八年级下册数学教案第一章复习教案北师大版
2017-2018学年北师大版八年级数学下册教案:第一章小结与复习
此外,实践活动中的实验操作环节,虽然同学们积极参与,但在操作过程中,我发现部分同学对几何体积计算公式的运用还不够熟练。针对这一问题,我打算在课后布置一些相关的习题,帮助同学们巩固这一知识点。
2017-2018学年北师大版八年级数学下册教案:第一章小结与复习
一、教学内容
2017-2018学年北师大版八年级数学下册教案:第一章小结与复习
本章复习内容包括:
1.平面向量的概念及其运算;
-向量的定义、表示方法;
-向量的和、差、数乘、共线、垂直;
-向量的坐标表示。
2.平行四边形的性质与判定;
-平行四边形的定义、性质;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要回顾平面向量、平行四边形和梯形的基本概念。向量是描述方向和大小的数学工具,它在解决几何问题时起着关键作用。平行四边形和梯形则是我们研究平面几何图形的重要内容,它们的性质和判定方法在几何证明和计算中有着广泛应用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个实际问题的解决过程,展示向量、平行四边形和梯形在解决面积和体积计算问题中的应用。
2.教学难点
(1)向量的坐标表示:理解向量的坐标表示方法,以及如何利用坐标进行向量的运算。例如,向量加法、减法的坐标运算规则。
(2)平行四边形的对角线性质:平行四边形对角线互相平分、互相垂直的性质,以及这些性质在几何证明中的应用。
(3)梯形面积的求解:掌握梯形面积的公式,以及如何将梯形转化为平行四边形或矩形求解。
北师大版八年级数学下册第一章三角形的证明1.2.1直角三角形(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直角三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-直角三角形的斜边上的中线性质及其在解决问题中的应用。
-实际问题中直角三角形的识别和运用勾股定理解决方法。
举例:讲解直角三角形的判定方法时,可以列举一些常见的直角三角形图形,如等腰直角三角形、含30°或60°角的直角三角形等,强调如何快速识别直角三角形。
2.教学难点
-难点内容:勾股定理的理解和应用,直角三角形的斜边上的高的计算。
-难点解析:
-勾股定理的理解:学生需要理解定理背后的几何关系和代数表达,以及如何在实际问题中灵活运用。
-直角三角形的斜边上的高的计算:学生需要掌握如何利用直角三角形的性质和勾股定理来求解斜边上的高。
-问题解决中的难点:将实际问题抽象为直角三角形问题,以及如何选择合适的数学方法解决问题。
举例:
-勾股定理的应用难点:可以设计一些复杂的实际问题,如测量距离、计算斜边长度等,指导学生如何将问题转化为直角三角形的边长计算。
同学们,今天我们将要学习的是《直角三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”比如,我们常见的红领巾,它的形状就是一个直角三角形。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索直角三角形的奥秘。
在实践活动中,学生们通过测量和计算,亲自验证了勾股定理,这样的教学方式有助于加深学生对定理的理解。但同时,我也注意到操作过程中部分学生存在粗心大意的问题,导致计算结果出现偏差。在以后的教学中,我要加强学生对细节的关注,培养他们的耐心和细致。
八年级下册数学北师大版第一单元复习 教学设计 教案
第1单元三角形的证明复习教案【知识与技能】回顾与思考,建立本章的知识框架图.【过程与方法】进一步掌握综合法的证明方法,结合实例体会反证法的含义.【情感态度】经历探索、猜想、证明使学生掌握解决问题的方法.【教学重点】建立本章的知识框架图.【教学难点】本章知识的综合性应用.一.知识结构【教学说明】引导学生回顾本章知识点,使学生系统地了解本章知识及它们之间的关系.二.释疑解惑,加深理解1.你能说说作为证明基础的几条公理吗?①两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;②两条平行线被第三条直线所截,同位角相等;③两边及其夹角对应相等的两个三角形全等; (SAS)④两角及其夹边对应相等的两个三角形全等; (ASA)⑤三边对应相等的两个三角形全等; (SSS)⑥全等三角形的对应边相等,对应角相等.2.向你的同伴讲述一两个命题的证明思路和证明方法.①综合法:从已知出发利用学过的公理和已证明的定理进行合情推理和演绎推理;②反证法.3.与等腰三角形、等边三角形有关的结论:性质:等腰三角形的两个底角相等,即等边对等角;等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合;等腰三角形两底角的平分线相等,两条腰上的中线相等,两条腰上的高相等.等边三角形的三条边都相等,三个角都相等,并且每个角都等于60°;判定:有两个角相等的三角形是等腰三角形;有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.与直角三角形有关的结论:①勾股定理的逆定理;②在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;③斜边和直角边对应相等的两个直角三角形全等.(HL)5.命题的逆命题及其真假①互逆命题;②互逆定理.6.本章所证明的命题①等腰三角形(含等边三角形)、直角三角形的性质定理及判定定理;②线段垂直平分线的性质定理及判定定理;③角平分线的性质定理及判定定理;④三角形三边的垂直平分线交于一点,这点到三角形三个顶点的距离相等;⑤三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.7.尺规作图.①线段的垂直平分线;②角的平分线.【教学说明】在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明、证明的思路和方法、尺规作图等.三.典例精析,复习新知1.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等解:A.一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故选项错误;B.两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故选项错误;C.一条边对应相等,再加一组直角相等,不能得出两三角形全等,故选项错误;D.两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故选项正确.故选D.2.具有下列条件的两个等腰三角形,不能判断它们全等的是()A. 顶角、一腰对应相等B. 底边、一腰对应相等C. 两腰对应相等D. 一底角、底边对应相等答案:C.3.下列说法错误的是()A. 任何命题都有逆命题B. 定理都有逆定理C. 命题的逆命题不一定是正确的D. 定理的逆定理一定是正确的答案:B4.已知,如图,O是∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E.若BC=10cm,求△ODE的周长.答案:△DOE的周长为10cm.(提示:证OD=BD,OE=EC)5.如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,已知△BCE的周长为8,AC-BC=2. 求AB与BC的长.分析:由已知AC-BC=2,即AB-BC=2,要求AB和BC的长,利用方程的思想,需找另一个AB与BC的关系.答案:AB=5,BC=3.【教学说明】通过例题讲解,进一步掌握本章知识,结合相关习题进一步发展学生的推理证明意识和能力.四.复习训练,巩固提高1.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B. 36°C. 45°D. 70°答案:B.2.等腰三角形底角15°,则等腰三角形的顶角、腰上的高与底边的夹角分别是、 .答案:150°,75°.3.如图,已知线段a,h作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h. 张红的作法是:(1)作线段 BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连结AB,AC则△ABC为所求的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是().A. (1)B. (2)C. (3)D. (4)答案:C4.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)已知CD=4cm,求AC的长;(2)求证:AB=AC+CD.解:(1)先证DE=EB,再求DB=42cm,∴AC=(4+42)cm.(2)证明△ACD≌△AED,即得AC=AE,∴AB=AC+CD.5.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.求证:AD垂直平分EF.证明:∵AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高.∴DE=DF.∴D在EF的垂直平分线上,在Rt△ADE与Rt△ADF中,DE=DF,AD=AD.∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∴A在EF的垂直平分线上.∴AD垂直平分EF.【教学说明】利用习题巩固本章知识点,体验解决问题的方法,发展实践能力和创新意识.五.师生互动,课堂小结通过对本章知识点的复习,你有哪些收获?还存在哪些疑惑?请与同伴、老师交流.布置作业:教材“复习题”中第4、6、7、10题.通过本节课的复习,归纳三角形的证明的相关性质、判定,使学生体验事物之间的联系与区别,从而加强对新知识的应用与理解.通过复习,大部分学生对本章知识掌握的较好,会对三角形进行相关的证明,应注意的问题是证明过程不够严密,逻辑性不强.。
最新北师大版八年级下册数学全册教案(新教材)
新版北师大版八年级下册数学全册教案教学设计DBCAE F OABCDE二.【效果检测】1.如图1 (1),在△ABC 与△A 'B 'C '中,若AB =A 'B ',AC =A 'C ',∠C =∠C '=90°,这时Rt △ABC 与Rt △A 'B 'C '是否全等?导学: 把Rt △ABC 与Rt △A 'B 'C '拼合在一起 ,如图1(2),因为 ∠ACB =∠A 'C 'B '=90°,所以B 、C(C ')、B '三点在一条直线上, 因此,△ABB '是一个等腰三角形,可以知道∠B =∠B '.根据AAS 公理可知Rt △A 'B 'C '≌Rt △ABC 。
请你按照上面的分析,尝试着完成本题的证明过程。
证明:反思:1.为什么要说明B 、C(C ')、B '三点在一条直线上呢?2.前面我们曾用画图剪拼的方法,比较感性的获得“斜边和一条直角边对应相等的两个直角三角形的全等。
”但由于观察并不一定可靠,通过今天严谨逻辑证明,我们确信这是一条数学真理。
3.根据勾股定理、SAS 公理你还有其他证明方法吗?三.【布置任务】师生互动探究问题1. 证明:在直角三角形中,30°角所对的直角边等于斜边的一半。
点拨:1.我们可构造如图1(2)的图形所示中,在等边三角形AB B '中,如 ∠BA C =30°,那么△ABC 是一个直角三角形,且BC =21AB 。
四.【小组交流】学生展示问题2. 如图所示,在△ABC 中,已知D 是BC 中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,DE =DF . 求证:AB=AC点拨:要证AB=AC ,只要分别证AE=AF ,BE=CF,因而只要用”HL ”证明Rt △AED ≌Rt △AFD, Rt △BED ≌Rt △CFD 。
六.【课堂训练】拓展延伸问题3 如图,CD ⊥AB,BE ⊥AC,垂足分别是D 、E,BE 、CD 相交于点O ,如果AB=AC ,哪么图中有几对全C=90度,点D在BC上,课外作业第二章 一元一次不等式与一元一次不等式组2.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。
北师大版八年级下册数学《第一章复习》教学设计
北师大版八年级下册数学《第一章复习》教学设计一. 教材分析北师大版八年级下册数学《第一章复习》主要是对八年级上册的知识进行复习,包括实数、不等式、函数、几何等知识点。
本章的目的是使学生对已学的知识有一个全面、深入的理解,并为后续的学习打下坚实的基础。
教材通过大量的例题和练习题,帮助学生巩固知识点,提高解题能力。
二. 学情分析八年级的学生已经学习了实数、不等式、函数、几何等知识点,对数学有了一定的认识和理解。
但是,由于学习时间的推移,部分学生可能对一些知识点的理解和掌握有所遗忘。
因此,在复习过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 教学目标1.知识与技能:使学生对实数、不等式、函数、几何等知识点有一个全面、深入的理解,提高解题能力。
2.过程与方法:通过复习,培养学生独立思考、合作交流的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心。
四. 教学重难点1.实数的性质和运算2.不等式的解法和应用3.函数的性质和图像4.几何图形的性质和计算五. 教学方法采用讲练结合的教学方法,通过讲解、示范、练习、讨论等方式,引导学生主动参与学习,提高学生的学习兴趣和积极性。
六. 教学准备1.教材和教学参考书2.PPT和教学课件3.练习题和测试题4.板书和教学工具七. 教学过程1.导入(5分钟)通过提问的方式,了解学生对已学知识的掌握情况。
然后,教师简要介绍本章的复习内容,激发学生的学习兴趣。
2.呈现(15分钟)教师利用PPT和教学课件,呈现本章的主要知识点,包括实数的性质和运算、不等式的解法和应用、函数的性质和图像、几何图形的性质和计算。
在呈现过程中,教师引导学生积极参与,提出问题和观点。
3.操练(20分钟)教师给出一些练习题,让学生独立完成。
然后,教师选取部分学生的作业进行讲解和示范,引导学生掌握解题方法和技巧。
对于学生的错误,教师要及时指出并给予纠正。
4.巩固(10分钟)教师给出一些测试题,让学生在规定时间内完成。
八年级数学下册第一章三角形的证明3线段的垂直平分线第2课时三角形三边垂直平分线的性质教案新版北师大版
八年级数学下册教案:第2课时三角形三边垂直平分线的性质1.能够证明三角形三边垂直平分线的相关结论.2.能够利用尺规作已经底边及底边上的高的等腰三角形.重点掌握三角形三边垂直平分线的性质.难点会用所学知识按要求作图.一、复习导入活动一:尺规作图作三角形三条边的垂直平分线.师:利用尺规作三角形三条边的垂直平分线,你发现了什么?(教师可用多媒体演示作图过程)引导学生得出:三角形三边的垂直平分线交于一点,这一点到三角形三个顶点的距离相等.活动二:下面请同学们剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流.师:这只是用我们的眼睛观察到的,看到的一定是真的吗?我们还需运用公理和已学过的定理进行推理证明,这样的发现才更有意义.这节课我们来学习探索和线段垂直平分线有关的结论.二、探究新知1.三角形三边垂直平分线的性质(1)教师引导学生分析,寻找证明方法.师:我们要从理论上证明这个结论,也就是证明“三线共点”,但这是我们没有遇到过的.我们不妨再来看一下作图过程,或许你能从中受到启示.通过回顾作图过程,引导学生认同:两直线必交于一点,那么要想证明“三线共点”,只要证第三条直线过这个交点或者说这个点在第三条直线上即可.(2)师生共同分析,完成证明.处理方式:讨论结束后,学生书写证明过程.教师点评,注意几何符号语言的规范性.已知:在△ABC中,设AB,BC的垂直平分线交于点P,连接AP,BP,CP.求证:点P在AC的垂直平分线上.证明:∵点P在线段AB的垂直平分线上,∴PA=PB(线段垂直平分线上的点到线段两个端点的距离相等).同理PB=PC.∴PA=PC.∴点P在AC的垂直平分线上(到线段两个端点距离相等的点,在这条线段的垂直平分线上).∴AB,BC,AC的垂直平分线相交于点P.师:从证明三角形三边的垂直平分线交于一点,你还能得出什么结论? (交点P到三角形三个顶点的距离相等)(3)多媒体演示我们得出的结论:定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.2.按要求作图(1)已知三角形的一条边及这条边上的高,你能作出满足条件的三角形吗?如果能,能作几个?所作出的三角形都全等吗?(2)已知等腰三角形的底边,你能用尺规作出满足条件的等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗?(3)已知等腰三角形的底边及底边上的高,你能用尺规作出满足条件的等腰三角形吗?能作几个?处理方式:学生通过小组讨论得出结论,并尝试作出草图,验证自己的结论.解:(1)已知三角形的一条边及这条边上的高,能作出三角形,并且能作出无数多个.已知:三角形的一条边a和这边上的高h,求作:△ABC,使BC=a,BC边上的高为h.从上图我们会发现,先作已知线段BC=a;然后再作BC边上的高h,但垂足不确定,我们可将垂足取在线段BC上或其所在直线上的任意一点D,过此点作BC边的垂线,最后以D为端点在垂线上截取AD(或A1D),使AD=A1D=h,连接AB,AC(或A1B,A1C),所得△ABC(或△A1BC)都满足条件,所以这样的三角形有无数多个.观察还可以发现这些三角形不都全等.(2)如果已知等腰三角形的底边,用尺规作出等腰三角形,这样的等腰三角形也有无数多个.根据线段垂直平分线的性质定理可知,线段垂直平分线上的点到线段两个端点的距离相等,因此只要作已知等腰三角形底边的垂直平分线,取它上面的任意一点,和底边的两个端点相连接,都可以得到一个等腰三角形.说明:不是底边垂直平分线上的任意一点都满足条件,如底边的中点在底边上,不能构成三角形,应将这一点从底边的垂直平分线上排除.(3)如果底边和底边上的高都一定,这样的等腰三角形只有两个,并且它们是全等的,分别位于已知底边的两侧.已知:线段a,h.求作:△ABC,使AB=AC,BC=a,高AD=h.作法:①作BC=a;②作线段BC的垂直平分线MN交BC于点D;③以点D为圆心,h长为半径作弧交MN于点A;④连接AB,AC.∴△ABC就是所求作的三角形(如图所示).三、练习巩固1.在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是( ) A.三角形三条角平分线的交点B.三角形三条垂直平分线的交点C.三角形三条中线的交点D.三角形三条高的交点2.已知△ABC的三边的垂直平分线的交点在△ABC的边上,则△ABC的形状为( ) A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.等腰Rt△ABC中,AB=AC,BC=a,其斜边上的中线与一腰的垂直平分线交于点O,则点O到三角形三个顶点的距离是________.4.如图,有A,B,C三个工厂,现要建一个供水站,使它到这三个工厂的距离相等,求供水站的位置.(要求尺规作图,只保留作图痕迹,不写作法)四、课堂小结通过本节课的学习,你有什么收获?五、课外作业1.教材第26页“随堂练习”.2.教材第26~27页习题1.8第1~4题.本节课主要学习“三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等”和“已知等腰三角形的底边和高作出符合条件的等腰三角形”,在讲解的过程中从尺规作图、逻辑推理等多层次地理解并证明了定理,学生思维活跃,能够积极参与到学习中来,教学效果较好.。
八年级下册数学北师大版第一单元复习 教学设计 教案(1)
第1单元三角形的证明复习教案一、复习目标1.在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.二、课时安排1课时三、复习重难点重点:线段垂直平分线与角平分线的性质和判定.难点:线段垂直平分线与角平分线的综合应用.四、教学过程(一)知识梳理1.直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的.2.勾股定理及其逆定理勾股定理:直角三角形两条直角边的平方和等于斜边的.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是三角形3.线段的垂直平分线的性质定理及判定定理性质定理:线段的垂直平分线上的点到这条线段两个端点的距离.判定定理:到一条线段两个端点距离相等的点,在这条线段的上.4.三线共点三角形三条边的垂直平分线相交于,并且这一点到三角形三个顶点的距离.5.角平分线的性质定理及判定定理性质定理:角平分线上的点到这个角两边的距离.判定定理:在一个角的内部,且到角的两边相等的点,在这个角的平分线上.[注意] 角的平分线是在角的内部的一条射线,所以它的逆定理必须加上“在角的内部”这个条件.6.三角形三条角平分线的性质三角形的三条角平分线相交于一点,并且这一点到三条边的距离.(二)题型、技巧归纳考点一勾股定理及逆定理的应用例1如图,在△ABC中,∠C=90°,∠B=30°,点P在BC上,PD⊥AB于点D,PD=2,PC=11,求AP的长.考点二线段垂直平分线的性质及判定例2、如图,△ABC中,DE是AC边的垂直平分线,交AC边于点E,交BC边于点D,且△ABC的周长为19,△ABD的周长为13,求AE的长为多少?例3、如图,△ABC中,AB=AC,直线l经过△ABC的顶点A,点D在直线l上,且∠1=∠2.求证:直线l是线段BC的垂直平分线考点三角平分线的性质及判定例4、如图,已知∠1=∠2,P为BN上一点且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°例5、如图,CE⊥AB于E,BF⊥AC于F,BF于CE交于点D,BE=CF.求证:AD平分∠BAC(三)典例精讲1.下列命题中,是真命题的是()A.相等的角是对顶角B.两直线平行,同位角互补C.等腰三角形的两个底角相等D.直角三角形中两锐角互补2.若三角形三边长之比为12,则这个三角形中的最大角的度数是()A.60° B.90°C.120° D.150°3.在△ABC中,若∠A∶∠B∶∠C=3∶1∶2,则其各角所对边长之比等于()A∶1∶2 B.1∶2C.1∶2 D.2∶14.到线段AB两个端点距离相等的点,在.5.直角三角形ABC中,∠C=90°,AC的垂直平分线交AB于D,若AD=2 cm,则BD =cm.6.如图1-80所示,△ABC中,AB,AC的垂直平分线分别交BC于点D,E,已知△ADE 的周长为12 cm,求BC的长.7.如图1-81所示,A,B是公路l(l为东西走向)两旁的两个村庄,A村到公路l的距离AC=1 km,B村到公路l的距离BD=2 km,B村在A村的南偏东45°方向上.(1)求A,B两村之间的距离;(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置.(保留清晰的作图痕迹,并简要写明作法)(四)归纳小结1.本节课学习了哪些主要内容?2.勾股定理,垂直平分线以及角平分线的性质与判定的应用。
北师大2024八年级数学下册 1.1 第1课时 等腰三角形的性质 教案
1.1 等腰三角形主要师生活动一、创设情境,导入新知图中有你熟悉的图形吗?它们有什么共同特点?师生活动:教师播放课件,学生独立思考回答问题.问题 1 在八上的“平行线的证明”这一章中,我们学了哪8 条基本事实?1.两点确定一条直线.2. 两点之间线段最短.3. 同一平面内,过一点有且只有一条直线与已知直线垂直.4. 同位角相等,两直线平行.5. 过直线外一点有且只有一条直线与这条直线平行.6. 两边及其夹角分别相等的两个三角形全等.7. 两角及其夹边分别相等的两个三角形全等.8. 三边分别相等的两个三角形全等.二、探究新知二、小组合作,探究概念和性质知识点一:全等三角形的判定和性质定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).问题2:你能用基本事实及已经学过的定理证明上面的推论吗?师生活动: 教学时应鼓励学生独立完成. 教师要提醒学生首先依据命题画出几何图形,再结合几何图形用数学符号语言写出“已知”“求证”,最后写出证明过程.已知:如图,∠A =∠D,∠B =∠E,BC = EF.求证:△ABC≌△DEF.证明:∵∠A +∠B +∠C = 180°,∠D +∠E +∠F = 180°(三角形的内角和等于180°),∴∠C = 180°-(∠A +∠B),∠F = 180°-(∠D +∠E).∵∠A =∠D,∠B =∠E (已知),∴∠C =∠F (等量代换).∵BC = EF (已知),∴△ABC≌△DEF (ASA).根据全等三角形的定义,我们可以得到:全等三角形的对应边相等,对应角相等.设计意图:学生在七年级下册已经探索并认识了判定三角形全等的“角角边”定理,这里意在让学生根据基本事实证明这一定理.设计意图:七年级下册给出的“全等三角形”的定义是“能够完全重合的两个三角形叫做全等三角形”,“全等三角形的对应边相等、对应角相等”则是由全等三角形的定义推出来的,本章很多证明都会用到它,因此,这里特别提出这一结论,以便后续证明使用.知识点二:等腰三角形的性质及其推论问题3:你还记得我们探索过的等腰三角形的性质吗?定理:等腰三角形的两个底角相等.推论:等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一).问题4:你能利用基本事实或已知的定理证明这些结论吗议一议:在七下学习轴对称时,我们利用折叠的方法说明了等腰三角形是轴对称图形,且两个底角相等,如下图,实际上,折痕将等腰三角形分成了两个全等的三角形. 由此,你得到了解题什么的启发?已知:如图,在△ABC中,AB = AC.求证:∠B = ∠C.方法一:作底边上的中线证明:如图,取BC的中点D,连接AD.∵AB = AC,BD = CD,AD = AD∴△ABD≌△ACD (SSS).∴∠B =∠C(全等三角形的对应角相等).师:还有其他的证法吗?方法二:作顶角的平分线证明:作顶角的平分线AD,则∠BAD =∠CAD.∵AB = AC,∠BAD = ∠CAD,AD = AD,∴△BAD≌△CAD (SAS).∴∠B =∠C (全等三角形的对应角相等).师生活动:教学时教师要注意引导学生根据条件正确、规范地写出“已知”“求证”,有意识地培养学生对文字语言、符号语言和图形语言的转换能设计意图:这里让学生回忆以前的折纸过程,目的是引导学生发现证明的思路,学生一般可以由折纸确定辅助线的位置,但对于作辅助线的规范叙述仍需教师帮助.设计意图:教学中,应鼓励学生寻求其他证明方法,实际上,除作底边中线外,还可以通过作顶角平分线的方法证明结论,此时证明的依据是基本事实SAS. 这两种证明方法都是受折纸的启发(轴对称),通过作辅助线将图形分成两部分,再证明这两部分全等,教师可以引导学生分析这两种证明方法的共性,加深对等腰三角形性质的认识.教学时,可能会有学生通过作底边上的高并利用勾股定理来证明这一定理,对此,教师一方面要保护学生的学习积极性,另一方面也要引导学生认识力,关注证明过程及其表达的合理性.想一想:由△BAD≌△CAD,图中线段AD还具有怎样的性质?为什么?由此你能得到什么论?由△BAD≌△CAD,可得BD = CD,∠ADB =∠ADC,∠BAD =∠CAD.又∵∠ADB +∠ADC = 180°,∴∠ADB =∠ADC = 90°,即AD⊥BC.故AD是等腰△ABC底边BC上的中线、顶角∠BAC的平分线、底边BC上的高.师生活动: 让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论.定理:等腰三角形的两个底角相等(等边对等角).几何语言:如图,在△ABC中,∵AB = AC (已知),∴∠B =∠C (等边对等角).推论:等腰三角形顶角的平分线、底边上的中线及底边上的高互相重合(三线合一).练一练1. 已知,如图,△ABC≌△ADE,∠BED = 20°,则∠AED的度数为( )A.60°B.90°C. 80°D. 20°到:我们虽然在以前探索并认识了勾股定理,但尚未用基本事实证明过,所以从逻辑上来说,勾股定理不能作为这里证明的依据.设计意图:这一结论通常简述为“三线合一”, 即如果某线段是一个等腰三角形的“三线”(顶角的平分线、底边上的中线、底边上的高) 之一,那么它必定也是这个等腰三角形的另“两线”.设计意图:综合运用全等三角形和等腰三角形的相关知识解决问题,加深学生印象,考察学生对于知识的掌握情况.三、当堂练习,巩固所学师生活动:让学生尝试解答,并互相交流、总结,归纳解题步骤,教师结合学生的具体活动,加以指导.典例精析例1 已知点D、E在△ABC的边BC上,AB=AC.(1) 如图①,若AD=AE,求证:BD=CE;(2) 如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.证明:(1) 如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG.∴BG-DG=CG-EG,即BD=CE.(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.三、当堂练习,巩固所学1. 如图,已知AB=AE,∠BAD=∠CAE,要使∠ABC∠∠AED,还需添加一个条件,这个条件可以是________________________.2. (1) 等腰三角形一个底角为75°,它的另外两个角为__________;(2) 等腰三角形一个角为36°,它的另外两个角为设计意图:在定理证明的基础上进行难度更高的推论证明,巩固学生知识的运用,并培养学生发散思维,提高学生解题技巧.设计意图:考查对全等三角形判定的掌握.设计意图:结论:在等腰三教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).全等三角形的对应边相等,对应角相等.。
八年级下册北师大版数学全册教案
八年级下册北师大版数学全册教案第一章:二次根式1.1 二次根式的概念与性质教学目标:理解二次根式的概念,掌握二次根式的性质及运算方法。
教学内容:介绍二次根式的定义,探索二次根式的性质,如平方、乘除、加减等运算方法。
教学方法:通过实际例子引导学生理解二次根式的概念,通过练习题巩固二次根式的性质及运算方法。
1.2 二次根式的乘除法教学目标:掌握二次根式的乘除法运算规则。
教学内容:介绍二次根式的乘除法运算方法,如乘法、除法的规则及注意事项。
教学方法:通过实际例子讲解二次根式的乘除法运算方法,通过练习题巩固学生的理解。
第二章:角的度量2.1 角的概念与分类教学目标:理解角的概念,掌握角的分类及度量方法。
教学内容:介绍角的概念,如锐角、直角、钝角等,学习角的度量方法,如度、分、秒的换算。
教学方法:通过实际例子引导学生理解角的概念,通过练习题巩固角的分类及度量方法。
2.2 量角器的使用教学目标:掌握量角器的使用方法,能够准确测量角的大小。
教学内容:介绍量角器的结构及使用方法,如量角器的摆放、读数等。
教学方法:通过实际操作讲解量角器的使用方法,通过练习题巩固学生的掌握程度。
第三章:平行线的性质3.1 平行线的定义与性质教学目标:理解平行线的定义,掌握平行线的性质及推论。
教学内容:介绍平行线的定义,探索平行线的性质,如同位角相等、内错角相等等。
教学方法:通过实际例子引导学生理解平行线的定义,通过练习题巩固平行线的性质及推论。
3.2 平行线的判定教学目标:掌握平行线的判定方法,能够正确判断两条直线是否平行。
教学内容:介绍平行线的判定方法,如同位角相等、内错角相等、同旁内角互补等。
教学方法:通过实际例子讲解平行线的判定方法,通过练习题巩固学生的理解。
第四章:几何图形的对称性4.1 对称性的概念与性质教学目标:理解对称性的概念,掌握对称性的性质及应用。
教学内容:介绍对称性的概念,探索对称性的性质,如轴对称、中心对称等。
新北师大版八年级数学下册第1章教案新部编本
∴∠ C=∠F(等量代换)。
又 BC=EF(已知),
∴△ ABC≌△ DEF( ASA )。
二、折纸活动 探索新知
活动内容: 在提问:“等腰三角形有哪些性质?以前是如何探索这些性
质的,你能再次通过折纸活动验证这些性质吗?并根据折纸过程,得到这些
性质的证明吗?”的基础上,让学生经历这些定理的活动验证和证明过程。
注意对有困难的学生给予帮助和指导。
三、经典例题 变式练习
活动内容 :提请学生思考,除了角平分线、中线、高等特殊的线段外,还可
流的基础上,明晰部分收获供学生共享,如: 1、具体有关性质定理; 2、通过折纸活动对获得的定理给予了严格的证明,为今后解决有关等腰三
角形的问题提供了丰富的理论依据. 3、体会了证明一个命题的严格的要求,体会了证明的必要性. 六、布置作业 P5 习题 1,2. 七、教学反思 本节关注学生已有活动经验的回顾过程,关注了 “探索-发现-猜想-证
等腰三角形腰上的高相等;
等腰三角形腰上的中线相等.
并对这些命题给予多样的证明。
如对于“等腰三角形两底角的平分线相等” ,学生得到了下面的证明方法:
已知:如图,在△ ABC中, AB=AC,BD、 CE是△ ABC的角平分线.
求证: BD=C.E
A
证法 1:∵ AB=AC,
∴∠ ABC=∠ACB(等边对等角 ) .
你可能得到哪些相等的线段? 你如何验证你的猜测? 你能证明你的猜测吗?试作图,写出已知、求证和证明过程; 还可以有哪些证明方法? 通过学生的自主探究和同伴的交流, 学生一般都能在直观猜测、 测量验证的基础 上探究出: 等腰三角形两个底角的平分线相等;
育人犹如春风化雨,授业不惜蜡炬成灰
精品教学教案设计 | Excellent teaching plan
北师大版八年级数学下册1.1等腰三角形(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等腰三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示等腰三角形的基本性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《等腰三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两边长度相等的三角形?”(如剪刀、自行车架等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等腰三角形的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等腰三角形的基本概念。等腰三角形是指有两边相等的三角形。它的重要性体现在其独特的性质和应用上。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了等腰三角形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调等腰三角形的性质和判定方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
总的来说,今天的课堂教学有成功之处,也有需要改进的地方。在今后的教学中,我会针对以下几点进行优化:
八年级下册北师大版数学全册教案
八年级下册北师大版数学全册教案第一章:平行四边形与特殊平行四边形1.1 平行四边形的性质教学目标:让学生掌握平行四边形的性质,并能运用其性质解决实际问题。
教学内容:平行四边形的定义,平行四边形的对边相等,对角相等,对边平行。
教学方法:通过实物演示,引导学生发现平行四边形的性质,并通过例题巩固知识点。
1.2 特殊的平行四边形教学目标:让学生了解特殊的平行四边形(矩形、菱形、正方形)的性质,并能运用其性质解决实际问题。
教学内容:矩形的性质,菱形的性质,正方形的性质。
教学方法:通过实物演示,引导学生发现特殊平行四边形的性质,并通过例题巩固知识点。
第二章:三角形的证明2.1 三角形的性质教学目标:让学生掌握三角形的性质,并能运用其性质解决实际问题。
教学内容:三角形的定义,三角形的内角和,三角形的边关系。
教学方法:通过实物演示,引导学生发现三角形的性质,并通过例题巩固知识点。
2.2 三角形的证明教学目标:让学生学会使用三角形的性质进行证明,并能运用证明解决实际问题。
教学内容:三角形的证明方法,证明的步骤。
教学方法:通过例题,引导学生学会使用三角形的性质进行证明,并培养学生的逻辑思维能力。
第三章:二次函数3.1 二次函数的定义与性质教学目标:让学生掌握二次函数的定义与性质,并能运用其性质解决实际问题。
教学内容:二次函数的定义,二次函数的图像,二次函数的性质。
教学方法:通过实物演示,引导学生发现二次函数的性质,并通过例题巩固知识点。
3.2 二次函数的图像与解析式教学目标:让学生学会绘制二次函数的图像,并能运用解析式解决实际问题。
教学内容:二次函数的图像,二次函数的解析式。
教学方法:通过例题,引导学生学会绘制二次函数的图像,并培养学生的几何直观能力。
第四章:数据的收集、整理与分析4.1 数据的收集教学目标:让学生掌握数据收集的方法,并能运用其方法解决实际问题。
教学内容:数据的定义,数据的收集方法。
教学方法:通过实例,引导学生了解数据收集的方法,并通过练习巩固知识点。
数学北师大版八年级下册第一章三角形专题复习教案
4.加强对三角形面积计算公式的复习巩固,确保学生熟练掌握。
b.对于相似三角形的判定,难点在于让学生理解“相似不等于全等”,并能够正确运用判定方法,如AA、SSS、SAS等。
c.在三角形面积计算方面,难点在于让学生熟练运用海伦公式解决不规则三角形的面积问题,并能够将结果表示为最简分数。
d.在实际应用问题中,难点在于培养学生从复杂问题中抽象出三角形模型,并运用所学知识解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算三角形面积或判断三角形是否全等的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形的奥秘。
其次,我发现学生在讨ห้องสมุดไป่ตู้三角形在实际生活中的应用时,思路相对狭窄,很难将所学知识与生活实际联系起来。这说明我在教学中还需要加强对学生数学应用意识的培养,引导他们从生活场景中发现数学问题,运用所学知识解决问题。
此外,在实践活动环节,学生分组讨论和实验操作的积极性较高,但成果展示环节却显得有些紧张和不自信。为了提高学生的表达能力和自信心,我计划在今后的教学中,多组织一些类似的活动,鼓励学生大胆展示自己的成果,增强他们的自信心。
-三角形面积计算:熟练运用底乘高除以二和海伦公式计算三角形面积。
-实际应用:将三角形知识应用于解决实际问题。
举例:在全等三角形判定中,重点强调SAS判定法,即两个三角形中两边及其夹角对应相等时,两个三角形全等。
2.教学难点
-全等三角形判定:学生容易混淆五种判定方法,难以判断哪些条件可以用来证明两个三角形全等。
2022北师大版八年级数学下册全套教案
2022北师大版八年级数学下册全套教案目录第一章一元一次不等式和一元一次不等式组1不等关系2不等式的基本性质3不等式的解集4一元一次不等式5一元一次不等式与一次函数6一元一次不等式组第二章分解因式1分解因式2提公因式法3运用公式法第三章分式1分式2分式的乘除法3分式的加减法4分式方程第四章相似图形1线段的比2黄金分割3形状相同的图形4相似多边形5相似三角形6探索三角形相似的条件7测量旗杆的高度8相似多边形的性质9图形的放大与缩小第五章数据的收集与处理1每周干家务活的时间2数据的收集3频数与频率4数据的波动第六章证明(一)1你能肯定吗2定义与命题3为什么他们平行4如果两条直线平行5三角形内角和定理的证明6关注三角形的外角第一章一元一次不等式和一元一次不等式组1.1不等关系一、教学目标:理解实数范围内代数式的不等关系,并会进行表示。
能够根据具体的事例列出不等关系式。
二、教学过程:如图:用两根长度均为Lcm的绳子,各位成正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝2,那么绳长L应满足怎样的关系式?(3)当L=8时,正方形和圆的面积哪个大?L=12呢?(4)由(3)你能发现什么?改变L的取值再试一试。
在上面的问题中,所谓成的正方形的面积可以表示为(L/4)2,远的面积可以表示为π(L/2π)2(1)要是正方形的面积不大于25㎝2,就是(L/4)2≤25,即L2/16≤25。
(2)要使原的面积大于100㎝2,就是π(L/2π)2>100即L2/4π>100。
(3)当L=8时,正方形的面积为82/16=6,圆的面积为82/4π≈5.1,4<5.1此时圆的面积大。
当L=12时,正方形的面积为122/16=9,圆的面积为122/4π≈11.5,9<11.5,此时还是圆的面积大。
教师得出结论(4)由(3)可以发现,无论绳长L取何值,圆的面积总大于正方形的面积,即L2/4π>L2/16。
北师大版八年级下册数学《第一章复习》说课稿
北师大版八年级下册数学《第一章复习》说课稿一. 教材分析北师大版八年级下册数学《第一章复习》的教材内容主要包括实数、整式、分式、函数、几何图形等基础知识。
这部分内容是学生进一步学习数学的基础,也是巩固和提高学生数学素养的关键。
教材通过复习的方式,帮助学生梳理和巩固已学的知识,为后续的学习打下坚实的基础。
二. 学情分析八年级下的学生已经掌握了部分数学知识,对实数、整式、分式、函数、几何图形等有一定的了解。
但学生在应用这些知识解决问题时,还存在一定的困难。
因此,在复习过程中,需要引导学生通过自主学习、合作交流等方式,加深对知识的理解,提高解决问题的能力。
三. 说教学目标1.知识与技能:通过复习,使学生掌握实数、整式、分式、函数、几何图形等基础知识,提高学生运用这些知识解决实际问题的能力。
2.过程与方法:引导学生通过自主学习、合作交流、探究发现等方法,总结和归纳数学知识,培养学生的数学思维能力和创新意识。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学素养,使学生感受到数学在生活中的重要作用,增强学生克服困难的信心。
四. 说教学重难点1.教学重点:实数、整式、分式、函数、几何图形等基础知识的掌握和运用。
2.教学难点:实数、整式、分式、函数、几何图形等知识在实际问题中的综合运用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、探究发现等教学方法,引导学生积极参与课堂活动,提高学生的学习兴趣和积极性。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,直观地展示数学知识,帮助学生理解和掌握。
六. 说教学过程1.导入:通过复习导入,引导学生回顾已学的知识,为新课的学习做好铺垫。
2.自主学习:学生自主复习实数、整式、分式、函数、几何图形等基础知识,总结和归纳相关概念、性质、定理等。
3.合作交流:学生分组讨论,分享自己的学习心得和感悟,互相提问、解答疑问,共同提高。
4.探究发现:教师提出问题,引导学生运用已学的知识进行探究和发现,培养学生的数学思维能力和创新意识。
北师大版八年级下册数学《第一章复习》教案
第一章三角形的证明①等腰三角形的两底角相等。
(“等边对等角”)②等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(三线合一)。
(2)判定:①有两边相等的三角形是等腰三角形.②有两个角相等的三角形是等腰三角形(等角对等边).考点2等边三角形的性质1.边长为6 cm的等边三角形中,其一边上高的长度为________.2.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且C G =CD,DF=DE,则∠E=________度.【归纳总结】(1)定义:三条边都相等的三角形是等边三角形。
(2)性质:①三个内角都等于60度,三条边都相等②具有等腰三角形的一切性质。
(3)判定:①三个角都相等的三角形是等边三角形。
②有一个角等于60度的等腰三角形是等边三角形。
考点3 直角三角形1.在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD 的长是()A.20 B.10 C.5 D.2.在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC交AC于点D,若AD=6,则CD=_____.3.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2C.5.8 D.7【归纳总结】(1)性质:直角三角形的两锐角互余。
(2)定理:直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。
(3)定理:在直角三角中,斜边上的中线等于斜边的一半.(3)判定:有两个角互余的三角形是直角三角形考点4 勾股定理及其逆定理2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3,4,5 B.6,8,10C.,2,D.5,12,13【归纳总结】勾股定理:直角三角形两条直角边的平方和等于斜边的平方。
勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
北师大版数学八年级下册第1章小结与复习教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《小结与复习》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形边长或是求解几何图形面积的情况?”(如房屋装修时计算地板面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索数学在生活中的应用。
6.总结回顾环节,我注意到部分学生对课堂所学知识点的掌握不够扎实。为了提高学生的记忆效果,我将在今后的教学中,勾股定理及其应用的复习,提高学生运用逻辑推理解决问题的能力。
2.空间想象:通过平面几何图形的面积计算,培养学生对几何图形的空间想象和直观感知。
3.数学运算:加强实数与二次根式的运算训练,提高学生的数学运算能力。
4.数据观念:掌握数据的收集与处理方法,形成数据观念,培养学生对数据的敏感性和分析能力。
2.平面几何图形的面积计算:复习三角形、四边形、圆等几何图形的面积计算公式,并解决与面积相关的实际问题。
3.实数与二次根式:巩固实数的概念,掌握二次根式的化简与运算。
4.数据的收集与处理:掌握数据的收集、整理、描述和分析方法,学会使用统计图表。
二、核心素养目标
北师大版数学八年级下册第1章《小结与复习》的核心素养目标如下:培养学生的逻辑推理、空间想象、数学运算和数据观念等能力。
举例:学生在计算复杂多边形的面积时,要学会将其分解为简单图形,并运用相应公式计算。
(3)实数与二次根式:熟练掌握实数的概念,以及二次根式的化简和运算。
举例:学生在解决含有二次根式的数学问题时,要能够熟练地进行化简和运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章三角形的证明
①等腰三角形的两底角相等。
(“等边对等角”)
②等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(三线合一)。
(2)判定:
①有两边相等的三角形是等腰三角形.
②有两个角相等的三角形是等腰三角形(等角对等边).
考点2等边三角形的性质
1.边长为6 cm的等边三角形中,其一边上高的长度为
________.
2.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上,且C G=CD,DF=DE,则∠E=________度.
【归纳总结】
(1)定义:三条边都相等的三角形是等边三角形。
(2)性质:
①三个内角都等于60度,三条边都相等
②具有等腰三角形的一切性质。
(3)判定:
①三个角都相等的三角形是等边三角形。
②有一个角等于60度的等腰三角形是等边三角形。
考点3 直角三角形
1.在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD 的长是()
A.20 B.10 C.5 D.
2.在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC交AC于点D,若AD=6,则CD=_____.
3.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()
A.3.5 B.4.2
C.5.8 D.7
【归纳总结】
(1)性质:直角三角形的两锐角互余。
(2)定理:直角三角形中,如果一个锐角是30度,那么它所对的直角边等于斜边的一半。
(3)定理:在直角三角中,斜边上的中线等于斜边的一半.
(3)判定:
有两个角互余的三角形是直角三角形
考点4 勾股定理及其逆定理
2.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()
A.3,4,5 B.6,8,10
C.,2,D.5,12,13
【归纳总结】
勾股定理:直角三角形两条直角边的平方和等于斜边的平方。
勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
考点5 角平分线的性质和判定
1、如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD =4,则点D到AB的距离是________.
2.如图1-2,点D在BC上,DE⊥AB,DF⊥AC,且DE=DF,则线段AD是△ABC的()
A.垂直平分线B.角平分线
C.高D.中线
【归纳总结】
(1)角平分线上的点到这个叫的两边的距离相等。
(2)在一个角的内部,到角的两边距离相等的点在这个角的平分线上。
考点6 垂直平分线的性质和判定
2、如图,在△ABC中∠B=30°
,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为()A.10 B.8 C.5 D2.5
2、如图,在Rt△ABC中,有∠ABC=90°,DE是AC的垂直平分线,交AC 于点D,交BC于点E,∠BAE=20°,则∠C=_________.
【归纳总结】
(1)线段的垂直平分线上的点到这条线段的两个端点的距离相等
(2)到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
考点7命题及逆命题
1、下列命题的逆命题是真命题的是()
A.如果a>0,b>0,则a+b>0
B.直角都相等
C.两直线平行,同位角相等
D.若a=6,则|a|=|b|
【归纳总结】
命题和逆命题:
命题:由条件和结论组成
逆命题:由结论和条件组成
考点7反证法
1、用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中___.
【归纳总结】
反证法:
先假设命题的结论不成立,然后推导出与已知条件相矛盾的结果
考点8三角形的全等
1.如图,△ABC,△CDE是等边三角形(1)求证:AE=BD
(2)若BD和AC交于点M,AE和CD交于点N,求证:CM=CN
(3)连结MN,猜想MN与BE的位置关系.并加以证明
2
、已知:如图,△ABC中,∠ABC=45°,DH垂直平分BC交AB于点D,
BE平分∠ABC,且BE⊥AC于E,与CD相交于点F(1)求证:BF=AC;(2)求证:
【归纳总结】
全等三角形
(1)性质:全等三角形的对应边、对应角相等。
(2)判定:“SAS”、SSS 、AAS 、ASA 、HL(直角三角形) 。
作业设计
第3、4、5、6、7、8题;
A
B C
D
E。