一次函数图象专题复习PPT课件
合集下载
一次函数的图象及性质ppt
化归转化思想
将复杂问题转化为简单问题,将未知问题转化为已知问题。
如将二次函数的问题转化为一次函数的问题,将多变量的问 题转化为单变量的问题等。
06
复习与巩固
基础练习
总结一次函数图象 的形状和性质
熟悉函数表达式中 字母系数的含义
掌握给定两点间距 离的求解方法
提高练习
理解一次函数图象与系数的关 系
$b > 0$
$b < 0$
直线与$y$轴正半轴相交,交点在$x$轴上 方。
直线与$y$轴负半轴相交,交点在$x$轴下 方。
03
一次函数的应用
一次函数在生活中的应用
价格变化
01
随着时间的变化,商品的价格会随之变化,可以用一次函数来
表示价格和时间的关系。
速度与时间
02
在运动中,速度和时间的关系可以用一次函数来表示,进而计
算出物体运动的距离和时间。
年龄与时间
03
人的年龄随时间变化而变化,可以用一次函数来表示,进而预
测未来某时的年龄。
一次函数在数学中的应用
线性方程
在数学中,线性方程可以表示为一次函数的形式 ,进而求解未知数。
最大值和最小值
在一次函数中,可以找到最大值和最小值,进而 解决一些优化问题。
分段函数
在一次函数中,可以用分段函数来表示一些特殊 情况,进而进行分类讨论。
一次函数在物理中的应用
加速度与时间
在运动物理学中,加速度和时间的关系可以用一次函数来表示, 进而计算速度和位移。
力的时间变化
在动力学中,力的时间变化可以用一次函数来表示,进而计算物 体的运动状态。
电流与电压
在电学中,电流和电压的关系可以用一次函数来表示,进而计算 电阻、功率等物理量。
人教版初中八年级数学下册第19章《一次函数》复习课(公开课)ppt课件
7.如下图,两摞相同规格的碗整齐地放在桌面上,请根据图中的数据信息,解答 下列问题: (1)求整齐摆放在桌面上的碗的高度y(cm)与碗的个数x(个)之间的函数关系式;
(2)把这两摞碗整齐地摆成一摞时,碗的高度是多少?
11cm
14cm
仅做学习交流,谢谢!
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
一次函数图像与性质ppt课件
图
象时,只要描出函数图象中的两个点就可画出此
函 数的图象.
b ,0 k
(2)一般地,一次函数y=kx+b(k,b是常数,k≠0)
都过(0,b) (与y轴交点坐标)和(
)(与x轴交点
总结
一次函数的图象是一条直线,我们称它为直线 y=kx+b;它必过(0,b)和( b , 0 )两点.
k
例1 画出函数y=-6x与y=-6x+5的图象.
从 k、b的值看一次函数的图像 (1)当k>0,b>0时,图象过一、二、三象限; (2)当k>0,b<0时,图象过一、三、四象限; (3)当k<0,b>0时,图象过一、二、四象限; (4)当k<0,b<0时,图象过二、三、四象限.
例2 已知直线y=(1-3k)x+2k-1. (1)k为何值时,直线与y轴交点的纵坐标是-2?
一次函数的图象是一条直线,这条直线与坐标轴 有交点,正比例函数只有一个交点,一般的一次函数 有两个交点. 注意:一次函数图象的画法与我们前边学过的函数图 象的画法一样,其步骤为列表、描点、连线.通过实际 操作,我们可得出:
(1)一次函数 y=kx+b(k,b是常数,k≠0)的图象是
一
条直线.由两点确定一条直线可知,在画一次函数
要点精析: (1)在实际问题中,当自变量x的取值受限制时,一次函 数 y=kx+b的图象就不一定是一条直线了,有时是线段、 射线或直线上的部分点. (2)k决定直线的倾斜角度: k>0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为锐角; k<0⇔直线y=kx+b在x轴上方的部分与x轴正方向的夹 角为钝角; k1=k2⇔直线y1=k1x+b1∥直线y2=k2x+b2(b1≠b2). (3)k>0⇔y随x的增大而增大;k<0⇔y随x的增大而减小 .
《一次函数的图象》一次函数PPT课件
观察图象可以发现:①直线y=x,y=3x向右
图
像
逐渐
,
上升
分
即y的值随x的增大而增大;
析
②直线
,y=-4x向右逐渐
,
即y的值随yx的 增 1大x而减小. 2
下降
探究新知
在正比例函数y=kx中: 当k>0时,y的值随着x值的增大而增大; 当k<0时,y的值随着x值的增大而减小.
y
y
y=kx(k>0)
解析:因为函数图象经过第一、三象限,所以k-3>0,解得k>3.
(2)若函数图象经过点(2,4),则k_____.
=5
解析:将坐标(2,4)带入函数解析式中,得4=(k-3)·2,解得 k=5.
巩固练习
变式训练
已知正比例函数y=(k+5)x.
(1)若函数图象经过第二、四象限,则k的取值范围是_______.
数 分析:对于函数y=x,当x=-1时,y= ;当x=1时,-1y= ;当x=2时,y= 1;不难发
值 现y的值随x的增大而
.
分
2
增大
析
分析:对于函数y=-4x,当x=-1时,y= ;当x=1时,4y= ;当x=2时,y= ;-不4 难
发现y的值随x的增大-而8
.
减小
探究新知
我们还可以借助函数图象分析此问题.
值的增大,y的值都减小了,其中哪一个减小得更快?
你是如何判断的?
解:y=-4x减小得更快.
在自变量的变化情况相
同的条件下y=-4x的函数来自值的减小量大于y= -1 2
x的
函数值的减小量.
故y=-4x减小得更快.
y 4x
一次函数的复习PPT课件
4、已知y-1与x成正比例,且x=-2时,y=4,那么y与 x之间的函数关系式为_________________。
第2页/共15页
5 函数y=2x-1与x轴交点坐标为(_ ____,0_)_ , 与y轴 交点坐标为_(0__,-_1,)与两坐标轴围成的三角形面 积是______.
6 若直线y=kx+b和直线y=-x平行,与y轴交点的 纵坐标为-2,则直线的解析式为_______.
思一思
小王家距离学校800米,小王每分钟步行100米,X分钟后小明距离学 校Y米 这里的常量是______小__王__家__离__学__校__8_0_0_米__;__小__王__步__行__速__度__1_00米/分钟 这里的变量是_____时__间__(__X__)__和__小_王__离__学__校__的__距离(Y)
那么油箱中的剩油量y(升)与工作时间x(时)之间的函数
关系式和图象是(D )
y=4x-24(0≤x ≤6)
y
6
0
x
y=-4x+24 y
24
y=4x-24 y=24-4x(0 ≤ x ≤ 6)
y
y
24
O 6X
6
-24
O
X
-24
O6
X
9:如(图A)所示,向高为H的圆(B柱) 形杯中注水,(C已) 知水杯底面半(D)
径为2,那么注水量y与水深x的函数关系的图象是(A )
y
y
y
y
● ---
●
●
----
---------
------
O H xO
Hx O H x
H
O (xA)
(B)
(C)
(D)
第2页/共15页
5 函数y=2x-1与x轴交点坐标为(_ ____,0_)_ , 与y轴 交点坐标为_(0__,-_1,)与两坐标轴围成的三角形面 积是______.
6 若直线y=kx+b和直线y=-x平行,与y轴交点的 纵坐标为-2,则直线的解析式为_______.
思一思
小王家距离学校800米,小王每分钟步行100米,X分钟后小明距离学 校Y米 这里的常量是______小__王__家__离__学__校__8_0_0_米__;__小__王__步__行__速__度__1_00米/分钟 这里的变量是_____时__间__(__X__)__和__小_王__离__学__校__的__距离(Y)
那么油箱中的剩油量y(升)与工作时间x(时)之间的函数
关系式和图象是(D )
y=4x-24(0≤x ≤6)
y
6
0
x
y=-4x+24 y
24
y=4x-24 y=24-4x(0 ≤ x ≤ 6)
y
y
24
O 6X
6
-24
O
X
-24
O6
X
9:如(图A)所示,向高为H的圆(B柱) 形杯中注水,(C已) 知水杯底面半(D)
径为2,那么注水量y与水深x的函数关系的图象是(A )
y
y
y
y
● ---
●
●
----
---------
------
O H xO
Hx O H x
H
O (xA)
(B)
(C)
(D)
专题 一次函数-2023年中考数学第一轮总复习课件(全国通用)
一次函数
知识梳理
强化 训练
当堂训练
一次函数的图象与性质
查漏补缺
1.直线y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( C )
A.第四象限 B.第三象限 C.第一象限 D.第二象限
2.一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐
标可以为( C ) A.(-5,3)
①k1x+b1=0 ②k2x+b2=1 ③k1x+b1=k2x+b2
x=2 x=3 x=3
y D(0,4) y1=k1x+b1
A(3,1)
④k1x+b1≤-2 ⑤k2x+b2<4 ⑥k1x+b1>k2x+b2
x≤0 x>0 x>3
E(4,0)
O B(2,0)
x
C(0,-2) y2=k2x+b2
典例精讲 一次函数与方程(不等式) 知识点三
【例3】(1)如图,一次函数y=ax+b的图象与x轴交于点(2,0),与y轴相交于
点(0,4),结合图象可知,关于x的方程ax+b=0的解是_x_=_2__.
y
解:∵一次函数y=ax+b的图象与x轴相交于点(2,0), ∴关于x的方程ax+b=0的解是x=2.
4 y=ax+b
O2 x
01 一次函数的图象及性质
把两组对应值(自变量与函数的对应值)代入解析式,得到关 于系数k,b的二元一次方程组;
步骤 解 解二元一次方程组,求出系数k,b的值;
还原 将求得的待定系数的值代入y=kx+b.
已知两点坐标确定函数解析式 常见 已知两组函数对应值确定函数解析式 类型 经过直线与平移规律确定函数解析式.
中考复习课件一次函数复习课件
总结词
考查基础概念
题目1
若函数$y = kx + b$经过点$(2, -1)$和$( - 3,4)$,求$k$和$b$ 的值。
题目2
已知一次函数$y = kx + b$的 图象经过第一、二、四象限, 求$k$的取值范围。
题目3
若一次函数$y = kx + b$的图 象经过点$(0,2)$,且与坐标轴 围成的三角形面积为4,求函数
中考复习课件一次函 数复习ppt课件
• 一次函数概述 • 一次函数的解析式 • 一次函数的图象与性质 • 一次函数的应用题 • 复习题与答案
目录
01
一次函数概述
定义与性质
总结词:基础概念
详细描述:一次函数是数学中基础且重要的函数类型,其解析式为 y=kx+b,其 中 k 和 b 是常数,k ≠ 0。它具有线性性质,即随着 x 的变化,y 会以固定的斜 率 k 变化。
一次函数图象
总结词:直观表达
详细描述:一次函数的图象是一条直线,其斜率为 k,y 轴上的截距为 b。根据 k 和 b 的不同取值,直线会有不同的位置和 倾斜角度。
一次函数的应用
总结词:实际运用
详细描述:一次函数在实际生活中有广泛的应用,如路程与速度、时间的关系,商品销售与价格的关 系等。掌握一次函数的性质和图象对解决实际问题具有重要意义。
截距式
总结词
截距式是一次函数的一种特殊表示形式,通过与坐标轴的交点来表示函数。
详细描述
截距式为x/a+y/b=1,其中a和b分别是函数与x轴和y轴的截距。通过截距式可 以确定一次函数与坐标轴的交点位置。
03
一次函数的图象与性质
一次函数的图象
一次函数图象是一条直线
考查基础概念
题目1
若函数$y = kx + b$经过点$(2, -1)$和$( - 3,4)$,求$k$和$b$ 的值。
题目2
已知一次函数$y = kx + b$的 图象经过第一、二、四象限, 求$k$的取值范围。
题目3
若一次函数$y = kx + b$的图 象经过点$(0,2)$,且与坐标轴 围成的三角形面积为4,求函数
中考复习课件一次函 数复习ppt课件
• 一次函数概述 • 一次函数的解析式 • 一次函数的图象与性质 • 一次函数的应用题 • 复习题与答案
目录
01
一次函数概述
定义与性质
总结词:基础概念
详细描述:一次函数是数学中基础且重要的函数类型,其解析式为 y=kx+b,其 中 k 和 b 是常数,k ≠ 0。它具有线性性质,即随着 x 的变化,y 会以固定的斜 率 k 变化。
一次函数图象
总结词:直观表达
详细描述:一次函数的图象是一条直线,其斜率为 k,y 轴上的截距为 b。根据 k 和 b 的不同取值,直线会有不同的位置和 倾斜角度。
一次函数的应用
总结词:实际运用
详细描述:一次函数在实际生活中有广泛的应用,如路程与速度、时间的关系,商品销售与价格的关 系等。掌握一次函数的性质和图象对解决实际问题具有重要意义。
截距式
总结词
截距式是一次函数的一种特殊表示形式,通过与坐标轴的交点来表示函数。
详细描述
截距式为x/a+y/b=1,其中a和b分别是函数与x轴和y轴的截距。通过截距式可 以确定一次函数与坐标轴的交点位置。
03
一次函数的图象与性质
一次函数的图象
一次函数图象是一条直线
19.2.2 一次函数的概念 课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
一次函数图象专题复习课件
函数。
增减性是函数的重要特性,它描 述了函数值随自变量变化的趋势
。
在实际应用中,了解函数的增减 性有助于我们预测未来的趋势和
结果。
一次函数的截距
一次函数的截距是其与y 轴的交点。对于函数 y=kx+b,其截距为b。
截距是函数的一个重要参 数,它决定了函数与y轴 的交点位置。
通过调整截距,可以改变 函数与y轴的交点,从而 影响整个函数的形态。
பைடு நூலகம் 一次函数的交点
一次函数与其他直线或曲线的交点是 解方程的结果。
寻找一次函数的交点是解决实际问题 的重要步骤,例如在路程、速度和时 间问题中经常需要求解两个一次函数 的交点。
当两个一次函数有交点时,它们的y值 相等,对应的x值即为交点的横坐标。
Part
05
解题技巧与思路分析
一次函数图象的绘制技巧
下移
若函数表达式变为$y = kx + b m$,其中$m > 0$,则图像向下 平移$m$个单位。
左移
若函数表达式变为$y = k(x - n) + b$,其中$n > 0$,则图像向 左平移$n$个单位。
Part
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本、收益和利 润之间的关系。
确定函数表达式
首先需要确定一次函数的 1
表达式,包括系数和常数 项。
连线
4
使用平滑的曲线将这些关 键点连接起来,形成一次 函数的图像。
选择坐标系
2
选择适当的坐标系,如直
角坐标系或极坐标系,以
便更好地绘制函数图像。
增减性是函数的重要特性,它描 述了函数值随自变量变化的趋势
。
在实际应用中,了解函数的增减 性有助于我们预测未来的趋势和
结果。
一次函数的截距
一次函数的截距是其与y 轴的交点。对于函数 y=kx+b,其截距为b。
截距是函数的一个重要参 数,它决定了函数与y轴 的交点位置。
通过调整截距,可以改变 函数与y轴的交点,从而 影响整个函数的形态。
பைடு நூலகம் 一次函数的交点
一次函数与其他直线或曲线的交点是 解方程的结果。
寻找一次函数的交点是解决实际问题 的重要步骤,例如在路程、速度和时 间问题中经常需要求解两个一次函数 的交点。
当两个一次函数有交点时,它们的y值 相等,对应的x值即为交点的横坐标。
Part
05
解题技巧与思路分析
一次函数图象的绘制技巧
下移
若函数表达式变为$y = kx + b m$,其中$m > 0$,则图像向下 平移$m$个单位。
左移
若函数表达式变为$y = k(x - n) + b$,其中$n > 0$,则图像向 左平移$n$个单位。
Part
03
一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本、收益和利 润之间的关系。
确定函数表达式
首先需要确定一次函数的 1
表达式,包括系数和常数 项。
连线
4
使用平滑的曲线将这些关 键点连接起来,形成一次 函数的图像。
选择坐标系
2
选择适当的坐标系,如直
角坐标系或极坐标系,以
便更好地绘制函数图像。
一次函数ppt课件免费
线性关系判断方法
01
观察法
通过观察散点图或数据表,判断两个变量之间是否存在线性关系。
02 03
计算法
通过计算相关系数r的值,判断两个变量之间的线性关系强度。当|r|接 近于1时,表示两个变量之间存在较强的线性关系;当|r|接近于0时,表 示两个变量之间不存在线性关系。
残差分析法
通过绘制残差图或计算残差平方和,判断回归模型是否符合线性关系。 如果残差图呈现随机分布且残差平方和较小,则表明回归模型符合线性 关系。
实际应用问题建模与求解
01
02
03
列方程
根据实际问题中的条件, 列出反映问题中数量关系 的方程。
解方程
运用一次函数的运算技巧, 求解所列出的方程。
检验与作答
将求得的解代入原方程进 行检验,确认解的合理性, 并根据实际问题要求进行 作答。
03
一次函数图像变换规律
平移变换规律
一次函数 y = kx + b (k ≠ 0) 的图像是一条直线, 01 当 b 值发生变化时,图像会沿着 y 轴上下平移。
当 b > 0 时,图像向上平移 b 个单位;当 b < 0 02 时,图像向下平移 |b| 个单位。
平移后的直线斜率不变,仍为 k。 03
伸缩变换规律
01 当 k > 1 时,图像的斜率增大,函数值增长的速 度变快,图像相对于原直线更陡峭。
02 当 0 < k < 1 时,图像的斜率减小,函数值增长 的速度变慢,图像相对于原直线更平缓。
学习数学不仅仅是为了应付考试,更重要的是培养解决实际问题的能力。通过学习和应用一 次函数,可以强化数学与实际生活的联系,提高数学应用意识。
拓展数学思维
10、一次函数PPT课件
第一部分 教材同步复习
10、一次函数
第一部分 教材同步复习
1
10、一次函数
知识要点 ·归纳
►知识点一 一次函数的图象与性质
1.一次函数及正比例函数的概念 一般地,如果y=kx+b(k,b是①___常__数__,k≠0),那么,y叫做x的一次函数,特 别地,当②____b_=__0_时,一次函数y=kx+b就变为y=kx(k为常数,k≠0),这时,y叫 做x的正比例函数.
202X权威 · 预测
第一部分 教材同步复习
15
【解答】 (1)∵点 A(2,0),AB= 13,∴BO= AB2-AO2= 9=3,∴点 B 的 坐标为(0,3);
(2)∵△ABC 的面积为 4,∴12×BC×AO=4,∴12×BC×2=4,即 BC=4.∵BO =3,∴CO=4-3=1,∴C(0,-1).
第一部分 教材同步复习
13
1.(202X玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是
( D) A.点(0,k)在l上
B.l经过定点(-1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
【考查内容】一次函数的性质.
【解析】A.当x=0时,y=k,即点(0,k)在l上,此选项正确;B.当x=-1
(3)一次函数图象y=kx+b与x轴的交点是⑥__(_-_bk_,__0_)__ ,与y轴的交点是⑦ _(0_,__b_)___.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
3.一次函数的性质 一次函数
k、b 符号 b>0
k>0 b<0
中考新突破 · 数学(江西)
10、一次函数
第一部分 教材同步复习
1
10、一次函数
知识要点 ·归纳
►知识点一 一次函数的图象与性质
1.一次函数及正比例函数的概念 一般地,如果y=kx+b(k,b是①___常__数__,k≠0),那么,y叫做x的一次函数,特 别地,当②____b_=__0_时,一次函数y=kx+b就变为y=kx(k为常数,k≠0),这时,y叫 做x的正比例函数.
202X权威 · 预测
第一部分 教材同步复习
15
【解答】 (1)∵点 A(2,0),AB= 13,∴BO= AB2-AO2= 9=3,∴点 B 的 坐标为(0,3);
(2)∵△ABC 的面积为 4,∴12×BC×AO=4,∴12×BC×2=4,即 BC=4.∵BO =3,∴CO=4-3=1,∴C(0,-1).
第一部分 教材同步复习
13
1.(202X玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是
( D) A.点(0,k)在l上
B.l经过定点(-1,0)
C.当k>0时,y随x的增大而增大
D.l经过第一、二、三象限
【考查内容】一次函数的性质.
【解析】A.当x=0时,y=k,即点(0,k)在l上,此选项正确;B.当x=-1
(3)一次函数图象y=kx+b与x轴的交点是⑥__(_-_bk_,__0_)__ ,与y轴的交点是⑦ _(0_,__b_)___.
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
3
3.一次函数的性质 一次函数
k、b 符号 b>0
k>0 b<0
中考新突破 · 数学(江西)
八年级数学一次函数复习PPT省名师优质课赛课获奖课件市赛课一等奖课件
3、考点题型:
单一旳求解析式【题型】:已知y是x旳正百分比函数,而且当x=3 时,y=6,假如点A(a,a+3)是它旳图象上旳点,(1)求a旳值; (2)求平行于该图象,而且经过点B(- a , a +1)旳一次函数旳 解析式。
解(1)设正百分比函数解析式为:y=kx 把x=3 y=6代入y=kx得:k=2 ,即正百分比函数解析式
一次
图象
y
y
y
y
函数 y=kx
+b
b
ox
ox
b
b(b≠0) • k,b旳 k>0
符号
b>0
k>0
k<0
b<0
b>0
k<0 b<0
经过象限 一、二、三 一、三、四 一、二、四 二、三、四
•正 百 分 比 函
增减性
y随x旳增 大而增大
y
y随x旳增 大而增大
y随x旳增 大而降低
y
y随x旳增 大而降低
3、复习一次函数图像旳平移
温馨提醒:直线y=k1x+b1在同一平面直角坐标系中平移到 y=k2x+b2时,有k1=k2且b1≠b2即:两直线位置关系为:平行;直 线平移规律:上加下减;左加右减。
(3) 考点题型:(2023.武汉) 点旳平移思索题(1):点(0,1)向下平移2个单位后坐 标为__(__0_,-_1_)___ 直线旳平移思索题:(1):直线y=2x+1向下平移2个单位 后旳解析式为: y=2x-;1 (2)直线y=2x+1向右平移2个单位后旳解析式:Y=2(x-2)+1
2
0
y
D 23
l2 A(4,0)
一次函数的图像和性质PPT演示课件
•31
1.下列函数中,是正比例函数的是
A.y=-8x
B.y=-x8
C.y=5x2+6
D.y=-0.5x-1
2.一次函数 y=x-2 的图象不经过 ( B )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
( A)
•32
3.已知正比例函数 y=kx(k≠0)的图象经过点(1,-2),则正比例
函数的解析式为
考点聚焦
考点1 一次函数与正比例函数的概念
•1
考点2 一次函数的图象和性质 (2)正比例函数与一次函数的性质
第一、三 象限
第二、四 象限
•2
第一、二、 三象限
第一、三、 四象限
第一、二、 四象限
第二、三、 四象限
•3
考点3 两条直线的位置关系
k1≠k2 k1=k2,b1≠b2
•4
考点4 两直线的交点坐标及一次函数的图象与坐标 轴围成的三角形的面积
•21
变式题
5.已知直线 y=kx+b 经过点(k,3)和(1,k),则 k
的值为( B )
A. 3
B.± 3
C. 2
D.± 2
•22
变式题
▪ 6、在平面直角坐标系中,点O为原点,直线y
=kx+b交x轴于点A(-2,0),交y轴于点
B.若△AOB的面积为8,则k的值为( D ) ▪ A.1 B.2 C.-2或4 D.4或-4
图10-2 •26
变式题
▪ 1(1)根据图象信息可求得关于x的不等式 ▪ kx+b>0的解集为____________ ▪ (2)根据图象信息可求得关于x的不等式 ▪ kx+b≥0的解集为____________ ▪ (3)根据图象信息可求得关于x的不等式 ▪ kx+b≤0的解集为____________
1.下列函数中,是正比例函数的是
A.y=-8x
B.y=-x8
C.y=5x2+6
D.y=-0.5x-1
2.一次函数 y=x-2 的图象不经过 ( B )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
( A)
•32
3.已知正比例函数 y=kx(k≠0)的图象经过点(1,-2),则正比例
函数的解析式为
考点聚焦
考点1 一次函数与正比例函数的概念
•1
考点2 一次函数的图象和性质 (2)正比例函数与一次函数的性质
第一、三 象限
第二、四 象限
•2
第一、二、 三象限
第一、三、 四象限
第一、二、 四象限
第二、三、 四象限
•3
考点3 两条直线的位置关系
k1≠k2 k1=k2,b1≠b2
•4
考点4 两直线的交点坐标及一次函数的图象与坐标 轴围成的三角形的面积
•21
变式题
5.已知直线 y=kx+b 经过点(k,3)和(1,k),则 k
的值为( B )
A. 3
B.± 3
C. 2
D.± 2
•22
变式题
▪ 6、在平面直角坐标系中,点O为原点,直线y
=kx+b交x轴于点A(-2,0),交y轴于点
B.若△AOB的面积为8,则k的值为( D ) ▪ A.1 B.2 C.-2或4 D.4或-4
图10-2 •26
变式题
▪ 1(1)根据图象信息可求得关于x的不等式 ▪ kx+b>0的解集为____________ ▪ (2)根据图象信息可求得关于x的不等式 ▪ kx+b≥0的解集为____________ ▪ (3)根据图象信息可求得关于x的不等式 ▪ kx+b≤0的解集为____________
中考数学专题《一次函数》复习课件(共20张PPT)
2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2
2024年中考第一轮复习 一次函数的图象与性质 课件
1
画图可知当 x>3 时,一次函数 y=3x 的
图象在 y=kx+b 的图象上方,即 kx+b
图10-6
1
3
< x.
考向三
两条直线的位置关系
4
3
4
3
例 3 一次函数 y= x-b 与 y= x-1 的图象之间的距离等于 3,则 b 的值为 (
A.-2 或 4
B.2 或-4
C.4 或-6
D.-4 或 6
1.[2020·天门]对于一次函数y=x+2,下列说法不正确的是( D )
A.图象经过点(1,3)
B.图象与x轴交于点(-2,0)
C.图象不经过第四象限
右移n个单位
注:直线y=kx+b可由直线y=kx平移|b|个单位得到
考点二
一次函数的性质
3.[2018·绍兴]如图10-3,一个函数的图象由射线BA、线段BC、射线CD组成,其中
点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数
A
(
)
A.当x<1时,y随x的增大而增大
B.当x<1时,y随x的增大而减小
点 P,并分别与 x 轴相交于点 A,B.
(1)求交点 P 的坐标;
(2)求△ PAB 的面积;
(3)请把图象中直线 y=-2x+2 在直线
1
y=- x-1 上方的部分
2
描黑加粗,并写出此时自变量 x 的取值范围.
1
- -1,
2
= 2,
解:(1)解
得
∴P(2,-2).
= -2 + 2, = -2,
(2)图象经过点(2,-1)且与直线
画图可知当 x>3 时,一次函数 y=3x 的
图象在 y=kx+b 的图象上方,即 kx+b
图10-6
1
3
< x.
考向三
两条直线的位置关系
4
3
4
3
例 3 一次函数 y= x-b 与 y= x-1 的图象之间的距离等于 3,则 b 的值为 (
A.-2 或 4
B.2 或-4
C.4 或-6
D.-4 或 6
1.[2020·天门]对于一次函数y=x+2,下列说法不正确的是( D )
A.图象经过点(1,3)
B.图象与x轴交于点(-2,0)
C.图象不经过第四象限
右移n个单位
注:直线y=kx+b可由直线y=kx平移|b|个单位得到
考点二
一次函数的性质
3.[2018·绍兴]如图10-3,一个函数的图象由射线BA、线段BC、射线CD组成,其中
点A(-1,2),B(1,3),C(2,1),D(6,5),则此函数
A
(
)
A.当x<1时,y随x的增大而增大
B.当x<1时,y随x的增大而减小
点 P,并分别与 x 轴相交于点 A,B.
(1)求交点 P 的坐标;
(2)求△ PAB 的面积;
(3)请把图象中直线 y=-2x+2 在直线
1
y=- x-1 上方的部分
2
描黑加粗,并写出此时自变量 x 的取值范围.
1
- -1,
2
= 2,
解:(1)解
得
∴P(2,-2).
= -2 + 2, = -2,
(2)图象经过点(2,-1)且与直线
一次函数PPT课件
(1)y=-x-4 它是一次函数,不是正比例函数。
k=
,b=_____
(2)y=x2 它不是一次函数,也不是正比例函数
(3)y=2πx 它是一次函数,也是正比例函数。
1
(4)y= — 它不是一次函数,也不是正比例函数
x
例2: 写出下列各题中y与 x之间的关系式,并判断:y 是否为x的一次函数?是否为正比例函数? (1)汽车以60千米/时的速度匀速行驶,行驶路程为y(千米) 与行驶时间x(时)之间的关系; (2)圆的面积y (c m2)与它的半径x ( cm)之间的关系; (3)一棵树现在高5 0 厘米,每个月长高2 厘米,x 月后 这棵树的高度为y 厘米。
解:设此人本月工资、薪金是x元,则 19.2=0.05×(x-1600),
解得:x=1984. 答:本月工资、薪金是1984元.
练一练184页随堂练习1
1、某种大米的单价是2.2元/千克,当购买 x千克大米时,花费为y元,y是x的一次函 数吗?是正比例函数吗?
解:y=2.2x,y是x的一次函数, 也是x的正比例函数.
是:y=3x+,1y是否为x一的次函数.
练一练186页知识技能2
2、不管通话多长时间,每部手机须交月租50元, 在此基础上,另外每通话1分钟缴费0.4元. (1)写出每月必须交月租费用y元与时间x的 关系式:
(2)求出月通话时间为152分的电话费; (3)如果预交200元的话费,求通话的时间.
练一练186页知识技能2
x
x
④y= ⑤y=5 ⑥y=x2
8
练习2:在一次函数y=-3x-6中, 自变量x的系数是 , 常数项是 .
练3:若y=(m-2)x+ m2 -4是关于x的正比例函数, 则m =-2 ; 若是关于x的一次函数,则m ≠2 .
一次函数图像和性质复习课PPT
一次函数的表示方法
点斜式
通过已知的点$(x_1, y_1)$和斜率 $k$来表示函数,即$y - y_1 = k(x x_1)$。
截距式
通过与$y$轴的交点$(0, b)$来表示函 数,即$y = kx + b$。
一次函数的图像
直线
一次函数的图像是一条直线,其斜率为$k$,与$y$轴 的交点为$(0, b)$。
总结词
培养自主学习和探索精神
详细描述
通过自主探索和解决难题,培养自主学习 和探索精神,能够主动寻找问题和解决问 题,提高学习效果。
THANK YOU
感谢聆听
04
一次函数的图像变换
横向平移
总结词
当一次函数图像在x轴方向上平移时,函数的值会相应地增加或减 少。
详细描述
对于函数y=kx+b,当图像沿x轴向右平移a个单位时,新的函数为 y=k(x-a)+b;当图像沿x轴向左平移a个单位时,新的函数为 y=k(x+a)+b。
纵向平移
总结词
当一次函数图像在y轴方向上平移时,函数的值不会改变,但 函数的截距会相应地增加或减少。
80%
匀速直线运动
一次函数可以描述物体的匀速直 线运动,如速度与时间的关系。
100%
温度变化
描述温度随时间或高度的变化, 如气温随时间的变化。
80%
经济模型
描述经济增长、消费、收入等经 济现象,如总产出与劳动力的关 系。
一次函数在数学问题中的应用
代数问题
解决代数方程和不等式问题, 如解一元一次方程。
通过解决综合性较强的题目,拓展数学视野和 思维方式,能够从多个角度思考问题,提高数 学素养。
综合练习题三
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由图象知,AO=12,根据面积 得到,BO=4即B点坐标为(4,0)
A(0,12)
OB
x
所以k= -3 B的坐标还有可能为(-4,0)
所以k= 3
y A (0,12)
B O
x
例4、某医药研究所开发了一种新药,在试验药效时发现, 如果成人按规定剂量服用,那么服药后2小时时血液中含 药量最高,达每毫升6微克(1微克=10-3毫克),接着逐 步衰减,10小时时血液中含药量为每毫升3微克,每毫升 血液中含药量y(微克)随时间x(小时)的变化如图所 示,当成人按规定剂量服药后,
x/ 吨
(4)当销售量 大于4吨 时,该公司赢利(收入大于成本); 当销售量 小于4吨时,该公司亏损(收入小于成本);
(5) l1对应的函数表达式是 y=1000x
,
l2对应的函数表达式是 y=500x+2000 。
y/元
6000
5000
l1 l2
4000
3000
2000
1000
O 1 23 4 5 6
5)甲行走的路程s(千米)与时间t(小时) 之间的函数关系式是
6)如果乙的自行车不出故障,则乙出发后经过
h与甲相
遇,相遇后离乙的出发点
km,并在图中标出其相遇点。
相遇点为A
例3 、 已知:函数 y = (m+1) x + 2 m﹣6
(1)若函数图象过(﹣1 ,2),求此函数的解析式。 (2)若函数图象与直线 y = 2 x + 5 平行,求其函数的解析式。 (3)求满足(2)条件的直线与直线 y = ﹣3 x + 1 的交点,并 求这两条直线 与y 轴所围成的三角形面积 .
例1、已知一次函数的图象如图所示:
(1)求出此一次函数的解析式;y=0.5x+2
(2)观察图象,当x>-4 时,y> 0; 当x =-4 时,y=0;当x <-4 时,y<0;
(3)观察图象,当x=2时,y= 3 ,
y
当y=1时x= -2 ;
(4)不解方程,求
3 2
1
1 x+2=0的解;x=-4
-4 -3 -2 -1-1 o 1 2 3 x
•
高尚的品德,出众的才华,能够弥补 任何先天与后天的不足。而这两条又是 任何人 都可以经过努力能够得到的西。
— 罗曼·罗兰
临海实验中学 初二数学备课组ZLQ
函数图象能直观、形象地反 映两个变量之间的关系。要善 于捕捉图象中的所有信息,并 能够熟练地转化成数学问题。
1. 能利用图象求一次函数的解析式; 2 . 能借助图象解相应的方程和不等式; 3. 通过图象解有关面积问题; 4. 能借助图象解实际应用等综合类问题。
(1)y与x之间的函数关系式。
(2)如果每毫升血液中含药量为4微克或4微克以上时在
治疗疾病时是有效的,
y(微克)
பைடு நூலகம்
那么这个有效时间是多长?
6
3x,0<x≤2
4
(1)y=
3 8
x
27 4,
x≥2
3
02
10 X(小时)
练习:某供电公司为了鼓励居民用电,采用分段计费的方 法来计算电费,月用电x(度)与相应电费y(元)之间 的函数的 图象如图所示。
y/元
6000
5000
l1 l2
4000
3000
2000
1000
O 1 23 4 5 6
x/ 吨
(2)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元;
(3)当销售量为 4吨时,销售收入等于销售成本;
y/元
6000 5000 4000 3000 2000 1000
l1 l2
O 1 23 4 5 6
海 岸
B
A
公 海
下图中l1 ,l2分别表示两船相对于海岸的距离s(海里) 与追赶时间t(分)之间的关系。
根据图象回答下列问题:
(1)哪条线表示B到海岸的距离与追赶时间之间的关系?
解:观察图象,得当t=0时,B距海岸0海里,即
S=0,故l1表
s/海里
示B到海岸的距
l2
离与追赶时间之
8 7
间的关系;
6
和x+3=0,解得x=3和x=-3 ∴ 点 A(3,0)、 B(-3,0)
由yyx2x36得xy14
y
6
P
3
∴点P的坐标为(1,4)
(2)过点P作PM⊥x轴于M点, B
A
则PM=4,AB=|3-(-3)|=6, -3
SPAB1 2PM •A B1 24612
-1
0M
3
x
2.已知直线y=kx+12和两坐标轴相交所围 成的三角形的面积为24,求k的值 y
l1
5
4
3
2
1
O
2 4 6 8 10
x/ 吨
练习:如图,l甲、l乙两条直线分别表示甲走路与乙骑车( 在同一条路上)行走的路程S与时间t的关系,根据此图 ,回答下列问题:
1)乙出发时,与甲相距 km 2)行走一段时间后,乙的自行车发生 故障停下来修理,修车时间为 h
3)乙从出发起,经过 h与甲相遇;
A
4)甲的速度为 的速度为
km/h , 乙骑车 km/h
11
o
x
-2 ●(1, ﹣2)
∴ y = 2x﹣4
y = ﹣3x + 1与y 轴交于( 0 , 1)
-4
S△=
5 2
练习:1 已知直线y=-2x+6和y=x+3分别与x轴交于 点A、B,且两直线交于点P(如图). (1)求点A、B及点P的坐标;
(2)求△PAB的面积.
解: (1)令y=0,则-2x+6=0
解:(1)由题意: 2=﹣(m+1)+2m﹣6
(3) 由题意得
y 2x 4
y
3x
1
y = ﹣3 x + 1
y
y = 2x﹣4
解得 m = 9
∴ y = 10x+12
x1
解得:
y
2
(2) 由题意,m +1= 2 ∴ 这两直线的交点是(1 ,﹣2)
解得 m = 1
y = 2x﹣4 与y 轴交于( 0 , - 4 )
(1)填空,月用电量为100度时,应交电费 40 元;
(2)当x≥100时求y与x之间的函数关系式; y=0.2x+20 (3)月用电量为260度时,应交电费多少元? 72元
Y(元)
60 40 20
O
100 200
X(度)
例5、我边防局接到情报,近海处有一可疑船只 A正向公海方向行驶。边防局迅速派出快艇B追 赶(如下图),
(2 5)不解不等式,求
1 2
x+2<0的解。--32
x<-4
练习:一次函数y=kx+b的图象如图, 请尽可能多的说出你知道的结论.
y
1
o1 1
x
2
例2、 如图,l1反映了某公司产品的销售收入与销售 量的关系l,2反映了该公司产品的销售成本与销售量的 关系,根据图意填空:
(1)当销售量为2吨时,销售收入= 2000 元, 销售成本= 3000 元;