零指数幂与负整数指数幂、科学计数法

合集下载

零指数幂与负整数指数幂

零指数幂与负整数指数幂

数指数幂的运算规则实际上是零指数幂运算规则的一种扩展。
06
零指数幂与负整数指数 幂的实例
零指数幂的实例
定义
零指数幂定义为1的0次方等于1。
实例
例如,10^0 = 1,5^0 = 1,2^0 = 1等。
负整数指数幂的实例
定义
负整数指数幂定义为1除以正整数 指数幂。
实例
例如,2^(-3) = 1/8,5^(-2) = 1/25,10^(-1) = 1/10等。
应用
在解决实际问题时,我们 通常使用零指数幂的性质 来简化计算。
负整数指数幂的性质
定义
负整数指数幂定义为1除以正整数指数幂的倒数,即a^(-n) = 1 / (a^n),其中a为底数, n为正整数。
性质
负整数指数幂的性质是底数不能为0,因为任何数的0次方都等于1,所以当底数为0时, 结果无意义。此外,当n为奇数时,负整数指数幂的结果为正数;当n为偶数时,负整数 指数幂的结果为负数。
应用
在解决实际问题时,我们通常使用负整数指数幂的性质来简化计算。例如,在物理学中, 我们经常使用负整数指数幂来表示单位不同的量,如速度和时间的关系v = t^-1等。
03
指数幂的运算规则
零指数幂的运算规则
定义
零指数幂定义为1的0次方 等于1,即任何非零数的0 次幂等于1,而0的0次幂 无定义。
计算方法
使用场景
在科学计算、工程领域中经常出现,用于计算逆运算情况。
04
指数幂的应用
零指数幂在生活中的应用
物理单位换算
在物理学科中,零指数幂被广泛应用于单位换算,例如在计算能 量转换时,需要用到零指数幂进行单位转换。
化学方程式配平
在化学学科中,零指数幂被用于配平化学方程式,确保反应前后的 原子数量相等。

零指数幂与负整数指数幂

零指数幂与负整数指数幂
由于这几个式子的被除式等于除式,由除 法的意义可知,所得的商都等于1.
概括
由此启发,我们规定: a0=1(a≠0) 任何不等于零的数的零次幂都等于1. 零的零次幂没有意义.
探索
计算:52÷55,103÷107, 一方面,如果仿照同底数幂的除法公式来计算,得 52÷55=52-5=5-3,103÷107=103-7=10-4.
1.从教材习题中选取. 2.完成练习册本课时的习题.
16.4 零指数幂与负整数 指数幂
1.零指数幂与负整数指数幂
华师大版 八年级数学下册
情境导入
在前面,我们学习过同底数幂的除法公式 am÷an=am-n时,有一个附加条件:m>n,即 被除数的指数大于除数的指数.当被除数的指 数不大于除数的指数,即m=n或m<n时,情 况怎样呢?
新课推进
计算: 52÷52,103÷103,a5÷a5(a≠0) 仿照同底数幂的除法公式来计算,得 52÷52=52-2=50, 103÷103=103-3=100, a5÷a5=a5-5=a0(a≠0).
另一方面,我们可利用约分,直接
算出这两个式子的结果为
52 ÷55 =
52 55
=
55 52
=
1 53
103 ÷107 =
103 107
=
103 103 104
=
1 104
概括
由此启发,我们规定:
53
=
1 53
,104
=
1 104
一般地,我们规定
a
n
=
1 an
(a≠0,n是正整数)
任何不等于零的数的-n(n为正整数)次幂,
am
an
a2 a3
a

零指数幂与负整数指数幂

零指数幂与负整数指数幂

1 化简(x-1)2·x3的结果是( )
A.x5 C.x
B.x4 1
D. x
2 下列运算正确的是( A.a6÷a2=a3 C.2-3=-6
)
B.(ab2)2=ab4
D.
1 3
1=-3
知2-练
3 下列各式的计算中,不正确的个数是( )
①100÷10-1=10;
②10-4×(2×7)0=1 000;
九、要点梳理(课文回放)。
作者用细腻的笔触、传神的语言介绍了 《蒙娜 丽莎》 画像, 具体介 绍了___ ______ _,___ ______ _,特 别详细 描写了 蒙娜丽 莎的___ ______ _和___ ______ _,以 及她___ ______ _、___ ______ _和___ ______ _;最 后用精 炼而饱 含激情 的语言 告诉大 家,蒙 娜丽莎 给人带 来了心 灵的震 撼,留 下了永 不磨灭 的印象 。 综合能力日日新
第8章 整式的乘法与因式分解
8.1 幂的运算
第5课时 零指数幂与负 整数指数幂
1 课堂讲解 零指数幂
负整数指数幂
2 课时流程 整数指数幂的性质
逐点 导讲练
课堂 小结
作业 提升
一种液体每升含有1014个有害细菌,为了试验某 种杀菌剂的效果,科学家们进行了实验,发现1滴杀 菌荆可以杀死1016个此种细菌.要将1升液体中的有 害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样 计算的?
3 若(x-3)0-2(3x-6)-2有意义,则x的取值范围
是( )
A.x>3
B.x≠3且x≠2
C.x≠3或x≠2
D.x<2
知识点 3 整数指数幂的性质
例4 计算:x2·x3÷x-4=____x_9 ___. 导引:x2·x3÷x-4=x2+3-(-4)=x9.

数学零指数幂与负整数指数幂课件华东师大版

数学零指数幂与负整数指数幂课件华东师大版

01
实例1
计算2^(-3)的值。
02
03
04

2^(-3) = 1/(2^3) = 1/8。
实例2
计算(1/2)^(-2) + (1/4)^(-1) 的值。

(1/2)^(-2) + (1/4)^(-1) = 4 + 4 = 8。
04
CATALOGUE
零指数幂与负整数指数幂的应用
整 数指数幂的定义。
能够运用零指数幂与 负整数指数幂解决实 际问题。
掌握零指数幂与负整 数指数幂的运算规则 。
02
CATALOGUE
零指数幂
定义与性质
总结词
零指数幂的定义是任何非零数的0次方等于1,即a^0=1(a≠0)。它具有几个重 要的性质,包括任何非零数的0次幂等于1、0的0次幂未定义、负数的0次幂未定 义等。
详细描述
在数学中,零指数幂的定义是指任何非零数的0次方等于1。这意味着无论一个数 a是多少(只要a≠0),a的0次幂都是1。这个定义是数学中指数运算的基础规则 之一。此外,需要注意的是,0的0次幂和负数的0次幂在数学中都是未定义的。
计算方法
总结词
计算零指数幂的方法是根据定义,任何非零数的0次方都是1 。因此,可以直接得出结果,无需进行复杂的运算。
人口增长模型
利用指数函数描述人口增长,其 中零指数幂表示人口基期数据, 负整数指数幂表示过去某一时刻 的人口数据。
放射性物质衰变
放射性物质的衰变过程可以用负 整数指数幂表示,描述放射性物 质随时间衰减的规律。
在数学证明中的应用
幂的性质证明
利用零指数幂和负整数指数幂的性质 ,可以证明幂的性质,如同底数幂的 乘法法则等。

16.4 零指数幂与负整数指数幂及科学计数法

16.4  零指数幂与负整数指数幂及科学计数法
例如:0.000304= 3.0410(4 3前面有4个0,10的指数为-4)
上述记数方法叫做科学记数法.
2. 用科学记数法表示数的方法:
用科学记数法表示一个数,就是把一个数写成 a×10n (1≤︱a︱<10,n是非零整数)的形式, 其方法是: ①确定a,a是只有一位整数的数; ②确定n, 当原数的绝对值大于或等于10时,n等于原数的整数位数 减去1; 当原数的绝对值小于1时,n为负整数,n的绝对值等于原 数中左起第一个非零数前面零的个数(含整数数位上的 零).
2a1b3c4
一定要写成
2b3 ac4
例2 计算: (1)32;
(2)

1 3
0

101.
解:
(1)32

1 32

1. 9
(2)
1
0

3
101

1 1 101

1. 10
例3 用小数表示下列个数: (2)2.1×10-5.
解:(2)2.1 105
(2)当a-2=0时,a=2,此时 aa2 222 20 1 (3)当a=-1时,a 2 1 2 3, aa2 (1)3 1,不符合题意;
所以a=1或a=2
知识点 2 负整数指数幂
正整数指数幂的运算性质:
(1)同底数的幂的乘法: am an amn (m,n是正整数);
第16章 分式
16.4 零指数幂与负整数指数幂
零指数幂与负整数指数幂 科学计数法
零指数幂
1 课堂讲解 负整数指数幂
整数指数幂的性质
2 课时流程 科学计数法及应用
逐点 导讲练
课堂 小结
作业 提升

2.3.2 零次幂和负整数指数幂

2.3.2  零次幂和负整数指数幂

( 1 )−2 = (0.01)−2 = 1 2 = 1 =10000 (0.01) 0.0001 100
3.若代数式( 3x +1) 有意义,求x的取值范围 ; 1 x≠− 3 1 1 x −1 4.若2 = ,则x = -2 ,若x = , 则x = 3 ; 4 3 5.若 x = 0.01 10 ,则x = -2 ;
2

【解析】选C.∵0<x<1,令 x= 1 . 解析】 C.∵0<x<1,令
2 由于 1 < 1 <2 4 2
则x-1= ( 1 )-1 =2,x2 = 1
4
所以x 所以x2<x<x-1.
1 a + 2 =______. a 解析】 =3,∴( 【解析】∵a+a-1=3,∴(a+a-1)2=9.
(3.2× (1)(2×10-6)×(3.2×103) (2× (2)(2×10-6)2 ÷(10-4)3 (2× 答案:(1)6.4×10-3 答案: 6.4× (2)4
5.比较大小: 5.比较大小: 比较大小 ________9.5× (1)3.01×10-4________9.5×10-3 3.01× < (2)3.01×10-4________3.10×10-4 ________3.10× 3.01× <
(0.2)-2 = 1 2 = 1 = 25
(0.2) 0.04
1 1.填空:3 );(1.填空:3-1=( 1 );(0.5)-2=( 4 );(-4)-3=( - 3); 填空 3 4
2.计算: 2.计算: 计算 1 1 1 1 1 (−5)−2×2−2 = (−5)2 × 22 = 25× 4 =100

华师大版八下数学16.4零整数幂与负整数指数幂,科学记数法教学设计

华师大版八下数学16.4零整数幂与负整数指数幂,科学记数法教学设计

华师大版八下数学16.4零整数幂与负整数指数幂,科学记数法教学设计一. 教材分析华师大版八下数学第16.4节主要介绍了零整数幂与负整数指数幂,以及科学记数法。

这一节的内容是学生学习指数幂的基础,对于学生理解指数幂的概念和应用具有重要意义。

教材通过例题和练习,帮助学生掌握零整数幂和负整数指数幂的运算规则,以及科学记数法的表示方法和转换方法。

二. 学情分析学生在学习这一节内容时,已经掌握了有理数、整数幂的基本概念和运算规则,具备一定的逻辑思维能力和运算能力。

但学生对于负整数指数幂和科学记数法的理解可能存在一定的困难,因此需要通过实例和练习,帮助学生深入理解这两个概念。

三. 教学目标1.理解零整数幂和负整数指数幂的概念,掌握其运算规则。

2.掌握科学记数法的表示方法和转换方法。

3.能够运用零整数幂、负整数指数幂和科学记数法解决实际问题。

四. 教学重难点1.零整数幂和负整数指数幂的运算规则。

2.科学记数法的表示方法和转换方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探索,通过案例分析和练习,帮助学生理解和掌握知识,通过小组合作学习,培养学生的团队协作能力和解决问题的能力。

六. 教学准备1.PPT课件2.小组合作学习指南七. 教学过程1.导入(5分钟)通过一个实际问题,引入零整数幂和负整数指数幂的概念,激发学生的兴趣。

2.呈现(15分钟)讲解零整数幂和负整数指数幂的运算规则,通过PPT课件和例题,帮助学生理解和掌握。

3.操练(15分钟)学生独立完成练习题,教师巡回指导,及时纠正错误,巩固所学知识。

4.巩固(10分钟)通过小组合作学习,让学生互相讨论和解答疑问,进一步巩固知识。

5.拓展(10分钟)讲解科学记数法的表示方法和转换方法,通过案例和练习,帮助学生理解和掌握。

6.小结(5分钟)教师总结本节课的主要内容和知识点,提醒学生注意零整数幂、负整数指数幂和科学记数法的运用。

16.4.1零指数幂与负整数指数幂

16.4.1零指数幂与负整数指数幂
1 3 解:(1)(-1) +2 =-1+ =- . 4 4 2 -3 3 3 1 1 27 -3 (2)(-2) + -3 = + - =- - =- 8 8 (-2)3 2
-1 -2
7 . 2
1.零指数幂与负整数指数幂
1 [归纳总结] 重要结论:(1)a = p (a≠0,p是正整数); a a -p bp (2)b = a .
1.零指数幂与负整数指数幂
► 知识点二
负整数指数幂
任何不等于零的数的-n(n为正整数)次幂,等于这个数 1 -n 的n次幂的__倒数__.即a =____(a ≠0). an
[注意] ①只要底数不为零,这个数的负整数指数幂就可 以转化成正整数指数幂来计算;②分数的负
b-m a m 整指数幂等于它倒数的正整指数幂,例如a =b .

这四条性质对于零指数幂和负整数指数幂均成立.
-p
1.零指数幂与负整数指数幂
探究问题三
例3
负整数指数幂与零指数幂的综合
1-2 计算:2 -23×0.125+20150+|-1|.
[解析] 这是一道有关实数的混合运算的计算题,综合性较强 ,要明确运算顺序,同时正确处理零指数幂和负整数指数幂.
1 解:原式= -8×0.125+1+1 1 2 2 =4-1+1+1 =5.
1.零指数幂与负整数指数幂
1 [归纳总结] 正确应用a =1(a≠0)和a = p(a≠0,p是正 a 整数),准确计算每一步是解此类题的关键.
0
-p
1.零指数幂与负整数指数幂
例4
化简下列各式,使结果只含有正整数指数幂.
- - -
(1)(-2m2n 3)(3m 3n 1); (2)(-2a-2)3b2÷2a-8b-3.

华师大版八下数学16.4零整数幂与负整数指数幂,科学记数法说课稿

华师大版八下数学16.4零整数幂与负整数指数幂,科学记数法说课稿

华师大版八下数学16.4零整数幂与负整数指数幂,科学记数法说课稿一. 教材分析华师大版八下数学第16.4节讲述了零整数幂与负整数指数幂,以及科学记数法。

这一节内容是初中学段数学的重要内容,也是学生进一步学习高中数学的基础。

通过本节内容的学习,学生能够理解并掌握零整数幂与负整数指数幂的定义和性质,以及科学记数法的表示方法,提高学生的数学素养和解决问题的能力。

二. 学情分析学生在学习本节内容前,已经学习了有理数的乘方,对幂的概念有一定的了解。

但是,对于零整数幂与负整数指数幂的定义和性质,以及科学记数法的表示方法,学生可能还存在一定的困惑。

因此,在教学过程中,需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握。

三. 说教学目标1.知识与技能:学生能够理解并掌握零整数幂与负整数指数幂的定义和性质,以及科学记数法的表示方法。

2.过程与方法:通过探究零整数幂与负整数指数幂的定义和性质,培养学生的逻辑思维能力和归纳总结能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.零整数幂与负整数指数幂的定义和性质。

2.科学记数法的表示方法。

五. 说教学方法与手段本节课采用问题驱动法、案例教学法和小组合作学习法。

通过设置问题,引导学生思考和探究,从而理解和掌握零整数幂与负整数指数幂的定义和性质。

同时,通过案例分析和小组合作学习,培养学生的实践能力和团队合作意识。

六. 说教学过程1.导入:通过复习有理数的乘方,引导学生回顾幂的概念,为新课的学习做好铺垫。

2.探究零整数幂与负整数指数幂的定义和性质:通过设置问题,引导学生进行自主探究,总结零整数幂与负整数指数幂的定义和性质。

3.科学记数法的表示方法:通过案例分析,引导学生理解和掌握科学记数法的表示方法。

4.巩固练习:布置一些相关的练习题,让学生巩固所学知识,提高解决问题的能力。

5.总结与反思:引导学生总结本节课所学内容,反思自己的学习过程,提高自主学习能力。

分式零指数幂和负整数指数幂

分式零指数幂和负整数指数幂

第十七章 分式§17.4 零指数幂与负整指数幂一. 知识点:1.零指数幂:任何不等于零的数的零次幂都等于1。

2.负整指数幂:任何不等于零的数的-n (n 为正整数)次幂,等于这个数的n 次幂的倒数.3.科学记数法:可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n 是正整数,1≤∣a ∣<10.二.自主学习类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a ×10-n 的形式,其中n .是正整数,.....1.≤∣..a .∣<..10....例如,0.000021可以表示成2.1×10-5.三.练习(一)基础1.计算(1)810÷810; (2)10-2; (3)(-0.1)0; (4)2-2;2.用科学记数法表示:(1)0.000 03; (2)-0.000 0064; (3)0.000 0314; (4)2013 000.3.用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒=_______秒;(2)1毫克=_________千克; (3)1微米=_________米; (4)1纳米=_________微米;(5)1平方厘米=_________平方米; (6)1毫升=_________立方米.(二)巩固4.计算:(1)101)1)-+ (2)0221(()(2)2--+---(3)16÷(-2)3-(31)-1+(3-1)05.用小数表示下列各数:(1)10-4; (2)2.1×10-5.6.用小数表示下列各数:(1)-10-3×(-2) (2)(8×105)÷(-2×104)3(三)提高7.计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(a -3)2(ab 2)-3; (2)(2mn 2)-2(m -2n -1)-3.8.计算)102.3()104(36⨯⨯⨯- 2125)103()103(--⨯÷⨯。

零指数幂与负整数指数幂优秀教案

零指数幂与负整数指数幂优秀教案

零指数幂与负整数指数幂优秀教案在数学教学中,指数运算是一个重要的概念。

指数运算的结果包括正整数指数幂、零指数幂和负整数指数幂。

本教案将重点介绍零指数幂和负整数指数幂的特点及运算规律,以便帮助学生更好地理解和应用这些概念。

一、零指数幂的特点和运算规律1. 零的任何正整数指数幂都等于1:0ⁿ=1,其中n为任意正整数。

2. 零的零指数幂是没有定义的:0⁰。

3. 零的负整数指数幂也是没有定义的。

二、负整数指数幂的特点和运算规律1. 任何非零数的负整数指数幂等于该数的倒数的正整数指数幂:a⁻ⁿ=1/aⁿ,其中a为非零数,n为任意正整数。

2. 任何数的负整数指数幂等于倒数的负整数指数幂的倒数:a⁻ⁿ=1/(a⁻ⁿ),其中a为非零数,n为任意正整数。

3. 非零数的负整数指数幂和零的负整数指数幂都是没有定义的。

三、综合运用1. 零的正整数次幂为1:0ⁿ=1,其中n为正整数。

2. 零的负整数次幂没有定义。

3. 非零数的正整数次幂和负整数次幂之间的运算规律:aⁿ⁺ᵐ=aⁿ⋅aᵐ,aⁿ/aᵐ=aⁿ⁻ᵐ,其中a为非零数,n和m为任意整数。

四、教学活动设计为了帮助学生更好地理解和应用零指数幂和负整数指数幂的概念和运算规律,可以设计以下教学活动:1. 活动一:探索零指数幂的特点- 让学生观察并讨论0⁰和0ⁿ(n为正整数)的结果是否有定义,引导学生发现零指数幂的特点。

- 给学生一些数学表达式,让他们判断其中哪些是零指数幂,哪些不是,并解释原因。

- 引导学生总结出零指数幂的运算规律。

2. 活动二:探索负整数指数幂的运算规律- 让学生观察并讨论a⁻ⁿ和1/aⁿ(a为非零数,n为正整数)的关系,引导学生发现负整数指数幂的运算规律。

- 引导学生举例验证负整数指数幂的运算规律,并总结出相应的运算规律。

3. 活动三:综合运用零指数幂和负整数指数幂- 给学生一些综合性的数学表达式,让他们运用所学的知识化简、计算或解释结果。

- 设计一些小组合作活动,让学生在合作中探索更多的数学问题,比如让他们找出一组数,使得其中的数的2ⁿ结果为0或负数。

八年级数学下册 16.4 零整数幂与负整数指数幂,科学记数法教案 (新版)华东师大版

八年级数学下册 16.4 零整数幂与负整数指数幂,科学记数法教案 (新版)华东师大版

16.4.零整数幂与负整数指数幂,科学记数法一、教学目标:1.知道负整数指数幂n a -=na 1(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.二、重点、难点1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.三、例、习题的意图分析1. P23思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2. P24观察是为了引出同底数的幂的乘法:n m n m aa a +=⋅,这条性质适用于m,n 是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3. P24例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.4. P25例10判断下列等式是否正确?是为了类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来.5.P25最后一段是介绍会用科学计数法表示小于1的数. 用科学计算法表示小于1的数,运用了负整数指数幂的知识. 用科学计数法不仅可以表示小于1的正数,也可以表示一个负数.6.P26思考提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学计数法表示这个数时,10的指数就是负几.7.P26例11是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用用科学计数法表示小于1的数.四、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:n m n m aa a +=⋅(m,n 是正整数); (2)幂的乘方:mn n m aa =)((m,n 是正整数); (3)积的乘方:n n nb a ab =)((n 是正整数);(4)同底数的幂的除法:n m n m a a a -=÷( a ≠0,m,n 是正整数,m >n);(5)商的乘方:n nn ba b a =)((n 是正整数); 2.回忆0指数幂的规定,即当a ≠0时,10=a .3.你还记得1纳米=10-9米,即1纳米=9101米吗? 4.计算当a ≠0时,53a a ÷=53a a =233a a a ⋅=21a,再假设正整数指数幂的运算性质n m n m a a a -=÷(a ≠0,m,n 是正整数,m >n)中的m >n 这个条件去掉,那么53a a ÷=53-a =2-a .于是得到2-a =21a(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,n a -=n a1(a ≠0). 五、例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10. 判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.六、随堂练习1.填空(1)-22=(2)(-2)2= (3)(-2) 0= (4)20= ( 5)2 -3= ( 6)(-2) -3=2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3七、课后练习1. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 0092.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3八、答案:六、1.(1)-4 (2)4 (3)1 (4)1(5) 81 (6)81- 2.(1)46y x (2)4x y (3) 7109yx 七、1.(1) 4×10-5 (2) 3.4×10-2 (3)4.5×10-7 (4)3.009×10-32.(1) 1.2×10-5 (2)4×103课后反思:。

1.3.2 零指数幂与负整数指数幂 课件2021—2022学年北师大版数学七年级下册

1.3.2 零指数幂与负整数指数幂 课件2021—2022学年北师大版数学七年级下册

1
1
2( ) =
4
,2( )= 8.
【同底数幂的除法法则】
【除法的意义】
525
1037
…… 结论:
52 55
103 107
……
……
【例题3】用小数或分数表示下列各数: (1) 10-3;(2) 70 ×8-2 ;(3) 1.6×10-4 .
解:(1)103
1 103
1 1000
0.001;
(2)70 8-2
④(-10)-4÷(-10-1)-4=-1.
A.4
B.3
C.2
D.1
7.将 ( 1 )1,(-2)0,(-3)2这三个数按从小到大的顺序排列,正确的 6
是( A )
A.(-2)0< ( 1 )1 <(-3)2 6
B. ( 1 )1 <(-2)0<(-3)2
6
C.(-3)2<(-2)0<
(
1
)1
6
D.(-2)0<(-3)2< ( 1 )1 6
(3) ( 1 )5 ( 1 )2; 22
(4) (-8)0÷ (-8)-2 .
只要m,n都是整数,就
有am ÷an=am-n成立!
在引进了零指数幂和负整数指数幂后,指数的范围已经扩充到了全
体整数,幂的运算性质仍然成立.即有:
(1)am·an=am+n;(2)(am)n=amn;(3)(ab)n=anbn;
探究新知
方法总结
用科学记数法表示较小数的三点注意 (1)a为整数位为1位的小数. (2)n的绝对值等于原数中小数点向右移动的位 数或等于这个数的第一个非零数字前面所有零 的个数(包括小数点前面的那个零). (3)用科学记数法表示一个负数时,不要漏掉原 数前的“-”.

8.1.3零指数幂、负整数指数幂与科学记数法

8.1.3零指数幂、负整数指数幂与科学记数法
思考,合作交流,尝试归纳。
三、合作学习
1、P52 例5
2、思考:用小数表示下列各数:
3、想一想:现在,我们已经引进了零指数幂和负整指数幂,指数的范围已经扩大到了全体整数。那么,在§8.1“幂的运算”中所学的幂的性质是否还成立呢?
判断下列式子是否成立。
引导学生观察,巡视,指导。
交流合作,尝试解决问题。
2. 学会利用零指数幂和负指数幂的意义进行简单的计算。
3. 学会利用负指数幂表示绝对值小于1的数。
4. 学会用科学记数法表示数进行运算,提高运算的准确性。
过程与方法
通过探索,让学生体会到从特殊到一般的方法是研究数学的一个重要方法。
情感与价值观
让学生在活泼、轻松愉快的气氛中学习.
教学重点
学会利用零指数幂和负指数幂的意义进行简单的计算,并会利用负指数幂表示绝对值较小的数。
教学难点
深刻理解零指数幂和负指数幂的意义。
教学过程
教学环节
教学内容
教师活动
学生活动
一、
回顾导入
考察下列算式:
提出问题。
思考,回答
二、探究新知
1、一方面,如果仿照同底数幂的除法公式来计算,得
另一方面,由于这几个式子的被除式等于除式,由除法的意义可知,所得的商都等于1。
由此启发,我们规定:
这就是说:任何不等于零的数的零次幂都等于1。
引导学生思考,总结归纳。
学生先完成(1)(2),并思考它们之间的关系。
学生仿照练习,并归纳。
五、自主学习
P53 练习1
P54 练习1,2,3
组织学生通过练习的板演,进行思考与交流以巩固探究的成果。
独立完成,展示成果。
六、小结反思
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

零指数幂与负整数指数幂、科学计数法
知识点一 零指数幂和负整数指数幂
任何不等于0的数的零次幂都等于1,即10=a (0≠a ).
任何不等于0的数的n -(n 是正整数)次幂,等于这个数的n 次幂的倒数.即n
n a a 1=-(0≠a ,n 是正整数). 注意事项:
(1)10=a 的前提是0≠a ,如1)2(0=-x 成立的条件是2≠x ;
(2)n n a
a 1=
-条件是0≠a ,n 为正整数,而20-等是无意义的.当0>a 时,n a -的值一定为正;当0<a 时,n a -的值视n 的奇偶性决定,如8
1)2(3-=--,91)3(2=--. (3)正整数指数幂的某些运算,在负整数指数幂中也能适用.
例1 计算:120)3
2()31()31(---+-+. 分析:此题主要是负整数指数幂和零指数幂的运算. 解:原式1
2)3
2(1)31(11-+-+=2391-+=218=. 知识点二 科学记数法
对于一些绝对值较小的数,我们可以依照绝对值较大数的记法,用10的负整数次幂来表示.即表示成n a -⨯10,其中1≤a <10,n 为正整数.
注意事项:
(1)用科学记数法表示一个数时一定要注意a 的范围,即1≤a <10;
(2)用科学记数法表示一个纯小数时,小数点后面有n 个零,则10的指数就是)1(+-n ,如510100001.0-⨯=.
例 2 纳米是一种长度单位,1纳米910-=m.已知某种植物花粉的直径为43000nm ,那么用科学记数法表示这种花粉的直径为 m.
分析:先把43000nm 化成n a 10⨯的形式,再运算.
解:因为1纳米910-=m , 所以43000nm 91043000-⨯=9410103.4-⨯⨯=51034.4-⨯=.。

相关文档
最新文档