轴压比,剪重比的定义和介绍(精)

合集下载

高层设计7大指标调整方法

高层设计7大指标调整方法

高层设计7大指标调整方法高层结构设计需要控制的七个比值及调整方法1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规 6.3.7和6.4.6,高规 6.4.2和7.2.14。

轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。

2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。

这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。

剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。

2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。

3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2,高规 4.4.2;对于形成的薄弱层则按高规 5.1.14予以加强。

刚度比不满足时的调整方法:1)程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规 5.1.14将该楼层地震剪力放大 1.15倍。

2)人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。

PKPM高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”

PKPM高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”

PKPM高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”,-1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求-2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性-3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层-4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。

-5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响-6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆-位移比(层间位移比):-1.1 名词释义:-(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

-(2) 层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

-其中:-最大水平位移:墙顶、柱顶节点的最大水平位移。

-平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

-层间位移角:墙、柱层间位移与层高的比值。

-最大层间位移角:墙、柱层间位移角的最大值。

-平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

-1.3 控制目的: -高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:-1 保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

-2 保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

-3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

-1.2 相关规范条文的控制:-[抗规]3.4.2条规定,建筑及其抗侧力结构的平面布置宜规则,对称,并应具有良好的整体性,当存在结构平面扭转不规则时,楼层的最大弹性水平位移(或层间位移),不宜大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。

几种结构比值

几种结构比值

对于框架(或框剪,剪力墙)结构,一般需要控制的有:宏观控制的5大比值:周期比,位移比,刚度比,剪重比,刚重比微观控制的6大比值:轴压比,剪压比,剪跨比,跨高比,高厚比(剪力墙),长细比(柱)[1]、剪重比控制:剪重比指任一楼层的水平剪力与该层及其以上各层总重力荷载代表值的比值。

一般是指底层水平剪力与结构总重力荷载代表值之比。

它在某种程度上反映了结构的刚柔程度,剪重比应在一个合理的范围内,以保证结构整体的刚度适中,剪重比太小,说明结构整体刚度偏柔,在水平荷载或水平地震作用下将产升过大的水平位移或层间位移;剪重比过大,说明结构整体刚度偏刚,会引起很大的地震力,不经济。

附规范规定:《抗规》5.2.5条“剪重比”在新规范中就是水平地震剪力系数λ。

《高规》3.3.13条出于结构安全的考虑,增加了对各层水平地震剪力最小值的要求,结构的水平地震效应据此进行相应调整。

[2]、位移比控制:位移比是指楼层的最大弹性水平位移(或层间位移)与该楼层弹性水位移(或层间位移)的平均值之比。

位移比的大小是反映结构平面规则与否的重要依据,它侧重控制的是结构侧向刚度和扭转之间的一种相对关系,而非绝对大小,它的目的是使结构抗侧力构件布置更有效、更合理。

附规范规定:《高规》的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.3倍。

[3]、周期比控制:周期比使指结构扭转为主的第一周期T1与以平动为主的第一周T1的比值,其主要目的是控制结构在地震作用下的扭转效应。

周期比实际上反映了结构的扭转刚度和侧向刚度之间的一种对应关系,同时也反映了结构抗侧力钩件布置的合理性和有效性。

附规范规定:《高规》4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.850[4]、层刚比控制:我国的“抗震规范”和“高规”均对结构的楼层侧向刚度比作出了规定,其主要目的是为了保证结构竖向刚度变化的均匀性,防止出现突变的情况。

PKPM里6种比值详解

PKPM里6种比值详解

高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”,-1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求-2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性-3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层-4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。

-5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响-6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆-位移比(层间位移比):-1.1 名词释义:-(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

-(2) 层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

-其中:-最大水平位移:墙顶、柱顶节点的最大水平位移。

-平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

-层间位移角:墙、柱层间位移与层高的比值。

-最大层间位移角:墙、柱层间位移角的最大值。

-平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

-1.3 控制目的: -高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:-1 保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

-2 保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

-3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

-1.2 相关规范条文的控制:-[抗规]3.4.2条规定,建筑及其抗侧力结构的平面布置宜规则,对称,并应具有良好的整体性,当存在结构平面扭转不规则时,楼层的最大弹性水平位移(或层间位移),不宜大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。

-[高规]4.3.5条规定,楼层竖向构件的最大水平位移和层间位移,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

高层结构需要控制的几个比值:轴压比、周期比、剪重比、刚度比、位移比、刚重比、层间受剪承载力之比

高层结构需要控制的几个比值:轴压比、周期比、剪重比、刚度比、位移比、刚重比、层间受剪承载力之比

高层结构需要控制的几个比值:轴压比、周期比、剪重比、刚度比、位移比、刚重比、层间受剪承载力之比1.轴压比轴压比主要是控制结构的延性,具体要求见抗规6.3.6和6.4.5,高规6.4.2和7.2.14。

轴压比过大则结构的延性要求无法保证,此时应加大截面面积或提高混凝土强度;轴压比过小,则结构的经济性不好,此时应减小截面面积。

PKPM中的查看方法:2.周期比周期比控制的是结构侧向刚度与扭转刚度之间的相对关系,它的目的是使抗侧力构件的平面布置更合理,使结构不致于出现过大的扭转效应。

一句话,周期比不是要求结构足够结实,而是要求结构承载布置合理,具体要求见高规4.3.5。

刚度越大,周期越小。

抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比,意思是结构外围的抗侧力构件对结构的扭转刚度贡献最大。

结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。

当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴的侧移刚度过小,此时应沿两个主轴适当加强结构外围的刚度,或沿两个主轴适当削弱结构内部的刚度。

当第二振型为扭转时,说明结构沿两个主轴的侧移刚度相差较大,结构的扭转刚度相对于其中一主轴(第一振型转角方向)的侧移刚度是合理的,但对于另一主轴(第三振型转角方向)的侧移刚度过小,此时应适当削弱结构内部沿第三振型转角方向的刚度或适当加强结构外围(主要是沿第一振型转角方向)的刚度。

PKPM中的查看方法:3.位移比位移比是指采用刚性楼板假定下,端部最大位移(层间位移)与两端位移(层间位移)平均值的比,位移比的大小反映了结构的扭转效应,同周期比的概念一样都是为了控制建筑的扭转效应提出的控制参数。

见抗规3.4.3,高规4.3.5。

位移比不满足时只能经过人工调整结构平面布置,减小结构刚心与形心的偏心距。

调整方法如下:(1)由于位移比是在刚性楼板假定下计算的,最大位移比往往出如今结构的四角部位,因此应留意调整结构外围对应位置抗侧力构件的刚度;同时在设计中,应在结构措施上对楼板的刚度予以保证。

轴压比、剪重比、刚度比、周期比、位移比和刚重比详解

轴压比、剪重比、刚度比、周期比、位移比和刚重比详解

轴压比、剪重比、刚度比、周期比、位移比和刚重比详解轴压比、剪重比、刚度比、周期比、位移比和刚重比详解高层结构设计中经常要控制轴压比、剪重比、刚度比、周期比、位移比和刚重比“六种比值”,1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。

2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5。

3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2。

4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。

见抗规3.4.2。

5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规 4.3.5。

6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规5.4.1。

1.一个建筑物结构设计部分,一般来说,包含两个过程:1)结构分析;2)结构设计方案选定后要结构分析,结构分析就是看方案的布置是否合理,包括水平布置和竖向布置;具体的说就是八个比值:轴压比,周期比,位移比,剪重比,刚重比,层间受剪承载力比,侧向刚度比,层间位移角。

2.下面来说说这个比值是用来控制结构哪个方面的。

轴压比: 保证结构的延性;周期比和位移比:判断和控制结构的扭转效应;剪重比:是用来确保长周期结构的安全。

刚重比:控制P-Δ效应作用下的稳定性。

当刚重比比较大时,是可以不用考虑其P-Δ效应的,当刚重比比较小时,就要考虑其P-Δ效应。

规范采用的是对未考虑重力二阶效应的计算结果乘以增大系数的方法近似考虑。

但是刚重比不能过小,是有一个限值的。

层间受剪承载力比:限制结构的竖向布置规则性,可以用来判断薄弱层。

注:层间受剪承载力是指是指在所考虑的水平地震作用方向上,该层全部柱及剪力墙的受剪承载力之和。

也就是说,当混凝土的等级,构件截面以及配筋定下之后,由《高规》6.2.8以及7.2.11的公式就确定了层间受剪承载力。

剪跨比、轴压比和剪压比概念

剪跨比、轴压比和剪压比概念

剪跨比、轴压比和剪压比概念剪跨比ratio of shear span to depth简支梁上集中荷载作用点到支座边沿的最小距离a(a称剪跨)与截面有效高度h0之比。

以λ=a/h0暗示。

它反映计算截面上正应力与剪应力的相对关系,是影响抗剪破坏形态和抗剪承载力的重要参数。

在其它因素相同时,剪跨比越大,抗剪能力越小。

当剪跨比大于3时,抗剪能力基本不再变更。

狭义定义:a/h0广义定义:M/Vh0更深一层:主应力与切应力之比,延伸至延性与脆性。

框架柱端一般同时存在着弯矩M和剪力V,根据柱的剪跨比λ=M/Vho来确定柱为长柱、短柱和极短柱,ho为与弯矩M 平行方向柱截面有效高度。

λ>2(当柱反弯点在柱高度Ho中部时即Ho/ho>4)称为长柱;1.5<λ≤2称为短柱;λ≤1.5称为极短柱。

试验标明:长柱一般发生弯曲破坏;短柱多数发生剪切破坏;极短柱发生剪切斜拉破坏,这种破坏属于脆性破坏。

抗震设计的框架结构柱,柱端剪力一般较大,从而剪跨比λ较小,易形成短柱或极短柱,发生斜裂缝导致剪切破坏。

柱的剪切受拉和剪切斜拉破坏属于脆性破坏,在设计中应特别注意防止发生这类破坏。

轴压比轴压比指柱(墙)的轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积之比值(进一步理解为:柱(墙)的轴心压力设计值与柱(墙)的轴心抗压力设计值之比值)。

它反映了柱(墙)的受压情况,《建筑抗震设计规范》(50011-2001)中6.3.7和《混凝土结构设计规范》(50010-2002)中11.4.16都对柱轴压比规定了限制,限制柱轴压比主要是为了控制柱的延性,因为轴压比越大,柱的延性就越差,在地震作用下柱的破坏呈脆性。

u=N/A*fc,u—轴压比,对非抗震地区,u=0.9N—轴力设计值A—截面面积fc—混凝土抗压强度设计值《抗规》表6.3.7 中的注释第一条:可不进行地震作用计算的结构,取无地震作用组合的轴力设计值。

轴压比、剪跨比和剪压比的深入分析

轴压比、剪跨比和剪压比的深入分析

轴压比、剪跨比和剪压比的深入分析剪跨比《混凝土结构设计规范GB50010-2010[2015修订]》第2.1.22规定:剪跨比(ratio of shear span to effective depth)为截面弯矩与剪力和有效高度乘积的比值.狭义定义:a/h0广义定义:M/(Vh0)剪跨比实质上是截面上正应力σ与剪应力τ的比值关系,正应力σ与剪应力τ决定了主应力的大小和方向,所以必然对斜截面的抗剪性能和破坏形态起着重要影响.更深一层:主应力与剪切应力之比,延伸至延性与脆性.简支梁上集中荷载作用点到支座边缘的最小距离a(a称剪跨)与截面有效高度h0之比,以λ=a/h0表示.在其它因素相同时,剪跨比越大,抗剪能力越小.当剪跨比大于3时,抗剪能力基本不再变化.斜压破坏和斜拉破坏都属于突然的脆性破坏,结构设计时要尽量避免.试验表明:长柱一般发生弯曲破坏;短柱多数发生剪切破坏;极短柱发生剪切斜拉破坏,这种破坏属于脆性破坏.抗震设计的框架结构柱,柱端剪力一般较大,从而剪跨比λ较小,易形成短柱或极短柱,产生斜裂缝导致剪切破坏.柱的剪切受拉和剪切斜拉破坏属于脆性破坏,在设计中应特别注意避免发生这类破坏.所以不管砼规范、抗规还是高规等都规定抗震设计时柱的剪跨比宜大于2,对于剪跨比小于2的框架柱有更严格的抗震构造要求.轴压比《混凝土结构设计规范GB50010-2010[2015修订]》第11.4.16条规定:柱轴压比指地震作用下柱组合的轴向压力设计值与柱全截面面积和混凝土轴心抗压强度设计值乘积之比值;即:μ=N/(fcA)《混凝土结构设计规范GB50010-2010[2015修订]》第11.7.16条规定:剪力墙肢轴压比指在重力荷载代表值作用下墙的轴压力设计值与墙的全截面面积和混凝土轴心抗压强度设计值乘积的比值.墙采用的是“名义”轴压比,并未考虑地震组合.为啥呢?有专家说,地震作用下,剪力墙部分受拉部分受压,拉压平衡,所以剪力墙轴压比不考虑地震作用.也有专家曾批判过规范这个问题,表明剪力墙轴压比不考虑地震作用组合的做法是错误的,并进行了详细阐述.《高层建筑混凝土结构技术规程JGJ3-2010》第11.4.4条抗震设计时,混合结构中型钢混凝土柱的轴压比不宜大于表11.4.4的限值,轴压比可按下式计算:限制轴压比主要是为了控制结构的延性,随着轴压比增大,构件延性降低,耗能能力减少.在同等位移条件下,轴压比大的柱子混凝土压应力大,轴力小的柱子混凝土压应力小,因此轴压比小的柱子能比轴压比大的柱子达到更大的顶点位移下才破坏,也就是说位移延性高于轴压比大的柱子,这就是提高延性的原因.抗震设计规范控制框架柱轴压比的意义,就在于使柱尽量处于大偏心受压状态,避免出现延性差的小偏心受压破坏.柱和墙是竖向关键构件,完全承受竖向荷载.抗震设计时,必须保证柱和墙具有充分的延性.试验表明,在这些竖向构件中配置箍筋是提高构件延性的有效措施.箍筋的存在约束了混凝土的横向变形,提高了混凝土的极限变形能力.可以看到竖向荷载是这些构件破坏的外力(效应),而箍筋是一种抗力,二者之间应该有着某种关联.当“竖向荷载”大,可以通过多配置箍筋来抵消破坏的不利趋势.当“竖向荷载”较小时,则可以少配置箍筋,以求经济.国内外试验研究结果表明,设置芯柱,采用井字复合箍筋等配筋方式,能进一步提高对核心混凝土的约束效应,改善柱的位移延性性能.轴压比本质是控制延性的,但是我国规范为考虑到其他因素,诸如:柱截面尺寸、纵筋配筋率等方面的影响,可以说偏于严格.梁的面积配箍率0.24*ft/fyv柱和墙的体积配箍率ρv≥λvfc/fyv.之所以用体积配箍率,是因为只有“体积”才能表征这种约束能力.而配箍特征值λv正类似于梁面积配筋率中的0.24.不过λv不再是一个定值,而是和轴压比(竖向荷载)相关.轴压比影响配箍特征值,这也是柱、墙跟梁的一个不同之处.剪压比是截面上平均剪应力与混凝土轴心抗压强度设计值的比值,用于说明截面上承受名义剪应力的大小.注意:剪压比反映截面抵抗剪力与抵抗压力的相对大小,而剪跨比是反映截面剪应力内力与正应力内力的相对大小.剪压比也是梁柱截面上的名义剪应力V/bh0与混凝土轴心抗压强度设计值的比值,若梁的截面尺寸过小,致使截面的平均剪应力与混凝土轴心抗压强度之比很大,这种情况下,增加箍筋不能有效地防止斜裂缝过早出现,也不能有效地提高截面的承载能力,因此,限制梁的名义剪应力作为确定梁最小截面的条件之一.对剪力墙进行的实验结果证明,墙肢截面的剪压比超过一定值时,将过早出现斜裂缝,即使增加横向钢筋,也不能提高其受剪承载力,很可能在横向钢筋未屈服的情况下,墙肢混凝土发生斜压破坏.为避免这种破坏,应限制墙肢截面的平均剪应力与混凝土轴心抗压强度的比值,即限制剪压比.由以上叙述可以得出,限制剪压比,其实质是在约束截面尺寸.。

设计中结构设计需要控制的11个比值

设计中结构设计需要控制的11个比值

设计中结构设计需要控制的11个比值1、轴压比:定义:轴压比指柱组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比值;可不进行地震作用计算的结构,取无地震作用组合的轴力设计值【抗规第6.3.6】;轴压比指柱考虑地震组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比值【高规第6.4.2条】墙肢轴压比指墙的轴压力设计值与墙的全截面面积和混凝土轴心抗压强度设计值乘积之比值【抗规第6.4.2条】。

不计入地震作用组合(条文说明)目的:主要为控制结构的延性。

注意:应按规范要求对结构地震作用进行调整:特殊结构地震作用下内力调整、0.2Q0调整、墙柱弱梁、强剪弱弯调整等等(程序可自动完成),短柱的调整。

2、剪重比定义:结构任一楼层的水平地震剪力与该层及其以上各层总重力荷载代表值的比值;抗规:5.2.5 抗震验算时,结构任一楼层的水平地震剪力应符合下式要求:高规:4.3.12条多遇地震水平地震作用计算时,结构各楼层对应于地震作用标准值的剪力应符合下式要求:内涵:是反应地震作用大小的重要指标,主要为控制各楼层最小地震剪力,确保结构安全性,在某种程度上反映了结构的刚柔程度,剪重比应在一个比较合理的范围内。

剪重比太小,说明结构刚度偏柔;剪重比太大,说明整体结构偏刚,会引起很大的地震力,不经济。

抗规表5.2.5给出了楼层最小地震剪力的要求,当不满足时,应优化设计方案、改进结构布置或调整结构总剪力和各楼层的水平地震剪力,使之满足要求。

地下室由于受回填土的约束作用,可以不考虑剪重比调整。

3、刚度比定义:结构楼层与其相邻上层的侧向刚度的比值。

目的:主要为控制结构竖向的规则性,以免竖向刚度突变,形成薄弱层,分类:PKPM系列软件提供了三种刚度比的计算方式:分别是剪切刚度,剪弯刚度和地震作用与相应的层间位移比。

剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定;剪弯刚度主要用于底部大空间为多层的转换结构;地震作用与层间位移比,通常绝大多数工程都可以用此法计算刚度比,也是软件的缺省方式。

结构设计中的几个重要比值(整理更新)

结构设计中的几个重要比值(整理更新)

结构设计中几个重要比值(整理更新)1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求。

柱轴压比是指,有地震作用组合的柱组合轴压力设计值与柱的全截面面积和砼轴心抗压强度设计值乘积的比值,是影响柱子破坏形态和延性的主要因素之一。

轴压比限值的依据是理论分析和试验研究并参照国外的类似条件确定的,其基准值是对称配筋柱大小偏心受压状态的轴压比分界值。

在剪力墙的轴压比计算中,轴力取重力荷载代表值,与柱子的不一样。

3、侧向刚度比:主要为控制结构竖向规则性。

4、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响。

5、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规。

6、剪跨比:梁的剪跨比,剪力的位置a与h0的比值。

剪跨比影响了剪应力和正应力之间的相对关系,因此也决定了主应力的大小和方向,也影响着梁的斜截面受剪承载力和破坏的方式;同时也反映在受剪承载力的公式上。

7、剪压比(梁柱截面上的名义剪应力V/bh0与混凝土轴心抗压强度设计值的比值):梁塑性铰区的截面剪压比对梁的延性、耗能能力及保持梁的强度、刚度有明显的影响,当剪压比大于0.15的时候,梁的强度和刚度有明显的退化现象,此时再增加箍筋用量,也不能发挥作用,因此对梁柱的截面尺寸有所要求。

8、跨高比:梁的跨高比(梁的净跨与梁截面高度的比值)对梁的抗震性能有明显的影响。

梁(非剪力墙的连梁)的跨高比小于5和深梁都按照深受弯构件进行计算的。

9、延性比:延性比即为弹塑性位移增大系数。

延性是指材料、构件、结构在初始强度没有明显退化的情况下的非弹性变形能力。

延性比主要分为三个层面,即截面的延性比、构件的延性比和结构的延性比。

结构的延性比多指框架或者剪力墙等结构的水平荷载-顶层水平位移(P-delta)、水平荷载-层间位移等曲线。

结构的屈服位移有等能量方法、几何做图法等。

高层建筑结构设计中的几个比值1、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。

PKPM七大控制指标及调整方法

PKPM七大控制指标及调整方法

PKPM七⼤控制指标及调整⽅法PKPM七⼤控制指标及调整⽅法⼀、轴压⽐:含义:轴压⽐指柱组合的轴压⼒设计值与柱的截⾯⾯积和混凝⼟轴⼼压强强度设计值乘积之⽐值,u=N/(A*Fc)——抗规6.3.6作⽤:主要是为限制结构的轴压⽐,保证结构的延性要求,规范对墙址和柱均有相应限值要去,具体详见抗规6.3.7和6.4.6,⾼规6.4.2和7.2.14及相应的条⽂说明。

轴压⽐不满⾜要求,对结构的延性没有办法满⾜;若轴压⽐过⼩,说明结构的经济指数指标较差,宜适当减⼩相应墙柱、柱的截⾯⾯积。

轴压⽐不满⾜时的调整⽅法:1、程序调整:SATWE程序不能实现2、⼈⼯调整:从公式出发,可以增⼤墙柱截⾯⾯积或提⾼混凝⼟的强度。

规范规定:柱轴压⽐不宜超过下表的规定;建造于Ⅳ类场地且较⾼的⾼层建筑,柱轴压⽐限值应适当减⼩:注:1.轴压⽐指柱组合的轴压⼒设计值与柱的全截⾯⾯积和混凝⼟轴⼼抗压强度设计值乘积之⽐值;对本规范规定不进⾏地震作⽤计算的结构,可取⽆地震作⽤组合的轴⼒设计值计算;2.表内限值适⽤于混凝⼟强度等级不⾼于C60的柱;当混凝⼟强度等级为C65-C70时,轴压⽐限值应降低0.05;当混凝⼟强度等级为C75-C80时,轴压⽐限值应降低0.10;3.表内限值适⽤于剪跨⽐⼤于2的柱;剪跨⽐不⼤于2但不⼩于1.5的柱,轴压⽐限值应降低0.05;剪跨⽐⼩于1.5的柱,轴压⽐限值应专门研究并采取特殊构造措施;4.沿柱全⾼采⽤井字复合箍且箍筋肢距不⼤于200mm、间距不⼤于100mm、直径不⼩于12mm,或沿柱全⾼采⽤复合螺旋箍、螺旋间距不⼤于100mm、箍筋肢距不⼤于200mm、直径不⼩于12mm,或沿柱全⾼采⽤连续复合矩形螺旋箍、螺旋净距不⼤于80mm、箍筋肢距不⼤于200mm、直径不⼩于10mm,轴压⽐限值均可增加0.10;5.在柱的截⾯中部附加芯柱,其中另加的纵向钢筋的总⾯积不少于柱截⾯⾯积的0.8%,轴压⽐限值可增加0.05;此项措施与注3的措施共同采⽤时,轴压⽐限值可增加0.15,但箍筋的体积配箍率仍可按轴压⽐增加0.10的要求确定;6.轴压⽐限值不应⼤于1.05。

轴压比剪跨比和剪压比的深入分析

轴压比剪跨比和剪压比的深入分析

轴压比剪跨比和剪压比的深入分析轴压比=受压力/构件承载能力在结构设计中,轴压比的计算是一个关键步骤。

一般来说,设计中会根据结构所处环境以及使用要求等因素来确定受压构件的承载能力,然后再根据受压力来计算轴压比。

如果轴压比超过了规定的限制值,说明该构件的设计需要进行调整,以保证结构的稳定性和安全性。

二、剪跨比(Shear Span Ratio)是指受剪构件的受剪跨径与其净高之比。

剪跨比是反映受剪构件的几何形状对剪切力传递的影响程度的参数,它对结构的抗剪性能起到重要作用。

剪跨比的计算公式为:剪跨比=受剪跨径/构件净高剪跨比较小说明受剪构件的抗剪能力较强,当剪跨比超过一定限制时,构件容易出现剪切破坏。

剪跨比的限制值可以根据结构构件所处的具体情况来确定,常用的限制值在1.5到3之间。

如果计算出的剪跨比超过了限制值,需要进行构件几何形状或者横截面的调整,以提高结构的抗剪能力。

剪压比=剪切力/构件抗压能力在结构设计中,剪压比的计算是评估结构受剪构件安全性的一个重要指标。

一般来说,设计中会根据结构的使用要求和受剪构件的材料特性等因素来确定构件的抗压能力,然后再根据受剪力来计算剪压比。

如果计算出的剪压比超过了规定的限制值,说明该构件的设计需要进行调整,以提高其抗剪能力。

综上所述,轴压比、剪跨比和剪压比都是在结构设计和分析中非常重要的参数。

它们可以用来评估和控制结构的稳定性、安全性和抗剪能力。

在实际设计中,需要根据不同的结构要求和材料特性来确定合理的参数,并进行适当的调整和优化,以确保结构的整体性能。

PKPM七大控制指标及调整方法

PKPM七大控制指标及调整方法

PKPM七大控制指标及调整方法一、轴压比:含义:轴压比指柱组合的轴压力设计值与柱的截面面积和混凝土轴心压强强度设计值乘积之比值,u=N/(A*Fc)――抗规636作用:主要是为限制结构的轴压比,保证结构的延性要求,规范对墙址和柱均有相应限值要去,具体详见抗规637和6.4.6,高规642和7.2.14及相应的条文说明。

轴压比不满足要求,对结构的延性没有办法满足;若轴压比过小,说明结构的经济指数指标较差,宜适当减小相应墙柱、柱的截面面积。

轴压比不满足时的调整方法:1、程序调整:SATW程序不能实现2、人工调整:从公式出发,可以增大墙柱截面面积或提高混凝土的强度。

规范规定:柱轴压比不宜超过下表的规定;建造于W类场地且较高的高层建筑,柱轴压比限值应适当减小:注:1.轴压比指柱组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比值;对本规范规定不进行地震作用计算的结构,可取无地震作用组合的轴力设计值计算;2. 表内限值适用于混凝土强度等级不高于C60的柱;当混凝土强度等级为C65-C70时,轴压比限值应降低0.05;当混凝土强度等级为C75-C80时,轴压比限值应降低0.10;3. 表内限值适用于剪跨比大于2的柱;剪跨比不大于2但不小于1.5的柱,轴压比限值应降低0.05;剪跨比小于1.5的柱,轴压比限值应专门研究并采取特殊构造措施;4. 沿柱全高采用井字复合箍且箍筋肢距不大于200mm间距不大于100mm 直径不小于12mm或沿柱全高采用复合螺旋箍、螺旋间距不大于100mm箍筋肢距不大于200mm直径不小于12mm或沿柱全高采用连续复合矩形螺旋箍、螺旋净距不大于80mm箍筋肢距不大于200mm直径不小于10mm轴压比限值均可增加0.10;5. 在柱的截面中部附加芯柱,其中另加的纵向钢筋的总面积不少于柱截面面积的0.8%,轴压比限值可增加0.05;此项措施与注3的措施共同采用时,轴压比限值可增加0.15,但箍筋的体积配箍率仍可按轴压比增加0.10的要求确定;6. 轴压比限值不应大于1.05。

SATWE七大比值(含规范出处)

SATWE七大比值(含规范出处)

一、轴压比1、定义:柱(墙)的轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积之比值。

2、作用:反映了柱(墙)的受压情况;限制柱(墙)的轴压比主要是为了控制柱(墙)的延性,因为轴压比越大,柱(墙)的延性就越差,在地震作用下柱(墙)的破坏呈脆性。

3、规范限值:1)柱轴压比限值《混凝土结构设计规范》(50010-2010)11.4.16条《建筑抗震设计规范》(50011-2010)6.3.6条《高层建筑混凝土结构技术规程》(JGJ3-2010)6.4.2条2)剪力墙轴压比限值《混凝土结构设计规范》(50010-2010)11.7.16条《建筑抗震设计规范》(50011-2010)6.4.2条《高层建筑混凝土结构技术规程》(JGJ3-2010)7.2.13条4、不满足规范限值时调整方案:增大柱(墙)的截面尺寸或提高该楼层柱(墙)混凝土强度等级。

二、剪重比1、定义:水平地震力作用下楼层剪力标准值与重力荷载代表值的比值。

2、作用:为了控制结构总水平地震剪力及各楼层最小水平地震剪力,确保结构的安全。

3、规范限值:《建筑抗震设计规范》(50011-2010)5.2.5条《高层建筑混土结构技术规程》(JGJ3-2010)4.3.12条注:1、周期介于3.5s和5.0s之间的结构,应允许线性插入取值;2、7、8度时括号内的数值分别用于设计基本地震加速度为0.15g和0.30g的地区;3、对于竖向不规则结构的薄弱层(不满足《高规》第3.5.2、3.5.3、3.5.4条),剪重比尚应乘以1.15的增大系数;4、“扭转效应明显”是指楼层最大水平位移(或层间位移)大楼层平均水平位移(或层间位移)的1.2倍。

4、不满足规范限值时的调整方案:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5条调整各层地震内力”后,程序按抗震规范5.2.5条自动将楼层最小地震剪力系数直接乘以该层及以上楼层重力荷载代表值,用以调整该楼层地震剪力,以满足剪重比的要求。

剪跨比、轴压比和剪压比概念

剪跨比、轴压比和剪压比概念

剪跨比、轴压比和剪压比概念剪跨比ratio of shear span to depth简支梁上集中荷载作用点到支座边缘的最小距离a(a称剪跨)与截面有效高度h0之比。

以λ=a/h0表示。

它反映计算截面上正应力与剪应力的相对关系,是影响抗剪破坏形态和抗剪承载力的重要参数.在其它因素相同时,剪跨比越大,抗剪能力越小。

当剪跨比大于3时,抗剪能力基本不再变化。

狭义定义:a/h0广义定义:M/Vh0更深一层:主应力与切应力之比,延伸至延性与脆性。

框架柱端一般同时存在着弯矩M和剪力V,根据柱的剪跨比λ=M/Vho来确定柱为长柱、短柱和极短柱,ho为与弯矩M平行方向柱截面有效高度.λ〉2(当柱反弯点在柱高度Ho中部时即Ho/ho〉4)称为长柱;1。

5<λ≤2称为短柱;λ≤1。

5称为极短柱。

试验表明:长柱一般发生弯曲破坏;短柱多数发生剪切破坏;极短柱发生剪切斜拉破坏,这种破坏属于脆性破坏。

抗震设计的框架结构柱,柱端剪力一般较大,从而剪跨比λ较小,易形成短柱或极短柱,产生斜裂缝导致剪切破坏.柱的剪切受拉和剪切斜拉破坏属于脆性破坏,在设计中应特别注意避免发生这类破坏。

轴压比轴压比指柱(墙)的轴压力设计值与柱(墙)的全截面面积和混凝土轴心抗压强度设计值乘积之比值(进一步理解为:柱(墙)的轴心压力设计值与柱(墙)的轴心抗压力设计值之比值)。

它反映了柱(墙)的受压情况,《建筑抗震设计规范》(50011—2001)中6.3.7和《混凝土结构设计规范》(50010-2002)中11.4。

16都对柱轴压比规定了限制,限制柱轴压比主要是为了控制柱的延性,因为轴压比越大,柱的延性就越差,在地震作用下柱的破坏呈脆性。

u=N/A*fc,u—轴压比,对非抗震地区,u=0。

9N—轴力设计值A—截面面积fc—混凝土抗压强度设计值《抗规》表6。

3。

7 中的注释第一条:可不进行地震作用计算的结构,取无地震作用组合的轴力设计值。

限制轴压比主要是为了控制结构的延性,规范对墙肢和柱均有相应限值要求,见《抗规》6.3.7和6.4。

毕业设计概念

毕业设计概念

大四的朋友们注意了,毕业设计中容易混淆的几个基本概念该帖被浏览了1015次| 回复了32次又是一年毕业时,毕业设计答辩时总是遇到老师提问,你要是明确了下列基本概念,保证可以顺利通过~1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,在剪力墙的轴压比计算中,轴力取重力荷载代表设计值,与柱子的不一样。

2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5。

3、侧向刚度比:主要为控制结构竖向规则性。

4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。

控制比例为1.5。

见抗规3.4.2、3.4.3。

5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规4.3.5。

6、刚重比:主要为控制结构的稳定性,以免结构产生滑移和倾覆,要求见高规。

7、剪跨比:梁的剪跨比,剪力的位置a与h0的比值。

剪跨比影响了剪应力和正应力之间的相对关系,因此也决定了主应力的大小和方向,也影响着梁的斜截面受剪承载力和破坏的方式;同时也反映在受剪承载力的公式上。

柱的剪跨比,若反弯点在柱子层高范围内,可取柱子的剪跨比小于2时,需要全长加密,见混凝土规范11.4.12、11.4.17。

剪跨比剪跨比ratio of shear span to depth简支梁上集中荷载作用点到支座边缘的最小距离a(a称剪跨)与截面有效高度h0之比。

以λ=a/h0表示。

它反映计算截面上正应力与剪应力的相对关系,是影响抗剪破坏形态和抗剪承载力的重要参数。

在其它因素相同时,剪跨比越大,抗剪能力越小。

当剪跨比大于3时,抗剪能力基本不再变化。

狭义定义:a/h0广义定义:M/Vh0更深一层:主应力与切应力之比,延伸至延性与脆性。

框架柱端一般同时存在着弯矩M和剪力V,根据柱的剪跨比λ=M/Vho来确定柱为长柱、短柱和极短柱,ho为与弯矩M平行方向柱截面有效高度。

λ>2(当柱反弯点在柱高度Ho中部时即Ho/ho>4)称为长柱;1.5<λ≤2称为短柱;λ≤1.5称为极短柱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.什么是轴压比轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。

u=N/A*fc,u—轴压比,对非抗震地区,u=0.9N—柱轴力设计值A—柱截面面积fc—砼抗压强度设计值2.什么是周期比?剪重比?位移比?楼层最小剪力系数?新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。

如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。

以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。

1.完成整体参数的正确设定计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。

但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。

这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。

(1)振型组合数是软件在做抗震计算时考虑振型的数量。

该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。

《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。

振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。

具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。

必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。

例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。

如果选取的振型组合数已经增加到结构层数的3倍,其有效质量系数仍不能满足要求,也不能再增加振型数,而应认真分析原因,考虑结构方案是否合理。

(2)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。

设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发祥该角度绝对值大于15度,应将该数值回填到软件的“水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。

(3)结构基本周期是计算风荷载的重要指标。

设计人员如果不能事先知道其准确值,可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。

上述的计算目的是将这些对全局有控制作用的整体参数先行计算出来,正确设置,否则其后的计算结果与实际差别很大。

2.确定整体结构的合理性整体结构的科学性和合理性是新规范特别强调内容。

新规范用于控制结构整体性的主要指标主要有:周期比、位移比、刚度比、层间受剪承载力之比、刚重比、剪重比等。

(1)周期比是控制结构扭转效应的重要指标。

它的目的是使抗侧力的构件的平面布置更有效更合理,使结构不至出现过大的扭转。

也就是说,周期比不是要求就构足够结实,而是要求结构承载布局合理。

《高规》第4.3.5条对结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比的要求给出了规定。

如果周期比不满足规范的要求,说明该结构的扭转效应明显,设计人员需要增加结构周边构件的刚度,降低结构中间构件的刚度,以增大结构的整体抗扭刚度。

设计软件通常不直接给出结构的周期比,需要设计人员根据计算书中周期值自行判定第一扭转(平动)周期。

以下介绍实用周期比计算方法:1)扭转周期与平动周期的判断:从计算书中找出所有扭转系数大于0.5的平动周期,按周期值从大到小排列。

同理,将所有平动系数大于0.5的平动周期值从大到小排列;2)第一周期的判断:从列队中选出数值最大的扭转(平动)周期,查看软件的“结构整体空间振动简图”,看该周期值所对应的振型的空间振动是否为整体振动,如果其仅仅引起局部振动,则不能作为第一扭转(平动)周期,要从队列中取出下一个周期进行考察,以此类推,直到选出不仅周期值较大而且其对应的振型为结构整体振动的值即为第一扭转(平动)周期;3)周期比计算:将第一扭转周期值除以第一平动周期即可。

(2)位移比(层间位移比)是控制结构平面不规则性的重要指标。

其限值在《建筑抗震设计规范》和《高规》中均有明确的规定,不再赘述。

需要指出的是,新规范中规定的位移比限值是按刚性板假定作出的,如果在结构模型中设定了弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以便计算出正确的位移比。

在位移比满足要求后,再去掉“对所有楼层强制采用刚性楼板假定的选择,以弹性楼板设定进行后续配筋计算。

此外,位移比的大小是判断结构是否规则的重要依据,对选择偶然偏心,单向地震,双向地震下的位移比,设计人员应正确选用。

(3)刚度比是控制结构竖向不规则的重要指标。

根据《抗震规范》和《高规》的要求,软件提供了三种刚度比的计算方式,分别是剪切刚度,剪弯刚度和地震力与相应的层间位移比。

正确认识这三种刚度比的计算方法和适用范围是刚度比计算的关键:1)剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定;2)剪弯刚度主要用于底部大空间为多层的转换结构;3)地震力与层间位移比是执行《抗震规范》第3.4.2条和《高规》4.3.5条的相关规定,通常绝大多数工程都可以用此法计算刚度比,这也是软件的缺省方式。

(4)层间受剪承载力之比也是控制结构竖向不规则的重要指标。

其限值可参考《抗震规范》和《高规》的有关规定。

(5)刚重比是结构刚度与重力荷载之比。

它是控制结构整体稳定性的重要因素,也是影响重力二阶效的主要参数。

该值如果不满足要求,则可能引起结构失稳倒塌,应当引起设计人员的足够重视。

(6)剪重比是抗震设计中非常重要的参数。

规范之所以规定剪重比,主要是因为长期作用下,地震影响系数下降较快,由此计算出来的水平地震作用下的结构效应可能太小。

而对于长周期结构,地震动态作用下的地面加速度和位移可能对结构具有更大的破坏作用,但采用振型分解法时无法对此作出准确的计算。

因此,出于安全考虑,规范规定了各楼层水平地震力的最小值,该值如果不满足要求,则说明结构有可能出现比较明显的薄弱部位,必须进行调整。

除以上计算分析以外,设计软件还会按照规范的要求对整体结构地震作用进行调整,如最小地震剪力调整、特殊结构地震作用下内力调整、0.2Q0调整、强柱弱梁与强剪弱弯调整等等,因程序可以完成这些调整,就不再详述了。

3 对单构件作优化设计前几步主要是对结构整体合理性的计算和调整,这一步则主要进行结构单个构件内力和配筋计算,包括梁,柱,剪力墙轴压比计算,构件截面优化设计等。

(1)软件对混凝土梁计算显示超筋信息有以下情况:1)当梁的弯矩设计值M大于梁的极限承载弯矩Mu时,提示超筋;2)规范对混凝土受压区高度限制:四级及非抗震:ξ≤ξb二、三级:ξ≤0.35(计算时取AS ’=0.3 AS )一级:ξ≤0.25(计算时取AS ’=0.5 AS )当ξ不满足以上要求时,程序提示超筋;3)《抗震规范》要求梁端纵向受拉钢筋的最大配筋率2.5%,当大于此值时,提示超筋;4)混凝土梁斜截面计算要满足最小截面的要求,如不满足则提示超筋。

(2)剪力墙超筋分三种情况:1)剪力墙暗柱超筋:软件给出的暗柱最大配筋率是按照4%控制的,而各规范均要求剪力墙主筋的配筋面积以边缘构件方式给出,没有最大配筋率。

所以程序给出的剪力墙超筋是警告信息,设计人员可以酌情考虑;2)剪力墙水平筋超筋则说明该结构抗剪不够,应予以调整;3)剪力墙连梁超筋大多数情况下是在水平地震力作用下抗剪不够。

规范中规定允许对剪力墙连梁刚度进行折减,折减后的剪力墙连梁在地震作用下基本上都会出现塑性变形,即连梁开裂。

设计人员在进行剪力墙连梁设计时,还应考虑其配筋是否满足正常状态下极限承载力的要求。

(3)柱轴压比计算:柱轴压比的计算在《高规》和《抗震规范》中的规定并不完全一样,《抗震规范》第6.3.7条规定,计算轴压比的柱轴力设计值既包括地震组合,也包括非地震组合,而《高规》第6.4.2条规定,计算轴压比的柱轴力设计值仅考虑地震作用组合下的柱轴力。

软件在计算柱轴压比时,当工程考虑地震作用,程序仅取地震作用组合下的的柱轴力设计值计算;当该工程不考虑地震作用时,程序才取非地震作用组合下的柱轴力设计值计算。

因此设计人员会发现,对于同一个工程,计算地震力和不计算地震力其柱轴压比结果会不一样。

(4)剪力墙轴压比计算:为了控制在地震力作用下结构的延性,新的《高规》和《抗震规范》对剪力墙均提出了轴压比的计算要求。

需要指出的是,软件在计算断指剪力墙轴压比时,是按单向计算的,这与《高规》中规定的短肢剪力墙轴压比按双向计算有所不同,设计人员可以酌情考虑。

(5)构件截面优化设计:计算结构不超筋,并不表示构件初始设置的截面和形状合理,设计人员还应进行构件优化设计,使构件在保证受力要求的德条件下截面的大小和形状合理,并节省材料。

但需要注意的是,在进行截面优化设计时,应以保证整体结构合理性为前提,因为构件截面的大小直接影响到结构的刚度,从而对整体结构的周期、位移、地震力等一系列参数产生影响,不可盲目减小构件截面尺寸,使结构整体安全性降低。

4. 满足规范抗震措施的要求在施工图设计阶段,还必须满足规范规定的抗震措施要求。

《混凝土规范》、《高规》和《抗震规范》对结构的构造提出了非常详尽的规定,这些措施是很多震害调查和抗震设计经验的总结,也是保证结构安全的最后一道防线,设计人员不可麻痹大意。

(1)设计软件进行施工图配筋计算时,要求输入合理的归并系数、支座方式、钢筋选筋库等,如一次计算结果不满意,要进行多次试算和调整。

(2)生成施工图以前,要认真输入出图参数,如梁柱钢筋最小直径、框架顶角处配筋方式、梁挑耳形式、柱纵筋搭接方式,箍筋形式,钢筋放大系数等,以便生成符合需要的施工图。

软件可以根据允许裂缝宽度自动选筋,还可以考虑支座宽度对裂缝宽度的影响。

(3)施工图生成以后,设计人员还应仔细验证各特殊或薄弱部位构件的最小纵筋直径、最小配筋率、最小配箍率、箍筋加密区长度、钢筋搭接锚固长度、配筋方式等是否满足规范规定的抗震措施要求。

相关文档
最新文档