二进制、八进制、十进制与十六进制转换计算精华
2进制、8进制和16进制与10进制的转换过程
2进制、8进制和16进制与10进制的转换过程在数字的世界里,我们经常使用不同的进制来表示数值。
最常用的进制是十进制,但还有其他的进制,如二进制、八进制和十六进制。
这些进制与十进制之间可以进行转换,下面我们来探讨一下这些转换过程。
首先,我们来看一下二进制、八进制和十六进制是如何转换为十进制的。
二进制是基数为2的进制,它只有两个数码:0和1。
例如,二进制数1101转换为十进制数的计算过程如下:1 * 2³ + 1 * 2² + 0 * 2¹ + 1 * 2⁰ = 13所以,二进制数1101转换为十进制数是13。
八进制是基数为8的进制,它有八个数码:0、1、2、3、4、5、6和7。
例如,八进制数3725转换为十进制数的计算过程如下:3 * 8³ + 7 * 8² + 2 * 8¹ + 5 * 8⁰ = 2021所以,八进制数3725转换为十进制数是2021。
十六进制是基数为16的进制,它有十六个数码:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E和F。
例如,十六进制数AF12转换为十进制数的计算过程如下:A * 16³ + F * 16² + 1 * 16¹ + 2 * 16⁰ = 419448所以,十六进制数AF12转换为十进制数是419448。
接下来,我们来看一下十进制是如何转换为二进制、八进制和十六进制的。
十进制数转换为二进制数的方法是不断除以2,直到商为0为止。
例如,十进制数13转换为二进制数的计算过程如下:13 / 2 = 6 余 16 / 2 = 3 余 03 / 2 = 1 余 11 /2 = 0 余 1所以,十进制数13转换为二进制数是1101。
十进制数转换为八进制数的方法是不断除以8,直到商为0为止。
例如,十进制数2021转换为八进制数的计算过程如下:2021 / 8 = 252 余 5252 / 8 = 31 余 431 / 8 = 3 余 73 / 8 = 0 余 3所以,十进制数2021转换为八进制数是3725。
关于二进制、十进制、八进制、十六进制数据转换计算方法详细总结
在我们接触编程知识时,总会接触有关进制转换的知识,最常见的就是10进制与二进制或十六进制之间的转换,很多时候我们总会遗忘,虽然现在也出现了很多可以直接使用的网络在线的进制转换工具,但考试中,我们就要靠自己通过公式进行运算了。
今天就跟大家分享一下有关进制转换的理论知识,大家可以通过对比从里面发现共同点,这样便于我们理解记忆。
在进行讲解之前,我们先在下面放置一个对应表,因为在理解下面转换的时候,你可以随时查看该表。
一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2商84余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000②小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25则整数部分为0小数部分为0.25;第二步将小数部分0.25乘以2得0.5则整数部分为0小数部分为0.5;第三步将小数部分0.5乘以2得1.0则整数部分为1小数部分为0.0;第四步读数从第一位读起读到最后一位即为0.001。
二进制八进制十进制十六进制之间的进制转换
二进制八进制十进制十六进制之间的进制转换详情可参考百度百科:进制转换这个词条【主要搞懂1和2两条,其他的进制之间的转化就迎刃而解,很好懂了】1. 十进制-> 二进制:将这个十进制数连续除以2的过程,第一步除以2,得到商和余数,将商再继续除以2,得到又一个商和余数,直到商为0。
最后将所有余数倒序排列,得到的数就是转换成二进制的结果。
2. 二进制-> 十进制:二进制数第1位的权值是2的0次方,第2位的权值是2的1次方,第3位的权值是2的2次方。
(例如1258这个十进制数,实际上代表的是:1x1000+2x100+5x10+8x1=1258)那么1011这个二进制数,实际上代表的是:1x8+0x4+1x2+1x1=11(十进制数11)。
(这里的8就是2的3次方,4就是2的2次方,2就是2的1次方,1就是2的0次方)3. 十进制-> 八进制:十进制数转换成八进制的方法,和转换为二进制的方法类似,唯一变化:除数由2变成8。
4. 八进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成8,第1位表示8的0次方,第二位表示8的一次方,第三位表示8的2次方,第四位表示8的3次方。
例如1314这个八进制数,十进制数就是1x512+3x64+1x8+4x1=716(十进制)5. 十进制-> 十六进制10进制数转换成16进制的方法,和转换为2进制的方法类似,唯一变化:除数由2变成16。
十六进制是0123456789ABCDEF这十六个字符表示。
那么单独一个A就是10,单独一个B就是11,CDEF,就分表表示12,13,14,15。
而10这个十六进制数,实际就是十进制中的16。
6. 十六进制-> 十进制和转换为二进制的方法类似,唯一变化是,底数变成16,第1位表示16的0次方,第二位表示16的一次方,第三位表示16的2次方,第四位表示16的3次方。
7. 二进制<--->八进制,之间的相互转换,更简单一些,因为8本身是2的三次方。
计算机中进制跟进制转换
计算机中进制跟进制转换进制是计算机中用于表示数字的一种方式。
常见的进制有二进制、八进制、十进制和十六进制。
在计算机中,二进制是最基本的进制,因为计算机内部使用的是由开关开启和关闭表示的。
其他进制都是用来方便人们进行计算和表示。
在计算机中,进制之间的转换非常重要,因为计算机需要将数据在不同进制之间进行转换。
首先,我们来讨论二进制、八进制和十六进制之间的转换。
1.二进制到十进制转换:二进制到十进制的转换是比较简单的,只需要将二进制数的每一位与2的幂相乘,然后将结果相加即可。
例如,将二进制数1101转换为十进制,计算过程如下:(1*2^3)+(1*2^2)+(0*2^1)+(1*2^0)=(8)+(4)+(0)+(1)=132.十进制到二进制转换:十进制到二进制的转换需要使用除以2取余数的方法,反向排列余数即为二进制数。
例如,将十进制数13转换为二进制,计算过程如下:13/2=6余16/2=3余03/2=1余11/2=0余1将余数反向排列,得到二进制数11013.八进制到十进制转换:八进制到十进制的转换方法与二进制到十进制类似,只是需要将八进制数的每一位与8的幂相乘,然后将结果相加。
例如,将八进制数735转换为十进制,计算过程如下:(7*8^2)+(3*8^1)+(5*8^0)=(56)+(24)+(5)=854.十进制到八进制转换:十进制到八进制的转换需要使用除以8取余数的方法,反向排列余数即为八进制数。
例如,将十进制数85转换为八进制,计算过程如下:85/8=10余510/8=1余21/8=0余1将余数反向排列,得到八进制数1255.十六进制到十进制转换:十六进制到十进制的转换方法与二进制和八进制类似,只是需要将十六进制数的每一位与16的幂相乘,然后将结果相加。
十六进制中的A、B、C、D、E、F分别表示10、11、12、13、14、15(2*16^2)+(10*16^1)+(7*16^0)=(512)+(160)+(7)=6796.十进制到十六进制转换:十进制到十六进制的转换需要使用除以16取余数的方法,反向排列余数即为十六进制数。
二进制和各进制数之间的换算
一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
二进制八进制十进制十六进制之间的转换算法
二进制八进制十进制十六进制之间的转换算法二进制、八进制、十进制和十六进制是计算机中常用的数字系统。
它们之间的转换可以通过一些简单的算法实现。
下面我将分别介绍二进制到八进制、十进制和十六进制的转换算法,八进制到二进制、十进制和十六进制的转换算法,十进制到二进制、八进制和十六进制的转换算法,以及十六进制到二进制、八进制和十进制的转换算法。
1.二进制转八进制、十进制和十六进制的转换算法:-二进制转八进制:首先将二进制数按照从右向左每三位分组,不足三位的在左边补零,然后将每组转换为对应的八进制数即可。
(1)将二进制数按照从右向左每三位分组得到001011,不足三位的在左边补零;-二进制转十进制:二进制数的每一位乘以2的幂,然后将结果求和即可。
-二进制转十六进制:首先将二进制数按照从右向左每四位分组,不足四位的在左边补零,然后将每组转换为对应的十六进制数即可。
(1)将二进制数按照从右向左每四位分组得到00010110,不足四位的在左边补零;2.八进制转二进制、十进制和十六进制的转换算法:-八进制转二进制:将八进制数的每一位转换为对应的三位二进制数即可。
例如,将八进制数13转换为二进制数:-八进制转十进制:将八进制数的每一位乘以8的幂,然后将结果求和即可。
例如,将八进制数13转换为十进制数:1×8^1+3×8^0=11,所以13的十进制表示为11-八进制转十六进制:首先将八进制数转换为二进制数,然后将二进制数按照从右向左每四位分组,不足四位的在左边补零,最后将每组转换为对应的十六进制数即可。
例如,将八进制数13转换为十六进制数:(2)将二进制数按照从右向左每四位分组得到00000101,不足四位的在左边补零;(3)将每组转换为对应的十六进制数得到05,所以13的十六进制表示为053.十进制转二进制、八进制和十六进制的转换算法:-十进制转二进制:将十进制数不断除以2,直到商为0,将每一步的余数从最后一步开始依次排列即可。
十进制、二进制、八进制,十六进制之间相互转换方法详解
十进制、二进制、八进制,十六进制之间相互转换方法详解
多种进制之间的转换方法
十进制转其他进制
十进制作为被除数,其他进制的基数作为除数,依次循环取余数,最后把余数从最后得到的数开始进行排列,就能得到数对应的其他进制的表示
其他进制转十进制
把其他进制数首先写成加权系数展开式,然后按十进制加法规则求和,这种做法叫做“按权相加法”
二进制转八进制
由于使用3个二进制位可以表示一个八进制位,所以只需要按3个二进制位进行组合,换算成十进制,就可以得到对应的八进制
八进制转二进制
八进制的每位按十进制换算成3个二进制位,再组合在一起就好了
十六进制的转换
类似于八进制,只是换成了4个二进制。
二进制转换
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
(完整版)二进制、八进制、十进制、十六进制之间转换详解
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
二进制 八进制 十进制 十六进制之间的转换方法
一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
研究报告进制转换(二进制八进制十进制十六进制)
进制转换(二进制八进制十进制十六进制)1、二进制数、八进制数、十六进制数转十进制数有一个公式:二进制数、八进制数、十六进制数的各位数字分别乖以各自的基数的(N-1)次方,其和相加之和便是相应的十进制数。
个位,N=1;十位,N=2...举例:110B=1*2的2次方+1*2的1次方+0*2的0次方=0+4+2+0=6D110Q=1*8的2次方+1*8的1次方+0*8的0次方=64+8+0=72D110H=1*16的2次方+1*16的1次方+0*16的0次方=256+16+0=272D2、十进制数转二进制数、八进制数、十六进制数方法是相同的,即整数部分用除基取余的算法,小数部分用乘基取整的方法,然后将整数与小数部分拼接成一个数作为转换的最后结果。
例:见四级指导16页。
3、二进制数转换成其它数据类型3-1二进制转八进制:从小数点位置开始,整数部分向左,小数部分向右,每三位二进制为一组用一位八进制的数字来表示,不足三位的用0补足,就是一个相应八进制数的表示。
010110.001100B=26.14Q八进制转二进制反之则可。
3-2二进制转十进制:见13-3二进制转十六进制:从小数点位置开始,整数部分向左,小数部分向右,每四位二进制为一组用一位十六进制的数字来表示,不足四位的用0补足,就是一个相应十六进制数的表示。
00100110.00010100B=26.14H十进制转各进制要将十进制转为各进制的方式,只需除以各进制的权值,取得其余数,第一次的余数当个位数,第二次余数当十位数,其余依此类推,直到被除数小于权值,最后的被除数当最高位数。
一、十进制转二进制如:55转为二进制2|5527――1 个位13――1 第二位6――1 第三位3――0 第四位1――1 第五位最后被除数1为第七位,即得110111二、十进制转八进制如:5621转为八进制8|5621702 ―― 5 第一位(个位)87 ―― 6 第二位10 ―― 7 第三位1 ――2 第四位最后得八进制数:127658三、十进制数十六进制如:76521转为十六进制16|765214726 ――5 第一位(个位)295 ――6 第二位18 ――6 第三位1 ――2 第四位最后得1276516二进制与十六进制的关系2进制0000 0001 0010 0011 0100 0101 0110 011116进制0 1 2 3 4 5 6 72进制1000 1001 1010 1011 1100 1101 1110 111116进制8 9 a(10) b(11) c(12) d(13) e(14) f(15)可以用四位数的二进制数来代表一个16进制,如3A16 转为二进制为:3为0011,A 为1010,合并起来为00111010。
二进制、八进制、十进制、十六进制之间转换(含小数部分)
二进制、八进制、十进制、十六进制之间转换一、 十进制与二进制之间的转换(1) 十进制转换为二进制,分为整数部分和小数部分① 整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果 将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2) 小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
二进制、八进制、十进制、十六进制之间的转换
⼆进制、⼋进制、⼗进制、⼗六进制之间的转换⼆进制是Binary,简写为B⼋进制是Octal,简写为O⼗进制为Decimal,简写为D⼗六进制为Hexadecimal,简写为H⽅法为:⼗进制数除2取余法,即⼗进制数除2,余数为权位上的数,得到的商值继续除2,依此步骤继续向下运算直到商为0为⽌。
读数要倒叙读。
⼩数:乘2取整法,即将⼩数部分乘以2,然后取整数部分,剩下的⼩数部分继续乘以2,然后取整数部分,剩下的⼩数部分⼜乘以2,⼀直取到⼩数部分为零。
如果永远不能为零,就同⼗进制数的四舍五⼊⼀样,按照要求保留多少位⼩数时,就根据后⾯⼀位是0还是1,取舍,如果是零,舍掉,如果是1,向⼊⼀位。
换句话说就是0舍1⼊。
读数要从前⾯的整数读到后⾯的整数,即读数要顺序读。
0.125 转⼆进制第⼀步,将0.125乘以2,得0.25,则整数部分为0,⼩数部分为0.25;第⼆步, 将⼩数部分0.25乘以2,得0.5,则整数部分为0,⼩数部分为0.5;第三步, 将⼩数部分0.5乘以2,得1.0,则整数部分为1,⼩数部分为0.0;第四步,读数,从第⼀位读起,读到最后⼀位,即为0.001。
积整数部分0.125 x 2 = 0.25 00.25 x 2 = 0.5 00.5 x 2 = 1.0 1150.125 转⼆进制10010110.0010.45 转⼆进制(保留到⼩数点第四位)第⼀步,将0.45乘以2,得0.9,则整数部分为0,⼩数部分为0.9;第⼆步, 将⼩数部分0.9乘以2,得1.8,则整数部分为1,⼩数部分为0.8;第三步, 将⼩数部分0.8乘以2,得1.6,则整数部分为1,⼩数部分为0.6;第四步, 将⼩数部分0.6乘以2,得1.2,则整数部分为1,⼩数部分为0.2; 算到这⼀步就可以了,因为只需要保留四位⼩数第五步, 将⼩数部分0.2乘以2,得0.4,则整数部分为0,⼩数部分为0.4;第六步, 将⼩数部分0.4乘以2,得0.8,则整数部分为0,⼩数部分为0.8;后⾯会⼀直循环重复第七步, 将⼩数部分0.8乘以2,得1.6,则整数部分为1,⼩数部分为0.6;。
进制转换计算
进制转换计算随着计算机技术的迅速发展,进制转换计算已经成为了计算机科学中不可或缺的一部分。
进制转换是指将一个数值从一种进制转换为另一种进制的过程。
在计算机科学中,常用的进制有二进制、八进制、十进制和十六进制。
本文将介绍这些进制的概念、转换规则以及其在计算机科学中的应用。
一、二进制二进制是计算机中最基本的进制,也是最为常用的一种进制。
二进制只包含两个数字0和1,因此也被称为“0和1的进制”。
在二进制中,每个数字的权值是2的幂次方,从右向左依次为1、2、4、8、16等。
例如,二进制数1011的值为1×1+1×2+0×4+1×8=11。
二进制转换规则:1.将一个十进制数不断除以2,将余数倒序排列,直到商为0,所得的余数序列即为二进制数。
例如将十进制数13转换为二进制数,过程如下:13÷2 余数16÷2 余数03÷2 余数11÷2 余数1商为0,所得二进制数为1101。
2.将一个八进制数转换为二进制数,可将每个八进制数位分别转换为对应的三位二进制数。
7 6 5111 110 101所得二进制数为111110101。
3.将一个十六进制数转换为二进制数,可将每个十六进制数位分别转换为对应的四位二进制数。
例如将十六进制数AE转换为二进制数,过程如下:A E1010 1110所得二进制数为10101110。
二进制在计算机科学中的应用:1.数据存储:计算机内部的所有数据都是以二进制形式存储的。
2.逻辑运算:计算机中的逻辑运算(如与、或、非)都是基于二进制数进行的。
3.编程:计算机程序中的指令和数据也是以二进制形式表示的。
二、八进制八进制是一种以8为基数的进制。
在八进制中,每个数字的权值是8的幂次方,从右向左依次为1、8、64、512等。
八进制中使用的数字有0、1、2、3、4、5、6和7。
八进制转换规则:1.将一个十进制数不断除以8,将余数倒序排列,直到商为0,所得的余数序列即为八进制数。
二进制、八进制、十进制、十六进制之间转换
二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。
下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。
第二步,将商84除以2,商42余数为0。
第三步,将商42除以2,商21余数为0。
第四步,将商21除以2,商10余数为1。
第五步,将商10除以2,商5余数为0。
第六步,将商5除以2,商2余数为1。
第七步,将商2除以2,商1余数为0。
第八步,将商1除以2,商0余数为1。
第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。
如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。
换句话说就是0舍1入。
读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。
例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。
很完整的2、8、10、16进制转换方法
1110 = 8 + 4 + 2 + 0 = 14 E
1101 = 8 + 4 + 0 + 1 = 13 D
1100 = 8 + 4 + 0 + 0 = 12 C
所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。
假设有一个十六进数 2AF5, 那么如何换算成10进制呢?
用竖式计算:
2AF5换算成10进制:
第0位: 5 * 16^0 = 5
第1位: F * 16^1 = 240
听起来有些糊涂?我们结合例子来说明。比如要转换6为二进制数。
“把要转换的数,除以2,得到商和余数”。
那么:
要转换的数是6, 6 ÷ 2,得到商是3,余数是0。 (不要告诉我你不会计算6÷3!)
“将商继续除以2,直到商为0……”
现在商是3,还不是0,所以继续除以2。
那就: 3 ÷ 2, 得到商是1,余数是1。
被除数
计算过程
商
余数
1234
1234/16
77
2
77
77/16
4
13 (D)
4
4/16
0
4
结果16进制为: 0×4D2
然后我们可直接写出0×4D2的二进制形式: 0100 1011 0010。
其中对映关系为:
0100 — 4
1011 — D
1011 = 8 + 4 + 0 + 1 = 11 B
1010 = 8 + 0 + 2 + 0 = 10 A
十进制、二进制、八进制、十六进制之间的换算规律
◆十进制转二进制:二进制是计算技术中广泛采用的一种数制。
二进制数据是用0和1两个数码来表示的数。
它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。
当前计算机系统使用的基本上是二进制系统。
用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余0故二进制为100101110◆二进制转十进制从最后一位开始算,依次列为第0、1、2...位第n位的数(0或1)乘以2的n次方得到的结果相加就是答案例如:01101011.转十进制:第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.二进制01101011=十进制107.好了,现在对二进制和十进制之间的换算有了初步的了解了吧,下面,我们就进一步深入了解二者之间的其他换算规律:二进制转十进制,十进制转二进制的算法一、二进制数转换成十进制数由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。
这种做法称为"按权相加"法。
二、十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。
1. 十进制整数转换为二进制整数十进制整数转换为二进制整数采用"除2取余,逆序排列"法。
具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
二进制、八进制、十进制、十六进制互相转换方法
二进制、八进制、十进制、十六进制互相转换方法有一个公式:二进制数、八进制数、十六进制数的各位数字分别乖以各自的基数的(N-1)次方,其和相加之和便是相应的十进制数。
个位,N=1;十位,N=2...举例:110B=1*2的2次方+1*2的1次方+0*2的0次方=0+4+2+0=6D110Q=1*8的2次方+1*8的1次方+0*8的0次方=64+8+0=72D110H=1*16的2次方+1*16的1次方+0*16的0次方=256+16+0=272D2、十进制数转二进制数、八进制数、十六进制数方法是相同的,即整数部分用除基取余的算法,小数部分用乘基取整的方法,然后将整数与小数部分拼接成一个数作为转换的最后结果。
3、二进制数转换成其它数据类型3-1二进制转八进制:从小数点位置开始,整数部分向左,小数部分向右,每三位二进制为一组用一位八进制的数字来表示,不足三位的用0补足,就是一个相应八进制数的表示。
010110.001100B=26.14Q八进制转二进制反之则可。
3-2二进制转十进制:见13-3二进制转十六进制:从小数点位置开始,整数部分向左,小数部分向右,每四位二进制为一组用一位十六进制的数字来表示,不足四位的用0补足,就是一个相应十六进制数的表示。
00100110.00010100B=26.14H十进制转各进制要将十进制转为各进制的方式,只需除以各进制的权值,取得其余数,第一次的余数当个位数,第二次余数当十位数,其余依此类推,直到被除数小于权值,最后的被除数当最高位数。
一、十进制转二进制如:55转为二进制2|5527――1 个位13――1 第二位6――1 第三位3――0 第四位1――1 第五位最后被除数1为第七位,即得110111二、十进制转八进制如:5621转为八进制8|5621702 ――5 第一位(个位)87 ――6 第二位10 ――7 第三位1 ――2 第四位最后得八进制数:127658三、十进制数十六进制如:76521转为十六进制16|765214726 ――5 第一位(个位)295 ――6 第二位18 ――6 第三位1 ――2 第四位最后得1276516二进制与十六进制的关系2进制0000 0001 0010 0011 0100 0101 0110 011116进制0 1 2 3 4 5 6 72进制1000 1001 1010 1011 1100 1101 1110 111116进制8 9 a(10) b(11) c(12) d(13) e(14) f(15)可以用四位数的二进制数来代表一个16进制,如3A16 转为二进制为:3为0011,A为1010,合并起来为00111010。
2进制,8进制和16进制与10进制的转换过程
2进制,8进制和16进制与10进制的转换过程2进制、8进制和16进制是计算机科学中常用的进制表示方法,与10进制相比,它们具有不同的进位规则和位权。
首先,我们来讨论2进制与10进制的转换过程。
二进制是一种基于2的进制系统,只包含0和1两个数字。
在十进制系统中,我们使用10个数字(0-9)。
要将一个二进制数转换为十进制,我们需要将每个二进制位的值乘以2的幂,并将结果相加。
例如,将二进制数101110转换为十进制,我们按以下步骤进行计算:(1 ×2^5) + (0 ×2^4) + (1 ×2^3) + (1 ×2^2) + (1 ×2^1) + (0 ×2^0) = 32 + 0 + 8 + 4 + 2 + 0 = 46同样,要将十进制数转换为二进制,我们可以进行反向的操作。
我们将十进制数除以2,然后将余数记录下来,直到商为0为止。
最后,将记录的余数从下往上排列,就得到了对应的二进制表示。
接下来,我们讨论8进制与10进制的转换过程。
八进制是一种基于8的进制系统,包含0-7这8个数字。
要将一个八进制数转换为十进制,我们需要将每个八进制位的值乘以8的幂,并将结果相加。
例如,将八进制数271转换为十进制,我们按以下步骤进行计算:(2 ×8^2) + (7 ×8^1) + (1 ×8^0) = 128 + 56 + 1 = 185要将一个十进制数转换为八进制,我们可以进行反向的操作。
我们将十进制数除以8,然后将余数记录下来,直到商为0为止。
最后,将记录的余数从下往上排列,就得到了对应的八进制表示。
最后,我们讨论16进制与10进制的转换过程。
十六进制是一种基于16的进制系统,其中包含0-9这10个数字和A-F 这6个字母,分别表示10-15。
要将一个十六进制数转换为十进制,我们需要将每个十六进制位的值乘以16的幂,并将结果相加。
二进制、八进制、十进制与十六进制转换计算精华
三、二进制转化成其他进制1.二进制(Binary)——>八进制(Octal)例子1:将二进制数(10010)2转化成八进制数。
(10010)2=(010 010)2=(2 2)8=(22)8例子2:将二进制数(0.10101)2转化为八进制数。
(0.10101)2=(0. 101 010)2=(0. 5 2)8=(0.52)8诀窍:因为每三位二进制数对应一位八进制数,所以,以小数点为界,整数位则将二进制数从右向左每3位一隔开,不足3位的在左边用0填补即可;小数位则将二进制数从左向右每3位一隔开,不足3位的在右边用0填补即可。
2.二进制(Binary)——>十进制(Decimal)例子1:将二进制数(10010)2转化成十进制数。
(10010)2=(1x24+0x23+0x22+1x21+0x20)10=(16+0+0+2+0)10=(18) 10例子2:将二进制数(0.10101)2转化为十进制数。
(0.10101)2=(0+1x2-1+0x2-2+1x2-3+0x2-4+1x2-5)10=(0+0.5+0.25+0.125+0.0625+0.03125)10=(0.96875)10诀窍:以小数点为界,整数位从最后一位(从右向左)开始算,依次列为第0、1、2、3………n,然后将第n 位的数(0或1)乘以2的n-1次方,然后相加即可得到整数位的十进制数;小数位则从左向右开始算,依次列为第1、2、3……..n,然后将第n位的数(0或1)乘以2的-n次方,然后相加即可得到小数位的十进制数(按权相加法)。
3.二进制(Binary)——>十六进制(Hex)例子1:将二进制数(10010)2转化成十六进制数。
(10010)2=(0001 0010)2=(1 2)16=(12) 16例子2:将二进制数(0.10101)2转化为十六进制数。
(0.10101)2=(0. 1010 1000)2=(0. A 8)16=(0.A8)16诀窍:因为每四位二进制数对应一位十六进制数,所以,以小数点为界,整数位则将二进制数从右向左每4位一隔开,不足4位的在左边用0填补即可;小数位则将二进制数从左向右每4位一隔开,不足4位的在右边用0填补即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、二进制转化成其他进制1.二进制(Binary)——>八进制(Octal)例子1:将二进制数(10010)2转化成八进制数。
(10010)2=(010 010)2=(2 2)8=(22)8例子2:将二进制数()2转化为八进制数。
()2=(0. 101 010)2=(0. 5 2)8=()8诀窍:因为每三位二进制数对应一位八进制数,所以,以小数点为界,整数位则将二进制数从右向左每3位一隔开,不足3位的在左边用0填补即可;小数位则将二进制数从左向右每3位一隔开,不足3位的在右边用0填补即可。
2.二进制(Binary)——>十进制(Decimal)例子1:将二进制数(10010)2转化成十进制数。
(10010)2=(1x24+0x23+0x22+1x21+0x20)10=(16+0+0+2+0)10=(18) 10例子2:将二进制数()2转化为十进制数。
()2=(0+1x2-1+0x2-2+1x2-3+0x2-4+1x2-5)10=(0+++++)10=()10诀窍:以小数点为界,整数位从最后一位(从右向左)开始算,依次列为第0、1、2、3………n,然后将第n位的数(0或1)乘以2的n-1次方,然后相加即可得到整数位的十进制数;小数位则从左向右开始算,依次列为第1、2、3……..n,然后将第n位的数(0或1)乘以2的-n次方,然后相加即可得到小数位的十进制数(按权相加法)。
3.二进制(Binary)——>十六进制(Hex)例子1:将二进制数(10010)2转化成十六进制数。
(10010)2=(0001 0010)2=(1 2)16=(12) 16例子2:将二进制数()2转化为十六进制数。
()2=(0. 1010 1000)2=(0. A 8)16=()16诀窍:因为每四位二进制数对应一位十六进制数,所以,以小数点为界,整数位则将二进制数从右向左每4位一隔开,不足4位的在左边用0填补即可;小数位则将二进制数从左向右每4位一隔开,不足4位的在右边用0填补即可。
(10010)2=(22)8=(18) 10=(12)16()2=()8=()10=()16四、八进制转化成其他进制1.八进制(Octal)——>二进制(Binary)例子1:将八进制数(751)8转换成二进制数。
(751)8=(7 5 1)8=(111 101 001)2=(1)2例子2:将八进制数()8转换成二进制数。
()8=(0. 1 6)8=(0. 001 110)2=()2诀窍:八进制转换成二进制与二进制转换成八进制相反。
2.八进制(Octal)——>十进制(Decimal)例子1:将八进制数(751)8转换成十进制数。
(751)8=(7x8^2+5x8^1+1x8^0)10=(448+40+1)10=(489)10例子2:将八进制数()8转换成十进制数。
()8=(0+1x8^-1+6x8^-2)10=(0++)10=()10诀窍:方法同二进制转换成十进制。
以小数点为界,整数位从最后一位(从右向左)开始算,依次列为第0、1、2、3………n,然后将第n位的数(0-7)乘以8的n-1次方,然后相加即可得到整数位的十进制数;小数位则从左向右开始算,依次列为第1、2、3……..n,然后将第n位的数(0-7)乘以8的-n次方,然后相加即可得到小数位的十进制数(按权相加法)。
3.八进制(Octal)——>十六进制(Hex)例子1:将八进制数(751)8转换成十六进制数。
(751)8=(1)2=(0001 1110 1001)2=(1 E 9)16=(1E9)16例子2:将八进制数()8转换成十六进制数。
()8=()2=(0. 0011 1000)2=()16诀窍:八进制直接转换成十六进制比较费力,因此,最好先将八进制转换成二进制,然后再转换成十六进制。
(751)8=(1)2=(489)10=(1E9)16()8=()2=()10=()16五、十进制转化成其他进制1.十进制(Decimal)——>二进制(Binary)例子1:将十进制数(93)10转换成二进制数。
93/2=46 (1)46/2=23 023/2=11 (1)11/2=5 (1)5/2=2 (1)2/2=1 0(93)10=(1011101)2例子2:将十进制数()10转换成二进制数。
= 0 . 625= 1 .25= 0 .5= 1 .0()10=()2诀窍:以小数点为界,整数部分除以2,然后取每次得到的商和余数,用商继续和2相除,直到商小于2。
然后把第一次得到的余数作为二进制的个位,第二次得到的余数作为二进制的十位,依次类推,最后一次得到的小于2的商作为二进制的最高位,这样由商+余数组成的数字就是转换后二进制的值(整数部分用除2取余法);小数部分则先乘2,然后获得运算结果的整数部分,将结果中的小数部分再次乘2,直到小数部分为零。
然后把第一次得到的整数部分作为二进制小数的最高位,后续的整数部分依次作为低位,这样由各整数部分组成的数字就是转化后二进制小数的值(小数部分用乘2取整法)。
需要说明的是,有些十进制小数无法准确的用二进制进行表达,所以转换时符合一定的精度即可,这也是为什么计算机的浮点数运算不准确的原因。
2.十进制(Decimal)——>八进制(Octal)例子1:将十进制数(93)10转换成八进制数。
93/8=11 (5)11/8=1 (3)(93)10=(135)8例子2: 将十进制数()10转换成八进制数。
= 2 .5= 4 .0()10=()8诀窍:方法同十进制转化成二进制。
以小数点为界,整数部分除以8,然后取每次得到的商和余数,用商继续和8相除,直到商小于8。
然后把第一次得到的余数作为八进制的个位,第二次得到的余数作为八进制的十位,依次类推,最后一次得到的小于8的商作为八进制的最高位,这样由商+余数组成的数字就是转换后八进制的值(整数部分用除8取余法);小数部分则先乘8,然后获得运算结果的整数部分,将结果中的小数部分再次乘8,直到小数部分为零。
然后把第一次得到的整数部分作为八进制小数的最高位,后续的整数部分依次作为低位,这样由各整数部分组成的数字就是转化后八进制小数的值(小数部分用乘8取整法)。
3.十进制(Decimal)——>十六进制(Hex)例子1:将十进制数(93)10转换成十六进制数。
93/16=5……..13(D)(93)10=(5D)16例子2: 将十进制数()10转换成十六进制数。
=()10=()16诀窍:方法同十进制转化成二进制。
以小数点为界,整数部分除以16,然后取每次得到的商和余数,用商继续和16相除,直到商小于16。
然后把第一次得到的余数作为十六进制的个位,第二次得到的余数作为十六进制的十位,依次类推,最后一次得到的小于16的商作为十六进制的最高位,这样由商+余数组成的数字就是转换后十六进制的值(整数部分用除16取余法);小数部分则先乘16,然后获得运算结果的整数部分,将结果中的小数部分再次乘16,直到小数部分为零。
然后把第一次得到的整数部分作为十六进制小数的最高位,后续的整数部分依次作为低位,这样由各整数部分组成的数字就是转化后十六进制小数的值(小数部分用乘16取整法)。
(93)10=(1011101)2=(135)8=(5D)16()10=()2=()8=()16六、十六进制转换成其他进制1.十六进制(Hex)——>二进制(Binary)例子1:将十六进制数(A7)16转换成二进制数。
(A7)16=(A 7)16=(1010 0111)2=()2例子2:将十六进制数()16转换成二进制数。
()16=(0. D 4)16=(0. 1101 0100)2=()2诀窍:十六进制转换成二进制与二进制转换成十六进制相反。
2.十六进制(Hex)——>八进制(Octal)例子1:将十六进制数(A7)16转换成八进制数。
(A7)16=()2=(010 100 111)8=(247)8例子2:将十六进制数()16转换成八进制数。
()16=()2=(0. 110 101)8=()8诀窍:十六进制直接转换成八进制比较费力,因此,最好先将十六进制转换成二进制,然后再转换成八进制。
3.十六进制(Hex)——>十进制(Decimal)例子1:将十六进制数(A7)16转换成十进制数。
(A7)16=(10x16^1+7x16^0)10=(160+7)10=(167)10例子2:将十六进制数()16转换成十进制数。
()16=(0+13x16^-1+4x16^-2)10=(0++)10=()10诀窍:方法同二进制转换成十进制。
以小数点为界,整数位从最后一位(从右向左)开始算,依次列为第0、1、2、3………n,然后将第n位的数(0-9,A-F)乘以16的n-1次方,然后相加即可得到整数位的十进制数;小数位则从左向右开始算,依次列为第1、2、3……..n,然后将第n位的数(0-9,A-F)乘以16的-n次方,然后相加即可得到小数位的十进制数(按权相加法)。
(A7)16=()2=(247)8=(167)10()16=()2=()8=()10七、总结1. 其他进制转十进制:将二进制数、八进制数、十六进制数的各位数字分别乘以各自基数的(N-1)次方,其相加之和便是相应的十进制数,这是按权相加法。
2. 十进制转其他进制:整数部分用除基取余法,小数部分用乘基取整法,然后将整数与小数部分拼接成一个数作为转换的最后结果。
3. 二进制转八进制:从小数点位置开始,整数部分向左,小数部分向右,每三位二进制为一组用一位八进制的数字来表示,不足三位的用0补足。
4. 八进制转二进制:与二进制转八进制相反。
5. 二进制转十六进制:从小数点位置开始,整数部分向左,小数部分向右,每四位二进制为一组用一位十六进制的数字来表示,不足四位的用0补足。
6. 十六进制转二进制:与二进制转十六进制相反。
7. 八进制转十六进制:通常将八进制转换成二进制,然后通过二进制再转换成十六进制。
8. 十六进制转八进制:通常将十六进制转换成二进制,然后通过二进制再转换成八进制。
二进制八进制十进制十六进制0000 0 0 0 0001 1 1 1 0010 2 2 2 0011 3 3 3 0100 4 4 4 0101 5 5 5 0110 6 6 6 0111 7 7 7 1000 10 8 8 1001 11 9 9 1010 12 10 A 1011 13 11 B 1100 14 12 C 1101 15 13 D 1110 16 14 E 1111 17 15 F。