三阶系统的瞬态响应及稳定性分析
《自动控制理论》实验报告
1.实验接线:按模拟电路图2-5接线,检查无误后方可开启设备电源。
五、实验过程记录(数据、图表、计算等)
1、观察电机转速及示波器上给定值与反馈值的波形,分析其响应特性,结果记录在表4-1中。
2、记录较好的一组较好的控制参数,结果记录在表4-1中。
项目参数
IBAND
KPP
KII
KDD
超调
稳定<2%时间
例程中参数响应特性
0060H
1060H
1010H
0020H
自测一组较好参数
2.直接测量方法(测对象的闭环波特图)
(1)将示波器单元的“SIN”接至图2-5中的信号输入端,“CH1”路表笔插至图2-5中的4#运放的输出端。
(2)打开集成软件中的频率特性测量界面,弹出时域窗口,点击 按钮,在弹出的窗口中根据需要设置好几组正弦波信号的角频率和幅值,选择测量方式为“直接”测量,每组参数应选择合适的波形比例系数,具体如下图所示:
点击极坐标图按钮 ,可以得到对象的闭环极坐标图。
(5)根据所测图形可适当修改正弦波信号的角频率和幅值重新测量,达到满意的效果。
3.间接测量方法:(测对象的开环波特图)
将示波器的“CH1”接至3#运放的输出端,“CH2”接至1#运放的输出端。按直接测量的参数将参数设置好,将测量方式改为间接测量。此时相位差是指反馈信号和误差信号的相位差,应将两根游标放在反馈和误差信号上。测得对象的开环波特图。
实验四三阶系统的瞬态响应及稳定性分析
实验四三阶系统的瞬态响应及稳定性分析引言:实际工程中经常遇到三阶系统,对三阶系统的瞬态响应及稳定性进行分析能够帮助我们更好地设计和优化控制系统。
本实验旨在通过实验,研究三阶系统的瞬态响应及稳定性,并加深对其理论知识的理解和掌握。
实验一:三阶系统的瞬态响应1.实验目的:通过三阶系统的瞬态响应实验,观察系统的输出响应情况,了解系统的动态特性。
2.实验仪器:示波器、波形发生器、三阶系统实验箱3.实验原理:三阶系统的瞬态响应是指系统在初始状态发生突变时,输出的响应情况。
三阶系统的瞬态响应主要涉及到系统阶跃响应、系统脉冲响应。
4.实验步骤:a.将波形发生器的正弦波信号输入三阶系统实验箱。
b.设置示波器的观测通道,将示波器的探头连接到三阶系统实验箱的输出端口。
c.调节波形发生器的频率和幅度,观察示波器上得到的输出响应波形。
5.数据处理:a.根据示波器上输出的响应波形,可以观察到系统的超调量、调整时间等指标,根据公式可以计算得到这些指标的具体数值。
b.将实验得到的数据记录下来,进行分析和比较。
1.实验目的:通过三阶系统的稳定性分析实验,了解系统的稳定性及稳定性判据。
2.实验仪器:示波器、三阶系统实验箱3.实验原理:三阶系统的稳定性是指系统在初始状态发生突变或受到外部扰动时,系统是否能够回到稳定状态。
常见的稳定性分析方法包括极点判据、频率响应法等。
4.实验步骤:a.将示波器的探头连接到三阶系统实验箱的输出端口。
b.调节系统的输入信号,观察示波器上得到的系统输出响应波形。
c.根据观察到的输出波形,分析系统的稳定性。
5.数据处理:a.根据实验得到的数据和观察到的波形,可以从输入输出关系中提取出系统的稳定性信息,比如振荡频率、稳定的输出值等。
b.根据提取出的信息,判断系统的稳定性。
实验三:实验结果和分析1.通过实验一,我们可以观察到三阶系统的瞬态响应,并根据输出波形,计算得到系统的超调量、调整时间等指标。
通过对比不同输入频率和幅度下的响应波形,可以分析系统的动态特性。
三阶系统的瞬态响应和稳定性
南昌大学实验报告学生姓名:王智广学号:6100308038 专业班级:电力系统081实验类型:■验证□综合□设计□创新实验日期:2010.11.30 实验成绩:一、实验项目名称:三阶系统的瞬态响应和稳定性二、实验要求1.了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。
2.熟悉劳斯(ROUTH)判据使用方法。
3.应用劳斯(ROUTH)判据,观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
三、主要仪器设备及耗材1.计算机一台(Windows XP操作系统)2.AEDK-labACT自动控制理论教学实验系统一套3.LabACT6_08软件一套四、实验内容和步骤本实验用于观察和分析三阶系统瞬态响应和稳定性。
Ⅰ型三阶闭环系统模拟电路如图3-1-8所示。
它由积分环节(A2)、惯性环节(A3 和A5)构成。
图3-1-11 Ⅰ型三阶闭环系统模拟电路图图3-1-11的Ⅰ型三阶闭环系统模拟电路的各环节参数及系统的传递函数:积分环节(A2 单元)的积分时间常数Ti=R1*C1=1S,惯性环节(A3 单元)的惯性时间常数T1=R3*C2=0.1S,K1=R3/R2=1惯性环节(A5 单元)的惯性时间常数T2=R4*C3=0.5S,K2=R4/R=500k/R该系统在A5 单元中改变输入电阻R来调整增益K,R分别为30K、41.7K、100K 。
闭环系统的特征方程为:1+ G(S) = 0,⇒ S 3 +12S 2 + 20S + 20K = 0 (3-1-6)特征方程标准式:错误!未找到引用源。
(3-1-7)由ROUTH 判据,得 0<K<12⇒R>41.7kΩ系统稳定K=12⇒R=41.7kΩ系统临界稳定K>12⇒R<41.7kΩ系统不稳定Ⅰ型三阶闭环系统模拟电路图见图3-1-11,分别将(A11)中的直读式可变电阻调整到30K、41.7K、100K,跨接到A5 单元(H1)和(IN)之间,改变系统开环增益进行实验。
控制工程基础实验指导书(答案) 2讲解
实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
第四节高阶系统分析
5
三阶系统单位阶跃响应
e p3t c(t ) 1 2 ( 2) 1 e nt [ 2 ( 2) 1] 2 2 { ( 2) cos d t sin d t}, t 0 2 ( 2) 1 1
1 10 1 10 1 1 1 C ( s) ( s) s s( s 1)(s 10) s 9 s 1 9 s 10
c(t ) 1 10 t 1 10t e e 9 9
Sunday, March 31, 2019
11
高阶系统的定性分析
零点的影响 零点不影响响应的形式。零点只影响各项的系数。零点若 靠近某个极点,则该极点对应项的系数就小。 偶极子 若有一对零极点之间的距离是极点到虚轴距离的十分之一 以上,这对零极点称为偶极子。偶极子对瞬态响应的影响可以 忽略。 系数 a j , l , l 取决于零、极点分布。有以下几种情况: 若极点远离原点,则系数小; 极点靠近一个零点,远离其他极点和零点,系数小; 极点远离零点,又接近原点或其他极点,系数大。
c(t ) a0 et (1 cosd t 1 sin d t )
Sunday, March 31, 2019
13
主导极点及应用
[利用主导极点的概念可以对高阶系统的特性做近似的估计分析]
具有主导极点的高阶系统可近似为二阶或一阶系统。此时 高阶系统的特性可用等效低阶系统的特性做近似的估计分析。 高阶系统近似简化原则: 在近似前后,确保输出稳态值不变; 在近似前后,瞬态过程基本相差不大。 具体规则是:在时间常数形式的开环或闭环传递函数上略去小 时间常数。
衰减慢且系数大的项在瞬态过程中起主导作用。
Sunday, March 31, 2019
控制工程基础实验指导书[答案解析]
控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是R 、C 构成。
图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V 实验参数:(1) R 1=100K R 2=100K C=1µ f23、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µ f (2) R=100K C=2µ f 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V 实验参数:12(2)R1=100K R2=200K C=1µ f四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
实验二、控制系统的瞬态响应及其稳定性分析
实验报告课程名称:_______控制理论实验_______指导老师:___________成绩:__________________ 实验名称:___控制系统的瞬态响应及其稳定性分析__实验类型:___同组学生姓名:_______一、实验目的1.学习瞬态性能指标的测试方法;2.记录不同开环增益时二阶系统的阶跃响应曲线,并测出超调量σP %、峰值时间t p 和调节时间t s ;3.了解闭环控制系统的稳定和不稳定现象,并加深理解线性系统的稳定性与其结构和参量有关,而与外作用无关的性质。
二、实验原理对二阶系统加入阶跃信号时,其响应将随着系统参数变化而变化。
其特性由阻尼比ξ、无阻尼自然频率ωn 来描述。
当两个参数变化时,将引起系统的调节时间、超调量、振荡次数的变化。
二阶系统方框图如图4-2-1图4-2-1 二阶系统方框图其闭环传递函数的标准形式为 { EMBED Equation.3 |222122)1()()(nn n s s K s T s T Ks R s C ωξωω++=++=无阻尼自然频率阻尼比本实验中为0.2s ,为0.5s . 因此这就是说K 值的变化,就可以得到不同ξ值的阶跃响应曲线。
三阶系统的框图如图4-2-2所示。
其开环传递函数为若取=0.2s =0.5s改变惯性时间常数T 2和开环增益K ,可以得到不同的阶跃响应。
若调节K 值大小,可改变系统的稳定性。
如在实验中,取=0.2s =0.1s =0.5s4-2-2三阶系统方框图专业:____电自_______ 姓名:____王强________学号:__3110103065___ 日期:_____11、1____ 地点:___教二-213_______ +_+则得系统的特征方程用劳斯判据求出系统临界稳定的开环增益为7.5,即K<7.5时,系统稳定K>7.5时,系统不稳定。
控制系统本身的参数对阶跃响应性能有直接影响。
以上述三阶系统为例,开环增益和三个时间常数的变化都将使输出响应变化。
自动控制原理实验(1)
实验一 典型环节的电路模拟一、实验目的1.熟悉THKKL-5型 控制理论·计算机控制技术实验箱及“THKKL-5”软件的使用; 2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
二、实验设备1.THKKL-5型 控制理论·计算机控制技术实验箱;2.PC 机一台(含“THKKL-5”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线。
三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。
四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。
熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析十分有益。
本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。
图中Z 1和Z 2表示由R 、C 构成的复数阻抗。
1.比例(P )环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。
图1-1 它的传递函数与方框图分别为:KS U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。
2.积分(I )环节 图1-2积分环节的输出量与其输入量对时间的积分成正比。
它的传递函数与方框图分别为:设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。
TsS U S Us G i O1)()()(==图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CSR R R CSR CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。
自动控制原理第三节2_高阶系统
例如:(s)
(s2
n2(s z) 2 ns n2 )(s
p)
如果: z 5以及 p 5
n
n
z p
则:
(s)
p(s2
z n 2 2 ns n2 )
n
j d jd
说明:假设输入为单位阶跃函数,则化简前后的稳态值如下
lim s 1 s (s2
s0
n2(s z) 2 ns n2 )(s
[例如]: p1,2 1 n1 jn1
1
2 1
jd
为某高阶系统
的主导极点,则单位阶跃响应近似为:
c(t) a0 et (1 cosdt 1 sin dt)
利用主导极点的概念可以对高阶系统的特性做近似的估计分析。 高阶系统近似简化原则: 在近似前后,确保输出稳态值不变;
在近似前后,瞬态过程基本相差不大。
阶系统的单位阶跃响应取决于闭环系统的零、极点分布。
[定性分析]:
对于闭环极点全部位于s左半平面的高阶系统(否则系统不 稳定),极点为实数(指数衰减项)和共轭复数(衰减正弦项) 的衰减快慢取决于极点离虚轴的距离。远,衰减的快;近,衰 减的慢。所以,近极点对瞬态响应影响大。
高阶系统分析,主导极点
系数 a j , l , l 取决于零、极点分布。有以下几种情况: 若极点远离原点,则系数小; 极点靠近一个零点,远离其他极点和零点,系数小; 极点远离零点,又接近原点或其他极点,系数大。
C(s)
(s)
1 s
(s2
n2 p3 2 ns n2 )(s
p3 )
1 s
1 s
s2
A1s A2
2 ns n2
s
A3 p3
式中:A1, A2 , A3 系)有关。
自控原理三阶系统的稳定性和瞬态响应
自控原理三阶系统的稳定性和瞬态响应三阶系统是一种具有三个输入和三个输出的控制系统。
在控制系统中,稳定性和瞬态响应是重要的性能指标,它们决定了系统的性能和鲁棒性。
稳定性是指一个系统在有限时间内能否回到平衡状态的性质。
在三阶系统中,判断稳定性可以使用极点的位置来分析。
极点是系统传递函数中分母的根,通过求解传递函数的特征方程可以得到极点的位置。
对于三阶系统,特征方程一般可以表示为:s^3 + as^2 + bs + c = 0其中,s是频率,a、b、c是特定的常数。
根据分析稳定性的方法,当特征方程的所有根的实部小于零时,系统是稳定的。
如果所有的实根都是负数,那么系统是渐进稳定的,即随着时间的推移,系统会逐渐趋于平衡状态。
如果存在一些根的实部大于零,但是其共轭复根的实部都小于零,那么系统是亚稳定的,即系统可能会出现一些振荡,但最终会回到平衡状态。
另一方面,瞬态响应是指系统在接收到输入信号后,经过一段时间后达到稳定状态的过程。
在三阶系统中,可以通过分析系统的阶跃响应来研究瞬态响应。
阶跃响应是指在输入信号发生跃变时输出信号的响应。
在三阶系统中,瞬态响应的性质可以通过观察系统的超调量、峰值时间和上升时间等指标来判断。
超调量指的是系统输出信号超过稳定状态的最大幅度,峰值时间是信号达到峰值的时间,上升时间是响应时间从10%上升到90%所需的时间。
对于三阶系统,瞬态响应可能存在多个峰值,这取决于系统的极点的位置。
在极点为纯虚数的情况下,系统会出现振荡,峰值时间和上升时间会增加。
而当极点存在实数部分时,系统响应会趋于稳定状态,瞬态响应的性能指标会随着实数部分的增加而改变。
总之,稳定性和瞬态响应是评估三阶系统性能的重要指标。
稳定性通过分析特征方程的根来判断,瞬态响应可以通过阶跃响应的性质来研究。
根据这些指标,我们可以对三阶系统的性能进行分析和改进,以满足实际控制需求。
南昌大学自动控制理论实验报告
2014-2015-1实验报告自动控制理论学校:南昌大学院系:信息工程学院班级:姓名:学号:日期:目录实验一典型环节的模拟研究 (1)实验二二阶系统瞬态响应和稳定性 (10)实验三三阶系统的瞬态响应和稳定性 (15)实验四一阶、二阶系统的频率特性 (20)实验五频率特性的时域分析 (41)实验六频域法串联超前校正 (44)实验七频域法串联滞后校正 (52)实验八时域法串联比例微分校正和时域法微分反馈校正 .. 59实验一典型环节的模拟研究一. 实验要求1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2.观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响三.实验内容及步骤在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。
如果选用虚拟示波器,只要运行LABACT程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分。
1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路实验步骤: 注:‘S ST’不能用“短路套”短接!(1)用信号发生器(B1)的‘阶跃信号输出’ 和‘幅度控制电位器’构造输入信号(Ui ):B1单元中电位器的左边K3开关拨下(GND ),右边K4开关拨下(0/+5V 阶跃)。
阶跃信号输出(B1的Y 测孔)调整为4V (调节方法:按下信号发生器(B1)阶跃信号按钮,L9灯亮,调节电位器,用万用表测量Y 测孔)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(31’档)① 打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),用示波器观测A6输出端(Uo )的实际响应曲线Uo (t )。
THKKL-1实验指导书
THKKL-1型控制理论电子模拟实验箱实验指导书浙江天煌科技实业有限公司目录实验一控制系统典型环节的模拟实验二一阶系统的时域响应及参数测定实验三二阶系统的瞬态响应分析实验四三阶系统的瞬态响应及稳定性分析实验五PID控制器的动态特性实验六控制系统的动态校正实验七频率特性的测试实验八信号的采样与恢复实验九典型非线性环节实验十非线性系统的相平面分析实验一控制系统典型环节的模拟一、实验目的1、熟悉超低频扫描示波器的使用方法2、掌握用运放组成控制系统典型环节的电子模拟电路3、测量典型环节的阶跃响应曲线4、通过本实验了解典型环节中参数的变化对输出动态性能的影响二、实验仪器1、控制理论电子模拟实验箱一台2、超低频慢扫描示波器一台3、万用表一只三、实验原理以运算放大器为核心元件,由其不同的输入R-C网络和反馈R-C网络构成控制系统的各种典型环节。
四、实验内容1、画出比例、惯性、积分、微分和振荡环节的电子模拟电路图。
2、观察并记录下列典型环节的阶跃响应波形。
1) G1(S)=1和G2(S)=22)G1(S)=1/S和G2(S)=1/(0.5S)3)G1(S)=2+S和G2(S)=1+2S4)G1(S)=1/(S+1)和G2(S)=1/(0.5S+1)5)G(S)=1/(S+ √ 2 S+1)五、实验报告要求1、画出五种典型环节的实验电路图,并注明参数。
2、测量并记录各种典型环节的单位阶跃响应,并注明时间坐标轴。
3、分析实验结果,写出心得体会。
六、实验思考题1、用运放模拟典型环节是是时,其传递函数是在哪两个假设条件下近似导出的?2、积分环节和惯性环节主要差别是什么?在什么条件下,惯性环节可以近似地视为积分环节?在什么条件下,又可以视为比例环节?3、如何根据阶跃响应的波形,确定积分环节和惯性环节的时间常数。
实验二一阶系统的时域响应及参数测定一、实验目的1、观察一阶系统在阶跃和斜坡输入信号作用下的瞬态响应。
2、根据一阶系统的阶跃响应曲线确定一阶系统的时间常数。
控制工程基础实验指导书(答案)
控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院 系: 专业班级: 姓 名: 学 号:实验日期: 实验地点: 合作者: 指导教师:本实验项目成绩: 教师签字: 日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的、掌握比例、积分、实际微分及惯性环节的模拟方法; 、通过实验熟悉各种典型环节的传递函数和动态特性; 、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器、控制理论电子模拟实验箱一台;、超低频慢扫描数字存储示波器一台;、数字万用表一只;、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的 输入网络和反馈网络组成的各种典型环节,如图 所示。
图中 和 为复数阻抗,它们都是 、 构成。
图 运放反馈连接基于图中 点为电位虚地,略去流入运放的电流,则由图 得:21()o i u ZG s u Z ==-( ) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
、比例环节实验模拟电路见图 所示图 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号: 实验参数:( ) 1 2 ( ) 1 2 、 惯性环节实验模拟电路见图 所示图 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入: 实验参数:( )12( )2、积分环节实验模拟电路见图 所示图 积分环节传递函数:21111()Z CSG sZ R RCS TS=-=-=-=阶跃输入信号:实验参数:( )( )、比例微分环节实验模拟电路见图 所示图 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 D 112R R 阶跃输入信号: 实验参数:( ) 1 2 ( ) 1 2 四、实验内容与步骤、分别画出比例、惯性、积分、比例微分环节的电子电路; 、熟悉实验设备并在实验设备上分别联接各种典型环节;、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
三阶系统的瞬态响应及稳定性分析
实验四 三阶系统的瞬态响应及稳定性分析一、实验目的(1)熟悉三阶系统的模拟电路图。
(2)由实验证明开环增益K 对三阶系统的动态性能及稳定性的影响。
(3)研究时间常数T 对三阶系统稳定性的影响。
二、实验所需挂件及附件图8-16 三阶系统原理框图图8-17 三阶系统模拟电路图8-16为三阶系统的方框图,它的模拟电路如图8-17所示,对应的闭环传递函数为: 该系统的特征方程为:T 1T 2T 3S³+T 3(T 1+T 2)S²+T 3S+K=0其中K=R 2/R 1,T 1=R 3C 1,T 2=R 4C 2,T 3=R 5C 3。
若令T 1=0.2S ,T 2=0.1S ,T 3=0.5S ,则上式改写为用劳斯稳定判据,求得该系统的临界稳定增益K=7.5。
这表示K>7.5时,系统为不稳定;K<7.5时,系统才能稳定运行;K=7.5时,系统作等幅振荡。
除了开环增益K 对系统的动态性能和稳定性有影响外,系统中任何一个时间常数的变化对系统的稳定性都有影响,对此说明如下:令系统的剪切频率为ωc ,则在该频率时的开环频率特性的相位为:ϕ(ωc )= - 90︒ - tg -1T 1ωc – tg -1T 2ωc相位裕量γ=180︒+ϕ(ωc )=90︒- tg -1T 1ωc- tg -1T 2ωcK)S T )(S T (S T K )S (U )S (U i o +1+1+=2130=100+50S +15S +S 23Κ由上式可见,时间常数T 1和T 2的增大都会使γ减小。
四、思考题(1)为使系统能稳定地工作,开环增益应适当取小还是取大?(2)系统中的小惯性环节和大惯性环节哪个对系统稳定性的影响大,为什么?(3)试解释在三阶系统的实验中,输出为什么会出现削顶的等幅振荡?(4)为什么图8-13和图8-16所示的二阶系统与三阶系统对阶跃输入信号的稳态误差都为零?(5)为什么在二阶系统和三阶系统的模拟电路中所用的运算放大器都为奇数?五、实验方法图8-16所示的三阶系统开环传递函数为:(1)按K=10,T 1=0.2S, T 2=0.05S, T 3=0.5S 的要求,调整图8-17中的相应参数。
自控原理 三阶系统的稳定性和瞬态响应
自控理论实验三姓名:***班级:06111002学号:**********三阶系统的稳定性和瞬态响应一.实验目的1.了解和掌握各典型三阶系统模拟电路的构成方法及I 型三阶系统的传递函数表达式。
2.了解和掌握求解高阶闭环系统临界稳定增益K 的多种方法(劳斯稳定判据法、代数求解法、MATLAB 根轨迹求解法)3.观察和分析各I 型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
4.了解和掌握利用MATLAB 的开环根轨迹求解系统的性能指标的方法。
二.实验原理及说明典型I 型三阶单位反馈闭环系统如图1所示。
图1 典型I 型三阶单位反馈闭环系统 I 型三阶系统的开环传递函数为:32()(0.11)(0.51)0.050.6K Ks S S S K S S S K φ==++++++ (式3-1)闭环传递函数(单位反馈)为:1121()()1()(1)(1)i K K G s s G s T S T S T S K K φ==++++ (式3-2)I 型三阶闭环系统模拟电路如图2所示。
它由一个积分环节和两个惯性环节构成。
其积分时间常数为111i T R C s=⨯=,惯性时间常数分别为321320.1,/1i T R C s K R R =⨯===和24340.5,/500/T R C s K R R K R=⨯===。
图2 I 型三阶闭环系统模拟电路模拟电路的各环节参数代入式3-1,该电路的开环传递函数:32()(0.11)(0.51)0.050.6K KG s S S S S S S ==++++(式3)模拟电路的开环传递函数代入式3-2,该电路的闭环传递函数为:3216.7()=0.050.616.7s S S S φ+++(式4)求解高阶闭环系统的临界稳定增益K线性系统稳定的充分必要条件为:系统的全部闭环特征根都具有负实部;或者说,系统的全部闭环极点均位于左半S 平面 1)劳斯(Routh )稳定判据法 闭环系统的特征方程为:321()00.050.60G s S S S K +=⇒+++= (5)特征方程标准式为3201230a S a S a S a +++= (式6)把式6各项系数代入式5中,通过建立劳斯(Routh )行列阵为保证系统稳定,劳斯表中的第一列的系数的符号都应相同,因此由劳斯(Routh )稳定判据判断,得系统的临界稳定增益12K =。
[精品]控制实验3阶系统
实验三三阶系统的稳定性和瞬态响应一实验目的1 了解和掌握典型三阶系统模拟电路的构成方法及I型三阶系统的传递函数表达式。
2 了解和掌握求解高阶闭环系统临界稳定增益K的多种方法。
3 观察和分析I型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
4 了解和掌握用MA TLAB的开环根轨迹求解系统的性能指标的方法。
5 掌握和利用主导极点的概念,是原三阶系统近似为标准的I型二阶系统。
二实验原理典型三阶I型系统单位负反馈闭环控制系统如下I型三阶闭环系统模拟电路由积分环节(A2单元)、惯性环节(A3单元A5单元)构成。
其积分时间常数Ti=R1*C1=1秒,A3的惯性时间常数T1=R1*C1=0.1秒,K1=R3/R2=1,A5的惯性时间常数T2=R4*C3=0.5秒,K=R4/R=500/R。
1. 求解高阶闭环系统临界稳定增益K线性系统稳定的充要条件:系统的闭环特征根都具有负实部;或,系统的闭环极点全部位于左半平面内。
①Routh稳定判据即利用劳斯表条件使第一列全部大于零的特点。
②代数求解法系统闭环特征方程D(S)=0中,令S=jw,其解即为系统的临界稳定增益K。
③使用MA TLAB的根轨迹命令MA TLAB的开环根轨迹图反映了系统的全部闭环零、极点在S平面的分布情况,将容易求得临界稳定增益K。
命令格式num=[a,b,c,.........] 开环系统分子多项式系数den=[a,b,c,..........] 开环系统分母多项式系数Rlocus(num,den)tip:the transfer function must standard2. 利用MA TLAB 的开环根轨迹求解系统的性能指标在MA TLAB 的根轨迹图上可以找出一定点的所有信息。
三 实验内容1.观察和分析I 型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
实验步骤:(1)按表格接线。
(2)在显示与功能选择(D1)单元中,选择“矩形波”。
控制工程基础实验指导书(答案)
控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是R 、C 构成。
图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µf 3、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µf (2) R=100K C=2µf 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V实验参数:(1)R1=100K R2=100K C=1µf(2)R1=100K R2=200K C=1µf四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
实验三 高阶系统的瞬态响应和稳定性分析
实验三 高阶系统的瞬态响应和稳定性分析一、实验目的1. 通过实验,进一步理解线性系统的稳定性仅取决于系统本身的结构和参数,它与外作用及初始条件均无关的特性;2. 研究系统的开环增益K 或其它参数的变化对闭环系统稳定性的影响。
二、实验设备同实验一。
三、实验内容观测三阶系统的开环增益K 为不同数值时的阶跃响应曲线;四、实验原理三阶系统及三阶以上的系统统称为高阶系统。
一个高阶系统的瞬态响应是由一阶和二阶系统的瞬态响应组成。
控制系统能投入实际应用必须首先满足稳定的要求。
线性系统稳定的充要条件是其特征方程式的根全部位于S 平面的左方。
应用劳斯判断就可以判别闭环特征方程式的根在S 平面上的具体分布,从而确定系统是否稳定。
本实验是研究一个三阶系统的稳定性与其参数K对系统性能的关系。
三阶系统的方框图和模拟电路图如图3-1、图3-2所示。
图3-1 三阶系统的方框图图3-2 三阶系统的模拟电路图(电路参考单元为:U 3、U 8、U 5、U 6、反相器单元)图3-1的开环传递函数为 系统开环传递函数为:)15.0)(11.0()1)(1()(2121++=++=S S S K K S T S T S K s G τ 式中τ=1s ,S T 1.01=,S T 5.02=,τ21K K K =,11=K ,5102XK R =(其中待定电阻R x 的单位为K Ω),改变R x 的阻值,可改变系统的放大系数K 。
由开环传递函数得到系统的特征方程为020201223=+++K S S S由劳斯判据得0<K<12 系统稳定K =12 系统临界稳定K>12 系统不稳定 其三种状态的不同响应曲线如图3-3的a)、b)、c)所示。
a) 不稳定 b) 临界 c)稳定图3-3三阶系统在不同放大系数的单位阶跃响应曲线五、实验步骤根据图3-2所示的三阶系统的模拟电路图,设计并组建该系统的模拟电路。
当系统输入一单位阶跃信号时,在下列几种情况下,用上位软件观测并记录不同K 值时的实验曲线。
二,三阶系统瞬态响应和稳定性
二,三阶系统瞬态响应和稳定性《自动控制原理》实验报告(4)2019- 2019 学年第 1 学期专业:班级:学号:姓名:2019 年 11 月 15 日一.实验题目:二、三阶系统瞬态响应和稳定性二.实验目的:1. 了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。
2. 研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。
3. 掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp 、t p 、t s 的计算。
4. 观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp 、t p 值,并与理论计算值作比对。
5. 了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。
6. 了解和掌握求解高阶闭环系统临界稳定增益K 的多种方法(劳斯稳定判据法、代数求解法、MA TLAB 根轨迹求解法)。
7. 观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。
8. 了解和掌握利用MA TLAB 的开环根轨迹求解系统的性能指标的方法。
9. 掌握利用主导极点的概念,使原三阶系统近似为标准Ⅰ型二阶系统,估算系统的时域特性指标。
三.实验内容及步骤二阶系统瞬态响应和稳定性1.Ⅰ型二阶闭环系统模拟电路见图3-1-7,观察阻尼比ξ对该系统的过渡过程的影响。
改变A3单元中输入电阻R 来调整系统的开环增益K ,从而改变系统的结构参数。
2.改变被测系统的各项电路参数,计算和测量被测对象的临界阻尼的增益K ,填入实验报告。
3.改变被测系统的各项电路参数,计算和测量被测对象的超调量Mp ,峰值时间tp ,填入实验报告,並画出阶跃响应曲线。
图3-1-7 Ⅰ型二阶闭环系统模拟电路积分环节(A2单元)的积分时间常数Ti=R1*C1=1S 惯性环节(A3单元)的惯性时间常数 T=R2*C2=0.1S 阻尼比和开环增益K 的关系式为:临界阻尼响应:ξ=1,K=2.5,R=40kΩ欠阻尼响应:01,设R=70kΩ,K=1.43ξ=1.32>1实验步骤:注:‘S ST’用“短路套”短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 三阶系统的瞬态响应及稳定性分析
一、实验目的
(1)熟悉三阶系统的模拟电路图。
(2)由实验证明开环增益K 对三阶系统的动态性能及稳定性的影响。
(3)研究时间常数T 对三阶系统稳定性的影响。
二、实验所需挂件及附件
图8-16 三阶系统原理框图
图8-17 三阶系统模拟电路
图8-16为三阶系统的方框图,它的模拟电路如图8-17所示,对应的闭环传递函数为: 该系统的特征方程为:
T 1T 2T 3S³+T 3(T 1+T 2)S²+T 3S+K=0
其中K=R 2/R 1,T 1=R 3C 1,T 2=R 4C 2,T 3=R 5C 3。
若令T 1=0.2S ,T 2=0.1S ,T 3=0.5S ,则上式改写为
用劳斯稳定判据,求得该系统的临界稳定增益K=7.5。
这表示K>7.5时,系统为不稳定;K<7.5时,系统才能稳定运行;K=7.5时,系统作等幅振荡。
除了开环增益K 对系统的动态性能和稳定性有影响外,系统中任何一个时间常数的变化对系统的稳定性都有影响,对此说明如下:
令系统的剪切频率为
ω
c ,则在该频率时的开环频率特性的相位为:
ϕ(ωc )= - 90︒ - tg -1T 1ωc – tg -1T 2ωc
相位裕量γ=180︒+ϕ(ωc )=90︒- tg -1T 1ωc- tg -1T 2ωc
K
)S T )(S T (S T K )S (U )S (U i o +1+1+=2130=100+50S +15S +S 2
3Κ
由上式可见,时间常数T 1和T 2的增大都会使γ减小。
四、思考题
(1)为使系统能稳定地工作,开环增益应适当取小还是取大?
(2)系统中的小惯性环节和大惯性环节哪个对系统稳定性的影响大,为什么?
(3)试解释在三阶系统的实验中,输出为什么会出现削顶的等幅振荡?
(4)为什么图8-13和图8-16所示的二阶系统与三阶系统对阶跃输入信号的稳态误差都为零?
(5)为什么在二阶系统和三阶系统的模拟电路中所用的运算放大器都为奇数?
五、实验方法
图8-16所示的三阶系统开环传递函数为:
(1)按K=10,T 1=0.2S, T 2=0.05S, T 3=0.5S 的要求,调整图8-17中的相应参数。
(2)用慢扫描示波器观察并记录三阶系统单位阶跃响应曲线。
(3)令T 1=0.2S , T 2=0.1S , T 3=0.5S ,用示波器观察并记录K 分别为5、7.5和10三种
情况下的单位阶跃响应曲线。
(4)令K=10,T 1=0.2S ,T 3=0.5S ,用示波器观察并记录T 2分别为0.1S 和0.5S 时的单位
阶跃响应曲线。
六实验报告
(1)作出K=5、7.5和10三种情况下的单位阶跃响应波形图,据此分析K 的变化对系统动态性能和稳定性的影响。
(2)作出K=10,T1=0.2S ,T3=0.5S ,T 2分别为0.1S 和0.5S 时的单位阶跃响应波形图,
并分析时间常数T 2的变化对系统稳定性的影响。
(3)写出本实验的心得与体会。
)
1)(1()(213++=S T S T S T K
S G。