北京大学研究生入学考试——高等代数与解析几何试题及答案 2.doc

合集下载

高等代数与解析几何1~4章习题答案(DOC)

高等代数与解析几何1~4章习题答案(DOC)

高代与解几第二章自测题(一)——行列式一、 判断题1. 一个排列施行一次对换后,其逆序数改变1.( × )2. 一个排列施行一次对换后,其奇偶性改变.( √ )3. 2≥n 时,n 级的奇排列共2!n 个. ( √ ) 二、填空题1. 排列)15342( 的逆序数是 5 ,它是一个 奇 排列. 排列 2)22)(2)(12(13 --n n n 的逆序数是 n (n -1) .2. 设行列式ijn nD a ⨯=,则n n A a A a A a 1112121111...+++= D ,n n A a A a A a 5152125111...+++= 0 .3. 行列式D =x x x x x x 2213321232321--的展开式中4x 的系数是 -4 ,常数项是 -18 .4. 排列821j j j 的逆序数是9,则排列 178j j j 的逆序数是 19 .5. 设82718491423123267----=D ,则14131211M M M M -+-= 240 .二、证明题3. nn D n 20012000302202002210002----=(提示:逐行向下叠加得上三角形行列式)4. nD n 222232222222221=(提示:爪型行列式)高代与解几第二章自测题(二)——矩阵,线性方程组一、 判断题1. 如果矩阵A 有r 阶子式大于零,那么r A rank >)(.( ×)2. 如果矩阵A 没有非零子式,那么0)(=A rank .(√ )3. 如果矩阵A 的r 阶子式都等于零,那么r A rank <)(.( √)4. 初等变换不改变矩阵的秩.(√ )5. 若n 元线性方程组有2个解,则其增广矩阵的秩小于n .(√ ) 三、填空题1. 54⨯矩阵A 的秩为2, 则A 的标准形为___⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000000001000001____________. 2 若n 元线性齐次方程组仅有零解,则其系数矩阵的秩为 n .三、计算与证明题1. 求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=-++=++++04523,05734,03,02543254321543154321x x x x x x x x x x x x x x x x x x 的一般解. 解:对这个齐次线性方程组的系数矩阵施行行初等变换,得A =⎪⎪⎪⎪⎪⎭⎫⎝⎛-45230573411110312111→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----45230452304523012111→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000000343532103131310100000000004523012111 取543,,x x x 为自由未知量,得其一般解为:……2. 解线性方程组12341234123421,4222,2 1.x x x x x x x x x x x x +-+=⎧⎪+-+=⎨⎪+--=⎩解 方程组的增广矩阵为:B =⎢⎢⎢⎣⎡112224112--- 111- 121⎥⎥⎥⎦⎤,….……………………………….. 2分 对B 做行初等变换:B =⎢⎢⎢⎣⎡211000010000- 100⎥⎥⎥⎦⎤,…………………………….....…… 6分 从而得方程组的解为……3. 设n a a a ,,,21 是数域K 中互不相同的数,n b b b ,,,21 是数域K 中任一组给定的数,证明:有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =,.,...,2,1n i =证明:要证有唯一的数域K 上的多项式()112210--++++=n n x c x c x c c x f 使()i i b a f =()n i ,,2,1 =,即要证有唯的一组数1210,...,,,-n c c c c ,使得⎪⎪⎩⎪⎪⎨⎧=++++==++++==++++=------n n n n n n n n n n n b a c a c a c c a f b a c a c a c c a f b a c a c a c c a f 112210212122221021111221101...)(......)(...)(1 …… (2分)即证方程组⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++------n n n n n n n n n n b x a x a x a x b x a x a x a x b x a x a x a x 1122102112222120111122110............1 …… (4分) 有唯一一组解.而此方程组的方程个数与未知数个数相等.其系数行列式121323312222112111111----=n nn nn n n a a a a a a a a a a a a D……(5分) T D 是范德蒙德行列式,由范德蒙德行列式的结论知,∑≤<≤-==nj i i jT a aD D 1)( ……(7分)又n a a a ,,,21 是数域K 中互不相同的数,故0≠D ,由克莱姆法则知,上述方程组有唯一一组解.得证. …… (10分)4. 设n a a a ,...,,21是互不相同的数,b 是任意数,证明线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++----11212111221121......1...n n n n n n n n n bx a x a x a b x a x a x a x x x 只有唯一解,并求出这个解.证明:观察知此方程组的未知量个数与方程个数相等,其系数行列式D =1121121111---n nn n na a a a a a是n 阶范德蒙德行列式 …… (4分) 因此,D =∏≤<≤-ni j j ia a1)(,由于n a a a ,...,,21是互不相同的数,所以0≠D ,根据克莱姆法则知此线性方程组只有唯一解, n k DD x kk ,...,2,1,==,其中k D 是将系数行列式D 的第k 列换成 T n b b b ),...,,,1(12-, …… (7分)显然k D 依然是n 阶范德蒙德行列式,且k D 的值只是将D 的值中k a 的地方换成b ,因此n k a a a a a a a a a b a b b a b a x k k k k k k n k k n k ,...,2,1,))...()()...(())...()()...((111111=--------=-+-+ (10分)5. 假设有齐次线性方程组⎪⎩⎪⎨⎧=++=++=++,0,02,0321321321 x x x p x x x x x x当p 为何值时,方程组仅有零解?又在何时有非零解?在有非零解时,求出其一般解。

高等代数与解析几何考研试题 (2)

高等代数与解析几何考研试题 (2)

北京大学2005 数学专业研究生 数学分析 1. 设x xx x x x f sin sin 1sin )(22--=,试求)(sup lim x f x +∞→和)(inf lim x f x +∞→.解: 22sin 1()sin sin (0,1].sin x x f x x x x x-=∈-首先我们注意到.在的时候是单调增的 222222sin 1sin .sin sin ,,lim sup sin 11x x x x x x x x x x x x x x →+∞-≤≤→+∞---并且在充分大的时候显然有所以易知在时当然此上极限可以令2,2x k k ππ=+→+∞这么一个子列得到.2222sin sin ().lim 0,lim inf 0,lim inf ()0.sin sin x x x x x x f x f x x x x x→+∞→+∞→+∞===--对于的下极限我们注意到而所以有此下极限当然可以令(21),.x k k π=+→+∞这么个子列得到2. (1)设)(x f 在开区间),(b a 可微,且)(x f '在),(b a 有界。

证明)(x f 在),(b a 一致连续.证明:()(,).()(,).f x x a b M f x a b '∈设在时上界为因为在开区间上可微12,(,),x x a b ∀∈对于由,Lagrange 中值定理存在12121212(,),()()()x x f x f x f x x M x x ξξ'∈-=-≤-使得.这显然就是12,,.()(,).Lipschitz x x f x a b 条件所以由任意性易证明在上一致收敛 (2) 设)(x f 在开区间),(b a )(+∞<<<-∞b a 可微且一致连续,试问)(x f '在),(b a 是否一定有界。

(若肯定回答,请证明;若否定回答,举例说明) 证明:否定回答.()(,).f x a b '在上是无界的12()(1),()[0,1].f x x f x Cantor =-设显然此在上是连续的根据定理,闭区间上连续函数一致连续.所以()f x 在(0,1)上一致连续.显然此12121()(1)(0,1).().2(1)f x x f x x -'=-=-在上是可微的而121()(0,1).2(1)f x x -'=-在上是无界的3.设)1(sin )(22+=x x f . (1)求)(x f 的麦克劳林展开式。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

2018年北京大学高等代数与解析几何试题及解答

2018年北京大学高等代数与解析几何试题及解答

6. (1) 显然V = 0及V = Mn (K )为两个平凡的公共子空间,但不是n维的. 设 Vi = span {E1i , E2i , · · · , Eni } , i = 1, 2, . . . , n. 则Vi 是n维公共子空间. 另外, V = {(α, α, 0, . . . , 0) | α ∈ K n }也是n维公共子空间. (2) 若V ⊂ V , 但是V = 0, 则存在B ∈ V 设bij = 0, 则
u v w
可得 yw − vz = 0
(x − 1)w − (z − 1)u = 0 , (x + 1)v − (y + 1)u = 0 因为(u, v, w) = 0, 因此上述线性方程组有非零解, 从而 0 1−z −z 0 y x−1 w = 0.
−y − 1 x + 1
B= sin θ3
cos θ2 cos θ3 − sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 − cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3 sin θ2 sin θ1 cos θ2 cos θ1 cos θ2
= cos θ2 sin θ3
9. (15分) 记A是与下面三条直线都相交的直线的并集: 达式f (x, y, z ) = 0,其中f 是一个三元多项式.
y = 0 z = 0
,
x = 1 z = 1
,
x = −1 y = −1
. 给出A的一个一般表
10. (15分) 证明几何空间中任意一个旋转变换f , 只要转轴通过原点, 就一定可以写成f = gz ◦ gy ◦ gx 的形式, 其 中gx , gy , gz 分别表示绕x, y, z 轴的旋转变换.

北京大学1996年高等代数与解析几何试题及解答

北京大学1996年高等代数与解析几何试题及解答

五. 令
g(x)
=
xn

1
=
n∏−1
( x

e
2πki n
)
,
k=0
则 g(A) = 0, 于是 A 的最小多项式 mA(x) 将整除 g(x), 从而 mA(x) 为 C 上互素一次因式的乘积, 从而一
定可以相似对角化.
六. W 的标准正交基是 1, 1, x, x2, x3 是 R[x]4 的一组基, 从而 ∀f (x) = a0 + a1x + a2x2 + a3x3 ∈ W ⊥,
北京大学 1996 年全国硕士研究生招生考试高代解几试题及解答
微信公众号:数学十五少 2019.05.25
一. (15 分) 在仿射坐标系中, 求过点 M0(0, 0, −2), 与平面 π1 : 3x − y + 2z − 1 = 0 平行, 且与直线
x−1 y−3 z
ℓ1 :
=
=
4
−2 −1
相交的直线 ℓ 的方程.
(1) P 是 V 上的线性变换, 并且 P2 = P;
(2) P 的核 KerP = W, P 的象 (值域)ImP = U ;
(3) V 中存在一个基, 使得 P 在这个基下的矩阵是 ( Ir
O
) O
, O
其中 Ir 表示 r 级单位矩阵, 请指出 r 等于什么.
五. (12 分) n 阶矩阵 A 称为周期矩阵, 如果存在正整数 m, 使 Am = I, 其中 I 是单位矩阵. 证明: 复数域 C 上 的周期矩阵一定可以对角化.
(1, 0, −1)T, (0, 2, −1)T. 令


xy

北京大学2001年高等代数与解析几何试题及解答

北京大学2001年高等代数与解析几何试题及解答


1 0
−3 −5
5 7
−2 −3
,
−1 −7 9 −4
0 −10 14 −6
0000
可以看出

−4
η1 =
7 5
,

1
η2
=
−3 0

0
5
是 AX = 0 的解空间中的线性无关向量, 注意到解空间的维数是 2, 从而 η1, η2 是解空间的一组基. 进
4. (1) 特征多项式 f (λ) = |λE − A| = λ3 + λ2 − 3λ + 2.
a. 由于 f (±1) ̸= 0, f (±2) ̸= 0, 从而 f (λ) 没有有理根,故 A 没有有理特征值, 从而不能在有理数域 上对角化.
b. (f (λ), f ′(λ) = 1, 从而 f (λ) = 0 没有重根, 即 f (λ) 在 C[λ] 中可分解为三个互素一次因式的乘积, 于是 A 在复数域上可对角化.
(X0Tα1, . . . , X0Tαs) = (0, . . . , 0),
从而 (X0, αi) = 0, i = 1, 2, . . . , s, 于是 αi ∈ W ⊥, i = 1, 2, . . . , s. 故 U ⊂ W ⊥, 再注意到
dim W = n − rank(A), dim U = rank(A), dim W + dim W ⊥ = n,
2. (15 分) 在空间直角坐标系中, 与 是一对相交直线.
x−a y z
ℓ1 :
== 1 −2 3
x y−1 z
ℓ2 :
= 2
1
= −2
(1) 求 a.

北京大学高等代数和解析几何真题1983——1984年汇总

北京大学高等代数和解析几何真题1983——1984年汇总

北京大学数学考研题目1983年 基础数学、应用数学、计算数学、概率统计专业2222022200Ax By C z D yz Ezx Fxy A B C +++++=++=一、(分)证明:在直角坐标系中,顶点在原点的二次锥面有三条互相垂直的直母线的充要条件是.1223112220...1,...2, (1)n n n n n x x x x x x xx x n ++++++=⎧⎪+++=⎪⎨⎪⎪+++=+⎩二、(分)用导出组的基础解系表出线性方程组的一般解。

121220,,...,()()...()1n n a a a x a x a x a ----三、(分)设是相异整数。

证明:多项式在有理数域上不可约。

20000120231001011A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭四、(分)用V 表示数域P 上全部4阶矩阵所成的线性空间,A 是V 中的一个矩阵,已知-10,,及10分别是的属于特征值, , ,-1的特征向量。

(1)求A;(2)求V 中与A 可交换的矩阵全体所成的子空间的维数及一组基。

20,A B 五、(分)设是两个n 级正定矩阵。

证明:AB 是正定矩阵的充要条件是A 与B 可交换。

1984年 数学各专业132110::23100363x y l z x y z π--==-++-=一、(分)求直线与平面的交点。

10,,,,a b c a b b c c a ⨯⨯⨯二、(分)设向量不共面。

试证:向量不共面。

15K K K K K K 三、(分)设和为平面上同心的单位(半径=1)开圆域和闭圆域。

(1)取定适当的坐标系,写出和的解析表示式;(2)试在和的点之间建立一个一一对应关系。

{}{}{}{}23231231251,,.2,,V R V T V V T T T T T T TT T T εεεεεεεεεεεεεεεεεεεεε--→==+=++111212312311113四、(分)设是实数域上的三维向量空间,,,是的一组基。

高等代数与解析几何习题答案

高等代数与解析几何习题答案

习题习题设A是一个"阶下三角矩阵。

证明:(1)如果A的对角线元素吗H勺(门=1,2,…/),则A必可对角化;(2)如果A的对角线元素a ll=a22=-=a ll…f且A不是对角阵,则A不可对角化。

证明:(1)因为A是一个〃阶下三角矩阵,所以A的特征多项式为I 2E - A 1= (2 - ! )(2 - «22)■ • (2 - 6/wj),又因心工勺(/, j = 1,2, •••,/?),所以人有" 个不同的特征值,即4有"个线性无关的特征向量,以这〃个线性无关的特征向量为列构成一个可逆阵P,则有厂虫卩为对角阵,故A必可对角化。

(2)假设A可对角化,即存在对角阵〃= 人. ,使得A与B相似,进而A与3有相同的特征值人,人,…人。

又因为矩阵A的特征多项式为Ixtf —A1=(几_°]])“ ,所以= ■ ■ ■ = A lt =, 从|([J / 、如B=如=如丘,于是对于任意非退化矩阵x ,都有、% >X"BX =X%EX =gE = B,而A不是对角阵,必有厂曲=3",与假设矛盾,所以A 不可对角化。

习题设“维线性空间V的线性变换”有$个不同的特征值入,易,…,入,匕是人的特征子空间(心1,2,…,s)。

证明:(1)叫+岭+…+匕是直和;(2)a可对角化的充要条件是V = %㊉匕㊉…㊉匕。

证明:(1)取岭+£+・•・ +匕的零向量0,写成分解式有a x +a 2 + -- + a x =0,其中 q e V ; J = 1,2,…,s 。

现用 6b[…,b分别作用分解式两边,可得印+色+…+ % = 0人 © + + ・・• + A s a s = 0 常匕+石么+・・・+町匕=0写成矩阵形式为‘1人( 、1(4S ,…心):J 人f 1由于人,人,…,人是互不相同的,所以矩阵3= 1零,即矩阵B 是可逆的,进而有(卬,色,aJBB" = (0,0,…,0)B" = (0,0,…,0), (a 「勺,…)=(0,0,…,0)。

北京大学2014年高等代数与解析几何试题及解答

北京大学2014年高等代数与解析几何试题及解答

都乘以 −1 得到. 又 2014 = 2 × 19 × 53, 因此将 2014 表示为两个正整数的乘积只有 8 种不同的表示方法.
由抽屉原理知,

g(k)

8
个可能取值中至少有一个出现的次数大于等于
2013 8
ቤተ መጻሕፍቲ ባይዱ
>
251,
设这个数为
l,

有 (x − a1)(x − a2) . . . (x − a252) | g(x) − l, 其中 a1, a2, . . . , a252 为 {1, 2, . . . , 2013} 中互不相同的数. 因为
(1) 若线性变换 A 是正的,则 A 可逆;
(2) 若线性变换 B 是正的, A − B 是正的,则 B−1 − A−1 是正的;
(3) 对于正的线性变换 A, 总存在正的线性变换 B , 使得 A = B2.
7.
求单叶双曲面
x2 a2
+
y2 b2

z2 c2
=
1
的相互垂直的直母线的交点的轨迹.

4. (1) 线性变换的最小多项式整除它的零化多项式, 故 xn−1 不是 A 的零化多项式, 从而 An−1 ̸= O =⇒ ∃α ∈ V, 使得 An−1α ̸= 0. 此时将有 α, Aα, . . ., An−1α 线性无关, 结合 V 的维数为 n, 故得到 V 的一 组基.
(2) 设 AB = BA, Bα = k0α + k1Aα + · · · + kn−1An−1α. 令 f (x) = k0 + k1x + · · · + kn−1xn−1, 则

北京大学考研真题试题-高等代数与解析几何2007[试卷+答案]

北京大学考研真题试题-高等代数与解析几何2007[试卷+答案]
间V 上的线性变换 A , B ,满足 AB − BA = E . 【注】若线性空间V 是无穷维的,则存在V 的线性变换 A , B ,满足 AB − BA = E .
例如,设V = P[x] 是数域 P 上多项式全体所构成的线性空间,定义 Af (x) = f ′(x) , Bf (x) = xf (x) , ∀f (x) ∈V ,
北京大学 2007 年《高等代数与解析几何》试题解答
北京大学 2007 年高等代数与解析几何试题 解答
1、回答下列问题:
(1)问是否存在 n 阶方阵 A, B ,满足 AB − BA = E (单位矩阵)?又,是否存在 n 维
线性空间V 上的线性变换 A ,B ,满足 AB − BA = E (恒等变换)? 若是,举出例子;若否,
的基础解系)构成 n × r 矩阵 C ,则 rank(C) = r ,且 AC = O , BC = O .
考虑齐次线性方程组 CT X = 0 ,其解空间 S 的维数 dim(S ) = n − r = rank( A) .
因为 C T AT = O ,所以 A 的行向量都是 C T X = 0 的解,因此 A 的行空间WA 是 S 的一 个子空间,即WA ⊆ S .注意到 dim(WA ) = rank( A) = dim(S ) ,故WA = S .
容易验证: AB − BA = E . (2)设 n 阶矩阵 A 的各行元素之和为常数 c ,则 A3 的各行元素之和是否为常数?若是,
是多少?说明理由.
【解】是.设 η = (1,1, ,1)T 是 n 维列向量,则由 A 的各行元素之和为常数 c ,知 Aη = cη ,从而 A3η = c3η .所以 A3 的各行元素之和为常数 c3 .

北京大学2020年高等代数与解析几何试题及解答

北京大学2020年高等代数与解析几何试题及解答

5. 当 rank(A) < n − 1 时, A∗ = 0, 于是 A∗ 的特征值为 0, 特征向量为 Cn 中任意非零向量.
当 rank(A) = n − 1 时, rank (A∗) = 1, 于是 A∗ 的特征值为 0 (n − 1 重), tr (A∗) (1 重), 设 A∗ = αβT, 则 tr (A∗) 对应的特征向量为 kα, k ̸= 0; 0 对应的特征向量为由 A 的列向量线性生成的非零向量.
8. (20 分) 在平面 π 上取定平面直角坐标系, 设该平面里的一条二次曲线 γ 的方程为 x2 + 2y2 + 6xy + 8x + 10y + 6 = 0.
(1) 证明: γ 是双曲线. (2) 写出 γ 的长短轴方程和长短轴长, 并指出长短轴中哪一个与 γ 有交点.
9. (15 分) 在平面 π 上取定平面直角坐标系, 已知该平面里的一个椭圆 γ 的方程为 x2+8y2+4xy+6x+20y+4 = 0. 求 γ 的内接三角形 (即三个顶点都在 γ 上的三角形) 的面积的最大值.
− sin φj cos φj
=
− sin φj cos φj
][ ]
cos φj
01 ,
sin φj 1 0
(φj ̸= kπ, j = 1, 2, . . . , l) .
注意到若 σ 是正交变换, 则 σ 是镜面反射当且仅当 σ 在 V 中的标准正交基下的矩阵的特征值为 1 (n − 1 重), −1 (1 重), 而把 J 分解成有限个那样的正交矩阵的乘积的分解是存在的, 这里的有限个更 精确一点可改为不超过 n 个, 于是 σ 可以表示为一系列镜面反射的乘积.

2006年北京大学高等代数真题解答

2006年北京大学高等代数真题解答

2006年北京大学研究生入学考试高等代数与解析几何试题解答高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。

解: 方程AX B =有解的充分必要条件是: ()(,)r A r A B =. 令1(,,)m B ββ=", 其中k β为列向量. 则矩阵方程AX B =有解⇔方程组12,,,,k k Ay k m β=="有解. ⇔A 的列向量组构成的向量组与(,)A B 的列向量组构成的向量组等价. ⇔()(,)r A r A B =.注: 方程有解的一个等价含义是可由列向量线性表示, 从而转化为等价向量组上来.(2) 设A 是数域K 上s n ×列满秩矩阵,试问:方程n XA E =是否有解?有解,写出它的解集;无解,说明理由。

解:方程n XA E =有解. 理由: 因为A 列满秩, 所以()()Tr A r A n ==.又(,)Tn r A E n =, 因此()(,)TTn r A r A E =,从而Tn A Y E =有解,两边取转置可知方程n XA E =有解.我个人觉得本题似乎考察的是:广义逆矩阵方面的知识, 如果大家对这部分知识不熟悉, 建议大家去看看丘维声老先生编著的<<高等代数>>.矩阵方程AXA A =的解X A −=一般称为A 的广义逆矩阵. 广义逆是存在的, 对于本题因为A 是列满秩的, 故由相抵标准型知,存在可逆矩阵,P Q 满足n E PAQ O ⎛⎞⎟⎜⎟⎜=⎟⎜⎟⎟⎜⎝⎠, 则可以取(,)n A Q E O P −=. 此时X 的所有解为: (),n sn X A Z E AA KZ −−×∈=+−∀.因为 11(,)n n nE A Q E O PP Q A E O −−−⎛⎞⎟⎜⎟⎜==⎟⎜⎟⎟⎜⎝⎠, 所以A −是矩阵方程n A A E −=的特解. 下面证明XA O =的全部通解为: (),n sn X Z E AA Z K−×∈=−∀.首先, 由()()n Z E AA A Z A A O −−=−=,知()n Z E AA −−是方程的解. 其次, 任取XA O =的一个解0X , 则由0000()n X E AA X X AA X −−−=−=, 取0Z X =即可.由矩阵方程解的结构定理可知, (),n sn X Z E AA Z K −×∈=−∀(3) 设A 是数域K 上s n ×列满秩矩阵,试问:对于数域K 上任意s m ×矩阵B ,矩阵方程AX B =是否一定有解?当有解时,它有多少个解?求出它的解集。

北京大学2005年研究生入学考试——高等代数与解析几何_试题与答案2

北京大学2005年研究生入学考试——高等代数与解析几何_试题与答案2

北京大学 2005 数学专业研究生 高等代数与解析几何。

2x y z 0 1. 在直角坐标系中,求直线l :到平面: 3x By z 0 的正交投影轨迹的方程。

x y 2z1其中 B 是常数 解:可以验证点12 1 2 5,0,l , ,0,,从而 l555x 1 3k把 l 写成参数方程:y 2 5k ,任取其上一点 P : ( 1 3k,2 5k, k) ,设该点到上的投影为zk点 P ' : ( x, y, z)PP 'x 1 3k z kx 3z 1 03 1 P3x By z整理即知, l 到x 3z 1上的正交投影轨迹满足方程Byz 03x由于11 ,上述方程表示一条直线,而 2*3 B 1 0 和 3B 2 0 不同时成立,因此 l 到3 1上的正交投影轨迹是一条直线x 3z 1 0从而 l 到上的正交投影轨迹的方程就是3x By z 02. 在直角坐标系中对于参数 的不同取值,判断下面平面二次曲线的形状:x 2 y 2 2 xy0 .对于中心型曲线,写出对称中心的坐标; 对于线心型曲线,写出对称直线的方程。

解:1 , 1 x *x记 T2 2 ,容易验证 TT 'E ,因此直角坐标变换T 是一个正交变换1 , 1 y *y2 2在这个变换下,曲线方程变为 (1)x * 2(1 ) y * 21) 1 时, 1 0,1 0,0 ,曲线为双曲线,是中心型曲线,对称点为(0,0)2)1 时,曲线方程为y * 21 ,是一对平行直线,是线心型曲线,对称直线为 y *0 ,即yx 23) 1 0时, 10,1 0,0 ,曲线为椭圆,是中心型曲线,对称点为 (0,0)4) 0 时,曲线方程为x * 2y * 20 ,是一个点,是中心型曲线,对称点为(0,0)5) 01时, 1 0,1 0, 0 ,曲线为虚椭圆,是中心型曲线,对称点为(0,0) 6)1 时,曲线方程为 x * 21 ,是一对虚平行直线,是线心型曲线,对称直线为 x *0 ,即 y x27)1时, 1 0,1 0,0 ,曲线为双曲线,是中心型曲线,对称点为(0,0)3n级矩阵 A 的 (i , j )元为 a i b j.设数域 K 上的( 1).求 A ;(2). 当 n2 时, a 1 a 2 , b 1 b 2 .求齐次线性方程组 AX解:(1)若 n1, | A | a 1 b 1若 na 1b 1 a 1 b 2 (a 2 a 1 )(b 2 b 1 )2,|A|b 1 a 2 b 2a 2a 1b 1 a 1 b 2 a 1 b 3a 2b 1a 2b 2a 2b 3若 n2,|A|a n 1b 1 an 1b 2a nb 1a nb 2 a n b 3a 1b 1 a 1 b 2 a 1 b 3 R nRn 1 a 2 b 1a 2b 2a 2b 3R n 1Rn 20 的解空间的维数和一个基。

北京大学801高等代数解析几何2006年(回忆版含答案)考研专业课真题试卷

北京大学801高等代数解析几何2006年(回忆版含答案)考研专业课真题试卷

2006年北京大学研究生考试高等代数与解析几何试题 本试卷满分150分 考试时间 3小时 日期:2006年1月15日下午高等代数部分(100分)1.(16分)(1) 设,A B 分别是数域K 上,s n s m ××矩阵,叙述矩阵方程AX B =有解的充要条件,并且给予证明。

(2) 设A 是数域K 上s n ×列满秩矩阵,试问:方程n XA E =是否有解?有解,写出它的解集;无解,说明理由。

(3) 设A 是数域K 上s n ×列满秩矩阵,试问:对于数域K 上任意s m ×矩阵B ,矩阵方程AX B =是否一定有解?当有解时,它有多少个解?求出它的解集。

要求说明理由。

2.(16分)(1) 设,A B 分别是数域K 上的,s n n s ××矩阵,证明:()()()n rank A ABA rank A rank E BA n −=+−−.(2) 设,A B 分别是实数域上n 阶矩阵。

证明:矩阵A 与矩阵B 的相似关系不随数域扩大而改变。

3. (16分)(1) 设A 是数域K 上的n 阶矩阵,证明:如果矩阵A 的各阶顺序主子式都不为0,那么A 可以分惟一的分解成A =BC , 其中B 是主对角元都为1的下三角矩阵,C 是上三角阵即。

(2) 设A 是数域K 上的n 阶可逆矩阵,试问:A 是否可以分解成A =BC , 其中B 是主对角元都为1的下三角矩阵,C 是上三角阵即?说明理由。

4.(10分)(1) 设A 是实数域R 上的n 阶对称矩阵,它的特征多项式()f λ的所有不同的复根为实数12,,,s λλλ⋅⋅⋅. 把A 的最小多项式()m λ分解成R 上不可约多项式的乘积。

说明理由。

(2) 设A 是n 阶实对称矩阵,令Α()A αα=, R n α∀∈根据第(1)问中()m λ的因式分解,把R n 分解成线性变换A 的不变子空间的直和。

北京大学2007年高等代数与解析几何试题及解答

北京大学2007年高等代数与解析几何试题及解答

5. 设 n 阶复矩阵 A 满足: 对任意 k ∈ N+, 都有 Tr(Ak) = 0. 求 A 的特征值.
6. 设 n 维线性空间 V 上的线性变换 A 的最小多项式与特征多项式相同. 求证: 存在 α ∈ V, 使得 α, A α, · · · , A n−1α 为 V 的一组基.
7. P 是球内一定点, A, B, C 是球面上三动点, ∠AP B = ∠BP C = ∠CP A = π/2. 以 P A, P B, P C 为棱作平
(3) 按题中方法选出的 r 阶子式一定不为 0. 可以参考丘维声的《高等代数》创新教材第 162 页例 6.
(4) 列向量组不一定等价, 例如考虑
[]
[]
10
00
A=
, B=
.
10
10
行向量组一定等价. 由题意可得
[]
A
AX = 0,
X =0
B
是同解的, 从而 B 的行向量组一定可以由 A 的行向量组线性表示, 否则将导致 []
7.
(法一) 设球的中心为 O, 半径为 r,
−−→ OP
=
d,
则由
−→ OA
=
−−→ OP
+
−→ PA

r2 = d2 + 2−O−→P · −P→A +
−→ 2 PA .
同理由
−−→ −−→ −−→ OB = OP + P B,
−−→ −−→ −−→ OC = OP + P C
可得
r2
=
d2
+
−−→ 2OP
(2) 设 n 阶矩阵 A 的各行元素之和均为常数 c, 问 A3 的各行元素之和是否均为常数?

北京大学2013年高等代数与解析几何试题及解答

北京大学2013年高等代数与解析几何试题及解答

1 = 2 (a1b4 − a2b3 − a3b2 + a4b1) = (B, A).
在此基础上易验算 (k1A1 + k2A2, B) = k1(A1, B) + k2(A2, B), 从而上述映射为对称双线性函数.


(2)
M
=
1 2
01
1 0
0 0
.
0 0 −2

λ −1/2 (3) |λE − M | = −1/2 λ
准型. (
3. (1) 若 A 可逆, 对于任意 B, AB = BA, 证明 det A B
) B = det(A2 − B2). A
(2) 如果 A 为数域 K 上不可逆矩阵, 对于任意 K 上矩阵 B, AB = BA, (1) 中结论是否成立?
(3) 如果 A 可逆, AB = BA 不成立, (1) 中结论是否成立?
(3) 结论不成立. 例如取 A = 0 1
) 1
, B = E21. 0
(
)
(
)
4. (1) 设 A = a1 a2 , B = b1 b2 , 则
a3 a4
b3 b4
(
1 (A, B) =
a1 + b1
2 a3 + b3
a2 + b2 − a1 a4 + b4 a3
a2 − b1 a4 b3
)
b2 b4
(2) A 是投影映射的充要条件是 A2 = A 且 A 为对称映射.
(3) 任意对称映射可以表示为 f (α) = ∑r λiTwi(α), Wi 为子空间.
i=1
(
6. 定义矩阵 A 的双曲余弦 cosh(A) = E + A2 + A4 +· · ·, 是否存在二阶复矩阵 A,使得 cosh(A) = 1

北京大学2009年高等代数与解析几何试题及解答

北京大学2009年高等代数与解析几何试题及解答
证明:一个向量组除去零向量后所剩的向量组是唯一的且与原向量组等价, 又由于此时它线性无关, 故它是 极大线性无关组.
2. (法一) 设
∏s f (x) = (x − xi)ni ,
i=1
其中 x1, x2, . . . , xs 为互不相同的实数, 则
f ′(x) ∑s =
ni
,
f (x) i=1 x − xi
2. (10 分) 设多项式 f (x) 的所有复根都是实数, 证明: 如果 a 是 f (x) 的导数 f ′(x) 的重根,则 a 也是 f (x) 的 根.
3. (10 分) 设 S 为 n 阶实对称矩阵, S1, S2 都是 m 阶实对称矩阵, 证明: 若准对角矩阵
(
)(
)
S0 与 S0
0 S1
12. (13 分) 给出空间中半径为 1 的球面 S 和到球心距离为 2 的一点 P, 考虑过 P 点且与 S 相交的任一条直 线, 取两个交点的中点, 用解析几何的方法证明这些中点的轨迹在一个球面上, 并求出球心和半径.
2
1. 如果一个向量组除去零向量后所剩的向量组线性无关, 则该向量组的极大线性无关部分组是唯一的.
dim W = dim im B = dim U − dim ker B = p − r(AB) − (p − r(B)) = r(B) − r(AB).
0 S2
合同, 则 S1 与 S2 合同.
4. (15 分) 解方程组
x+y+z = 2
(x

y)2 + (y x2y2z
− +
z)2 + x2yz2
(z +
− x)2 xy2z2

北京大学1999年高等代数与解析几何试题及解答

北京大学1999年高等代数与解析几何试题及解答
i=1
因此 V1 ∩ V2 = {0}.
∀α ∈ V, 可设 α = x1α1 + x2α2 + · · · + xnαn, 那么
() ∑n
( ∑n
) ∑n
α=
xi (α1 + α2 + · · · + αn) +
xi − xj αi ∈ V1 + V2.
i=1
i=1
j=1
综合上面两点得 V = V1 ⊕ V2. (3) 设 A αi = αpi, 1 ⩽ i ⩽ n. 其中 p1, p2, . . . , pn 为 1, 2, . . . , n 的一个重排, 则
x + 48
=
y+
95 2
=z+
35 .
8
7
2
注 丘维声的《解析几何》第三版第 69 页习题 2.3 第 10 题的 (3).
二. (1) 因为点 (1, 0, 0), (0, 1, 0), (0, 0, 1) 在 S 上, 故 a11 = a22 = a33 = 0.
(2) 作正交坐标变换

−−−→ Q1Q2 = (23 + 5s − 2t, −12 + 4s − 3t, s − t),

−−−→ Q1Q2
//
⃗v


23 + 5s − 2t −12 + 4s − 3t s − t
=
=
8
7
1
=⇒
s
=

82 3
t
=

35 2
95 35 =⇒ Q1(−48, − 2 , − 2 )

北京大学2012年高等代数与解析几何试题及解答

北京大学2012年高等代数与解析几何试题及解答

3. 因为 | det A| = 1, 故 A 为可逆矩阵. 设每行每列恰有一个元素为 1 或 −1, 其余元素均为 0 的 n 阶方阵组 成的集合为 S, 则 A ∈ S. 任取 B ∈ S, AB 可以看作对 B 的行做一个置换, 并且对某些行倍乘 −1 而得的矩 阵, 从而 AB ∈ S, 于是 A, A2, A3, . . . , An, . . . 均属于 S. 而 S 是有限集, 故存在 p > q ∈ N 使得 Ap = Aq, 所以 Ap−q = E.
4. 证法一: 利用一点点张量的知识, 先来考虑 A, B 的张量积
A ⊗ B =
a11B
a21B ...
a12B
a22B ...
··· ···
a1nB
a2nB ...
,
an1B an2B · · · annB
那么有 rank(A ⊗ B) = rank(A) · rank(B), 由于 A ◦ B 正好是 A ⊗ B 的主子式,故
i=1
∏n 由根与系数的关系知 σi ∈ Q, i = 1, 2, . . . , n, 于是 f (λi) ∈ Q.
i=1
2. 矩阵的行列式展开式告诉我们: 矩阵的行列式为矩阵中元素进行有限次加减乘法后所得的结果, 因此先将矩 阵中的元素都模 2 取余再计算行列式得到的数与先按原矩阵元素计算行列式再模 2 取余所得的数在模 2 的 意义下相等. 将题中矩阵的每个元素都模 2 取余后所得矩阵的次对角线下方元素均变为了 0, 对角线上的元 素全是 1, 不用关心对角线上方的元素是什么就知道这个时候最后的结果一定是模 2 余 1, 从而原矩阵的行 列式不为 0.
(2) 当 a > 0 时. i. 若 ac − b2 > 0, 则为单叶双曲面. ii. 若 ac − b2 = 0, 则为锥面.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京大学2005 数学专业研究生 高等代数与解析几何。

1. 在直角坐标系中,求直线⎩⎨⎧=++=-+1202:z y x z y x l 到平面03:=++z By x π的正交投影轨迹的方程。

其中B 是常数 解:可以验证点1212,0,,,0,5555l π⎛⎫⎛⎫∈∉ ⎪ ⎪⎝⎭⎝⎭,从而l π∉ 把l 写成参数方程:1325x k y k z k =-+⎧⎪=-⎨⎪=⎩,任取其上一点:P (13,25,)k k k -+-,设该点到π上的投影为点':P (,,)x y z'1331031x k z kPP x z π+--⊥⇒=⇒-+= 30P x By z π∈⇒++=整理即知,l 到π上的正交投影轨迹满足方程31030x z x By z -+=⎧⎨++=⎩由于1131≠,上述方程表示一条直线,而2*310B +-=和320B ++=不同时成立,因此l 到π上的正交投影轨迹是一条直线从而l 到π上的正交投影轨迹的方程就是31030x z x By z -+=⎧⎨++=⎩2. 在直角坐标系中对于参数λ的不同取值,判断下面平面二次曲线的形状:0222=+++λλxy y x .对于中心型曲线,写出对称中心的坐标; 对于线心型曲线,写出对称直线的方程。

解:记T ⎤⎥⎥=,容易验证'TT E =,因此直角坐标变换**x x T y y ⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦是一个正交变换在这个变换下,曲线方程变为22**(1)(1)x y λλλ++-=-1) 1λ<-时,10,10,0λλλ+<->->,曲线为双曲线,是中心型曲线,对称点为(0,0)2)1λ=-时,曲线方程为2*12y =,是一对平行直线,是线心型曲线,对称直线为*0y =,即y x =3) 10λ-<<时,10,10,0λλλ+>->->,曲线为椭圆,是中心型曲线,对称点为(0,0)4) 0λ=时,曲线方程为22**0x y +=,是一个点,是中心型曲线,对称点为(0,0)5) 01λ<<时,10,10,0λλλ+>->-<,曲线为虚椭圆,是中心型曲线,对称点为(0,0)6)1λ=-时,曲线方程为2*12x =-,是一对虚平行直线,是线心型曲线,对称直线为*0x =,即y x =-7)1λ>时,10,10,0λλλ+>-<-<,曲线为双曲线,是中心型曲线,对称点为(0,0)3. 设数域K 上的n 级矩阵A 的),(j i 元为j i b a -(1).求A ;(2).当2≥n 时,2121,b b a a ≠≠.求齐次线性方程组0=AX 的解空间的维数和一个基。

解: (1)若1n =,11||A a b =-若2n =,111221212122||()()a b a b A a a b b a b a b --==----若2n >,1112131212223211121123||n nn n n n n n n n na b a b a b a b a b a b a b a b A a b a b a b a b a b a b a b -----------=-------1121112131212223212121211110n n n n n R R nR R n n n n n n n n n n n n n n a b a b a b a b a b a b a b a b a a a a a a a a a a a a a a -----------------------==-------(2)若2n =,则111221212122||()()0a b a b A a a b b a b a b --==--≠--,方程组0=AX 只有零解,其解空间维数为0 若3n >=,则由(1)知道A 的任意一个3级子式的行列式为0,而A 的一个2级子式11122122a b a b a b a b --⎛⎫ ⎪--⎝⎭的行列式为2121()()0a a b b --≠,从而2rankA = 于是方程组0=AX 解空间的维数是2n -,取向量组122,,...,n βββ-,其中12i i i in c c c β⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,212121,1,21,0,n in i ij b b j b b b bj c b b j n i ---⎧=⎪-⎪-⎪==⎨-⎪⎪=-⎪⎩其他,1,2,...,2i n =-可知1222[,,...,]n n C E βββ--⎡⎤=⎢⎥⎣⎦,其中2n E -是2n -阶单位矩阵,C 是一个2*(2)n -的矩阵,从而122(,,...,)2n rank n βββ-=-并且对任意的1,2,...,2i n =-,有212112112211221()(1)()0nn i n i n i n i i k ik i n i k b b b b b b b ba b c a b b b b b b b b b b b -----=-----=++-++=----∑因此122,,...,n βββ-都属于方程组0=AX 解空间,从而是方程组0=AX 解空间的一组基4.(1)设数域K 上n 级矩阵,对任意正整数m ,求mC[C 是什么?](2)用)(K M n 表示数域K 上所有n 级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K 上的线性空间。

数域K 上n 级矩阵1432121321a a a a a a a a a a a a A n n n-=称为循环矩阵。

用U 表示K 上所有n 级循环矩阵组成的集合。

证明:U 是)(K M n 的一个子空间,并求U 的一个基和维数。

证:对任意的1231212341n n n a a a a a a a a A U a a a a -=∈,以及k K ∈,有,(1,2,...,)i i a K ka K i n ∈⇒∈=因此12312312112123412341n n n n n n a a a a ka ka ka ka a a a a ka ka ka ka kA kU a a a a ka ka ka ka --==∈对任意的1231212341n n n a a a a a a a a A U a a a a -=∈,和1231212341n n n b b b b b b b b B U b b b b -=∈,有,,i i i i a K b K a b K ∈∈⇒+∈因此1231231122331211211122112341234122334411n n n n n n n n n n n n a a a a b b b b a b a b a b a b a a a a b b b b a b a b a b a b A B Ua a a ab b b b a b a b a b a b ----+++++++++=+=∈++++可知U 是)(K M n 的一个子空间。

记12312(1)2341i i i in in i i i n i i i i i c c c c c c c c C c c c c -=,其中0,1,ij j ic j i ≠⎧=⎨=⎩,1,2,...,i n =,对任意的1231212341n n n a a a a a a a a A U a a a a -=∈,有1nk k k A a C ==∑,即U 所有向量都能用向量组12(,,...,)n C C C 线性表出设一组数,1,2,...,i k K i n ∈=,满足1ni i n i k C O ==∑,亦即1231212341n n n n k k k k k k k k O k k k k -=可得0,1,2,...,i k i n ==,向量组12(,,...,)n C C C 线性无关 综上向量组12(,,...,)n C C C 是U 的一组基5.(1)设实数域R 上n 级矩阵H 的),(j i 元为11-+j i (1>n )。

在实数域上n 维线性空间nR 中,对于n R ∈βα,,令βαβαH f '=),(。

试问:f 是不是n R 上的一个内积,写出理由。

(2)设A 是n 级正定矩阵(1>n )nR ∈α,且α是非零列向量。

令αα'=A B ,求B 的最大特征值以及B 的属于这个特征值的特征子空间的维数和一个基 解: (1) f 是nR 上的一个内积,证明如下:容易验证f 是nR 上的一个双线性函数对nR 中任意的非零向量12n a a a α⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,11(,)1n n i ji j a a f H i j αααα=='==+-∑∑令11()ni i i g x a x-==∑,是R 上的一个多项式函数,有22110()n ni j i ji j g x a a x+-==≤=∑∑可得1122111100()(,)1n nn ni ji j i ji j i j a a g x dx a a xdx f i j αα+-====≤===+-∑∑∑∑⎰⎰若12()0g x dx =⎰,由于2()g x 在[01],上连续,则必有2()0g x ≡,()0g x ≡则0,1,2,...,i a i n ==,即0α=,与α是nR 中非零向量矛盾。

所以12()0g x dx >⎰,(,)0f αα>所以f 是nR 上的一个内积(2) 由于A 正定,0α≠,可得'0A λαα=>,0A α≠,'1rankB rank αα==,由1rankB = 知方程组0BX =解空间0W 的维数为1n -,0W 同时也是B 的属于0特征值的特征子空间由0λ>,0A α≠和''()BA A A A A A αααααααλα===,知λ是B 的特征值,A α是B 的属于特征值λ的特征向量设B 的属于这个特征值的特征子空间为W λ,由0λ≠,00W W λ⋂=,所以00dim dim dim()W W W W n λλ+=+≤即dim 1W λ≤,而0,A A W λαα≠∈,dim 1W λ=,W λ的一组基为A α0dim 1dim dim W W W n λλ=⇒+=,因此B 没有其他特征值,0λ>是B 的唯一非零特征值,也是B 最大的特征向量6.设A 是数域R 上n 维线性空间V 上的一个线性变换,用I 表示V 上的恒等变换,证明: n rank rank =+++-⇔=)()(23A A I A I I A 证明: 记32()1,()1,()1f x x g x x h x x x =-=-=++ 其中((),())1g x h x =,()()()f x g x h x =因此()()()Kerf Kerg Kerh =⊕A A A ,()()0Kerg Kerh ⋂=A A于是2()0()()()dim dim ()dim ()()()()()f Kerf VV Kerg Kerh V Kerg Kerh n n rankg n rankh n rank rank =⇔=⇔=⇔=⊕⇔=+⇔=-+-⇔=-+++3A IA A A A A A A A I A I A A。

相关文档
最新文档