121.1任意角的三角函数值
每一个角度的三角函数值表
(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0. 二分之根号3cos45=0. 二分之根号2cos60=0.5cos90=0tan0=0tan30=0. 三分之根号3tan45=1tan60=1. 根号3tan90=无cot0=无cot30=1. 根号3cot45=1cot60=0. 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。
(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。
在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。
在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。
无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
附:三角函数值表sin0=0,sin15=(√6-√2)/4 ,sin30=1/2,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 ,sin90=1,sin105=√2/2*(√3/2+1/2)sin120=√3/2sin135=√2/2sin150=1/2sin165=(√6-√2)/4sin180=0sin270=-1sin360=0sin1=0. sin2=0. sin3=0.sin4=0.41253 sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0.65448 sin12=0.sin13=0. sin14=0. sin15=0.sin16=0. sin17=0.27367 sin18=0.49474sin19=0.71567 sin20=0.56687 sin21=0.sin22=0.5912 sin23=0.92737 sin24=0.sin25=0. sin26=0.90774 sin27=0.sin28=0.58908 sin29=0. sin30=0.sin31=0.00542 sin32=0.32049 sin33=0.5027 sin34=0.07468 sin35=0.1046 sin36=0.24731 sin37=0.20483 sin38=0.56583 sin39=0.98375 sin40=0.65392 sin41=0.05073 sin42=0.88582 sin43=0.24985 sin44=0.89972 sin45=0.65475 sin46=0.86511 sin47=0.91705 sin48=0.73941 sin49=0.27719 sin50=0.8978 sin51=0.69708 sin52=0.67219 sin53=0.72928 sin54=0.49474 sin55=0.89918 sin56=0.50417 sin57=0.54239 sin58=0.6426 sin59=0.21122 sin60=0.44386 sin61=0.93957 sin62=0.89269 sin63=0.83678 sin64=0.9167 sin65=0.66499 sin66=0.26009 sin67=0.24404 sin68=0.67873 sin69=0.72017 sin70=0.59083 sin71=0.93167 sin72=0.51535 sin73=0.30354 sin74=0.83189 sin75=0.90683 sin76=0.59965 sin77=0.52352 sin78=0.38057 sin79=0.7664 sin80=0.2208 sin81=0.51378 sin82=0.15704 sin83=0.1322 sin84=0.82733 sin85=0.17455 sin86=0.98242 sin87=0.45738 sin88=0.90958 sin89=0.63913sin90=1cos1=0.63913 cos2=0.90958 cos3=0.45738 cos4=0.98242 cos5=0.17455 cos6=0.82733 cos7=0.1322 cos8=0.15704 cos9=0.51378cos10=0.2208 cos11=0.7664 cos12=0.38057 cos13=0.52352 cos14=0.59965 cos15=0.90683 cos16=0.83189 cos17=0.30355 cos18=0.51535 cos19=0.93168 cos20=0.59084 cos21=0.72017 cos22=0.67874 cos23=0.24404 cos24=0.26009 cos25=0.66499 cos26=0.9167 cos27=0.83679 cos28=0.8927 cos29=0.93957 cos30=0.44387 cos31=0.21123 cos32=0.6426 cos33=0.5424 cos34=0.50417 cos35=0.89918 cos36=0.49474 cos37=0.72928 cos38=0.67219 cos39=0.69709 cos40=0.8978 cos41=0.2772 cos42=0.73942 cos43=0.91705 cos44=0.86512 cos45=0.65476 cos46=0.89974 cos47=0.24985 cos48=0.88582 cos49=0.05074 cos50=0.65394 cos51=0.98375 cos52=0.56583 cos53=0.20484 cos54=0.24731 cos55=0.10462 cos56=0.07468 cos57=0.50272 cos58=0.32049 cos59=0.00544 cos60=0.00001 cos61=0.63371 cos62=0. cos63=0.95468cos64=0. cos65=0. cos66=0.58004cos67=0.92737 cos68=0.59122 cos69=0.cos70=0.56688 cos71=0. cos72=0.cos73=0. cos74=0. cos75=0.cos76=0. cos77=0. cos78=0.cos79=0. cos80=0. cos81=0.cos82=0. cos83=0. cos84=0.cos85=0. cos86=0. cos87=0.cos88=0. cos89=0.72836cos90=0tan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0.29046 tan8=0. tan9=0.tan10=0. tan11=0. tan12=0.00221tan13=0.55631 tan14=0. tan15=0.11227tan16=0.88079 tan17=0. tan18=0.29063tan19=0. tan20=0. tan21=0.54158tan22=0.51568 tan23=0.96047 tan24=0.85361 tan25=0.49986 tan26=0.58614 tan27=0.44288 tan28=0.14788 tan29=0.2769 tan30=0.96257 tan31=0.75604 tan32=0.93275 tan33=0.75104 tan34=0.24265 tan35=0.97097 tan36=0.53609 tan37=0.27942 tan38=0.67174 tan39=0.50072 tan40=0.72799 tan41=0.62267 tan42=0.78399 tan43=0.76618 tan44=0.70739 tan45=0.99999 tan46=1.05693 tan47=1.46826 tan48=1.91927 tan49=1.10092 tan50=1.421 tan51=1.5051 tan52=1.30785 tan53=1.04098 tan54=1.11733 tan55=1.21144 tan56=1.27403 tan57=1.45827 tan58=1.10506 tan59=1.05173 tan60=1.88767 tan61=1.14235 tan62=1.63318 tan63=1.51503 tan64=2.9296 tan65=2.95586 tan66=2.4215 tan67=2.3753 tan68=2.62946 tan69=2.38023 tan70=2.46216 tan71=2.5822 tan72=3.52526 tan73=3.41404 tan74=3.09087 tan75=3.88776 tan76=4.58455 tan77=4.4153 tan78=4.8456 tan79=5.0307 tan80=5.7707 tan81=6.5041 tan82=7.4207 tan83=8.4593 tan84=9.2587 tan85=11.132 tan86=14.1942 tan87=19.816 tan88=28.5515 tan89=57.9144tan90=无取值。
完整的三角函数值表 0~180正余弦值表
完整的三角函数值表 0~180正余弦值表三角函数是数学中初等函数中属于超越函数的一类函数。
它们的本质是任意角的集合和一组比值的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域是整个实数域。
另一个定义在直角三角形里,但不完整。
三角函数是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
特殊三角函数值—般指在0、30°、45°、60°、90°、180°角下的正余弦值。
这些角度的三角函数值是经常用到的。
利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
完整的三角函数值如下:sin0=sin0°=0cos0=cos0°=1tan0=tan0°=0sin15=0.650;sin15°=(√6-√2)/4cos15=-0.759;cos15°=(√6+√2)/4tan15=-0.855;tan15°=2-√3sin30=-0.988;sin30°=1/2cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin75=-0.388;sin75°=cos15°cos75=0.922;cos75°=sin15°tan75=-0.421;tan75°=sin75°/cos75° =2+√3 sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0tan90=-1.995;tan90°不存在sin105=-0.971;sin105°=cos15°cos105=-0.241;cos105°=-sin15°tan105=4.028;tan105°=-cot15°sin120=0.581;sin120°=cos30°cos120=0.814;cos120°=-sin30°tan120=0.713;tan120°=-tan60°sin135=0.088;sin135°=sin45°cos135=-0.996;cos135°=-cos45°tan135=-0.0887;tan135°=-tan45°sin150=-0.7149;sin150°=sin30°cos150=-0.699;cos150°=-cos30°tan150=-1.022;tan150°=-tan30°sin165=0.998;sin165°=sin15°cos165=-0.066;cos165°=-cos15°tan165=-15.041;tan165°=-tan15°sin180=-0.801;sin180°=sin0°=0cos180=-0.598;cos180°=-cos0°=-1tan180=1.339;tan180°=0sin195=0.219;sin195°=-sin15°cos195=0.976;cos195°=-cos15°tan195=0.225;tan195°=tan15°sin360=0.959;sin360°=sin0°=0cos360=-0.284;cos360°=cos0°=1tan360=-3.380;tan360°=tan0°=0cos72度=[(√5)-1]/4(利用黄金等腰三角形可得出)sin1=0. sin2=0. sin3=0.sin4=0. sin5=0. sin6=0. sin7=0. sin8=0. sin9=0. sin10=0. sin11=0. sin12=0. sin13=0. sin14=0. sin15=0. sin16=0. sin17=0. sin18=0. sin19=0. sin20=0. sin21=0. sin22=0. sin23=0. sin24=0. sin25=0. sin26=0. sin27=0. sin28=0. sin29=0. sin30=0. sin31=0. sin32=0. sin33=0. sin34=0. sin35=0. sin36=0. sin37=0. sin38=0. sin39=0. sin40=0. sin41=0. sin42=0. sin43=0. sin44=0. sin45=0. sin46=0. sin47=0. sin48=0. sin49=0. sin50=0. sin51=0. sin52=0. sin53=0. sin54=0. sin55=0. sin56=0. sin57=0. sin58=0. sin59=0. sin60=0. sin61=0. sin62=0. sin63=0.sin67=0. sin68=0. sin69=0. sin70=0. sin71=0. sin72=0. sin73=0. sin74=0. sin75=0. sin76=0. sin77=0. sin78=0. sin79=0. sin80=0. sin81=0. sin82=0. sin83=0. sin84=0. sin85=0. sin86=0. sin87=0. sin88=0. sin89=0.sin90=1cos1=0. cos2=0. cos3=0. cos4=0. cos5=0. cos6=0. cos7=0. cos8=0. cos9=0. cos10=0. cos11=0. cos12=0. cos13=0. cos14=0. cos15=0. cos16=0. cos17=0. cos18=0. cos19=0. cos20=0. cos21=0. cos22=0. cos23=0. cos24=0. cos25=0. cos26=0. cos27=0. cos28=0. cos29=0. cos30=0.cos34=0. cos35=0. cos36=0. cos37=0. cos38=0. cos39=0. cos40=0. cos41=0. cos42=0. cos43=0. cos44=0. cos45=0. cos46=0. cos47=0. cos48=0. cos49=0. cos50=0. cos51=0. cos52=0. cos53=0. cos54=0. cos55=0.2 cos56=0. cos57=0.2 cos58=0. cos59=0. cos60=0. cos61=0. cos62=0.6 cos63=0. cos64=0.6 cos65=0. cos66=0. cos67=0. cos68=0.2 cos69=0. cos70=0. cos71=0.5 cos72=0.5 cos73=0.7 cos74=0. cos75=0. cos76=0. cos77=0. cos78=0. cos79=0. cos80=0. cos81=0. cos82=0. cos83=0. cos84=0. cos85=0. cos86=0. cos87=0. cos88=0. cos89=0.tan1=0. tan2=0. tan3=0. tan4=0. tan5=0. tan6=0. tan7=0. tan8=0. tan9=0. tan10=0. tan11=0. tan12=0. tan13=0. tan14=0. tan15=0. tan16=0. tan17=0. tan18=0. tan19=0. tan20=0. tan21=0. tan22=0. tan23=0. tan24=0. tan25=0. tan26=0. tan27=0. tan28=0. tan29=0. tan30=0. tan31=0. tan32=0. tan33=0. tan34=0. tan35=0. tan36=0. tan37=0. tan38=0. tan39=0. tan40=0. tan41=0. tan42=0. tan43=0. tan44=0. tan45=0. tan46=1. tan47=1. tan48=1. tan49=1. tan50=1. tan51=1. tan52=1. tan53=1. tan54=1. tan55=1. tan56=1. tan57=1. tan58=1. tan59=1. tan60=1.tan61=1. tan62=1. tan63=1. tan64=2. tan65=2. tan66=2. tan67=2. tan68=2. tan69=2. tan70=2. tan71=2. tan72=3. tan73=3. tan74=3. tan75=3. tan76=4. tan77=4. tan78=4. tan79=5. tan80=5. tan81=6. tan82=7. tan83=8. tan84=9. tan85=11. tan86=14. tan87=19. tan88=28. tan89=57.tan90=无取值范围。
121任意角的三角函数(1)
A.x
x
R,x
2
,x
C.x xR,x k,k Z
B.x
x
R,x
k 2
,k
Z
D.x
x
R,x
k
2
,k
Z
(6)角 的终边在直线 y 2x上,求 的三个三角函数值.
诱思 探究二
1.三角函数的定义域
使比值有意义的角的集合
三角函数
sin
cos
tan
定义域
R
R
k
2
,k
Z
例3、求下列函数的定义域。 (1)y sin x tan x (2)y lg(sin x cos x)
的坐标也可以定义三角函数.y 角 的终边来自r P(x,y)o
x
y
P(x,y) r
o
x
y
o
P(x,y) r
x
角 的终边
y
o
r
x P(x,y)
角 的终边
设 是 一 个 任 意 大 小 的 角, 角 的 终 边 上 任 意 一 点P( x, y),
它 与 原 点 的 距 离 为r (r x2 y2 0), 则 角 的 正 弦, 余 弦,
3.函数 y sin x cos x tan x cot x sin x cos x tan x cot x
的值域是( )
A. {-2,3}
B. {1,3}
C. {-1,3}
D. {-3,1,3}
学案:例5
3、终边相同的角的三角函数
诱导公式一
sin( 2k ) sin a cos( 2k ) cosa tan( 2k ) tan a
(k Z)
sin2k sin k Ζ
三角函数特殊角值表
sin(-α)=-sinα
——仅供参考
cos(-α)=cosα
tan(-α)=-tanα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关
系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
公式五: 利用公式一和公式三可以得到 2π-α与α的三角函数值之间的
关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
பைடு நூலகம்
tan(2π-α)=-tanα
公式六: π/2±α及 3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
一、特殊角三角函数值
角度
120
180
0° 30° 45° 60° 90°
135° 150°
函数
°
°
270 360°
°
角 a 的弧 0
度
sin
0
1
0 —1 0
cos
1
0 —1 — 2
2
2
— 3
—1
0
1
2
tan
0
1
二、诱导公式
—
- 3 —1
0 3
0
3
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
tan(π/2-α)=cotα
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
121.1任意角的三角函数值
利用公式(一),可以把求任意角的三角函数 值,转化到求0。到360。角的三角函数值。
例3:判断下列三角函数值的符号。
tan( 17 )
cos 250
sin(
)
6
。
4
cot(-672 )
cos4
例4:求证: 是第三象限角的充分必要条件是
sin 0 tan 0
(1) (2)
例5:求下列三角函数值: (1)sin1480 10' (2) cos 9
4
(3)
tan
11
6
3.已知角α的终边上一点P与A(a,b)关于x轴 对称(a≠0且b≠0),角β的终边上的点Q与A 关于直线y=x对称,
求sin α sec β +tan α cot β +sec α csc β的值。
4.cos α <0是α是第二象限的( )
A.充分不必要条件
B.必要不充分条件
2
{ | k , k Z}
例1
已知角 的终边经过P 2, 3,求
的六个三角函数值.
变1:已知角α的终边经过点P(2a,-3a), 求α的三角函数值; (a≠0)
变2:已知角α的终边与函数 y 2x 的图象重 合,求α的三角函数值。
例2: 求下列各角的六个三角函数值
3
(1) 0 ;(2) ;(3) .
任意角的三角函数是以坐标与距离、坐标与坐 标、距离与坐标的比来定义的,它也适合锐角三角 函数的定义.
实质上,由锐角三角函数的定义到任意角的三 角函数的定义是由特殊到一般的认识和研究过程.
2.三角函数是以实数为自变量的函数 实数
→角(其弧度数等于这个实数) →三角函数值(实数)
3. 三角函数的定义域
每一个角度的三角函数值表
(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0.866025404 二分之根号3cos45=0.707106781 二分之根号2cos60=0.5cos90=0tan0=0tan30=0.577350269 三分之根号3tan45=1tan60=1.732050808 根号3tan90=无cot0=无cot30=1.732050808 根号3cot45=1cot60=0.577350269 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。
(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。
在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。
在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。
无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。
三角函数角度对照表
三角函数角度对照表在数学的领域中,三角函数是非常重要的一部分。
而三角函数角度对照表则是帮助我们更好地理解和运用三角函数的工具。
首先,让我们来了解一下什么是三角函数。
三角函数包括正弦(sin)、余弦(cos)、正切(tan)等。
它们是描述三角形中边与角之间关系的函数。
对于常见的角度,如 0°、30°、45°、60°和 90°,它们的三角函数值是我们需要牢记的。
当角度为 0°时,sin 0°= 0,cos 0°= 1,tan 0°= 0。
这是因为在一个 0°的角所对应的直角三角形中,对边长度为 0,斜边与邻边长度相等。
当角度为 30°时,sin 30°= 1/2,cos 30°=√3/2,tan 30°=√3/3。
想象一个 30°-60°-90°的特殊直角三角形,较短的直角边是斜边的一半,较长的直角边是较短直角边的√3 倍。
45°角是一个特殊的角度,sin 45°= cos 45°=√2/2,tan 45°= 1。
在一个等腰直角三角形中,两条直角边长度相等,斜边是直角边的√2 倍。
60°角与 30°角相对应,sin 60°=√3/2,cos 60°= 1/2,tan 60°=√3。
当角度为 90°时,sin 90°= 1,cos 90°= 0,tan 90°不存在。
因为在90°的角所对应的直角三角形中,邻边长度为 0,所以正切值不存在。
除了这些特殊角度,我们还可以通过三角函数的周期性和对称性来得到其他角度的函数值。
正弦函数和余弦函数的周期都是2π,即 sin(x +2π) = sin x,cos(x+2π) = cos x。
1.2.1任意角的三角函数(二)
二、正弦线、余弦线 设任意角α与单位圆交于点 p(x , y),则r = |op| = 1.
y
p(x , y)
α
sinα= y cosα = x
o
x
因此,p(x , y)坐标也表示为p(cosα , sinα).
p
M
y
y α 终边
p(x , y)
o y
M
x
正弦线
o
M
x
余弦线 x o
y
M
o
p
x
p
三、正切线 过A(1,0)作圆的切线, 称AT为角α的正切线.
定义域为R;
π 定义域为 {x | x kπ + , k Z}. 2
定义域为R;
2、三角函数在象限内的符号 -
(+ )
(+ )
( )
(+ )
( )
-
(+ )
( )
-
( )
-
( )
-
(+ )
(+ )
( )
-
sinα
cosα
tanα
3、公式一(诱导公式)
sin( k 2 ) sin ; cos( k 2 ) cos ; tan( k 2 ) tan ( k z ).
结论
三角函数线是三角函 数的几何表示,它可 以直观刻画三角函数 的概念与三角函数的 定义结合起来,可以 从数与形两方面认识 三角函数的定义.
1、正弦线
2、余弦线
3、正切线
注意:正弦线、余弦线、正切 线都是有向线段,有正负之分.
课堂练习
1.作出下列各角的正弦线, 余弦线、正切线. (1) 11π/6 ; (2) -2π/3. T y y 1 1 M A(1,0) O 1 x P T -1 M -1 O A(1,0) 1 x
1.2.1任意角的三角函数
2当角的终边在第三象限时,
在角的终边上取点 1, 2 ,则r
1 2 5
2 2
2 2 5 1 5 2 sin , cos , tan 2 5 5 1 5 5
探 究
1.根据三角函数的定义,确定它们的定义域 (弧度制)
作业:
课本第20页 习题1.2 A组 1、2、6、7、第9 题的(1)(3)题.
1 若a 0则r 17a, 于是
8a 8 15a 15 8a 8 sin , cos , tan 17a 17 17a 17 15a 15
2 若a 0则r -17a, 于是
8a 8 15a 15 8a 8 sin , cos , tan 17 a 17 17 a 17 15a 15
3、已知角的终边在直线y 2 x上,求角的sin ,cos , tan 的值.
解: 当角的终边在第一象限时, 1
在角的终边上取点1, 2 ,则r= 12 22 5
2 2 5 1 5 2 sin , cos , tan 2 5 5 1 5 5
o
3
﹒
sin
A
﹒B
x
6 2 7 3 cos , 6 2
7 3 tan 6 3
,
例2 已知角 和正切值 .
) 的正弦、余弦 的终边经过点 P (3,4,求角
0
Hale Waihona Puke 解:由已知可得设角 的终边与单位圆交于 P( x, y) , P 分别过点 P 、 0 作 x 轴的垂线 MP M 0 P0 、
a b MP tan OM a
2.任意角的三角函数定义
三角函数特殊角值表
关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
公式六: π/2±α及 3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
sin(-α)=-sinα
——仅供参考
cos(-α)=cosα
tan(-α)=-tanα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关
系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
公式五: 利用公式一和公式三可以得到 2π-α与α的三角函数值之间的
tan(π/2-α)=cotα
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
(以上 k∈Z)
——仅供参考
利用公式二和公式三可以得到的三角函数值之间的关系
一、特殊角三角函数值
角度
120
180
0° 30° 45° 60° 90°
135° 150°
函数
°
°
270 360°
°
角 a 的弧 0
度
sin
0
1
0 —1 0
cos
1
0 —1 — 2
2
2
— 3
—1
0
1.2.1.1任意角三角函数
第1课时 任意角的三角函数(一)任意角的三角函数的定义sin α,即sin α=y cos α,即cos α=x ,即tan α=yx(x ≠0) 正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数到一个比值的集合的函数.三角函数值实质是一个比值,因此分母不能为零,所以正切函数的定义域就是使分母不为零的角的集合.Z }三角函数值在各象限的符号口诀:一全正,二正弦,三正切,四余弦状元随笔 对三角函数值符号的理解三角函数值的符号是根据三角函数定义和各象限内坐标符号导出的.从原点到角的终边上任意一点的距离总是正值.根据三角函数定义知:正弦值符号取决于纵坐标y 的符号;.sin 750°=________.类型一三角函数的定义及应用1(1)若角α的终边经过点P(5,-12),则sin α=________,cos α=________,tan α=________ 2x”其他条件不变,结果又如何?的值为;(1)将本例中条件“x>0”改为“x<0”,结果如何?(2)将本例中条件“x>0”改为“x≠0”,结果又怎样?(3)将本例中“P(x,3)”改为“P(x,3x)”,且把“cos θ=10x10”去掉,结果又怎样?A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5.方法归纳判断三角函数值正负的两个步骤(1)定象限:确定角α所在的象限.(2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来判断.注意:若sin α>0,则α的终边不一定落在第一象限或第二象限内,有可能终边落在y 轴的非负半轴上. 跟踪训练1 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5.2.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,则实数a 的取值范围是 . 3.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第 象限角.(2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.7.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是________.8.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t =________.三、解答题(每小题10分,共20分)9.已知角α的终边为射线y =-34x (x ≥0),求角α的正弦、余弦和正切值.10.判断下列各式的符号:(1)sin 105°·cos 230°;(2)cos 3·tan ⎝⎛⎭⎫-2π3.11.若α是第一象限角,则-α2是( )A .第一象限角B .第四象限角C .第二或第三象限角D .第二或第四象限角 12.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________. 13.计算:(1)sin 390°+cos(-660°)+3tan 405°-cos 540°;(2)sin ⎝⎛⎭⎫-7π2+tan π-2cos 0+tan 9π4-sin 7π3.14.已知角α的终边过点(a,2a )(a ≠0),求角α的正弦、余弦和正切值.第2课时 任意角的三角函数(二)1.相关概念(1)单位圆:以原点O 为圆心,以单位长度为半径的圆. (2)有向线段:带有方向(规定了起点和终点)的线段.规定:方向与x 轴或y 轴的正方向一致的为正值,反之为负值. 2.三角函数线状元随笔 (1)三角函数线的方向.正弦线由垂足指向角α的终边与单位圆的交点,余弦线由原点指向垂足,正切线由切点指向切线与角α的终边或其反向延长线的交点.(2)三角函数线的正负:三条有向线段凡与x 轴或y 轴同向的,为正值,与x 轴或y 轴反向的,为负值. (1)角的三角函数线是直线.( )(2)角的三角函数值等于三角函数线的长度.( )(3)第二象限的角没有正切线.( )2.有下列四个说法:①α一定时,单位圆中的正弦线一定;②单位圆中,有相同正弦线的角相等; ③α和α+π有相同的正切线;④具有相同正切线的两个角终边相同. 不正确说法的个数是( ) A .0个 B .1个 C .2个 D .3个 3.如图所示,在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT 4.已知sin α>0,tan α<0,则α的( )A .余弦线方向向右,正切线方向向下B .余弦线方向向右,正切线方向向上C .余弦线方向向左,正切线方向向下D .余弦线方向向上,正切线方向向左类型一 三角函数线的作法【例1】 作出下列各角的正弦线、余弦线、正切线.(1)-π4;(2)17π6;(3)10π3.类型二 利用三角函数线比较大小【例2】 (1)已知A .若α、β是第一象限角,则sin α>sin β B .若α、β是第二象限角,则tan α>tan β C .若α、β是第三象限角,则sin α>sin β D .若α、β是第四象限角,则tan α>tan β (2)利用三角函数线比较sin2π3和sin 4π5,cos 2π3和cos 4π5,tan 2π3和tan 4π5的大小.方法归纳利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.跟踪训练1.已知a =sin 2π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c2 设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?类型三 利用三角函数线解不等式(1)cos α>-22;(2)tan α≤33;(3)|sin α|≤12.1.将本例(1)的不等式改为“cos α<22”,求α的取值范围 2.将本例(3)的不等式改为“-12≤sin θ<32”,求α的取值范围3.利用本例的方法,求函数y =2sin x -1的定义域.方法归纳利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点.一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图象可得.跟踪训练3 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1) sin α≥32;(2)cos α≤-12.一、选择题(每小题5分,共25分)1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM3.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( ) A .1 B .2 C .3 D .04.使sin x ≤cos x 成立的x 的一个区间是( ) A.⎣⎡⎦⎤-3π4,π4 B.⎣⎡⎦⎤-π2,π2 C.⎣⎡⎦⎤-π4,3π4 D.[]0,π5.如果π4<θ<π2,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ二、填空题(每小题5分,共15分)6.比较大小:sin 1________sin π3(填“>”或“<”).7.不等式tan α+33>0的解集是________________________.8.用三角函数线比较sin 1与cos 1的大小,结果是________.三、解答题(每小题10分,共20分)9.做出下列各角的正弦线、余弦线、正切线.(1)5π6;(2)-2π3.10.利用三角函数线,求满足下列条件的角α的集合:(1)tan α=-1;(2)sin α≤-22.11.已知角α的正弦线和余弦线的方向相反、长度相等,则α的终边在( )A .第一象限的角平分线上B .第四象限的角平分线上C .第二、第四象限的角平分线上D .第一、第三象限的角平分线上12.若cos θ>sin 7π3,利用三角函数线得角θ的取值范围是________.13.若α∈⎝⎛⎭⎫0,π2,试利用三角函数线证明sin α+cos α>1.。
常见角的三角函数值表
常见角的三角函数值表三角函数的定义三角函数是数学中常见的一种函数,用于描述角度和三角形之间的关系。
常见的三角函数有正弦函数(sine),余弦函数(cosine)和正切函数(tangent)。
在解决各种数学问题和实际应用中,三角函数起着重要的作用。
三角函数的定义是基于单位圆的。
单位圆是半径为1的圆,以圆心为原点建立直角坐标系。
在单位圆上,以x轴正方向为初始边,逆时针旋转角度θ,对应的点的坐标为(x, y)。
根据这个定义,可以导出正弦函数、余弦函数和正切函数的定义。
正弦函数的定义为:sinθ = y 余弦函数的定义为:cosθ = x 正切函数的定义为:tanθ = y / x常见角的三角函数值表下面是一张常见角的三角函数值表,其中角度以度数表示:角度(θ)正弦(sinθ)余弦(cosθ)正切(tanθ)0°0 1 030°1/2 √3/2√3/345°√2/2√2/2 160°√3/21/2 √390° 1 0 ∞180°0 -1 0270°-1 0 ∞360°0 1 0通过观察上表,我们可以总结一些规律:角度为0°和360°在单位圆上,角度为0°时,x坐标为1,y坐标为0,对应的正弦值为0,余弦值为1,正切值为0。
角度为360°时,由于单位圆是周期性的,所以与0°的三角函数值完全相同。
角度为90°和270°在单位圆上,角度为90°时,x坐标为0,y坐标为1,对应的正弦值为1,余弦值为0,正切值为无穷大。
角度为270°时,x坐标为0,y坐标为-1,对应的正弦值为-1,余弦值为0,正切值同样为无穷大。
角度为45°和225°在单位圆上,角度为45°时,x坐标和y坐标都为√2/2,对应的正弦值为√2/2,余弦值为√2/2,正切值为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前课复习前课复习
1.角的概念是由几个要素构成的,具体怎样理解?
(1)角是由平面内一条射线绕其端点从一个位置旋转
到另一个位置所组成的图形.
(2)按逆时针方向旋转形成的角为正角,按顺时针方
向旋转形成的角为负角,没有作任何旋转形成的角为零
角.
③比值 叫做 的正切,记作 ,即 .
当角α不是锐角时,我们必须对sinα,cosα,tanα
的值进行推广,以适应任意角的需要.
1.任意角的三角函数定义
设 是任意角, 的终边上任意一点 的坐标是 ,
则 .
①比值 叫做 的正弦,记作 ,即 .
②比值 叫做 的余弦,
为a,B对边为b,C对边 c a
为c,锐角A的正弦、余 A C
弦、正切、余切依次为: b
(3)角的大小是任意的.
2.什么叫做1弧度的角?度与弧度是怎样换算的?
(1)等于半径长的圆弧所对的圆心角叫做1弧度的角.
(2)180°= rad.
3. 与角α终边相同的角的一般表达式是什么?
β=α+k·360°(k∈Z)或
问题1:初中锐角的三角函数是如何定义的?