【新】人教版七年级数学下册第六章《实数 复习》公开课课件2.ppt

合集下载

人教版数学七年级下册 6.3 .1实数 课件(共21张PPT)

人教版数学七年级下册 6.3 .1实数 课件(共21张PPT)

9,

0.6,
64, 0, 3
0.13
(5)正实数数集合:
9 , 3 5,
64,
,
0.

6,
3,
0.13
(6)负实数集合: 3 ,
4
(7) 实数集合: 9 , 3 5, 64,
,

0.6,
3, 4
0,
3, 0.13
解:
课堂小结
1. 无理数及实数的概念 无限不循环小数叫做无理数;有理数与无理数统称实数. 2. 实数的分类
5 , 3 , 27 ,11, 9 2 5 4 9 11
它们都可以化 成有限小数或 无限循环小数 的形式
思考1:(1)整数能写成小数的形式吗?3可以看成是3.0吗?
可以 (2)由此你可以得到什么结论?
任何一个有理数都可以写成有限小数或无限循环小数; 反过来,任何有限小数或无限循环小数也都是有理数. 思考2:除了有限小数和无限循环小数,还有什么其他类 型的小数吗?
无限不循环小数 叫做无理数
它们都是无限 不循环小数, 是无理数
π
练一练
把下列各数分别填入相应的集合内:
17 , 4
π
3,
4,
0.101,
, 3
2, 5
64, 2.121, 0.3737737773(相邻两个3之间7的个数逐渐加1)
...
有理数集合
...
无理数集合
有理数和无理数统称实数,实数的分类如下:
(1)按定义分
整数
有理数:
有限小数或无限循环小数

分数

无理数: 无限不循环小数
含开方开不尽的数
π 含有 的数

七年级数学下册第六章实数:平方根第2课时平方根课件ppt新版新人教版

七年级数学下册第六章实数:平方根第2课时平方根课件ppt新版新人教版

4.(2019·台州)若一个数的平方等于5,则这个数等于_____5___. 5.若-2 是m的一个平方根,则m+7的平方根是__±__3____.
知识点二 平方根与算术平方根的关系
8.若正方形的边长为a,面积为S,则(B )
A.S的平方根是a
B.a是S的算术平方根
C.a=± S
D.S= a
9.若一个数的算术平方根是5,则这个数的平方根为( D )
A.25
B.±25
C.-5
D.±5
10.若一个数的算术平方根是6,则比它大2的数的平方根是_____3_8__.
11.已知25x2-144=0,且x是正数,求5x+13的平方根.
解:由25x2-144=0,得x=± 12 .
5
∵x是正数,∴x= 12 ,∴5x+13=5× 12 +13=25,
5
解:∵2a-1的平方根为± 3 ,∴2a-1=3,解得a=2. ∵3a-2b+1的平方根为±3,∴3×2-2b+1=9,解得b=-1, ∴4a-b=4×2-(-1)=9,∴4a-b的平方根为±3.
17.若x2=9,y2=16,且x>y,求x-y的平方根. 解:依题意,得x=3,y=-4或x=-3,y=-4, ∴x-y=7或1,∴x-y的平方根为± 7 或±1.
18.已知a,b,c满足b= (a 3)2 +4,c的平方根等于它本身,求 a b c 的值. 解:由题意,得-(a-3)2≥0,∴a=3,∴ b (a 3)2 4 4. ∵c的平方根等于它本身,∴c=0,∴ a b c 3 4 0 5.
19.(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少? 解:(1)根据题意,得(2a-1)+(a-5)=0,解得a=2, ∴这个非负数是(2a-1)2=(2×2-1)2=9.

人教新版七年级数学下精品课件 第六章 6.3实数2

人教新版七年级数学下精品课件 第六章 6.3实数2
解:原式= 2 (9 2 5 4)
= 2 (5 2 5)
= 10 2 2 5
= 10 4 5
=18.94427191≈18.94
2020/6/13
计算: (1)3 7 2 7(结果保留3个有效数字)
(2) 2 1 3 2 (精确到0.01)
(3) 5 2 2(结果保留4个有效数字)
6.3 实数运算(2)
2020/6/13
合作学习
请同学们总结有理数的运算律和运算法则
1.交换律 : 加法 a+b=b+a 乘法a×b=b×a
2.结合律: 加法(a+b)+c=a+(b+c) 乘法(a×b)×c=a×(b×c)
3.分配律: a× (b+c)= a×b+ a×c 注:有理数的运算律和运算法则在实数范围内同样适用
(2)9 2(4 3=) 9 8 2 3 = 1 2 3
=-2.464101615≈-2.464
2020/6/13
计算:
(1) 4 18(精确到0.01)
(2) 2 (结果保留3各有效数字)
(3)3 10 7( 精确到0.01)
2020/6/13
典型例题
例2:计算 2 9 2 5 2
2020/6/13
实数的运算顺序
先算乘方和开方,再算乘除,最 后算加减。如果遇到括号, 则先进行 括号里的运算
2020/6/13
典型例题
例1 计算:
(1) 8 3 9(精确到0.001)
(2) 9 2(4 3)(结果保留4个有效数字)
解:(1) 8 3 9= 0.748343301≈0.748
2020/6/13
究Leabharlann 活探动计算下面的式子:

人教版七年级数学下册全册第六章《实数》PPT课件

人教版七年级数学下册全册第六章《实数》PPT课件
… 0.25 0.790 6 2.5 7.906 25 79.06 250 …
规律:被开方数的小数点向右每移动 2 位,它的 算术平方根的小数点就向右移动 1 位;被开方数 的小数点向左每移动 2 位,它的算术平方根的小 数点就向左移动 1 位.
(2)用计算器计算 3(精确到0.001),并利用你在(1) 中发现的规律说出 0.03, 300, 30 000 的近似值,你 能根据 3 的值说出 30 是多少吗?
2.会求非负数的算术平方根,掌握算术平方根的非负 性.(重点、难点)
导入新课
历史感悟
毕达哥拉斯(公元前570年~公元前500年) 公元前500多年古希腊的哲学家、数学家、天文学家。
导入新课
万物皆数
导入新课
情境引入 学校要举行美术作品比赛,小明很高兴,他想
裁出一块面积为25dm2的正方形画布,画上自己的得 意之作参加比赛,这块正方形画布的边长应取多少? 你能帮小明算一算吗?
所以这个数是3或-3. 会不会是巧合呢?
解:设每块地板砖的边长为x m.由题意得
240x2 60, x2 1 . 4
x 1 1 0.5 42
故每块地板砖的边长是0.5 m.
拓展提升
已知:|x+2y|+ 3x 7 (5y z)2 0
求x-3y+4z的值. 解:由题意得:
3x 7 0, x 2y 0,5y z 0,
所以正数 t 4 2 (秒). 即铁球到达地面需要2秒.
当堂练习
1.填空:(看谁算得又对又快) (1) 一个数的算术平方根是3,则这个数是 9 . (2) 一个自然数的算术平方根为a,则这个自然数 是_a_2_;和这个自然数相邻的下一个自然数是 a2+1 .

人教版七年级数学下册第六章《 实数》公开课课件

人教版七年级数学下册第六章《 实数》公开课课件

2、你有什么体会?
计算章实数
6.3实数(第二课时)
复习
实数的分类
整数
有理数

分数

无理数
有限小数或 无限循环小数
无限不循环小数
复习
实数的分类
正有理数 正实数

正无理数
数0
负有理数
负实数
负无理数
引入
3 5 4 5 (3 4) 5 7 5 3 5 4 5 (3 4) 5 5
合并
5 5 ( 5)2 5 5 算术平方根性质
3 5 4 5 (3 4) ( 5)2 乘法交换律 125 60 结合律
范例 例1、计算下列各式的值: (1) ( 3 2) 2 (2) 33 3 23 3
注意: (1)计算题解题格式; (2)根指数、被开方数都分别相 同的无理数要合并。
范例 例2、计算: (1) 2 3 2 2 (2) 2( 2 2) ( 2 1)
注意: (1)先去括号、绝对值; (2)再合并。
巩固 2、计算: (1) 2 2 2 2
(2) 3(1 3) 2 2
范例 例4、解方程:
(1) (x 3)2 16 (2) 2(2x 3)3 1 0
4 (3) (2x 1)2 3 0
注意: (1)将括号看作一个整体;
(2)开平方有两个值,开立方只 有一个值。
巩固 5、解方程: (1) (2x 1)2 4 0 (2) 1 (x 3)3 4 0 2 (3) (x 1)2 5 0
小结 1、本节课你学了什么知识? 实数的计算 方程的解法
巩固 1、计算: (1) 3 2 (2 2 4 2) (2) 3( 2 3) 4 2 (3) 3 3 3 3
❖1、使教育过程成为一种艺术的事业。 ❖2、教师之为教,不在全盘授予,而在相机诱导。2021/10/222021/10/222021/10/2210/22/2021 5:22:22 PM ❖3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 ❖5、教育是一个逐步发现自己无知的过程。 ❖6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/222021/10/222021/10/2210/22/2021 ❖7、风声雨声读书声,声声入耳;家事国事天下事,事事关心。2021/10/222021/10/22October 22, 2021 ❖8、先生不应该专教书,他的责任是教人做人;学生不应该专读书,他的责任是学习人生之道。2021/10/222021/10/222021/10/222021/10/22

七年级数学下册第六章实数小结与复习教学课件新人教版

七年级数学下册第六章实数小结与复习教学课件新人教版

(1)
Hale Waihona Puke -8 125;(2)0.027;(3)1-
7 8
(1) 2 ; 5
(2) 0.3;
(3) 10. (3) 1 .
2
【归纳拓展】解题时,要注意题目的要求,是求平方 根、立方根还是求算术平方根.
【迁移应用1】求下列各式的值:
① 400 ;
③ 49 100
② 16 81
④ 3 1 63 64
a 0b
【归纳拓展】
1.实数与数轴上的点是一一对应的关系; 2.在数轴上表示的数,右边的数总是比左边的数大.
【迁移应用3】如图所示,数轴上与1, 对应的点分 别是为A、B,点B关于点A的对称点为C,设点C表示的 数为x,则 x 2 = 2 2 2 .
CAB
0
1
2
专题四 实数的运算
【例4】(1)
60
【例5】已知 ,则
(2)
y-1


= 0.08138,
= 37.77 .
【例6】计算:
=
.
【归纳拓展】开立方运算时要注意小数点的变化规律,开立方 是三位与一位的关系,开平方是二位与一位的关系.
【迁移应用4】计算: 答案:(1)5.79;(2)5.48
课堂小结
1.通过对本章内容的复习,你认为平方根和立方根之 间有怎么样的区别与联系?
4.求下列各式中的x.
(1) (x-1)2=64;
(2)
x 2
3
729
0
(x=9或-7 )
(x=-18)
5.比较大小: 2 5 与 2 3 .
解:∵(-2+ 5 )-(-2+ 3)= -2+ 5 +2- 3 = 5 - 3 >0 ∴-2+ 5 >-2+ 3 另解:直接由正负决定-2+ 5 >-2+ 3

人教版初一数学 6.6.3 实数的概念 第2课时PPT课件

人教版初一数学 6.6.3 实数的概念 第2课时PPT课件
解:因为-( )=- , = ,
所以 的相反数是- ,绝对值是 .
探究新知
(3)1- 5;
解:因为-(1- 5)= 5-1, 1− 5 = 5-1,
所以1- 5的相反数是 5-1,绝对值是 5-1.
探究新知
(4)π-3.14.
解:因为-(π-3.14)=3.14-π,|π-3.14|=π-3.14,
学习重难点
学习重点:实数范围内相反数与绝对值的意义.
学习难点:实数的运算.
回顾复习
请说出有理数中的几个重要相关知识:
答:①相反数;②绝对值;③倒数.
导入新课(创设情境)
无理数也有相反数、绝对值、倒数吗?分别怎么表示?
答:在实数范围内,相反数、倒数、绝对值的意义
和有理数范围内的相反ຫໍສະໝຸດ 、倒数、绝对值的意义完全一样.
探究新知
学生活动一【一起探究】
思考:
(1) 2的相反数是 - 2 ,-π的相反数是 π
数是 0 ;
(2) 2 =
2 ,|-π|=
π ,|0|= 0 .
,0的相反
探究新知
归纳:数a的相反数是-a,这里a表示任意实数.
一个正实数的绝对值是它本身;一个负实数的绝
对值是它的相反数;0的绝对值是0.即设a表示一个实数,
第六章
实数
6.3 实数的概念
第2课时 实数的运算
学习目标
1.能借助数轴理解相反数和绝对值的意义,会求实数的
相反数、绝对值.体会“数形结合”的数学思想.
2.了解有理数范围内的运算法则、运算律、运算公式和
运算顺序在实数范围内同样适用,并能熟练运用运算法
则对实数进行运算,提高计算能力.
3.会进行实数的近似计算,解决实际问题,发展应用意识.

【新】人教版七年级数学下册第六章《实数》公开课 课件2.ppt

【新】人教版七年级数学下册第六章《实数》公开课 课件2.ppt

。2021年1月10日星期日2021/1/102021/1/102021/1/10
• 15、会当凌绝顶,一览众山小。2021年1月2021/1/102021/1/102021/1/101/10/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/102021/1/10January 10, 2021
每相邻两个9之间依次多一个1
有理数集合
无理数合
探究无理数的倒数,相反数,绝对值:
2 的相反数是 2 ;
的相反数是 ;
0的相反数是 0 ;
2
2
-2 -1 0 1 2
a的相反数是-a
范例
例1 (1)求3 64的绝对值; (2)已知一个数的绝对值是 3,
求这个数。 (1) 解: 因为 3-64-364-4
所以 3 -64-44
(2)解:因为 3 3, - 3 3
所以绝对值为 3的数是 和3 - 3
知识回顾:
1、有理数的运算法则有哪些?
2、有理数的运算律有哪些?组卷网
实数和有理数一样也可以进行加 、减、乘、除、乘方运算,而且有 理数的运算法则与运算律对实数仍 然适用.
例如: 2 3 3 2 乘法交换律
6.3实数(2)
<和无理数之战>
在一个早晨,同学小毅一觉醒来,发现窗户外的山坡 上在打仗.仔细一看,一边打着“有理数”的大旗子,一 边打着“无理数”的大旗子. zxxk
有理数和无理数为什么要打仗?哦,原来是为了名 字. 听听无理数司令π怎么说:“我们无理数和有理 数同样是数,为什么他们‘有理’,我们‘无理’?我 们究竟哪点儿无理?”

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/102021/1/102021/1/102021/1/10

人教版七年级数学下册 第六章 实数复习课件(24张ppt)

人教版七年级数学下册 第六章 实数复习课件(24张ppt)
x20 x2
4.若 3 (4 x)3=4 – x成立,则x的取值范围是
(D )
A. x≤4
B. x≥4
C. 0 ≤x ≤ 4 D. 任意实数
分析:3 a3 a a为任何数
3 (4 x)3 4 x
(4 x)为任意实数 x为任意实数
5.如果一个数的平方根为a+1和2a-7,求这个数
分析 : 一个数的平方根有_两__个__,互为相__反__数__。
(a 1) (2a 7) 0 a 1 2a 7 0 3a 7 1 3a 6 a2
代入a 2得:这个数的平方根为__3_ 和 _-_3__ 答:这个数是_9___
6.已知y= 1 2x 1 1 2x ,求2(x+y)的平 方根 2
开方
求一个数的平方根的运算叫 求一个数的立方根
开平方
的运算叫开立方
是本身 0 ,1
0
0 ,1 ,-1
有限有小理数数及无整限数循环正负小0整整数数数
实 数
分数
正分数 负分数
无理数
正无理数 负无理数
自然数
无限不循环小数 一般有三种情况
(1)、
2、“ ”,“3 ”开不尽的数
(3) 类似于0.01001000100001
分析 : 估计 11 3. ; 23 4.
5 11的整数部分__8__ 7 23的整数部分__2__
5 11的小数部分_m___ 7 23的小数部分__n__
5 11 _8___m
m _5___11 8 m _1_1__3
7 23 _2___n n _7___ 23 2 n 5____23

人教版七年级数学下册6.3.2实数(2)课件(共25张PPT)

人教版七年级数学下册6.3.2实数(2)课件(共25张PPT)
实数范围内的相反数绝对值实数范围内的相反数绝对值没有没有wwwzxxkcom实数范围内的相反数绝对值实数范围内的相反数绝对值它本身它的相反数00字母字母表示1a是一个实数它的相反数为2如果a0那么它的倒数为2
第六章 实数
1.了解实数的运算法则及运算律,会 学 进行实数的运算。2.会用计算器进行 习 实数的运算。3.进一步感受实数与数 目 轴上的点一一对应的关系,体验数形 标 结合的优越性。4.发展学生的类比与 归纳能力。 重 实数的有关性质及利用实数的性质解 点 决相关问题 难 能准确无误地进行实数运算 点
2)
2; (2)3 3 2 3
解: (1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
4. 计算:
(1)2 2 3 2;
(2) 2 32 2.
例3:计算(结果保留小数点后两位)
(1) 5 π ;(2) 3 2
1.无理数
无理数 . (1)无限不循环小数叫做________ (2)无理数的常见形式: ①圆周率π及一些含有π的数;
②开不尽方的数,如 2

③有一定的规律,但不循环的无限小数,如 0.101 001 000 1…. 2.实数的概念 _______ _ 和________ 无理数 统称实数. 有理数
解: (1) 5 π 2.236+3.142 5.38 (2) 3 2 1.732 1.414 2.45
注意:计算过程中要多保留一位!
1.计算
(1) 2 3 3 2 5 3 3 2
3 3
(2)
3 2 3 1
1
3 ___________

(3) 2

第6章实数复习-人教版七年级数学下册课件(共17张PPT)

第6章实数复习-人教版七年级数学下册课件(共17张PPT)
解:(1)点 B 表示的数是 5-2. (2)点 C 表示的数是 2- 5. (3)由题可知,点 A 表示 5,点 B 表示 5-2,点 C 表示 2- 5, ∴OA= 5,OB= 5-2,OC=|2- 5|= 5-2,∴OA+OB+OC = 5+ 5-2+ 5-2=3 5-4.
互为逆运算
乘方
开方
2、填空
(1)因为 4 的立方是64,所以64的立方根是 4 , -27的立方根是 -3 。
(2) 0 的平方根是它本身, 1和0 的算术平方根是它本 身, 1和0 的立方根是它本身。
(3)下列说法中:① 3 都是27的立方根,
② 3 y 3 y, ③ 64 的立方根是2, ④ 3 82 4 ⑤两数互为相反数,则这两数的立方 根也互为相反数,正确的有 ②③⑤(填序号)。
3
9
0,
5, 3 8,
0.3737737773 (相邻两个3之间的7的个数逐次加1)
1 , 5 , 42
4, 9
0,
3 8,
有理数集合
3 2, 7, , 2, 20 , 3
5, 0.3737737773
无理数集合
3、填一填
(1)
2 2
的相反数是
2 2
, 7 3 3
7 , 的倒数是
1
(1)按定义分
整数
有理数:
有限小数或无限循环小数

分数

无理数: 无限不循环小数
含开方开不尽的数
π 含有 的数
有规律但不循环的小数
【例2】在-7.5,
, 4,
,
gg
,0.15 ,
中,无理数
的个数是( B )
A. 1个 B. 2个 C.3个 D.4个

6.3实数第2课时-人教版七年级数学下册课件(共17张PPT)

6.3实数第2课时-人教版七年级数学下册课件(共17张PPT)
请解答:(1) 17 的整数部分是( 4 ) 小数部分是( 17 4 )
(2)已知 5 17 小数部分是m, 6 17 小数部分是n,
且(x+1)2=m+n,请求出满足条件的x的值. (1)直接利用估算无理数的大小的方法分别得出答案; (2)直接利用(1)中所求即可得出m,n的值,进而得出x的值.
例 5:计算: (1) -42+3 -43×(-21)2-3 27;
3
(2)
287+4
614-| 3-2|-2 3.
解:(1)原式=0; (2)原式=- 3.
试一试
计算下列各式的值:
(1)3( 2 3) 3( 2 2 3); (2) | 3 5 | 3 3.
(1)利用去括号的法则去掉括号后为 3 2 3 3 3 2 6 3, 再将3 2与3 2,3 3与 6 3分别合并.
3.计算结果中若包含开方开不尽的数,则保留根号, 结果要化为最简形式. 实数的运算律 加法交换律:a+b=b+a; 加法结合律:(a+b)+c=a+(b+c); 乘法交换律:ab=ba; 乘法结合律:(ab)c=a(bc); 乘法分配律:(a+b)c=ac+bc.
例4:计算
(1)( 5 2 2) 2 解:原式 5 2 2 2
实数的性质
1、实数a的相反数是-a.
一个正实数的绝对值是它本身;一个负实数的绝对值是它 的相反数;0的绝对值是0. 即设a表示一个实数,
a 当a>0时;
则|a|= 0 当a=0时;
-a 当a<0时.
2、在进行实数的运算时,有理数的运算法则及运算性质 等适用
例1:求下列各数的相反数和绝对值. (1) 7; (2) 5; (3) 25 ; (4)2 3; (5) 3 8.

人教版初中七年级(下册)数学《第六章实数复习》 ppt课件

人教版初中七年级(下册)数学《第六章实数复习》 ppt课件
第六章 实数
复习课
一、知识点归纳
1、基本概念
被开方数、算术平方根、平方根、立方根 有理数、无理数、实数
2、基本运算 开平方、开立方、绝对值 3、基本运用
求算术平方根、求平方根、求立方根、求绝对值、 解二次方程、解三次方程、解绝对值方程、 比较大小、化简、估算、应用题(面积、体积)
二、知识点分解--总
算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
特殊:0的算术平 方根是0。
记 作 : 0 0
2. 平方根的定义:
一般地,如果一个数的平方等于a ,那么这 个数就叫做a 的平方根(或二次方根).
这就是说,如果x 2 = a ,那么 x 就叫做 a 的平方根.a的平方根记为 a
的 值 。 2 、 计 算 : 1 x x 1 x 2 1 。
1. 643 64 9
(1) 2. 2
2007
92
3
3.
2 3
4. 3222323
解答
1.如果一个数的平方根为a+1和2a-7, 求这个数
2.已知y= 1 2x1 12x 求2(x+y)的平方根
11
中,无理数的个数是( B )
(A) 2 ( B) 3 (C) 4 (D) 5
选择题: 6、已知一个正方形的边长为a,面积为S, 则( C )
(A) S a (B) S的 平 方 根 是 a (C) a是S的平方根 (D)a S
计算题:
1、 已 知a2b30,求 ( ab)2
(X为任意实数) (X为任意实数)
a2 a =
a 2 a
a a0 0 a0 a (a0) a0
3 a 3 a a为任何数

【新】人教版七年级数学下册第六章《 实 数》公开课课件.ppt

【新】人教版七年级数学下册第六章《 实 数》公开课课件.ppt
famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about. 。2020年12月15日星期二2020/12/152020/12/152020/12/15
【预习导学】
②用一张硬纸片前一个半径为1cm的小圆,计算圆的周长,周长是有理 数还是无理数?如何在数轴上表示圆的周长呢?
归纳总结:实数与数轴上的点是 一一对应的 ,即任何一个都可以用数轴上的一 个点来表示;反过来,数轴上的每一个点都表示一个实数。数轴上的任意两个 点,右边的点表示的数总比左边的点表示的数 大 。
1、有理数的运算法则及运算律同样适用于实数的运算;当 遇到无理数并需要求出结果的近似值时,应按照要求的精 确度用相应的近似有限小数去代替无理数,再进行计算。
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
【预习导学】
一、自学指导 1、自学1:自学课本P53-54页,完成54页“探究”,掌握实数的相关概念,理解实数与
数轴上的点的对应关系,完成下列填空。5分钟 归纳总结: 有理数 和 无理数 统称实数。 实数按正负分可分为 正实数 、 0 、 负实数 。
点拨精讲:带根号的不一定都是无理数;所有的无限循环小数都可以化成分数。
解:没有最大的实数,没有最小的实数,绝对值最小的实数是0. 2、设a是最小的自然数,b是最大的负整数,c是绝对值最小的实数,求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
3 4 , 8 , 2 1,
3 1 , 27 ,
9 0.010010001
有理数集合
无理数集合
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/102021/1/10Sunday, January 10, 2021
。2021年1月10日星期日2021/1/102021。2021年1月2021/1/102021/1/102021/1/101/10/2021
• 16、如果一个人不知道他要驶向哪头,那么任何风都不是顺风。2021/1/102021/1/10January 10, 2021
乘 方
互为逆运算
开方
实数
平方根 立方根 正
算术平方根
有理数 无理数
运算
1、算术平方根.
如果一个正数x的平方等于a,即x2=a,那 么这个正数x叫做a的算术平方根.
记作: a a叫做被开方数
a ≥0
a≥0
特别的规定:0的算术平方根是0
2、平方根.
如果一个数X的平方等于a,即X2=a,
那么这个数X叫做a的平方根(二次方根)

THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/102021/1/102021/1/102021/1/10
谢谢观看
记作:± a (互为相反数)
a
表示a的算术平方根
-a
表示a的算术平方根的相反数
例1.求下列各式的求值:
1 . 25 2 . 121 3 . 169 4 . 16 5 . 100 6 . 196
3.平方根的性质:
正数有两个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根.
0 没有
0 没有
0 负数(一个)
等于其
0,1
本身的
0
0,1,-1
实数的分类
有理数和无理数统称实数.
无理数的特征:
1.圆周率 及一些含有的数
2.开不尽方的数 3.无限不循环小数
把下列各数分别填入相应的集合内:
3 4 , 7 , 8 , 2 1, 1 , 0 ,
1
3
9
3
11
9 , 27 , 3 27 , 0.01001000
根指数
3a
3 读作“三次根号”; 3 a 读作“三次根号a”;
5、立方根的性质
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。
说明:立方根的性质可以概括为立方根 的唯一性,即一个数的立方根是唯一的.
6、开平方: 求一个数的平方根的运算,叫做开平方.
开平方与平方互为逆运算。
练习一:(自己完成) (1)1.44的平方根表示______=_______. (2)一个正数的平方等于169,这个正数是___. (3)一个负数的平方等于121,这个负数是___ (4)一个数的平方等于0.81,这个数是_____.
4.立方根
一般地,如果x3 ,a那么x
叫a的立方根。 记作:3 a
我们可以运用平方运算来求一个数的平方根。
7、开立方:
求一个数的立方根(三次方根)的运算, 叫做开立方.
开立方与立方互为逆运算。
我们可以运用立方运算来求一个数的立方根。
算术平方根
平方根
立方根
表示方法
a的取值
性 正数 质0
负数
a
a
3a
非负数 非负数
任意数
正数(一个) 互为相反数(两个) 正数(一个)
• 10、人的志向通常和他们的能力成正比例。2021/1/102021/1/102021/1/101/10/2021 5:37:04 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/102021/1/102021/1/10Jan-2110-Jan-21 • 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/102021/1/102021/1/10Sunday, January 10, 2021 • 13、志不立,天下无可成之事。2021/1/102021/1/102021/1/102021/1/101/10/2021
相关文档
最新文档