并释放为热能。
能量流动是维持生态系统稳定的关键过程。
三、物种多样性物种多样性是生态系统的重要特征,它指的是一个区域或生态系统中不同物种的数量和种类。
物种多样性对生态系统的稳定性和功能至关重要。
较高的物种多样性意味着生态系统更具有抵抗力,能够适应环境变化,并提供更多的生态服务。
但由于人类活动的干扰,物种多样性正面临着严重的威胁。
四、生态位生态位是指一个物种在其所处生态系统中的角色和功能。
不同物种之间通过利用资源和生存空间的方式来避免直接竞争。
每个物种的生态位是独特的,它们在生态系统中占据不同的位置。
生态位的存在使得生物群落能够共存并维持生态平衡。
总结生态学作为一门综合性科学,涵盖了生物学、地理学、化学等多个学科的知识。
通过研究生态系统的组成、能量流动、物种多样性和生态位等知识点,我们能够更好地理解自然界的运行规律,为保护和管理生态环境提供科学依据。
我们应该意识到自己的行为对生态系统的影响,并积极采取措施保护生物多样性和生态平衡。
只有这样,我们才能实现可持续发展的目标,保护地球家园。
生态学知识点
1.有效积温:根据生物有效临界温度的天数的日平均温度累计计算发育的速率与温度成正比用于:预测害虫发生的世代数;来年发生程度以及害虫的分布区危害猖獗区;根据有效积温制定农业规划,合理安排作物和预测农时;预测生物地理分布边界。
2.霍普金斯物候定律:在其它因素相同的条件下,北美洲温带地区每向北移动纬度1度,向东移动经度5度,或上升122m,植物的阶段发育在春天和初夏将各延迟4天;在晚夏和秋天则相反,都要提早4天。
3.森林防火措施:①开展生物工程防火,建立火灾阻隔系统:利用耐火树种,营造防火林带②开展计划烧除,加强可燃物管理:用低强度火烧除杂草,而不烧伤树木③加强防火管理:对人类用火严加控制4.种群增长模型:“S”型增长:两个特点:①曲线渐近于K值,即平衡密度;②曲线上升是平滑的。
逻辑斯谛方程:dN/dt=rN(1-N/K)N为种群大小,K为环境容纳量曲线分为5个时期:开始期(种群个数少,增长缓慢);加速期(密度增加逐渐加快);转折期(个体数达到一半,密度增长速率最快);减速器(密度增加减慢);饱和期(个体数量达到饱和K值)主要意义:①是许多两个相互影响种群增长模型的基础;②是渔牧林业确定最大持续产量的主要模型;③两个参数r和k是生物进化对策理论中的重要概念5.生殖对策:r-对策和k-对策:r-对策:快速发育,小型成体,数量多而个体小,高的繁殖能量和短的世代周期以“量”取胜,死亡率高,能讯速恢复(昆虫;白桦、山杨树种虽为高大乔木,但种子小,数量大,易飞散传播,为典型的r对策特征)K-对策:慢速发育,大型成体,数量少但个体大,低繁殖能量分配和长的世代周期以“质”取胜,数量较稳定,一般在K值附近,种群恢复困难,容易成为濒危物种(大熊猫,老虎等大型哺乳动物,以及红松等树木)6.他感作用(异株克生):一种植物通过向体外分泌代谢过程中的化学物质,对其他植物产生直接或间接影响的现象。
是种间关系的一部分,是竞争的一种特殊形式,种间关系也有此现象。
生态学考试重点
内分布型。 三种类型①均匀型②随机型③成群型 成因:(1)均匀分布 产生的主要原因是种群内个体间的竞争,另一原因是分泌有毒物质于土 壤中以阻止同种植物籽苗的生长(2)随机分布比较少见,因为只有在 环境的资源分布均匀一致的情况下或种群内个体间没有彼此吸引或排斥 时才易产生随机分布(3)成群分布是最长见的内分布型a.环境资源分布 不均匀,富饶与贫乏相嵌。b.植物传播种子的方式使其以母株为扩散中 心。c.动物的社会行为使其结合成群。 17.简述生物繁殖方式的生态学意义。1包括有性繁殖和无性繁殖两种 方式。2生态学意义:①在现有环境压力下的扩展性;②对多变环境的 适应;③繁殖速度;④繁殖潜力;⑤在自然选择条件下的进化速度。3 比较而言,无性繁殖在现有环境扩展性、繁殖速度、繁殖潜力方面优于 有性繁殖,但对多变环境的适应性却较差。 18.简述动植物扩散的生物学及生态学意义。 答:扩散是指生物体 或繁殖体从一个生境转移到另一个生境的过程。动物扩散的生物学和生 态学意义如下:①可以使种群内和种群间的个体得以交换,防止长期近 亲繁殖而产生的不良后果;②可以补充或维持在正常分布区以外的暂时 性分布区域的种群数量;③扩大种群的颁布区。对于动物来说,扩散可 能带来遭到天敌侵袭、存活和繁殖成功率降低等诸多风险,但也可能降 低暴露给捕食者了染上疾病的机会,增加遇到资源和配偶的机会。并由 于杂种优势而产生更多的合适后代的机会。 19.理解繁殖价值、亲本投资、繁殖成本的含义。繁殖价值:是指在相 同时间内特定年龄个体相对于新生个体的潜在繁殖贡献。亲本投资:有 机体在生产子代以及抚育和管护时所消耗的能量、时间和资源量。繁殖 成本:有机体在繁殖后代时对能量或资源的所有消费。 20.种间关系有哪些基本类型? 答: 存在于各个生物种群内部的 个体与个体之间的关系称为种内关系,而将生活于同一环境中的所有不 同物种之间的关系称为种间关系。 生物的种间关系多种多样,但最主要的有9种相互作用类型:偏利作 用、原始作用、互利共生、中性作用、竞争(直接干涉型)、竞争(资 源利用型)、偏害作用、寄生作用、捕食作用。可概括分为两大类,即 正相互作用和负相互作用。 21.生物密度效应的基本规律有哪两个?其主要特征是什么?答:生物 密度效应:在一定时间内,当种群的个体数目增加时,就必定会出现邻 接个体之间的相互影响。 (1)最后产量恒值法则 :特征:在一定范围 内,当条件相同时,不管一个种群的密度如何,最后产量差不多总是一 样的。(2) --3/2自疏法则 :特征:如果播种密度进一步提高和随着高 密度播种下植株的继续生长,种内对资源的竞争不仅影响到植株生长发
理论生态学的基本概念与方法
理论生态学的基本概念与方法理论生态学是一门研究生态系统的基本理论和方法的学科,它旨在揭示生态系统的本质、结构和功能,并探索人类与生态系统的关系。
本文将介绍理论生态学的基本概念和方法。
一、基本概念1.1 生态系统生态系统是一种由生物和非生物组成的自然系统,包括物种之间和它们与环境之间的相互作用和循环过程。
生态系统包括不同的生态层,如生态圈、生物群落、种群和个体等,这些生态层之间相互作用,形成完整的生态系统。
1.2 生态位生态位是一个物种在生态系统中的角色和地位,包括它所占据的空间、所食的食物、其它物种与之的相互作用等因素。
每个物种所占据的生态位不同,可以通过竞争、协作等方式进一步演化。
1.3 生态网络生态网络是一个由多个物种相互作用和影响形成的复杂网络结构,可以通过生态位、生态层次等方式来理解。
在生态网络中,每个物种都与其它物种直接或间接相关,相互作用和影响形成一个相互依存的生态系统。
二、基本方法2.1 系统思考理论生态学是一门系统科学,它关注生态系统的综合性和复杂性。
系统思考是一种重要的方法论,可以帮助我们理解生态系统中各种相互作用和关系,并提出生态环境保护的策略和方法。
2.2 程序模型程序模型是一种重要的理论工具,它可以模拟生态系统的复杂动态过程,探究其演化规律和变化趋势。
程序模型可以基于生态学基础理论和实验数据,包括传统的差分方程模型、动态系统模型及代理模型等。
2.3 统计分析统计分析是一种广泛使用的方法,可以通过对生态数据进行分析和解释,揭示生态系统状况和变化趋势。
统计分析通常包括描述性统计、假设检验、回归分析等方法,可以帮助我们理解生态数据的变化规律和趋势,进一步构建理论模型。
2.4 跨学科研究理论生态学旨在综合多个学科的知识和方法,对生态系统进行综合性研究。
跨学科研究是一种重要的方法,可以通过与生物学、地理学、气候学等学科的交叉合作,揭示生态系统的综合性和多样性。
三、总结理论生态学是一门综合性的学科,基于生态学的基本概念和方法,着眼于生态系统的动态演化和复杂性,旨在深入探究人类与生态系统的关系和相互依存性。
生态基础学必考知识点归纳
生态基础学必考知识点归纳生态学是研究生物体与其环境相互作用的科学,它涵盖了生物群落的结构、功能、动态以及与环境的相互关系。
以下是生态学的一些必考知识点归纳:1. 生态学的定义和分支:生态学是研究生物与其环境之间相互作用的科学,包括植物生态学、动物生态学、微生物生态学等分支。
2. 生态系统:生态系统由生物群落和非生物环境组成,它们相互作用形成了一个功能整体。
3. 生物群落:生物群落是指在一定时间和空间范围内,相互关联的生物种群的集合。
4. 物种多样性:物种多样性是生态系统中不同物种的数量和种类的多样性。
5. 生态位:生态位是指一个物种在生态系统中的位置,包括其对资源的利用方式和与其他物种的关系。
6. 能量流动:生态系统中的能量流动遵循从生产者到消费者再到分解者的过程,能量在每个营养级之间传递时会有损失。
7. 物质循环:生态系统中的物质循环包括水循环、碳循环、氮循环等,这些循环过程保证了生态系统中物质的持续供应。
8. 生态演替:生态演替是指生物群落随时间的变化过程,包括初级演替和次级演替。
9. 生态平衡:生态平衡是指生态系统中生物和非生物因素相互作用达到一种相对稳定的状态。
10. 环境压力与适应:环境压力是指生物面临的各种环境挑战,如温度、湿度、食物供应等,而适应则是生物对这些压力的响应。
11. 种群动态:种群动态包括种群的增长、衰退和稳定状态,受到出生率、死亡率、迁移率等因素的影响。
12. 竞争与共生:竞争是指同一生态位的物种之间为资源而斗争,而共生则是指不同物种之间的互利关系。
13. 人类活动对生态系统的影响:人类活动如城市化、工业化、农业扩张等对生态系统产生了深远的影响,包括生物多样性的丧失、栖息地的破坏等。
14. 保护生态学:保护生态学是研究如何保护和恢复生态系统的科学,包括物种保护、生态系统管理和可持续发展等。
15. 生态系统服务:生态系统服务是指生态系统为人类社会提供的直接或间接的利益,如净化空气、调节气候、提供食物等。
生态学复习知识点
生态学复习知识点1 生态学定义及生态学研究包括那几个空间尺度定义:研究生物与生物之间、生物与环境之间的相互关系和作用规律的科学。
空间尺度:局域尺度:个体在这一尺度内完成取食和繁殖等活动。
集合种群尺度:在该尺度内,扩散个体在不同的局域种群之间迁移。
地理尺度:一个物种所占据的整个地理区域,一般个体不会扩散出该区域。
2生物圈的定义地球上所有的生物及其无机环境的总和,即全球生态系统的总和。
3生物学研究基本方法野外研究:野外直接观察,但不易重复数据收集、处理实验室研究:重复性强,但与外界真实环境相差太远。
理论研究:建立数学模型,解决真实情况下不能解决的问题,但与客观实际相差太远。
4生态学的特点及研究生态学的意义特点:是自然科学生物科学体系中的一个分支,环境学科的基础,与其他科学的交叉,不带有政治色彩。
意义:生态学的研究,将使人们从世界范围,从整个生物圈角度来考虑环境问题,进一步认识人与生物圈的关系,设法恢复和保持生物圈的动态平衡,为合理开发自然、建设国土提供指导。
5生态因子的定义,生态因子作用特点及分类生态因子:指环境中对生物的生长、发育、生殖、行为和分布有直接或间接影响的环境因素,如光照、温度、湿度、气体、食物及其他生物等。
作用特点:(1)生态因子的综合作用(2)生态因子的非等价性(主导因子作用)(3)生态因子的直接作用和间接作用(4)生态因子的阶段性(5)生态因子的不可替代性和补偿性作用。
分类:1根据性质把生态因子归纳为五类:气候因子、土壤因子、地形因子、生物因子、人为因子。
2按有无生命分:生物与非生物3按生态因子的稳定性及其作用特点分:稳定因子与变动因子4按对生物种群数量变动的作用分:密度制约因子与非密度制约因子6 生态幅的定义,生态型的定义,生活型定义,环境定义生态幅:每一种生物对每一生态因素都有一个耐受范围,即有一个最低耐受值和一个最高耐受值(或称耐受下限和耐受上限),它们之间的范围,就称为生态幅或生态价。
第二章 理论生态学基础
本章结束!
第二章 理论生态学基础
• 2.1 生态恢复概述 • 恢复restoration:
是指受损状态恢复到未被损害前的完 善状态的行为,是完全意义上的恢复,包 括“完美”和“健康”的含义。
恢复restoration
• 修复rehabilitation:把一个事物恢复到先前 的状态的行为,主要指退化状态的改良, 包括完美状态。Replace a degraded ecosystem with another productive type using a few or many species
2.10生物多样性在生态恢复中的作用
在恢复项目的管理过程中
首先要考虑ห้องสมุดไป่ตู้物控制 A、对极度退化的生态系统,主要是抚育和管理, B、对中度退化的生态系统和部分恢复的生态系统
则要加强病虫害控制 然后考虑建立共生关系及生态系统演替过程中物种替 代问题
在恢复项目评估过程中
可与自然生态系统相对照,从遗传、物种和生态系统 水平进行评估,最好是同时考虑景观层次的问题
生态系统的结构理论
– 物种结构、时空结构、营养结构 – 合理生态系统结构
• 从时空结构角度,应充分利用光、热、水、土资源, 提高光能利用率
• 从营养结构角度,应实现生物物质和能量的多级利用 与转化,形成一个高效的,无“废物”的系统。
• 从物种结构上,提倡物种多样性,以利于系统的稳定 和持续发展。
2.2 生态恢复的理论基础
– 火烧迹地-杂草-桦树期-山杨期-云杉期(需几十 年)。
– 弃耕地-杂草期-优势草期-灌木期-乔木期。 – 群落演替可通过人为手段调控,改变演替速度
或演替方向。
水杨
杞木
云杉
生态学考试重点
1、生态学:研究有机体及其周围环境相互关系的科学。
环境包括非生物环境和生物环境。
2、环境:指某一特定生物体或生物群体周围一切的总和包括空间及直接或间接影响该生物体或生物群体生存的各种因素。
3、生态因子:是指环境要素中对生物起作用的因子,如光照、温度、水分、氧气、二氧化碳、食物和其他生物等。
4、利比希最小因子定律:低于某种生物需要的最小量的任何特定因子,是决定该种生物生存和分布的根本因素。
5、生态幅:每一种生物对每一种生态因子都有一个耐受范围,即有一个生态上的最低点和最高点。
在最低点和最高点之间的范围,称为生态幅或生态价。
6、种群:是在同一时期内占有一定空间的同种生物个体的集合。
7、种群平衡:种群较长期地维持在几乎同一水平上。
8、生态入侵:由于人类有意识或无意识地把某种生物带入适宜其栖息和繁衍的地区,其种群不断扩大,分布区逐步稳定地扩展,这种过程称为生态入侵。
9、集合种群:指的是局域种群通过某种程度的个体迁移而连接在一起的区域种群。
10、生存对策:生物在生存斗争中获得的生存对策。
11、自疏:随着播种密度的提高,种内竞争不仅影响到植株生长发育的速度,也影响到植株的存活率。
同样在年龄相等的固着性动物群体中,竞争个体不能逃避,竞争结果典型的也是使较少量的较大的个体存活下来。
12、他感作用:也称异株克生,通常指一种植物通过向体外分泌代谢过程中的化学物质,对其他植物产生直接或间接的影响。
13、种间竞争:指两物种或更多物种共同利用同样的有限资源时而产生的相互竞争作用。
种间竞争的结果常是不对称的,即一方取得优势,而另一方被抑制甚至被消灭。
竞争的能力取决于种的生态习性、生活型和生态幅等。
14、生态位:是生态学中的一个重要概念,指物种在生物群落或生态系统中的地位和角色。
15竞争释放:在缺乏竞争者的时候,物种会扩张其实际生态位。
性状替换:竞争产生的生态位收缩会导致形态性状发生变化16、捕食:一种生物摄取其他种生物个体的全部或部分为食,前者称为捕食者,后看称为猎物或被食者。
生态学 考试 重点
绪论1·生态学:研究生物与其环境相互关系的科学。
2·全球变化:广义:全球气候变化、人口增长、土地利用及覆盖变化、氮素生物地化循环变化、环境污染、生物多样性丧失以及国际政治与经济形势和格局的变化等狭义:全球气候变化,包括温室气体的增加以及由此引发的全球暖化、大气成分变化、大气环流和洋流的改变、海平面上升、冰川融化以及臭氧层破坏等问题2·可持续发展:既满足当代人需要,又不对后代满足其需要的能力构成危害的发展。
三原则:公平性、持续性、公共性化感作用:植物(包括微生物)通过向环境中释放化学物质影响邻近植物(包括微生物)生长发育的现象。
3.生态学的研究对象与内容经典生态学是以个体、种群、群落和生态系统为研究对象的宏观生物学。
研究各层次生物与环境的相互关系。
个体:资源分配、生殖、进化与适应对策种群:某一地段同种生物个体组成的群体群落:外貌、结构、多样性、稳定性、演替生态系统:能量流动、物质循环生物圈:地球上的全部生物和一切适合于生物栖息的场所,它包括岩石圈的上层、水圈的全部和大气圈的下层第一章个体生态1·环境:生物的栖息地。
某一特定生物体或群体以外的空间,以及直接或间接影响该生物体或群体的生存与活动的外部条件的总和。
2·生态因子:环境因子中对生物生长、发育、生殖、行为和分布产生直接或间接影响的环境要素。
所有生态因子构成生态环境。
生物个体或群落生活的具体地段上的生态环境称为生境(habitat)。
3·生态因子的作用特点:综合作用;主导因子作用;直接作用和间接作用;阶段性作用;不可替代性和可补偿性;限制性作用和耐性定律;4·Liebig最小因子定律:作物产量往往不是受其需求量最大的营养物质的限制,而是取决于在土壤中稀少又为植物所必需的元素。
5·主要生态因子的生态作用:光的生态作用温度的生态作用水的生态作用土壤的生态作用大气的生态作用6·温度的生态意义:生物生存有一定的温度范围,温度对生物的作用可分为最低温度、最适温度和最高温度,即三基点温度。
生态学知识点总结
1.生态学:是研究有机体与环境间相互关系的学科。
(1)有机体:包括生命的各组织层次。
(2)环境:包括非生环境和生物环境。
(3)相互关系—相互作用:①有机体与非生物环境之间的相互作用;②有机体之间的相互作用:同种生物之间的相互作用,种内竞争:异种生物之间的相互作用,种间竞争、捕食、寄生、共生。
2.环境:环境是指某一特定生物体或生物群体以外的空间,以及直接或间接影响该生物体或生物群体生存的一切事物的总和。
3.环境的分类:①按性质分:自然环境、非自然环境、社会环境②按范围分:宇宙环境(空间环境)、地球环境(地理环境)、区域环境、微环境、内环境③按主体分:人类环境、(生物)环境④按影响分:原生环境、次生环境4.环境因子:生物有机体以外的一切环境要素称为环境因子。
环境因子分类:①按环境因子特点:气候类、土壤类、生物类②按对环境的反应:第一性周期因子、次生性周期因子、非周期性因子。
5.生态因子:环境中对生物的生长、发育、生殖、行为和分布有着直接或间接影响的环境要素。
6.区别:生态因子是环境中对生物起作用的因子;而环境因子则是指生物体外部的全部要素。
7生态因子的分类:①按生命特征:生物因子、非生物因子; ②按性质:气候因子、土壤因子、地形因子、生物因子、人为因子;③对生物种群数量变动的作用:密度制约因子、非密度制约因子;④按利用方式:条件、资源;⑤稳定性及其作用特点:稳定因子、变动因子、周期性变动因子、非周期性变动因子。
8.限制因子:限制因子是对生物的生存、生长、繁殖或扩散等起限制作用的因子;当生态因子接近或超过生物的耐受性极限,这个因子成为该生物限制因子。
9.最小因子定律:植物的生长取决于那些处于最少量状态的营养元素,这些处于最低量的营养元素称最小因。
10.耐受性定律:任何一个生态因子在数量或质量上的不足或过多,即当其接近或达到某种生物的耐受限度时,会使该种生物衰退或不能生存。
两定律异同:都是对生态因子数量的法则,但是前者是决定植物的生长,最小因子增加有利于其生长,而后者生态因子的增加会使生物衰退或不能生存。
生态学重要知识点总结
生态学重要知识点总结第二章(一)环境的概念环境:指某一特定生物体或生物群体以外的空间及直接、间接影响该生物体或生物群体生存的一切事物的总和。
针对某一特定主体,相对的意义。
(一)生态因子的概念生态因子是指环境中对生物的生长、发育、生殖、行为和分布有直接或间接影响的环境要素。
(二)生态因子的类型1. 按有无生命的特征:(1)生物因子,(2)非生物因子。
2. 按生态因子的性质:(1)气候因子,(2)土壤因子,(3)地形因子,(4)生物因子,(5)人为因子3. 按生态因子的稳定性及其作用特点:(1)稳定因子,(2)变动因子。
4. 按生态因子对动物种群数量变动的作用:(1)密度制约因子,(2)非密度制约因子。
三、生态因子的作用特点(一)综合作用相互联系、相互影响,一个单因子变化,必起其他因子发生不同程度变化。
(二)主导因子作用(非等价性)对生物起作用的众多因子是非等价的,其中必有1-2起主要作用的主导因子。
(三)不可替代性和补偿性作用不可替代性:非等价但都不可缺少。
补偿性作用:一定条件下,某一因子在量上的不足,可以由其他因子的增加或加强而得到补偿仍有可能获得相似的生态效应。
(四)阶段性作用某一生态因子的有益作用常常只限于生物生长发育的某一特定阶段。
(五)直接作用和间接作用生态因子对生物的行为、生长、繁殖和分布的作用可以是直接的,也可以是间接的。
(一)Liebig最小因子定律其他元素供应充足时,植物的生长取决于处于最小量状态物质的量。
(二)限制因子定律生物在一定环境中生存,必须得到生存发展的多种因子,某种生态因子不足或过量都会影响生物生存和发展,布莱克曼:提出生态因子的最大状态也具有限制性影响。
(三)Shelford耐性定律1.一种生物能够生长与繁殖,要依赖综合环境中全部因子的存在,其中一种因子在数量或质量上的不足或过多,超过了生物的耐受限度,该种生物就会衰退或不能生存。
2.生态幅:每一种生物对每一生态因子都有一个耐受范围,即这个耐受范围的大小。
生态学知识点梳理
生态学知识点梳理生态学是研究生物与环境相互作用的学科,它关注着生物与环境之间的相互关系、物质与能量的循环以及生物多样性的维护。
在这篇文章中,我们将梳理一些生态学的重要知识点,帮助读者对这个领域有一个全面的了解。
1. 生态学的定义和基本概念生态学是研究生物与环境相互关系的学科,它涵盖了生物群落、生态系统、生态位、生态圈等基本概念。
生态学的研究对象包括生物个体、种群、群落以及它们与环境之间的相互作用。
2. 生态系统的组成和功能生态系统是由生物群落和非生物环境组成的,包括生物群落内的各种生物种类、它们的相互关系以及与环境之间的相互作用。
生态系统的功能包括能量流动、物质循环、生物多样性维护等。
3. 能量流动和营养链能量在生态系统中通过食物链的形式流动。
食物链由生物个体之间的捕食关系构成,能量从一个物种转移到另一个物种。
营养链则描述了生物体内营养物质的流动路径,包括生产者、消费者和分解者。
4. 物质循环和生态系统稳定性生态系统中的物质循环包括碳循环、氮循环、磷循环等。
这些循环是生物体内和生物体间物质转化的关键过程,对于维持生态系统的稳定性至关重要。
5. 生物多样性的重要性和保护生物多样性是指生物体的种类多样性、遗传多样性和生态系统多样性。
生物多样性对于生态系统的稳定性和功能维持具有重要作用,同时也对人类的生存和发展有着重要意义。
因此,保护生物多样性成为了生态学研究的重要方向。
6. 全球气候变化对生态系统的影响全球气候变化是当前面临的重要环境问题之一。
气候变化对生态系统的影响包括温度升高、降水模式改变、海平面上升等,这些变化将对生物群落的分布、物种的适应能力和生态系统的稳定性产生深远影响。
7. 生态学在环境保护和可持续发展中的应用生态学的研究成果在环境保护和可持续发展中具有重要应用价值。
通过生态学的研究,可以为环境管理和政策制定提供科学依据,推动可持续发展的实现。
通过对生态学知识点的梳理,我们可以更好地理解生物与环境之间的相互关系,认识到生态系统的重要性以及生物多样性的保护意义。
生态学应用理论知识点总结
生态学应用理论知识点总结生态系统是指在一定空间范围内,包括生物和非生物因素相互作用维持其稳定的自然系统。
生态系统的组成要素包括生物要素和非生物要素。
生态系统的结构包括两个方面:生物成分、非生物成分。
生态学应用理论中的生态系统知识点包括但不限于:1. 生物成分(1) 生物多样性:生态系统中包括的不同种类的生物,包括物种多样性、基因多样性和生态系统多样性。
(2) 养分循环:生态系统中的养分包括碳、氮、磷、硫等,它们通过生物过程和生物非生物相互作用不断循环。
2. 非生物成分(1) 水、土壤、空气:生态系统中的非生物成分对生态系统的稳定和健康至关重要。
(2) 物理因子:如温度、湿度、光照等,对生态系统的生物成分和非生物成分起着重要的调节作用。
生态系统知识点不仅包含了生态系统的结构,还包括了生态系统的功能,如能量流动、物质循环等。
同时,生态系统的稳定性和动力学也是生态学应用理论中所关注的重要知识点。
生态系统的稳定性是指系统在受到外界干扰后仍能维持其结构和功能的能力。
生态系统的动力学是指系统在长期演变过程中所呈现出来的结构、功能和动态变化。
物种是生态系统的重要组成部分,物种的多样性、分布、演化和维持都是生态学应用理论中所关注的知识点。
物种多样性是指生态系统中不同物种的丰富度和种类的多样性,是生态系统稳定性的重要指标。
物种分布和演化是指物种在地理空间和时间尺度上的分布和演化规律。
物种维持是指物种在生态系统中维持自身数量和多样性的机制和过程。
群落是指在一定空间范围内,由各种不同物种组成的生态系统。
群落的结构、功能和相互作用是生态学应用理论中的重要知识点。
群落的结构包括物种组成、竞争关系、捕食关系和共生关系等。
群落的功能包括光合作用、有机物质分解和无机物质循环等。
群落的相互作用是指物种与物种之间、物种与环境之间的相互作用。
生态学方法是生态学研究的方法和技术。
生态学方法包括实地调查、实验研究、数学模型以及现代技术手段等。
生态学期末复习考点整理
《生态学》期末复习考点整理1.生态学:是研究有机体及其周围环境(非生物环境和生物环境)相互关系的科学。
2.生态学分支学科划分标准:按研究对象的组织层次划分、按研究对象的生物分类划分、按栖息地划分、按交叉的学科划分。
3.生态学的研究方法:野外的(田间的)、实验的、理论的。
4.环境:指某一特定生物体或生物群体周围一切的总和,包括空间及直接或间接影响该生物体或生物群体生存的各种因素。
5.大环境:指地区环境、地球环境和宇宙环境。
6.大气候:大环境中的气候,是指离地面1.5m以上生物气候。
7.小环境:是指对生物有直接影响的邻接环境,即小范围内的特定栖息地。
8.小气候:小环境中的气候,是指生物所处的局域地区的气候。
5.生态因子:是指环境要素中对生物起作用的因子, 如光照、温度、水分、氧气、二氧化碳食物和其他生物。
6.生境:所有生态因子构成生物的生态环境,特定生物体或群体的栖息地的生态环境。
7.生态因子作用特征(生态因子相互联系表现在哪些方面?):(1)综合作用:环境中的每个生态因子不是孤立的、单独的存在,总是与其他因子相互联系、相互影响、相互制约的。
(2)主导因子作用:对生物起作用的众多因子并非等价的,其中有一个是起决定作用的,它的改变会引起其他生态因子发生变化,使生物的生长发育发生变化,这个因子称主导因子。
(3)阶段性作用:由于生态因子规律性变化导致生物生长发育出现阶段性,在不同发育阶段,生物需要不同的生态因子或生态因子的不同强度。
(4)不可替代性和补偿性作用:对生物作用的诸多生态因子虽然非等价,但都很重要,一个都不能缺少,不能由另一个因子来替代。
(5)直接作用和间接作用:生态因子对生物的行为、生长、繁殖和分布的作用可以是直接的,也可以使间接的。
有时还要经过几个中间因子。
8.利比希最小因子定律:低于某种生物需要的最小量的任何特定因子,是决定该种生物生存和分布的根本因素。
9.限制因子:任何生态因子,当接近或超过某种生物的耐受性极限而阻止其生存、生长、繁殖或扩散时,这个因素称为限制因子。
生态学复习重点
生态学复习重点1. 生物世界的等级结构为:分子→细胞组织器官器官系统生物个体生态种群生态系统→生态圈。
2. 生态系统的结构特征表现为生态系统由(1)生物成分和(2)非生物环境组成,生态系统的功能特征表现为(3)物质流和(4)能量流。
3. 森林生态系统的生物成分按其功能可分为(1)生产者消费者分解者三部分。
4. 依能量的来源可将生物分为(1)自养生物和(2)异养生物,其中(1)自养生物包括(3)光能自养和(4)化能自养;(2)异养生物包括(5)草食动物肉食动物杂食动物腐生物5. 食物链包括(1)草木食物链腐生食物链两种类型。
6. 生态系统的养分循环包括地球化学循环生物地球化学循环生物化学循环三种类型。
7. 地球化学循环中的沉积循环包括气象途径生物途径地质水文途径三种途径。
8. C进入陆地生态系统的途径分别有植物光合作用碳酸氢根离子含碳岩石风化物8. C离开陆地生态系统的途径分别有(1)呼吸作用释放co2 通过食物链由异养生物呼吸作用以CO2、CH4返回大气8. 有机N降解包括氨化作用和硝化作用,其中氨化作用是将(1)氨基酸变成(2)NH3或铵盐___的过程,硝化作用是将(3)有机氮_____变成(4)__无机氮___的过程。
9太阳辐射的波谱按波长自短至长分别由将(1)_伽马射线 x射线紫外线可见光红外线10美国的霍普金斯(Hopkius)研究认为,在北美温带,每向北移动纬度1度或向东移动经度5度,或上升124米,植物在春天和初夏的物侯期将各(1)_延迟____4天,秋天的物侯期将(2)_提早____4天,这个规律被称为霍普金斯物侯定律。
11土壤有效含水量是(1)_田间持水量和(2)__凋萎系数___的差值。
12按照植物对水分的适应性可将植物分为陆生植物水生植物中生植物三种类型。
13我国采用的干燥度指标计算公式为:K=0.16x大于等于10摄氏度的活动积温/同期降水量14小集水区水量平衡公式为:Δw=P-(ts+Et+Qs+Qss) ts:树冠节流量P:降水量 Et:蒸散量 Qs:地表径流量 Qss:土壤径流量Δw:土壤含水增量(若用符号表示,须写出其含义)。
生态学的基本知识点
生态学的基本知识点生态学是研究生物与环境相互关系的学科,它涉及到许多基本知识点。
了解这些知识点,有助于我们更好地理解自然界的生态系统,保护和管理环境。
本文将介绍一些生态学的基本知识和概念,帮助读者快速了解这个领域。
第一节:生态系统生态系统是指由生物体、环境和它们之间的相互作用组成的一个动态系统。
一个生态系统包括了各种生物和它们所处的环境,例如森林、海洋、湖泊和草原等。
1.1 生态系统的组成生态系统由生物群落、生境和生态因子组成。
生物群落是特定区域内所有生物种类的集合,比如一个森林里的植物、动物和微生物。
生境则指生物群落所处的具体场所和条件,比如森林的土壤、水源和气候等。
生态因子是指影响生物群落和生境的环境因素,比如温度、湿度和光照等。
1.2 生态系统的功能生态系统具有许多重要功能,包括物质循环、能量流动和生物多样性维持等。
物质循环是指生态系统中各种元素和化合物的循环过程,例如碳循环、氮循环和水循环。
能量流动是指生态系统中能量从一个组织到另一个组织的转移过程,通常是通过食物链进行的。
生物多样性是指生态系统中各种物种的多样性和丰富程度。
第二节:生物群落生物群落是生态系统的组成部分,指在特定区域内生活在一起的不同种类的生物。
它们相互作用和依赖,形成了稳定的生态系统。
2.1 生物群落的种类生态学研究发现,生物群落可以根据生物的类型和数量来进行分类。
其中最常见的分类方式是根据生物的自养方式,分为光合作用型和化石能源依赖型两大类。
光合作用型生物依赖太阳能进行自养,包括植物、藻类和部分细菌;而化石能源依赖型生物依赖地下化石能源进行自养,包括细菌和真菌等。
2.2 生物群落的相互作用不同种类的生物在生物群落中相互作用,这些相互作用可以是竞争、共生、捕食、腐化等。
竞争是指同一群落内不同种类之间的争夺资源的关系;共生是指两种或多种生物在一起生活,相互受益;捕食是指一种生物捕食另一种生物获取能量和养分;腐化是指将死亡的有机物转化为无机物的过程。
生态学重要知识点归纳总结
环境:指某一特定生物体或生物群体周围一切的综合,包括空间及直接或间接影响该生物群体生存的各种因素。
生物环境:A大环境:地区环境(地球环境,宇宙环境)/a大气候:离地面1.5m以上的气候,由大范围因素决定。
B小环境:对生物有直接影响的领接环境/b小气候:生物所处的局域地区的气候大环境直接影响小环境影响生物,生物反作用环境。
生态因子:指环境要素中对生物起作用的因子(CO2 、H2O 、食、天敌……)分类:A性质:1气候因子2土壤因子3地形因子4生物因子5人为因子B有无生命特征:1生物因子2非生物因子C生态因子对动物种群数量的变动作用:1密度制约因子(食物,天地)2非密度制约因子(气候,降水)D生态因子的稳定性及作用特点:1稳定因子(引力,光强)2变动因子{周期性变动因子(四季,潮汐)非周期性变动因子}生态因子的作用特征:1综合作用2主导因子作用3阶段性作用4不可代替性和补偿性作用5直接或间接作用生境:特定生物体或群体的栖息地的生态环境(所有生态因子构成生态环境)利比希最小因子定律:地域某种生物余姚的最小量的任何特定因子,是决定该生物生存和分布的根本因素限制因子:任何生态因子,当接近或超过某生物的耐受性极限而阻碍其生存,生长,繁殖或扩散时之歌因素称为限制因子耐受性定律:任何一个生态因子在数量上或质量上的不足或过多,即当接近或达到某种生物的耐受限度时会使该生物衰退或不能生存生态幅:每一种生物对每一种生态因子都有一个耐受范围,即一个生态上的最高点和最低点,在最高点和最低的之间的范围称为生态幅光质的生态作用:尽管生物生活在日光全光谱下,但不同的光质对生物的作用是不同的,生物对光质也产生了选择性适应光合有效辐射:光合作用系统只能够利用太阳光谱的一个有限带,即380-710nm波长的辐能,这个带对应于辐射能流的最大节黄化现象:一般植物在黑暗中不能合成叶绿素,但能形成胡萝卜素,导致叶子发黄植物物种间对光照强度表现出的适应性差异,是已进化的两类值物间的差异:1阳地植物2阴地植物动物对光照强度的适应:1昼行动物2夜行动物自然条件下,动物每天开始活动的时间常常是由光照强度决定的,当光照强度达到某一水平时,动物才开始活动,因此不同季节随着日出日落的时间差异,动物活动时间也有变化生物光周期现象:植物的开花结果,落叶及休眠,动物的繁殖,冬眠,迁徙和换毛换羽毛等,是对日照长短的规律性变化的反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活史或生活周期:生物(动物、植物、微生物)在一生中所经历的生长、发育和繁殖等的全部过程。
任务:在个体水平上比较各物种的生活史特征,揭示其相似性和分异性,进而联系其栖息地环境探讨其适应性,联系物种的分类地位探讨其在生存竞争中的意义。
主要研究内容:1、生活史性状(如寿命、成熟年龄与大小、生殖分配)的进化;2、权衡现象,如生长-维持-修复、后代数量-大小、现时-未来繁殖;3、性状进化(变化)与适合度的关系,适合度及其测度,性状优化与个体环境。
被子植物的生活史:两个基本阶段:二倍体阶段(2N从合子开始,至形成胚囊母细胞和花粉母细胞为止)和单倍体阶段(N有性世代从胚囊母细胞和花粉母细胞减数分裂形成单核胚囊和单核花粉粒开始,至7 细胞(3反细胞、1极核有两个细胞核、3卵细胞)胚囊和 3 细胞花粉粒或花粉管止)。
世代交替:二倍体和单倍体有规律地交替出现表型优化模型——优化指标:不考虑密度制约效应时,种群增长速率:连续增长种群用瞬时增长速率(r),离散增长种群用周限增长率(λ),λ=e-r或者r=lnλ;考虑密度制约作用时(或个体数量恒定的种群),用净生殖率(R0,有机体一生中期望的后代数)。
表型优化模型——基本前提:适应性是生命有机体普遍的性质,且可由自然选择过程加以解释;适应性作为优化理论的基本出发点,不考虑生物进化不产生适应性的可能,优化理论只是帮助人们理解适应性产生的选择力量。
表型优化模型——基本假定:适应性进化存在一个优化指标,最优的生活史对策(行为、结构、代谢等)应该使这个指标达到最大值(优化);自然界不存在绝对意义上的最优表型,因为可用于维持、生长、繁殖的资源是有限的,个体必须在这些相互冲突的资源需求中寻求最优的资源分配方案。
表型优化模型——约束条件(对策集):有可能的、受自然选择作用的表型;优化模型都包括关于研究对象的约束条件、优化指标及遗传方式等方面的假定。
生活史理论关于约束条件的重要思想就是“权衡”或“不可兼顾”(trade-off),或称为“负偶联”,包括三个层次:生理负偶联:直接竞争有机体内有限资源的两个(或以上)生理过程之间的分配权衡。
如能量在植物地上/地下器官之间的分配、营养/生殖器官间的分配;微观进化负偶联:一个(增加适合度)性状的改变必然与另一个性状(减少适合度) 相伴随。
如后代的数量与大小;1、微观进化负偶联是种群水平上对生理负偶联(个体水平上)选择压力的进化反应,不涉及表型可塑性问题;2、几乎所有微观进化负偶联的背后都隐藏着生理负偶联。
宏观进化负偶联1性状之间在独立的系统发育中的相关变化2宏观进化负偶联并不直接反映在优化的约束条件之3优化模型通常只考虑生理和微观进化负偶联。
适合度是一种测量生殖成功率的方法:个体那些留下最多成熟后代的个体是最适合的。
用一下几个方面完成1存活率和死亡率2交配或者性别选择3种群大小和生殖选择Survival:Any trait that promotes survival(at least until one‘s reproductive years are over至少一年的生殖过程被完成)increases fitness. 任何促进存活的适应性特质生殖分配:有机体在一特定时间阶段内(如一个生长季内)净同化资源中投入生殖活动的资源或能量比例。
成熟年龄与大小:成熟年龄(或大小) 以生物开始生育为判别标准,即以性成熟而不是形态或其它生理指标来定义的。
早熟的收益与代价:在幼体阶段花费的时间缩短,存活到成熟的概率较高;后代出生早且很快可开始再生殖,在统计学上具有较高的适合度。
按照表型优化理论的观点,任何一个性状的进化平衡(包括成熟年龄)都应从低适合度的代价和提高适合度的收益两个方面来考虑推迟成熟的收益与代价个体进一步生长:如果个体生育力随体型增加而提高,成熟年龄推迟(因而较大的体型)会带来较高的初始生育力;可能会使个体产生更高质量的后代,幼体死率降低:出生率提高;亲代抚育能力增加。
推迟生殖的收益就是提早成熟的代价!反之亦然生殖力表示生物个体一生中所能够生产的具有再生殖能力的雌性个体数;单次生殖代表着最大可能的生殖力,个体生殖后的立即死亡就是最大生殖输出的副产品,多次生殖可以看成是生殖力没有达到最大值的情形。
虽然自然选择应该选择能留下更多后代的基因型,但自然选择并没有使粮食作物野生祖先的RA值达到最大。
衰老是指随年龄增加生物个体身体功能恶化(如死亡率随年龄的增加或者生育力随年龄的减少等)现象;细胞的程序性死亡(PCD):胚胎发育、细胞分化及许多病理过程中,细胞遵循其自身的“程序”,主动结束其生命的生理性死亡过程;衰老是由内在因素引起的非坏死性变化,是在基因控制下,细胞结构高度有序的解体和降解,PCD过程中营养物质可向非衰老细胞转移和循环利用。
减少生殖投入可以延长寿命种群增长参数R,R0和m j是年龄j的减函数,随着j的增加,适合度对于个体存活率和生育率的变化将越来越不敏感种群内有害基因表达越晚,对种群增长的负效应(选择压力)越小它的频率就越高;长寿命要求有足够多的资源投入给体细胞的维持;寿命和生育力之间具有负偶联关系。
最佳窝卵数:最佳窝卵数应该使得羽化出来的幼鸟数达到最大值,通常称为Lack clutch。
即,使亲代个体适合度达到最大的窝卵数。
同胞竞争:每次生育多个后代时,不仅亲代与子代之间而且子代(同胞兄弟姐妹)之间都将产生利益冲突。
这种矛盾就叫做同胞竞争,也可能会导致子代大小变异的产生。
其实质是两性冲突,最根源是自私的基因。
亲子冲突——亲缘关系分析亲代与自己的亲缘关系为1,与子代的亲缘关系为1/2令B(E)表示亲代投入(E)后从该子女身上得到的适合度收益(譬如该子代个体存活到成熟的概率);C(E)表示当前资源投人给将来后代生产造成的适合度损失(如果母体对当前后代资源投入降低了到下一个繁殖期的存活概率或繁殖能力);从母亲角度看资源在目前子女身上最佳分配应该使净繁殖成功率(B-C)达到最大。
子代和自己的亲缘系数为1,和它的兄弟姐妹亲缘系数只有1/2,子代的最佳对策是使(B-C/2)达到最大化。
如果由子代决定亲代资源投人量,那么它将更愿意母体对自身多投人,而不是把资源更多的向未来的同胞兄弟姐妹投入。
子代的最佳对策是否应该为将所有母体资源投入自身?答:子代为了得到最大的适合度,必须最大量的资源需求,子代和自己的亲缘系数为1,和它的兄弟姐妹亲缘系数只有1/2,所以基于自私的基因原理,若由子代决定亲代资源投人量,那么必然产生将更愿意母体对自身多投人的资源需求。
如果植物的生长素和脱落酸是由不同的部位(母体或种子)控制(产生)的,你预计哪个部位产生哪种激素?答:生长素是种子;脱落酸是母体生长素是种子控制生产,脱落酸则是由母体控制。
亲代与自己的亲缘关系为1,与子代的亲缘关系为1/2,基于自私的基因原理,母体需要降低生产后代造成的适合度损失,即减少对子代的资源投入,所以需要更多的生产脱落酸以便是自带脱离母体;相反,子代需要更多的从母体索取资源,要更多的生长吸收,所以需要生产大量的生长素。
每次生育多个后代时,不仅亲代与子代之间而且子代(同胞兄弟姐妹)之间都将产生利益冲突。
这种矛盾就叫做同胞竞争,也可能会导致子代大小变异的产生:优化理论的基本出发点是:自然选择总是能使生物最有效地从事各种活动,包括对时间和能量的分配如果种群中的大多数个体都采取某种行为对策,而这种对策的好处又为其他对策所不及,这种对策就可称为进化稳定对策(ESS)与优化理论一样,Ess只能是从可选择的对策集中选取“最佳”对策,所以进化稳定对策也受可供选择的对策范围的制约。
一报还一报tit for tat (TFT)对策成功的原因:善良:因为从不先欺骗;报复:不管什么时候只要对方表现出欺骗行为它就不再合作;宽容:对于对手的一次偶尔的欺骗行为只给予一次反击。
特点:第一次对局采用合作的策略,以后每一步都跟随对方上一步的策略,从不欺骗,不管什么时候对方表现出欺骗行为就不合作。
缺陷:TFT 对策只是一个弱的Nash平衡,而不是ESS;对一次偶然失误很敏感;两个TFT博弈者之中任何一个如果因为失误欺骗了一次,他们今后将卷入到一个欺骗/合作交替系列当中,而不是完全合作。
巴甫洛夫对策:如果上次博弈是成功的(赢得大于0)就重复上次的对策;如果上次博奕是不成功的(赢得等于或小于0)就采取相反的对策;无论上次双方合作还是双方不合作,下次都采取合作;只有上次一方合作而另一方欺骗时,被欺骗的一方才会采取欺骗行为。
Axelrod进化实验揭示的哲理一个策略的成功应该以对方成功为基础。
“一报还一报”在两个人对策时,得分不可能超过对方,最多打个平手,但它的总分最高。
它赖以生存的基础是很牢固的,因为它让对方得到了高分。
欺骗对策的成功是建立在别人失败的基础上的,而失败者总是要被淘汰的,当失败者被淘汰之后,这个好占别人便宜的成功者也要被淘汰。
Bully 恐吓(改良鸽对策)Retaliator 反击(类似TFT)攻时是鸽对策守时是鹰对策Bourgeois 中庸当自己是资源占有者时采取鹰对策,当自己是入侵者时采取鸽对策。
觅养:是生存和繁殖适合度的关键,传递自己的基因到下一代。
冗余不仅仅是一种结构上的多余(非必须),它同时是生命体各级组织为提高和稳定自身适合度而进化出的一种生态适应对策,具有保险价值生物的冗余:生命体各级组织水平上存在的、耗费一定资源(如光合产物)的生命体结构在某些生态维度上未能发挥最大功能潜力的现象。
这个定义将能否发挥最大功能潜力作为判断某种结构组分是否冗余的标准它强调:1冗余是一种生命现象,是消耗一定资源的生命体结构未发挥出相应功能的现象,兼具结构属性和功能属性。
2冗余现象具有矛盾的二重性,在不能发挥相应功能时表现为结构上的多余和资源利用上的浪费,而在能充分发挥功能时则为结构上之必须和资源利用上之经济3在冗余的二重性中,主要表现那一方面取决于环境(生物的和物理的)条件冗余度(redundancy magnitude):“1—Vi”能定量地反应生命体组分的冗余程度。
1-Vi=(Fmax/Ci)-(Fi/Ci)=(Fmax-Fi)/Ci。
Fi为器官i在一定条件下对个体适合度的贡献(功能系数);Ci为占用(建成和维持)的个体资源比率(成本系数);Vi为器官i对个体适合度的贡献率(价值),则:Vi=Fi/Ci遗传冗余:2个或更多的基因执行相同的功能,其中1个基因的失活对生物的表型没有或几乎没有影响器官冗余:某些器官的过度生长或能够从植物觅养结构中释放出来的光合产物物种冗余:具有执行某种功能能力的一个以上物种或组分生长冗余——类型质量冗余是指遗传上异质的一份以上结构执行同一功能、其中一个(些)组分损失后其功能可被另一个(些)组分全部或部分替代的现象。