高一数学必修一指数与指数幂的运算练习总结
高一数学必修一知识点总结归纳优秀5篇

高一数学必修一知识点总结归纳优秀5篇高一数学必修一知识点总结归纳篇一(一)指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中1,且∈当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。
此时,的次方根用符号表示。
式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。
当是偶数时,正数的次方根有两个,这两个数互为相反数。
此时,正数的正的次方根用符号表示,负的次方根用符号—表示。
正的次方根与负的次方根可以合并成±(0)。
由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,2、分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
3、实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。
注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质高一数学必修一知识点总结归纳篇二指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质函数的应用1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点。
3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)
.
a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x
人教版高一数学必修1第16课时分数指数幂与幂的运算(含解析)

13.(15分)设 的整数部分为x,小数部分为y,求x2+ xy+ 的值.
解:因为 = = =2+ ,
所以x=2,y= .
原式=22+ ·2· + =4+7- + +1=12.
=2-4× +10(2+ )-10
=21.
(3)(7+4 ) -81 +32 -2× + × -1
=[(2+ )2] -(34) +(25) -2×(2-3) +2 ×(22)
=2+ - +8-8+2
=4.
11.(13分)已知x +x =3,计算:
(1)x-x-1;
(2) .
解:(1)将x +x =3两边平方,得x+x-1+2=32,即x+x-1=7,
0的正分数指数幂等于0,
0的负分数指数幂没有意义.
2.有理指数幂的性质.
课时作业
(时间:45分钟,满分:90分)
一、选择题(本大题共6小题,每小题5分,共30分)
1.把根式 改写成分数指数幂的形式为()
A.(a-b) B.(a-b)
C.a -b D.a -b
答案:A
解析:原式=[(a-b)-2] =(a-b) .故选A.
∵ =(x3+y3) ≠(x+y) ,∴C错;
∵ = =3 ,∴D正确,故选D.
4.式子 (a>0)经过计算可得()
A.aB.-
C. D.
答案:D
解析:原式= =a =a = .
5.设x,y,z∈R,xyz≠0,且4x=6y=144z,则()
A. = + B. = +
C. = + D. = +
答案:D
答案:1
解析:设ax=by=cz=k,则k>0,a=k ,b=k ,c=k ,因此abc=k k k =k =k0=1.
高中数学必修一《指数与指数幂计算》精选例题(含答案解析)

高中数学必修一《指数与指数幂计算》精选例题(含答案解析)一、选择题1.下列说法中:①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,n a 对任意a ∈R 都有意义;④当n 为大于1的偶数时,n a 只有当a ≥0时才有意义.其中正确的是( )A .①③④B .②③④C .②③D .③④2.若2<a <3,化简(2-a )2+4(3-a )4的结果是() A .5-2a B .2a -5C .1D .-13.在(-12)-1、122-、1212-⎛⎫ ⎪⎝⎭、2-1中,最大的是() A .(-12)-1B .122-C .1212-⎛⎫⎪⎝⎭D .2-14.化简3a a 的结果是( )A .aB .12aC .a 2D .13a5.下列各式成立的是( )A.3m 2+n 2=()23m n +B .(b a )2=12a 12bC.6(-3)2=()133- D.34=1326.下列结论中,正确的个数是( )①当a <0时,()322a =a 3;②n a n =|a |(n >0);③函数y =()122x --(3x -7)0的定义域是(2,+∞); ④若100a =5,10b =2,则2a +b =1.A .0B .1C .2D .3 7.614-3338+30.125的值为________.8.若a >0,且a x =3,a y =5,则22yx a+=________. 9.若x >0,则(214x +323)(214x -323)-412x -·(x -12x )=________.三、解答题10.(1)化简:3xy 2·xy -1·xy ·(xy )-1(xy ≠0); (2)计算:122-+(-4)02+12-1-(1-5)0·238-.11.设-3<x <3,求x 2-2x +1-x 2+6x +9的值.能力提升12.化简:4133223384a a b b a -+÷(1-23b a )×3a .13.若x >0,y >0,且x -xy -2y =0,求2x -xy y +2xy的值.参考答案与解析1.D [①错,∵(±2)4=16,∴16的4次方根是±2;②错,416=2,而±416=±2.]2.C [原式=|2-a |+|3-a |,∵2<a <3,∴原式=a -2+3-a =1.]3.C [∵(-12)-1=-2,122-=22,1212-⎛⎫ ⎪⎝⎭=2,2-1=12, ∵2>22>12>-2,∴1212-⎛⎫ ⎪⎝⎭>122->2-1>(-12)-1.]4.B [12a =.]5.D [被开方数是和的形式,运算错误,A 选项错;(b a )2=b 2a 2,B 选项错;6(-3)2>0,()133-<0,C 选项错.故选D.]6.B [①中,当a <0时,()()3312222a a ⎡⎤=⎢⎥⎣⎦=(-a )3=-a 3,∴①不正确;②中,若a =-2,n =3,则3(-2)3=-2≠|-2|,∴②不正确;③中,有⎩⎨⎧ x -2≥0,3x -7≠0,即x ≥2且x ≠73, 故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10,即102a +b =10. ∴2a +b =1.④正确.] 7.32解析 原式=(52)2-3(32)3+3(12)3=52-32+12=32. 8.9 5 解析 22y x a +=(a x )2·()12y a =32·125=9 5. 9.-23 解析 原式=412x -33-412x +4=-23. 10.解 (1)原式=()()11132122xy xy xy -⎡⎤⎢⎥⎣⎦·(xy )-1 =13x ·2111136622y xy x y --- =13x ·13x -=⎩⎨⎧ 1, x >0-1,x <0. (2)原式=12+12+2+1-22 =22-3.11.解 原式=(x -1)2-(x +3)2 =|x -1|-|x +3|,∵-3<x <3,∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.∴原式=⎩⎨⎧ -2x -2 (-3<x <1)-4(1≤x <3). 12.解 原式=()111333212133338242aa b a b b a aa --÷++×13a13.解 ∵x -xy -2y =0,x >0,y >0,∴(x)2-xy-2(y)2=0,∴(x+y)(x-2y)=0,由x>0,y>0得x+y>0,∴x-2y=0,∴x=4y,∴2x-xyy+2xy =8y-2yy+4y=65.。
高中数学(必修一)第四章 指数 练习题及答案解析

高中数学(必修一)第四章 指数 练习题及答案解析学校:___________姓名:___________班级:_____________一、解答题1.计算:2.求下列各式的值: (1)1236;(2)52164⎛⎫ ⎪⎝⎭;(4)1216-⨯.3.(1)已知11223x x-+=,计算:22111227x x x x x x ---+-+++;(2)设128x y +=,993y x -=,求x y +的值.4.(1)化简:()314211113643,01645x y x y x y x y ---->⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭;(2)计算:11026188100-⎛⎫⨯+ ⎪⎝⎭.5.求解下列问题:(1)证明:log 1log log a a ab x b x =+.(2)已知333pa qb rc ==,且1111a b c ++=.求证:()11112223333pa qb rc p q r ++=++.6.求下列各式的值:;()3,3x ∈-. 7.计算下列各式: (1)()1020.52312220.0154--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)20.53207103720.12392748π--⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭;(322.551030.064π-⎡⎤⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦;(4))0x ⎛> ⎪⎝⎭;(5)()21113322156630,0.13a b a b a b a b ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭>>8.化简求值:(1)4133222333814a a b b a a ⎛- ÷ +⎝⎭;(2)48lg 2(log 3log 3)lg 3+⨯.9.中国茶文化博大精深.茶水的口感与茶叶的类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水温度降至60℃时饮用,可以产生最佳口感.经过研究发现,在25℃室温下,设茶水温度从85℃开始,经过x 分钟后的温度为y ℃,则满足25x y ka =+(k ∈R ,01a <<,0x ≥).(1)求实数k 的值;(2)经过测试知0.9227a =,求在25℃室温下,刚泡好的85℃的茶水大约需要放置多长时间才能产生最佳饮用口感(结果精确到1分钟).(参考数据:lg70.8451≈,lg12 1.0792≈,lg 0.92270.0349≈-)10.计算求值(1)()3620189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.11.定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥; (3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.12.已知函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,记()2xx a f x a =+. (1)求a 的值;(2)求证:()()1f x f x +-为定值;(3)求12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.二、单选题13.已知函数()()ln ,0,e ,0,x x x f x x -⎧-<=⎨≥⎩,则()()e f f -=( ) A .e -B .0C .1eD .114.85-化成分数指数幂为( ) A .12x B .415x C .415x - D .25x三、填空题15.若01b a <<<,b p a =,a q b =,b r b =,则__________.(用>连接)16.已知17a a+=,则1122a a -+=______. 17.一种药在病人血液中的量保持1000mg 以上才有疗效,而低于500mg 病人就有危险.现给某病人静脉注射了这种药2000mg ,如果药在血液中以每小时10%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过______小时内向病人的血液补充这种药,才能保持疗效.(附:lg 20.3010≈,lg30.4771≈,精确到0.1h )参考答案:1.6【分析】先将根指数幂转化成分数指数幂的形式,在按照分数指数幂的运算法则进行计算即可. 【详解】解:原式()()111111111123323623623323223236-+++-=⨯⨯⨯⨯⨯=⨯=⨯=. 故答案为:62.(1)6 (2)312532(3)232 (4)12【分析】(1)利用指数幂的运算性质即可求解;(2)利用指数幂的运算性质即可求解;(3)将根式转化为分数指数幂,再利用幂的运算性质即可求解;(4)利用指数幂的运算性质即可求解.(1) 解:()1122122266663⨯===;(2) 解:552252252555316412522232⨯⎡⎤⎛⎫⎛⎫⎛⎫====⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎛⎫⎥⎦⎝⎣ ⎪⎭; (3)()()11310112105223133113333222222⨯⨯-⨯⎡⎤⎢⎥⎣⎦==== (4)解:()11411112162222222-----===⨯=⨯⨯=. 3.(1)4;(2)27【分析】(1)对11223x x -+=两边平方,求出17x x -+=,再对此式两边平方,化简可得2247x x -+=,从而代入可求结果,(2)将等式两边化为同底数幂的形式,然后可得关于,x y 的方程组,求出,x y 的值,从而可求得x y +的值【详解】(1)因为11223x x -+=,所以211229x x -⎛⎫+= ⎪⎝⎭,所以129x x -++=,所以17x x -+=,所以()2127x x -+=,即22249x x -++=,所以2247x x -+=, 所以22111227477473x x x x x x ---+--==++++. (2)因为128x y +=,所以()3122y x +=,即()31x y =+.又993y x -=,所以2933y x -=,即29y x =-,由3(1)29x y y x =+⎧⎨=-⎩,解得216x y =⎧⎨=⎩, 故x y +的值为27.4.(1)10y -;(2)3【分析】(1)分数指数幂的运算法则进行计算;(2)分数指数幂与根式运算法则进行计算.【详解】(1)原式14223431310310x y y x y ---==--. (2)原式())()111113226210018210018210183--⎡⎤=--+=-+=+-=⎣⎦. 5.(1)证明见解析(2)证明见解析【分析】(1)结合换底公式以及对数运算证得等式成立.(2)令333pa qb rc k ===,结合指数运算,通过证明等式左边=右边=13k 来证得等式成立.(1) 左边1log log log log 1log 1log log log a x x a a ab x x x a ab ab b x aab =====+=右边 (2)令333pa qb rc k ===,则2k pa a =,2k qb b=,2k rc c =, 所以()1132223k k k pa qb rca b c ⎛⎫++=++= ⎪⎝⎭1133111k k a b c ⎡⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦, 1111111133333333333111k k k p q r k k a b c a b c ⎛⎫⎛⎫⎛⎫⎛⎫++=++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()12223pa qb rc ++=111333p q r ++. 6.(1)-2(3)π3-(4)22,31,4,1 3.x x x ---<≤⎧⎨-<<⎩【分析】根据根式与分数指数幂的转化化简求值即可.(1)2=-(2)=(3)3ππ3-=-(4)原式13x x ==--+,当31-<≤x 时,原式()1322x x x =--+=--;当13x <<时,原式()134x x =--+=-.因此,原式22,31,4,1 3.x x x ---<≤⎧=⎨-<<⎩7.(1)1615;(2)100;(3)3;(4)2x ;(5)9a -. 【分析】利用根式与分数指数幂的互化,根式的性质,指数幂的运算性质计算求值.【详解】(1)原式()1122221412116110129431015-⎛⎫=+⨯-=+⨯-= ⎪⎝⎭. (2)原式()12232125273710396448--⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭5937100331648=++-+100=. (3)原式()1315270.4128-⎛⎫=-- ⎪⎝⎭5350.51222=-++-3=. (4)原式31222x x x =⋅=.(5)原式21111532623699a b a +-+-=-=-.8.(1)2a (2)56【分析】(1)结合指数幂的运算公式以及立方差公式化简整理即可求出结果;(2)结合对数的换底公式化简整理即可求出结果.(1) 原式()1133211223333381242a a b b a b a b a a ⎛⎫- ⎪=÷- ⎪ ⎪++⎝⎭3311133311533621121333362242a a b a b a a b a b a a ⎡⎤⎛⎫⎛⎫⎢⎥- ⎪ ⎪⎢⎥⎝⎭⎝⎭-⎣⎦=÷⨯++ 111211211533333333362112133336(2)(24)242a a b a a b b a b a a b a b a a -++-=÷⨯++ 5445162336616aa a a a +-=⋅==451366a +-=2a =,(2) 原式lg3lg3lg2115()2lg23lg2lg3236=+⨯=+=.9.(1)60(2)大约需要放置7分钟才能产生最佳饮用口感【分析】(1)直接由0x =时,85y =代入求解即可;(2)将60y =代入函数关系式,再结合对数的运算性质求解即可.(1)依题意,当0x =时,85y =,所以08525k a =⋅+,解得60k =, 所以实数k 的值是60.(2)由(1)知,当0.9227a =时,600.922725x y =⨯+,当60y =时,600.92272560x ⨯+=,即70.922712x =, 两边取对数,得lg0.9227lg7lg12x =-, 所以lg 7lg120.8451 1.07927lg 0.92270.0349x --=≈≈-. 所以刚泡好的85℃的茶水大约需要放置7分钟才能产生最佳饮用口感.10.(1)44 (2)92(3)1【分析】(1)由指数的运算法则计算(2)由对数的运算法则计算(3)将指数式转化为对数式后计算(1)()33622023218323172271449-⨯⎛⎫---=⨯--=--= ⎪⎝⎭;(2)221lg lg 2log 24log log 32+++ ()32232lg 2lg 2log 38log 3log 3=-++⨯+-2239log 33log 322=++-=;(3)6log 3a =,2log 3b =, 则31log 6a =,31log 2b=; 所以33311log 6log 2log 31a b-=-==. 11.(1)11()(10)210x xf x =-,11()(10)210x xg x =+ (2)证明见解析 (3)121212()()()()()f x x f x g x g x f x -=-,121212()()()()()g x x g x g x f x f x +=+【分析】(1)由题意可得:()()10x f x g x +=,再根据函数的奇偶性可得:()()10()()x f x g x f x g x --+-==-+,进而结合两个式子求出两个函数的解析式. (2)由(1)可得12()()g x g x +的表达式,再利用基本不等式把12()()g x g x +进行化简整理即可得到答案. (3)由(1)可得1()f x 、2()f x 、1()g x 、2()g x 、12()f x x -与12()g x x +的表达式与结构特征,进而可求(1)解:()()10x f x g x +=℃()()10x f x g x -∴-+-=,()f x 为奇函数,()g x 为偶函数()()f x f x ∴-=-,()()g x g x -=()()10x f x g x -∴-+=℃由℃,℃解得11()(10)210x x f x =-,11()(10)210x x g x =+. (2) 解:1212121111()()(10)(10)221010x x x x g x g x +=+++ 1212121211111111(1010)()210102222210101010x x x x x x x x =+++≥⨯+⨯ 121212221102()210x x x x x x g +++=+=,当且仅当121010x x =,即12x x =时取等号; 所以1212()()2()2x x g x g x g ++≥ (3)解:11()(10)210x x f x =-,11()(10)210x x g x =+. 12121211()(10)210x x x x f x x --∴-=- 122111010()21010x x x x =- 1212121221122112110101110101(10)(10)44101010101010x x x x x x x x x x x x x x x x ++++=+----+- 12121212111111(10)(10)(10)(10)4410101010x x x x x x x x =-+-+- 1212()()()()f x g x g x f x =-121212111()(10)2210x x x x g x x +++=+⋅ 121211111010221010x x x x +⋅⋅⋅= 12121212111111(10)(10)(10)(10)4410101010x x x x x x x x =--+++. 1212()()()()g x g x f x f x =+即121212()()()()()f x x f x g x g x f x -=-,121212()()()()()g x x g x g x f x f x +=+;12.(1)4a =(2)证明见解析(3)100【分析】(1)函数x y a =在[]1,2上单调,得到220a a +=,排除5a =-,得到答案.(2)()442xx f x =+,代入数据计算得到()()11f x f x +-=,得到证明. (3)根据()()11f x f x +-=,两两组合计算得到答案.(1)解:因为函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,且函数x y a =(0a >且1a ≠)在[]1,2上单调,所以当1x =和2x =时,函数x y a =(0a >且1a ≠)在[]1,2上取得最值,即220a a +=,解得4a =或5a =-(舍去),所以4a =.(2)解:由(1)知,4a =,所以()442xx f x =+,故()()11444411424242424x x x x x x xf x f x --+-=+=+=++++⋅. (3)解:由(2)知,()()11f x f x +-=, 因为12001201201+=,21191201201+=,,1001011201201+=, 所以12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12001192012012020121f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1001011100100201201f f ⎡⎤⎛⎫⎛⎫+=⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 13.C【分析】直接代值计算即可.【详解】()e ln e=1f -=,则()()()1e 1e f f f --== 故选:C.14.B【分析】直接化根式为分数指数幂,即可得出答案.【详解】解:8855--=⎝⎭ 885145615x x ---⎛⎫=== ⎪⎝⎭⎝⎭.故选:B.15.p r q >>【分析】利用幂函数和指数函数的单调性比较大小即可【详解】解:因为01b <<,所以函数b y x =在(0,)+∞上为增函数, 因为01b a <<<,所以011b b b b a <<<=,即01r p <<<, 因为01b <<,所以函数x y b =在R 上为减函数,因为01b a <<<,所以01b a b b b b >>>,即1b q r <<<,所以p r q >>,故答案为:p r q >>16.3【分析】根据指数幂的运算即可求解.【详解】由17a a+=,可得0a >,11220a a -+>,11223a a -∴+==. 故答案为:317.6.6【分析】写出血液中药物含量关于时间的关系式,解不等式求出答案.【详解】设x h 后血液中的药物量为y mg , 则有()020001100x y =-, 令1000y ≥得:lg 20.3010 6.612lg 3120.4771x ≤≈≈--⨯ 故从现在起经过6.6h 内向病人的血液补充这种药,才能保持疗效. 故答案为:6.6。
高一数学上册 指数函数知识点及练习题含答案

课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
第三章-§1-指数幂的拓展-§2-指数幂的运算性质高中数学必修第一册北师大版

想什么
2
要证
=
2
2
1
+ ,可转化为证底数是的幂的形式,即证
1
1
1
差什么 如何用 , , 表示和
找什么
2 1
+
2 1
= =
1
2 1
2 1
+
2
,想到 =
1
2
= 32 × 4 = 36,即得证.
= 36,
=
2 1
+
.
4
) =
有负指数幂的形式)
=
1
1 2
−4
2
⋅
7
8
3
−
1
8
⋅
1
2
3
2
1
2
=
2
⋅
3
2
1
2
1
2
=
2
⋅
3
4
1
4
=
2
⋅
3
4
1
4
1
2
=
= .(【明易错】化简的结果中不可出现既有分式又
方法2 (由外向内化) 原式
=
1
8
3
8
1
2
2
3
7
8
1
−8
= .
6
−5
1
2
2
【解析】当是正偶数时, = ,故A错误;
2
高中数学必修一《指数幂与运算》精选练习(含详细解析)

高中数学必修一《指数幂与运算》精选练习(含详细解析)一、选择题1.若(1-2x有意义,则x的取值范围是( )A.x∈RB.x≠0.5C.x>0.5D.x<0.52化简[的结果为( )A.5B.C.-D.-53.+(-1)-1÷0.75-2+= ( )A. B. C.- D.-4.化简()4·()4的结果是( )A.a16B.a8C.a4D.a25设-=m,则= ( )A.m2-2B.2-m2C.m2+2D.m2二、填空题6.化简= .7已知a>0,化简-= .三、解答题8.(10分)将下列根式化为分数指数幂的形式.(1)(a>0).(2).(3)((b>0).9.(10分)已知+=3,求下列各式的值:(1)a+a-1. (2)a2+a-2.参考答案与解析1选D.将分数指数幂化为根式,可知需满足1-2x>0,解得x<0.5.2选B.[=(===.3选A.原式=-1÷+=-1÷+=-+=.4选C.原式=()4·()4=()4·()4=a2·a2=a4.5选 C.将-=m平方得(-)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+=m2+2⇒=m2+2.6【解析】==a+b.答案:a+b7【解题指南】利用完全平方公式展开后合并同类项计算.【解析】因为a>0,所以-=-=4.答案:48【解析】(1)原式====.(2)原式======.(3)原式=[(==.9【解析】(1)因为+=3,所以(+)2=a+a-1+2=9,所以a+a-1=7.(2)因为a+a-1=7,所以(a+a-1)2=a2+a-2+2=49,所以a2+a-2=47.。
高一数学指数函数知识点及练习题(含答案)

+⎩ + 指数函数2.1.1 指数与指数幂的运算〔1〕根式的概念 ①如果 xn= a , a ∈ R , x ∈ R , n > 1,且 n ∈ N ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时,a 的 n 次 方根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 n a 表示,负的 n 次方根用符号 - na表示;0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 .nnn n⎧a (a ≥ 0)③根式的性质:( a ) = a ;当 n 为奇数时, a = a ;当 n 为偶数时,=| a |= ⎨-a .(a < 0)〔2〕分数指数幂的概念m①正数的正分数指数幂的意义是: a n= n a m(a > 0, m , n ∈ N , 且 n > 1) .0 的正分数指数幂等于 0.②- m1 m1正数的负分数指数幂的意义是: an= ( ) n = n ( )m (a > 0, m , n ∈ N + , 且 n > 1) .0 的负分数指a a数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 〔3〕分数指数幂的运算性质①a r ⋅ a s = a r +s (a > 0,r , s ∈ R )②(a r )s = a rs (a > 0, r , s ∈ R )③(ab )r = a r b r (a > 0, b > 0, r ∈ R )2.1.2 指数函数及其性质〔4〕指数函数 函数名称 指数函数定义函数 y = a(a > 0 且 a ≠ 1)叫做指数函数图象a > 10 < a < 1y = 1 yOy = ax(0, 1)xy = a xy = 1Oy( 0 , 1 )x定义域 R值域 〔0,+∞〕过定点 图象过定点〔0,1〕,即当 x=0 时,y=1.奇偶性 非奇非偶单调性在 R 上是增函数在 R 上是减函数函数值的变化情况y >1(x >0), y=1(x=0), 0<y <1(x <0)y >1(x <0), y=1(x=0), 0<y <1(x >0)a 变化对图象影响在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴.在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴.n a n39 1 + 5 1 ± 5 12.1 指数函数练习1.以下各式中成立的一项〔〕A . ( n )7 = n 7m 7mB . 12(-3)4 =C . 4x 3+ y 33(x + y )4D .=2 11 1 1 1 52.化简(a 3 b 2)(-3a 2 b 3) ÷ ( 3a 6b 6 )的结果〔〕A . 6aB . - aC . - 9aD . 9a23.设指数函数 f (x ) = a x(a > 0, a ≠ 1) ,那么以下等式中不正确的选项是〔 〕A .f (x +y )=f(x )·f (y )B . f 〔x - y 〕=f (x )f ( y )C . f (nx ) = [ f (x )]n(n ∈ Q )- 1D . f (xy )n= [ f (x )]n·[ f ( y )]n(n ∈ N + )4.函数 y = (x - 5)0+ (x - 2)2A .{x | x ≠ 5, x ≠ 2} C .{x | x > 5}〔〕B .{x | x > 2}D .{x | 2 < x < 5或x > 5}5.假设指数函数 y = a x在[-1,1]上的最大值与最小值的差是1,那么底数a 等于 〔〕A .B . 2 2C .D .2 26.当 a ≠ 0 时,函数 y = ax + b 和 y = b ax的图象只可能是〔〕7.函数 f (x ) = 2-|x |的值域是〔 〕A . (0,1]B . (0,1)⎧⎪2- x- 1, x ≤ 0 C . (0,+∞)D .R8.函数 f (x ) = ⎨ 1 ,满足 f (x ) > 1的 x 的取值范围⎪⎩x 2 , x > 0〔 〕A . (-1,1)B . (-1,+∞)C .{x | x > 0或x < -2}D .{x | x > 1或x < -1}9.函数 y = ( 1 ) 2- x 2 + x +2 得单调递增区间是〔 〕11A . [-1, ]2B . (-∞,-1]C . [2,+∞)D . [ 2,2]3 - 33 3- 1 + 5 5 ± 1⎩ x e x - e - x10. f (x ) =,那么以下正确的选项是 〔 〕2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.函数 f (x )的定义域是〔1,2〕,那么函数 f (2 x) 的定义域是 .12.当 a >0 且 a ≠1 时,函数 f (x )=a x -2-3 必过定点 .三、解答题:13.求函数 y = 1的定义域.5 x -1 - 114.假设a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.函数 f (x ) =a x - 1 a x + 1(a >1).〔1〕判断函数f (x )的奇偶性;〔2〕证明f (x )在(-∞,+∞)上是增函数.16.函数 f(x)=a x (a>0,且 a ≠1)在区间[1,2]上的最大值比最小值大 a,求 a 的值. 2参考答案一、DCDDDAAD D A二、11.(0,1);12.(2,-2);三、13. 解:要使函数有意义必须:⎧x - 1 ≠ 0⎧x ≠ 1⎪x ⇒⎨ ≠ 0 ⎩ x - 1⎨x ≠ 0∴定义域为: {x x ∈ R 且x ≠ 0, x ≠ 1}⎪1 a +1 a +12 14. 解: a r + br⎛ a ⎫r⎛ b ⎫r,其中 0 < a < 1,0 < b < 1.= ⎪ c rc + ⎪c ⎝ ⎭ ⎝ ⎭ 当r >1时,⎛ a ⎫ r ⎛ b ⎫r a b ,所以a r+b r <c r ;⎪ + ⎪ < + = 1⎝ c ⎭ ⎝ c ⎭ c c当 r <1 时,⎛ a ⎫r⎛ b ⎫ra b,所以 a r +b r >c r . ⎪ + ⎪ > + = 1 ⎝ c ⎭ ⎝ c ⎭ c c15.解:(1)是奇函数.(2) x <x ,a x 1 -1 a x2 -1 。
高中数学必修1_ 第二章 2.1 第2课时 指数幂及其运算

=[(0.4)3]
-
1 3
-
1
+
(-
2)-4
+
2-
3+[(0.1)2]12
=
0.4-1
-1+
1 16
+18+
0.1=18403.
(2)原式=a13×92·a13×-32÷a12×-73·a12
×133=a96-36+76-163=a0=1.
指数幂的一般运算步骤 有括号先算括号里的;无括号先做 指数运算.负指数幂化为正指数幂的倒 数.底数是负数,先确定符号,底数是 小数,先要化成分数,底数是带分数, 先要化成假分数,然后要尽可能用幂的 形式表示,便于用指数幂的运算性质.
[课前反思] (1)分数指数幂的意义是什么?
; (2)有理指数幂的运算性质有哪些?
.
观察下式,完成下列思考.
amn =n
am,a-mn =a1mn =n
1 (a>0,n,m∈N*,n>1). am
[思考 1] 怎样理解分数指数幂?
名师指津:“三角度”理解分指数幂 (1)角度一:与根式的关系. 分数指数幂是根式的另一种写法,根式与分 数指数幂可以相互转化. (2)角度二:底数的取值范围. 由分数指数幂的定义知 a≤0,amn 可能会有意 义.当 amn 有意义时可借助定义将底数化为正数, 再进行运算.
③0 的分数指数幂的意义:
0 的正分数指数幂等于 0,0 的负分数指数幂无
意义.
(2)有理指数幂的运算性质: ①ar·as=ar+s(a>0,r,s∈Q); ②(ar)s=ars(a>0,r,s∈Q); ③(a·b)r=arbr(a>0,b>0,r∈Q). (3)无理数指数幂 无理数指数幂 aα(a>0,α 是无理数)是一个 确定的实数.有理数指数幂的运算性质对于无理 数指数幂同样适用.
高中数学4-1指数4-1-2无理数指数幂及其运算性质课时作业新人教A版必修第一册

4.1.2 无理数指数幂及其运算性质必备知识基础练1.计算:2a 2b 3×3a 3b =( ) A .5a 6b 3B .6a 6b 3C .6a 5b 4D .5a 5b 42.计算a 3a ·3a 2的结果为( )A .a 32B .a 116C .a 56 D .a 653.下列运算正确的是( ) A .a 3+a 4=a 7B .a 4·a 2=a 6C .a 23÷a -23=a 23 D .(a 2·b 12)3=a 5b 724.对于a >0,b >0,下列等式成立的是( )A .a 23·a 32=a B .(a 12a 13)6=a 3a 2C .(a 3)2=a 9D .a -12·a 12=05.若102x=25,则10-x等于( ) A .15B .-15 C .150 D .16256.(多选)下列说法中错误的是( ) A .根式都可以用分数指数幂来表示B .分数指数幂不表示相同式子的乘积,而是根式的一种新的写法C .无理数指数幂有的不是实数D .有理数指数幂的运算性质不适用于无理数指数幂 7.已知x >0,化简()x3-23+2=________.8.[2022·山东滨州高一期末](278)23-(-14)2+(19)0=________.关键能力综合练1.化简(a 3b 12)12÷(a 12b 14)(a >0,b >0)结果为( )A .aB .bC .a bD .b a2.若2x =3,2y =4,则2x +y的值为( )A .7B .10C .12D .343.计算(4a -3b -23)·(-3a -1b )÷(4a -4b -53)得( ) A .-32b 2 B .32b 2C .3b 2D .-3b 24.若0<a <1,b >0,且a b-a -b=-2,则a b +a -b的值为( ) A .2 2 B .±2 2 C .-2 2 D . 6 5.已知a +1a=3,则a 2+a -2的值是( )A .47B .45C .50D .356.(多选)以下化简结果正确的是(字母均为正数)( ) A .a 52·a 13·a 136=1B .(a 6·b -9)-23=a -4b 6C .-15a 12b 13c -3425a -12b 13c54=-35acD .(-2x 14y -13)(3x -12y 23)(-4x 14y 23)=24y7.[2022·河北邯郸高一期末]计算:432-(-94)0+6(3-π)6+[(-3)6]12=________.8.设α,β是方程5x 2+10x +1=0的两个根,则2α·2β=________,(2α)β=________. 9.计算下列各式(式中字母均是正数)(1)(2a 23b 12)(-6a 12b 13)÷(-3a 16b 56);(2)(3a 2-a 3)÷4a 2.10.已知a 12+a -12=3,求下列各式的值:(1)a +a -1; (2)a -a -1.核心素养升级练 1.已知3a -1+3a -2+3a -3=117,则(a +1)(a +2)(a +3)=( )A .120B .210C .336D .5042.化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.3.已知a >0,且a 2x=2+1,求下列代数式的值. (1)(a x+a -x)(a x -a -x);(2)a x +a -xa x -a-x ;(3)a 3x +a -3x a x +a-x .4.1.2 无理数指数幂及其运算性质必备知识基础练1.答案:C解析:依题意,原式=2×3×a 2+3×b3+1=6a 5b 4.2.答案:B 解析:a 3a ·3a 2=a 3a 12·a23=a 3a76=a3-76=a 116.3.答案:B解析:A 选项a 3+a 4不能再进行运算;B 选项a 4·a 2=a 6,同底数幂相乘,底数不变,指数相加,故正确;C 选项a 23÷a -23,同底数幂相除,底数不变,指数相减,故应为a 23÷a -23=a 43;D 选项(a 2·b 12)3,积的幂等于幂的积,故应为(a 2·b 12)3=a 6b 32.4.答案:B解析:对于选项A ,a 23·a 32=a 23+32=a 136,选项A 错误;对于选项B ,(a 12b 13)6=a 12×6b 13×6=a 3b 2,选项B 正确;对于选项C ,(a 3)2=a3×2=a 6,选项C 错误;对于选项D ,a -12·a 12=a 0=1,选项D 错误.5.答案:A解析:由102x =25得,(10x )2=25,则10x =5,∴10-x=15.6.答案:CD 解析:A.由na m=a mn,1na m=a -mn ,(n ,m ∈N *),知根式都可以用分数指数幂来表示,故正确;B .由na m=a mn ,1na m=a -mn ,(n ,m ∈N *),知分数指数幂不表示相同式子的乘积,而是根式的一种新的写法,故正确;C .实数包括无理数和有理数,所以无理指数幂是实数,故错误;D .由指数幂的运算法则知:有理数指数幂的运算性质适用于无理数指数幂,故错误. 7.答案:x 7解析:因为x >0,所以由幂的运算法则得(x 3-2)3+2=x(3-2)(3+2)=x9-2=x 7.8.答案:3关键能力综合练1.答案:A解析:根据实数指数幂的运算公式,可得:(a 3b 12)12÷(a 12b 14)=a 32b 14÷(a 12b 14)=a 32-12b 14-14=a .2.答案:C解析:因为2x =3,2y =4,所以2x +y=2x ·2y=3×4=12.3.答案:D 解析:原式=-3a -3-1-(-4)b-23+1-(-53)=-3b 2.4.答案:A解析:由题设,(a b -a -b )2=a 2b -2+a -2b=4,即a 2b +a-2b=6,又(a b +a -b )2=a 2b +2+a -2b=8,且a b+a -b>0,所以a b+a -b=2 2. 5.答案:A解析:∵a +1a=3,∴(a +1a)2=a +2+a -1=9,即a +a -1=7,∴(a +a -1)2=a 2+a -2+2=49, ∴a 2+a -2=47. 6.答案:BD解析:A 选项:a 52·a 13·a 136=a 52+13+136=a 5≠1,A 选项错误;B 选项:(a 6·b -9)-23=a6×(-23)b(-9)×(-23)=a -4b 6,B 选项正确;C 选项:-15a 12b 13c -3425a -12b 13c54=-35a 12-(-12)b 13-13c -34-54=-35ac -2≠-35ac ,C 选项错误; D 选项:(-2x 14y -13)(3x -12y 23)(-4x 14y 23)=24x 14-12+14y-13+23+23=24y ,D 选项正确.7.答案:31+π解析:432-(-94)0+6(3-π)6+[(-3)6]12=8-1+π-3+27=31+π.8.答案:14 215解析:利用一元二次方程根与系数的关系,得α+β=-2,αβ=15.则2α·2β=2α+β=2-2=14,(2α)β=2αβ=215.9.解析:(1)原式=[2×(-6)÷(-3)]·a 23+12-16·b 12+13-56=4ab 0=4a .(2)原式=(a 23-a 32)÷a 12=a 23÷a 12-a 32÷a 12=a 23-12-a 32-12=a 16-a =6a -a .10.解析:(1)(a 12+a -12)2=a +a -1+2=9,所以a +a -1=7.(2)(a +a -1)2=a 2+a -2+2=49,所以a 2+a -2=47; (a -a -1)2=a 2+a -2-2=47-2=45,所以a -a -1=±3 5.核心素养升级练1.答案:C 解析:3a -1+3a -2+3a -3=(9+3+1)×3a -3=117,得3a -3=9,解得:a =5,所以(a +1)(a+2)(a +3)=336.2.答案:2-1263解析:原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1-12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1-122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1-124)×2 =(1+1232)(1+1216)(1+128)×(1-128)×2 =(1+1232)(1+1216)×(1-1216)×2 =(1+1232)×(1-1232)×2 =(1-1264)×2 =2-1263.3.解析:(1)因为a >0,且a 2x=2+1, 所以a-2x=12+1=2-1(2+1)(2-1)=2-1, 所以(a x+a -x)(a x-a -x)=a 2x-a-2x=2+1-(2-1)=2.(2)a x +a -x a x -a -x =(a x +a -x )2(a x -a -x )(a x +a -x)=a 2x +a -2x +22=2+1+(2-1)+22=2+1. (3)a 3x +a -3x a x +a -x =(a x +a -x )(a 2x -a x ·a -x +a -2x )a x +a -x=a 2x -a x ·a -x +a -2x =2+1-1+(2-1)=22-1.。
高一数学必修一第二章知识总结

高一数学必修一第二章知识总结高一数学必修一第二章知识总结高一数学必修一第二章知识总结一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果xna,那么x叫做a的n次方根,其中n>1,且n∈N*.负数没有偶次方根;0的任何次方根都是0,记作n00。
当n是奇数时,anna,当n是偶数时,ann(a0)a|a|a(a0)2.分数指数幂正数的分数指数幂的意义,规定:maanmnna(a0,m,nN,n1)1mnm*,*1na0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质am(a0,m,nN,n1)(1)a〃aa(a0,r,sR);(2)(3)(a)arrsrsrrrs(a0,r,sR);(ab)aars(a0,r,sR).(二)指数函数及其性质1、指数函数的概念:一般地,函数yax(a0,且a1)叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>10(2)若x0,则f(x)1;f(x)取遍所有正数当且仅当xR;(3)对于指数函数f(x)ax(a0且a1),总有f(1)a;二、对数函数(一)对数1.对数的概念:一般地,如果axN(a0,a1),那么数x叫做以.a为底..N的对数,记作:xlog数,logxaN(a底数,N真aN对数式)说明:○1注意底数的限制a0,且a1;2aNlogNx;○3注意对数的书写格式.○alogaN两个重要对数:1常用对数:以10为底的对数lgN;○2自然对数:以无理数e2.71828为底的对数的对数lnN○指数式与对数式的互化幂值真数a=NlogaN=bb.底数指数对数(二)对数的运算性质如果a0,且a1,M0,N0,那么:1loga(M〃N)logaM+logaN;○2log○3log○MaNMnlogaM-logaaN;anlogM(nR).注意:换底公式logcblogab(a0,且a1;c0,且c1;b0).logca利用换底公式推导下面的结论(1)logambnnmloga(2)logb;ab1logba.(二)对数函数1、对数函数的概念:函数ylogax(a0,且a1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:○1对数函数的定义与指数函数类似,都是形式定义,注意辨别。
人教新课标版数学高一-数学必修1训练 指数与指数幂的运算(一)

数学·必修1(人教A版)本章概述学习内容1.指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景.(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型.2.对数函数(1)理解对数的概念及其运算性质,能用换底公式将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用.(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.(3)了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.3.幂函数通过实例,了解幂函数的概念;结合函数y =x α⎝⎛⎭⎪⎫α=1,2,3,12,-1的图象,了解它们的变化情况.4.学习指数函数、对数函数、幂函数等基本初等函数要注意的问题(1)指数幂的学习,应在回顾整数指数幂的概念及其运算性质的基础上,结合具体实例,理解有理指数幂及其运算性质,了解实数指数幂的意义及其运算性质,体会“用有理数逼近无理数”的思想,可以利用计算器或计算机进行实际操作,感受“逼近”过程.(2)关于反函数,可通过比较同底的指数函数和对数函数,了解指数函数y =a x (a >0,且a ≠1)和对数函数y =log a x (a >0,且a ≠1)互为反函数.(3)学习指数函数、对数函数等具体的基本初等函数,应结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题.知识结构2.1指数函数2.1.1指数与指数幂的运算(一)►基础达标1.化简下列各式:(1) 6(3-π)6=______________;答案:π-3(2) 5a10=______________.答案:a2答案:C解析:(2n +1)2·⎝ ⎛⎭⎪⎫122n +14n·8-2=22n +2-(2n +1)22n -6=21-2n +6=27-2n=⎝ ⎛⎭⎪⎫122n -7. 答案:D5.设a ≥0,化简:3a 6=____________ ,由此推广可得:p a mp =________(m ,n ,p ∈N *).答案:a 2 a m►巩固提高6.若8<x <12,则(x -8)2+(x -12)2=_______________________________________________________.解析:(x-8)2+(x-12)2(∵8<x<12)=x-8+12-x=4. 答案:47.设a,b∈R,下列各式总能成立的是()A.(6a-6b)6=a-bB.8(a2+b2)8=a2+b2C.4a4-4b4=a-bD.10(a+b)10=a+b答案:B►巩固提高10.已知0<2x -1<3,化简1-4x +4x 2+2|x -2|.解析:由0<2x -1<3,得12<x <2,∴1-4x +4x 2+2|x -2|=(2x -1)2+2|x -2|=2x -1-2(x -2)=3.1.熟记整数幂的运算性质. 2.理解n 次方根与根式的概念.3.掌握根式运算性质.进行指数幂的运算时,一般将指数化为正指数,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.。
高一数学指数与指数幂的运算1(新编201911)

平行 时加在辰少弱上 丞各一人 "先师尼父 增置少监一人 开府仪同三司 但无行参军员 长兼行参军等员 如初乃伏 月在丙上 朝请大夫张镇州击流求 佐
2.式
n
n
a
与
n
an含义相同吗?
【提示】 ①n∈N,且 n>1.
②当 n 为大于 1 的奇数时,n a对任意 a∈R
都有意义,它表示 a 在实数范围内唯一的一个 n
,完成化简.
【解析】
4 (1)
(-2)4=2
5 (2)
(2-π)5=2-π
4 (3)
(x+1)4=|x+1|=-x+x-1 1
(x≥-1) (x<-1)
3 (4)
(x-6)3=x-6
当 n 为奇数时,n an=a;当 n 为偶数时,n an =|a|,本题中要注意 n 的奇偶性对式子n an的值的 影响,做到理解,并能熟练应用.
次方根,n
an=a.
③当 n 为大于 1 的偶数时,n a只有当 a≥0 时有
意义,当 a<0 时无意义.n a(a≥0)表示 a 在实数范
人教版高中数学必修一第二章教案和练习

高中数学必修一第二章教案和练习§2.1.1 指数与指数幂的运算(1)学习目标1. 了解指数函数模型背景及实用性、必要性;2. 了解根式的概念及表示方法;3. 理解根式的运算性质.学习过程一、课前准备(预习教材P 48~ P 50,找出疑惑之处)复习1:正方形面积公式为 ;正方体的体积公式为 .复习2:(初中根式的概念)如果一个数的平方等于a ,那么这个数叫做a 的 ,记作 ; 如果一个数的立方等于a ,那么这个数叫做a 的 ,记作 .二、新课导学※ 学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1. 某市人口平均年增长率为1.25℅,1990年人口数为a 万,则x 年后人口数为多少万?实例2. 给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长50cm ,宽34cm ,厚0.01mm ,进行对折x 次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP (国内生产总值)年平均增长率达7.3℅, 则x 年后GDP 为2000年的多少倍?问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后体内碳14的含量P 与死亡时碳14关系为57301()2t P . 探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察: 2(2)4±=,那么2±就叫4的 ;3327=,那么3就叫27的 ;4(3)81±=,那么3±就叫做81的 .依此类推,若n x a =,,那么x 叫做a 的 .新知:一般地,若n x a =,那么x 叫做a 的n 次方根 ( n th root ),其中1n >,n *∈N .例如:328=2=.反思:当n 为奇数时, n 次方根情况如何?33=-, 记:x =当n 为偶数时,正数的n 次方根情况?例如:81的4次方根就是 ,记:.强调:负数没有偶次方根;0的任何次方根都是00=.试试:4b a =,则a 的4次方根为 ;3b a =,则a 的3次方根为 .新知:根式(radical ),这里n 叫做根指数(radical exponent ),a 叫做被开方数(radicand ).试试:计算2.反思:从特殊到一般,n结论:n a =. 当n a =;当n (0)||(0)a a a a a ≥⎧=⎨-<⎩.※ 典型例题例1求下类各式的值:(1) ; (2) ;(3; (4)a b <).变式:计算或化简下列各式.(1 (2推广:=(a ≥0).※ 动手试试练1.练2. 化简三、总结提升※ 学习小结1. n 次方根,根式的概念;2. 根式运算性质.※ 知识拓展1. 整数指数幂满足不等性质:若0a >,则0n a >.2. 正整数指数幂满足不等性质:① 若1a >,则;② 若01a <<,则01n a <<. 其中n ∈N *.1. ).A. 3B. -3C. ±3D. 812. 625的4次方根是( ).A. 5B. -5C. ±5D. 253. 化简2是( ).A. b -B. bC. b ±D. 1b4. = .5. 计算:31. 计算:(1(2)2. 计算34a a-⨯和3(8)a+-,它们之间有什么关系?你能得到什么结论?3. 对比()n n nab a b=与()n nna ab b=,你能把后者归入前者吗?§2.1.1 指数与指数幂的运算(2)1. 理解分数指数幂的概念;2. 掌握根式与分数指数幂的互化;3. 掌握有理数指数幂的运算.一、课前准备(预习教材P50~ P53,找出疑惑之处)复习1:一般地,若n x a=,则x叫做a的,其中1n>,n*∈N. 简记为:.像的式子就叫做,具有如下运算性质:n= ;= ;= .(1)m n a a = ;(2)()m n a = ;(3)()n ab = .二、新课导学※ 学习探究探究任务:分数指数幂引例:a >01025a a ==,则类似可得= ;23a = = .新知:规定分数指数幂如下*(0,,,1)mna a m n N n =>∈>; *1(0,,,1)mnmn a a m n N n a -==>∈>.试试:(1)将下列根式写成分数指数幂形式:= ; = ;= (0,)a m N *>∈.(2)求值:238; 255; 436-; 52a -.反思:① 0的正分数指数幂为 ;0的负分数指数幂为 .② 分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质: (0,0,,a b r s Q >>∈)r a ·r r s a a +=; ()r s rs a a =; ()r r s ab a a =.※ 典型例题例1 求值:2327;4316-; 33()5-;2325()49-.变式:化为根式.例2 用分数指数幂的形式表示下列各式(0)b >:(1)2b b ; (2)533b b ; (3例3 计算(式中字母均正): (1)211511336622(3)(8)(6)a b a b a b -÷-; (2)311684()m n .小结:例2,运算性质的运用;例3,单项式运算.例4 计算:(1334a a(0)a >; (2)312103652(2)()m n m n --÷- (,)m n N *∈;(3)÷小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思:①② 无理数指数幂(0,)a a αα>是无理数是一个确定的实数.实数指数幂的运算性质如何?练1. 把851323x --⎫⎪⎪⎝⎭化成分数指数幂.练2. 计算:(1443327; (2三、总结提升 学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.知识拓展放射性元素衰变的数学模型为:0t m m e λ-=,其中t 表示经过的时间,0m 表示初始质量,衰减后的质量为m ,λ为正的常数.1. 若0a >,且,m n 为整数,则下列各式中正确的是( ).A. m m n na a a ÷= B. m n mn a a a ⋅= C. ()nm m n a a += D. 01n n a a -÷= 2. 化简3225的结果是( ).A. 5B. 15C. 25D. 1253. 计算(122--⎡⎤⎢⎥⎣⎦的结果是( ).A B . C.2 D .2- 4. 化简2327-= .5. 若102,104m n ==,则3210m n -= .1. 化简下列各式:(1)3236()49; (2.2.1⎛-⎝.§2.1.1 指数与指数幂的运算(练习)1. 掌握n次方根的求解;2. 会用分数指数幂表示根式;3. 掌握根式与分数指数幂的运算.一、课前准备(复习教材P48~ P53,找出疑惑之处)复习1:什么叫做根式? 运算性质?像的式子就叫做,具有性质:n=;=;= .复习2:分数指数幂如何定义?运算性质?①mna=;mna-=. 其中*0,,,1a m n N n>∈>②r sa a =;()r sa=;()sab=.复习3:填空.①n为时,(0)||...........(0)xxx≥⎧==⎨<⎩.②求下列各式的值:= ;=;= ;= ;= ;=;= .二、新课导学典型例题例1 已知1122a a-+=3,求下列各式的值:(1)1a a-+;(2)22a a-+;(3)33221122a aa a----.小结:①平方法;②乘法公式;③根式的基本性质=(a≥0)等.注意,a≥0十分重要,无此条件则公式不成立. .变式:已知11223a a--=,求:(1)1122a a-+;(2)3322a a--.例2从盛满1升纯酒精的容器中倒出13升,然后用水填满,再倒出13升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n次后?小结:① 方法:摘要→审题;探究 → 结论; ② 解应用问题四步曲:审题→建模→解答→作答. ※ 动手试试练1. 化简:11112244()()x y x y -÷-.练2. 已知x +x -1=3,求下列各式的值.(1)1122x x -+; (2)3322x x -+.练3. 已知12(),0x f x x x π=⋅>.三、总结提升 学习小结1. 根式与分数指数幂的运算;2. 乘法公式的运用.知识拓展1. 立方和差公式:3322()()a b a b a ab b +=+-+;3322()()a b a b a ab b -=-++.2. 完全立方公式:33223()33a b a a b ab b +=+++;33223()33a b a a b ab b -=-+-.1.).A. B. C. 3 D. 729 2. 354a a (a >0)的值是( ).A. 1B. aC. 15a D. 1710a3. 下列各式中成立的是( ).A .1777()n n m m= B .C 34()x y =+D .4. 化简3225()4-= . 5. 化简2115113366221()(3)()3a b a b a b -÷= .课后作业1. 已知32x a b --=+, .2. 2n a =时, 实数a 和整数n 所应满足的条件.§2.1.2 指数函数及其性质(1)学习目标1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点).学习过程一、课前准备(预习教材P 54~ P 57,找出疑惑之处)复习1:零指数、负指数、分数指数幂怎样定义的?(1)0a = ;(2)n a -= ;(3)m n a = ;m na -= .其中*0,,,1a m n N n >∈>复习2:有理指数幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .二、新课导学 学习探究探究任务一:指数函数模型思想及指数函数概念实例:A .细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么?B .一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x 年为自变量,残留量y 的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数(0,1)x y a a a =>≠且叫做指数函数(exponential function ),其中x 是自变量,函数的定义域为R .反思:为什么规定a >0且a ≠1呢?否则会出现什么情况呢?试试:举出几个生活中有关指数模型的例子?探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出下列函数图象: 1()2x y =, 2x y =讨论:(1)函数2x y =与1()2x y =的图象有什么关系?如何由2x y =的图象画出1()2x y =的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或13后呢?a >1 0<a <1图象性 质 (1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x =0时,y =1(4)在 R 上是增函数 (4)在R 上是减函数典型例题例1函数()x f x a =(0,1a a >≠且)的图象过点(2,)π,求(0)f ,(1)f -,(1)f 的值.小结:①确定指数函数重要要素是 ;② 待定系数法.例2比较下列各组中两个值的大小:(1)0.60.52,2; (2)2 1.50.9,0.9-- ;(3)0.5 2.12.1,0.5 ; (4)231-与.小结:利用单调性比大小;或间接利用中间数.练1. 已知下列不等式,试比较m 、n 的大小:(1)22()()33m n >; (2) 1.1 1.1m n <.练2. 比较大小:(1)0.70.90.80.8,0.8, 1.2a b c ===;(2)01, 2.50.4,-0.22-, 1.62.5.三、总结提升学习小结①指数函数模型应用思想;②指数函数概念;③指数函数的图象与性质;③单调法.知识拓展因为(01)x y a a a =>≠,且的定义域是R , 所以()(01)f x y a a a =>≠,且的定义域与()f x 的定义域相同. 而()(01)x y a a a ϕ=>≠,且的定义域,由()y t ϕ=的定义域确定.学习评价自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差当堂检测(时量:5分钟 满分:10分)计分:1. 函数2(33)x y a a a =-+是指数函数,则a 的值为( ).A. 1B. 2C. 1或2D. 任意值2. 函数f (x )=21x a -+ (a >0,a ≠1)的图象恒过定点( ).A. (0,1)B. (0,2)C. (2,1)D. (2,2)3. 指数函数①()x f x m =,②()x g x n =满足不等式 01m n <<<,则它们的图象是( ).4. 比较大小:23( 2.5)- 45( 2.5)-.5. 函数1()19x y =-的定义域为 . 课后作业1. 求函数y =1151x x --的定义域.2. 探究:在[m ,n ]上,()(01)x f x a a a =>≠且值域?§2.1.2 指数函数及其性质(2)学习目标1. 熟练掌握指数函数概念、图象、性质;2. 掌握指数型函数的定义域、值域,会判断其单调性;3. 培养数学应用意识.学习过程一、课前准备(预习教材P 57~ P 60,找出疑惑之处)复习1:指数函数的形式是 ,复习2:在同一坐标系中,作出函数图象的草图:2x y =,1()2x y =,5x y =,1()5x y =, 10x y =,1()10x y =.思考:指数函数的图象具有怎样的分布规律?二、新课导学典型例题例1我国人口问题非常突出,在耕地面积只占世界7%的国土上,却养育着22%的世界人口.因此,中国的人口问题是公认的社会问题.2000年第五次人口普查,中国人口已达到13亿,年增长率约为1%.为了有效地控制人口过快增长,实行计划生育成为我国一项基本国策.(1)按照上述材料中的1%的增长率,从2000年起,x 年后我国的人口将达到2000年的多少倍?(2)从2000年起到2020年我国人口将达到多少?小结:学会读题摘要;掌握从特殊到一般的归纳法.试试:2007年某镇工业总产值为100亿,计划今后每年平均增长率为8%, 经过x 年后的总产值为原来的多少倍?多少年后产值能达到120亿?小结:指数函数增长模型.设原有量N ,每次的增长率为p ,则经过x 次增长后的总量y = . 我们把形如x y ka = (,0,1)k R a a ∈>≠且的函数称为指数型函数.例2 求下列函数的定义域、值域:(1)21x y =+; (2)y = (3)110.4x y -=.变式:单调性如何?小结:单调法、基本函数法、图象法、观察法.试试:求函数y =.练1. 求指数函数212x y +=的定义域和值域,并讨论其单调性.练2. 已知下列不等式,比较,m n 的大小.(1)33m n <; (2)0.60.6m n >;(3)(1)m n a a a >> ;(4) (01)m n a a a <<<.练3. 一片树林中现有木材30000 m 3,如果每年增长5%,经过x 年树林中有木材y m 3,写出x ,y 间的函数关系式,并利用图象求约经过多少年,木材可以增加到40000m 3.三、总结提升学习小结1. 指数函数应用模型(,01)x y ka k R a a =∈>≠且;2. 定义域与值域;知识拓展形如()(01)f x y a a a =>≠,且的函数值域的研究,先求得()f x 的值域,再根据t a 的单调性,列出简单的指数不等式,得出所求值域,注意不能忽视()0f x y a =>. 而形如()(01)x y a a a ϕ=>≠,且的函数值域的研究,易知0x a >,再结合函数()t ϕ进行研究. 在求值域的过程中,配合一些常用求值域的方法,例如观察法、单调性法、图象法等.1. 如果函数y =a x (a >0,a ≠1)的图象与函数y =b x (b >0,b ≠1)的图象关于y 轴对称,则有( ).A. a >bB. a <bC. ab =1D. a 与b 无确定关系2. 函数f (x )=3-x -1的定义域、值域分别是( ).A. R , RB. R , (0,)+∞C. R ,(1,)-+∞D.以上都不对3. 设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ).A. y =a x 的图象与y =a -x 的图象关于y 轴对称B. 函数f (x )=a 1-x (a >1)在R 上递减C. 若a 2>a 21-,则a >1D. 若2x >1,则1x >4. 比较下列各组数的大小:122()5- 320.4-(); 0.763() 0.753-(). 5. 在同一坐标系下,函数y =a x ,y =b x , y =c x , y =d x 的图象如右图,则a 、b 、c 、d 、1之间从小到大的顺序是 .课后作业1. 已知函数f (x )=a -221x +(a ∈R ),求证:对任何a R ∈, f (x )为增函数.2. 求函数2121x x y -=+的定义域和值域,并讨论函数的单调性、奇偶性.§2.2.1 对数与对数运算(1)学习目标1. 理解对数的概念;3. 掌握对数式与指数式的相互转化.学习过程一、课前准备(预习教材P 62~ P 64,找出疑惑之处)复习1:庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?复习2:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产 是2002年的2倍? (只列式)二、新课导学学习探究探究任务:对数的概念问题:截止到1999年底,我国人口约13亿. 如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,30亿?讨论:(1)问题具有怎样的共性?(2)已知底数和幂的值,求指数怎样求呢?例如:由1.01x m =,求x .新知:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数试试:将复习2及问题中的指数式化为对数式.新知:我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数log N 简记为lg Nlog e N 简记作ln N试试:分别说说lg5 、lg3.5、ln10、ln3的意义.反思:(1)指数与对数间的关系?0,1a a >≠时,x a N =⇔ .(2)负数与零是否有对数?为什么?(3)log 1a = , log a a = .典型例题例1下列指数式化为对数式,对数式化为指数式.(1)35125= ;(2)712128-=;(3)327a =; (4) 2100.01-=; (5)12log 325=-;(6)lg0.001=3-; (7)ln100=4.606.变式:12log 32?= lg0.001=?小结:注意对数符号的书写,与真数才能构成整体. 例2求下列各式中x 的值:(1)642log 3x =; (2)log 86x =-; (3)lg 4x =; (4)3ln e x =.练1. 求下列各式的值.(1)5log 25 ; (2)21log 16; (3)lg 10000.练2. 探究log ?n a a = log ?a N a =三、总结提升①对数概念;②lg N 与ln N ;③指对互化;④如何求对数值知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier ,1550-1617年)男爵. 在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科. 可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间. 纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.:1. 若2log 3x =,则x =( ).A. 4B. 6C. 8D. 92.log = ( ).A. 1B. -1C. 2D. -23. 对数式2log (5)a a b --=中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5)4. 计算:1(3+= .5. 若log 1)1x =-,则x =________,若y =,则y =___________.课后作业1. 将下列指数式化成对数式,对数式化成指数式.(1)53243=; (2)51232-=; (3)430a = (4)1() 1.032m =; (5)12log 164=-; (6)2log 1287=; (7)3log 27a =.2. 计算:(1)9log 27; (2)3log 243; (3);(3)(2log (2; (4).§§2.2.1 对数与对数运算(2)学习目标1. 掌握对数的运算性质,并能理解推导这些法则的依据和过程;2. 能较熟练地运用对数运算法则解决问题..学习过程一、课前准备(预习教材P 64~ P 66,找出疑惑之处)复习1:(1)对数定义:如果x a N =(0,1)a a >≠,那么数 x 叫做 ,记作 .(2)指数式与对数式的互化:x a N =⇔ .复习2:幂的运算性质.(1)m n a a = ;(2)()m n a = ;(3)()n ab = .复习3:根据对数的定义及对数与指数的关系解答:(1)设log 2a m =,log 3a n =,求m n a +;(2)设log a M m =,log a N n =,试利用m 、n 表示log (a M ·)N .二、新课导学学习探究探究任务:对数运算性质及推导问题:由p q p q a a a +=,如何探讨log a MN 和log a M 、log a N 之间的关系?问题:设log a M p =, log a N q =,由对数的定义可得:M =p a ,N =a∴MN =p a q a =p q a +,∴log a MN =p +q ,即得log a MN =log a M + log a N根据上面的证明,能否得出以下式子?如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()log log a a a MN M N =+;(2)log log log a a a M M N N=-; (3) log log ()n a a M n M n R =∈.反思:自然语言如何叙述三条性质? 性质的证明思路?(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)典型例题例1用log a x , log a y , log a z 表示下列各式:(1)2log a xy z ; (2) log a .例2计算:(1)5log 25; (2)0.4log 1;(3)852log (42)⨯; (4)探究:根据对数的定义推导换底公式log log log c a c b b a=(0a >,且1a ≠;0c >,且1c ≠;0b >).试试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?动手试试练1. 设lg2a =,lg3b =,试用a 、b 表示5log 12.变式:已知lg2=0.3010,lg3=0.4771,求lg6、.练2. 运用换底公式推导下列结论.(1)log log m n a a n b b m=;(2)1log log a b b a =.练3. 计算:(1)7lg142lg lg7lg183-+-;(2)lg 243lg9.三、总结提升学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※ 知识拓展① 对数的换底公式log log log b a b N N a=; ② 对数的倒数公式1log log a b b a=. ③ 对数恒等式:log log n n a a N N =,log log m n a a n N N=,log log log 1a b c b c a =. ※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列等式成立的是( ) A .222log (35)log 3log 5÷=-B .222log (10)2log (10)-=-C .222log (35)log 3log 5+=D .3322log (5)log 5-=-2. 如果lgx =lga +3lgb -5lgc ,那么( ).A .x =a +3b -cB .35ab x c= C .35ab x c= D .x =a +b 3-c 3 3. 若()2lg 2lg lg y x x y -=+,那么( ).A .y x =B .2y x =C .3y x =D .4y x =4. 计算:(1)99log 3log 27+=;(2)2121log log 22+= . 5. 计算:15lg 23=.1. 计算:(1; (2)2lg 2lg 2lg5lg5+⋅+.2. 设a 、b 、c 为正数,且346a b c ==,求证:1112c a b-=.§2.2.1 对数与对数运算(3)1. 能较熟练地运用对数运算性质解决实践问题;2. 加强数学应用意识的训练,提高解决应用问题的能力.一、课前准备(预习教材P 66~ P 69,找出疑惑之处)复习1:对数的运算性质及换底公式.如果 a > 0,a ≠ 1,M > 0, N > 0 ,则(1)log ()a MN = ;(2)log a M N= ; (3) log n a M = .换底公式log a b = .复习2:已知 2log 3 = a , 3log 7 = b ,用 a ,b 表示42log 56.复习3:1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿? (用式子表示)二、新课导学※ 典型例题例1 20世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大. 这就是我们常说的里氏震级M ,其计算公式为:0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001, 计算这次地震的震级(精确到0.1);(2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)小结:读题摘要→寻找数量关系→利用对数计算.例2当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P 与生物死亡年数t 之间的关系.回答下列问题:(1)求生物死亡t 年后它机体内的碳14的含量P ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(2)已知一生物体内碳14的残留量为P ,试求该生物死亡的年数t ,并用函数的观点来解释P 和t 之间的关系,指出是我们所学过的何种函数?(3)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代?反思:① P 和t 之间的对应关系是一一对应;② P 关于t 的指数函数(x P =,则t 关于P 的函数为 . ※ 动手试试练1. 计算:(1)0.21log 35-; (2)4912log 3log 2log ⋅-练2. 我国的GDP 年平均增长率保持为7.3%,约多少年后我国的GDP 在2007年的基础上翻两番?三、总结提升※ 学习小结1. 应用建模思想(审题→设未知数→建立x 与y 之间的关系→求解→验证);2. 用数学结果解释现象.※ 知识拓展在给定区间内,若函数()f x 的图象向上凸出,则函数()f x 在该区间上为凸函数,结合图象易得到1212()()()22x x f x f x f ++≥; 在给定区间内,若函数()f x 的图象向下凹进,则函数()f x 在该区间上为凹函数,结合图象易得到1212()()()x x f x f x f ++≤.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 25()a -(a ≠0)化简得结果是( ).A .-aB .a 2C .|a |D .a2. 若 log 7[log 3(log 2x )]=0,则12x =( ).A. 3B.C.D.3. 已知35a b m ==,且112a b+=,则m 之值为( ).A .15BC .D .2254. 若3a =2,则log 38-2log 36用a 表示为 .5. 已知lg20.3010=,lg1.07180.0301=,则lg2.5= ;1102= .1. 化简:(1)222lg5lg8lg5lg20(lg2)3+++; (2)()()24525log 5+log 0.2log 2+log 0.5.2. 若()()lg lg 2lg 2lg lg x y x y x y -++=++,求x y的值.§2.2.2 对数函数及其性质(1)1. 通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3. 通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.一、课前准备(预习教材P 70~ P 72,找出疑惑之处)复习1:画出2x y =、1 ()2x y =的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.(列式)二、新课导学※ 学习探究探究任务一:对数函数的概念讨论:t 与P 的关系?(对每一个碳14的含量P 的取值,通过对应关系logt P =,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数)新知:一般地,当a >0且a ≠1时,函数log a y x =叫做对数函数(logarithmic function),自变量是x ; 函数的定义域是(0,+∞).反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:22log y x =,5log (5)y x = 都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制 (0a >,且1)a ≠.探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试试:同一坐标系中画出下列对数函数的图象.2log y x =;0.5log y x =.反思:((2)图象具有怎样的分布规律?※ 典型例题例1求下列函数的定义域: (1)2log a y x =;(2)log (3)a yx =-;变式:求函数y =的定义域.例2比较大小:(1)ln3.4,ln8.5; (2)0.30.3log 2.8,log 2.7; (3)log 5.1,log 5.9a a .小结:利用单调性比大小;注意格式规范.※ 动手试试练1. 求下列函数的定义域.(1)0.2log (6)y x =--; (2)y .练2. 比较下列各题中两个数值的大小.(1)22log 3log 3.5和; (2)0.30.2log 4log 0.7和; (3)0.70.7log 1.6log 1.8和; (4)23log 3log 2和.三、总结提升※ 学习小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.※ 知识拓展对数函数凹凸性:函数()log ,(0,1)a f x x a a =>≠,12,x x 是任意两个正实数.当1a >时,1212()()()22f x f x x xf ++≤;当01a <<时,1212()()()22f x f x x xf ++≥.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象是( ).2. 函数22log (1)y x x =+≥的值域为( ). A. (2,)+∞ B. (,2)-∞ C. [)2,+∞ D. [)3,+∞3. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2)B. 1(,)2+∞ D. 1(0,)24. 比大小:(1)log 67 log 7 6 ; (2)log 31.5 log 2 0.8. 5. 函数(-1)log (3-)x y x =的定义域是 .1. 已知下列不等式,比较正数m 、n 的大小:(1)3log m <3log n ; (2)0.3log m >0.3log n ; (3)log a m >log a n (a >1)2. 求下列函数的定义域:(1)y =(2)y =§2.2.2 对数函数及其性质(2)1. 解对数函数在生产实际中的简单应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.一、课前准备(预习教材P 72~ P 73,找出疑惑之处)复习1:对数函数log (0,1)a y x a a =>≠且图象和性质.复习2:比较两个对数的大小.(1)10log 7与10log 12 ; (2)0.5log 0.7与0.5log 0.8.复习3:求函数的定义域.(1)311log 2y x=- ; (2)log (28)a y x =+.二、新课导学※ 学习探究探究任务:反函数问题:如何由2x y =求出x ?反思:函数2log x y =由2x y =解出,是把指数函数2x y =中的自变量与因变量对调位置而得出的. 习惯上我们通常用x 表示自变量,y 表示函数,即写为2log y x =.新知:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ) 例如:指数函数2x y =与对数函数2log y x =互为反函数.试试:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什么性质?反思: (1)如果000(,)P x y 在函数2x y =的图象上,那么P 0关于直线y x =的对称点在函数2log y x =的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于 对称.※ 典型例题例1求下列函数的反函数:(1) 3x y =; (2)log (1)a y x =-.小结:求反函数的步骤(解x →习惯表示→定义域)变式:点(2,3)在函数log (1)a y x =-的反函数图象上,求实数a 的值.例2溶液酸碱度的测量问题:溶液酸碱度pH 的计算公式lg[]pH H +=-,其中[]H +表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系? (2)纯净水7[]10H +-=摩尔/升,计算其酸碱度.小结:抽象出对数函数模型,然后应用对数函数模型解决问题,这就是数学应用建模思想.※ 动手试试练1. 己知函数()x f x a k =-的图象过点(1,3)其反函数的图象过点(2,0),求()f x 的表达式.练2. 求下列函数的反函数.(1) y =x (x ∈R );(2)y =log a 2x(a >0,a ≠1,x >0)三、总结提升※ 学习小结① 函数模型应用思想;② 反函数概念.※ 知识拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x 的值,y 都有唯一的值和它对应. 对于一个单调函数,反之对应任意y 值,x 也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域 学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 函数0.5log y x =的反函数是( ). A. 0.5log y x =- B. 2log y x =C. 2x y =D. 1()2x y =2. 函数2xy =的反函数的单调性是( ). A. 在R 上单调递增 B. 在R 上单调递减C. 在(0,)+∞上单调递增D. 在(0,)+∞上单调递减3. 函数2(0)y x x =<的反函数是( ). A. (0)y x x =±> B. (0)y x x => C. (0)y x x =-> D. y x =±4. 函数x y a =的反函数的图象过点(9,2),则a 的值为 .5. 右图是函数1log a y x =,2log a y x =3log a y x =, 4log a y x =的图象,则底数之间的关系为 .课后作业有占总数12的细胞每小时分裂一次,即由1个细1. 现有某种细胞100个,其中胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过1010个?(参考数据:lg30.477,lg20.301==).。
高一数学必修1第二章基本初等函数知识点总结归纳

必修1第二章基本初等函数(Ⅰ)知识点整理〖2.1〗指数函数2.1.1指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈2.1.2指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式: log 10a =,log 1aa =,logb a a b =.(3)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()naa n M M n R =∈ ④log a NaN =⑤log log (0,)b na a n M Mb n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()xy ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x=是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a-=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02x a->,则()M f p =xxxxx x(q)0x(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()mf p =.xfxfx xx。
高一数学指、对与幂基本运算(重点突破)练习题含答案

高一数学指、对与幂基本运算练习题【重难点知识点网络】:【重难点题型突破】: 一、指数运算 1、 根式与分数指数幂(1)、性质:(na )n=a (a 使na 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,na n =|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.(2)、规定:正数的正分数指数幂的意义是a m n =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(3)、有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q. 例1、(1)、(2022·山东枣庄·高一期中)下列根式与分数指数幂的互化,正确的是( ) A.21()x =- B12y =C.310)x x -=≠ D .1432](0)x x =>(2)、(2022·湖南·长沙市同升湖高级中学有限公司高一期中))A .2B .532 C .562D .762(3)、(2022·黑龙江省饶河县高级中学高一阶段练习)已知16a a -+=,则1122a a --的值为( ) A .2B .-2 C.±D .±2【变式训练1-1】、(2022·湖北·恩施市第一中学高一阶段练习) ) A .25a - B .56a -C .56()a -D .56()a --【变式训练1-2】、(2022·上海·高一专题练习)已知11224x x -+=,则1x x -+=_______.【变式训练1-3】、(2022·上海市松江二中高一期中)0)a >化成有理数指数幂的形式为______.例2.(2022·江苏·常州市正行中学高一阶段练习)(1)计算:()1020.52312220.0154--⎛⎫⎛⎫+⨯- ⎪⎪⎝⎭⎝⎭;(20)a >.【变式训练2-1】、(2022·四川省眉山第一中学高一阶段练习)(1)求值:()1233127863125-⎛⎫⨯++-+⎪⎝⎭(2) 已知 1a a -+= 求44a a -+的值.二、对数运算 1、对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2、对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①、log a (MN )=log a M +log a N ; ②、log a MN =log a M -log a N ;③、log a M n =n log a M (n ∈R); ④、log a m M n =nmlog a M (m ,n ∈R ,且m ≠0).(3)换底公式:log b N =log a Nlog a b(a ,b 均大于零且不等于1).例3、(1)、(2022·陕西·永寿县中学高一阶段练习)237log 7log 8log 3⋅⋅=______.(2)、(2022·广西·南宁二中高一阶段练习)计算:()1205122log 54⎛⎫--+= ⎪⎝⎭___________.(3)、(2022·陕西渭南·高一期末)已知0a >,且1a ≠,则下列各式恒成立的是( ) A .()2log 2log a a x x = B .2log 2log a a x x =C .log log log a a a x y x y ⋅=⋅D .()log log log a a a x y x y +=+【变式训练3-1】、(2022·江西·南昌市第一中学高一阶段练习))21lg12log 421221(lg 5)lg 2lg 504⎛⎫-+++⋅=⎪⎝⎭______.【变式训练3-2】、(2022·福建·莆田一中高一阶段练习)已知非零实数,,a b c 满足3624a b c ==,则,,a b c 之间的关系是( ) A .111b a c=+ B .312b a c =+ C .123b a c =+D .321b a c=+【变式训练3-3】、(2022·江苏徐州·高三学业考试)化简15932log 3-+的值为( )A .0B .1C .52D .32【变式训练3-4】、(2022·河北·21032128log 16(πe)25-+-++=__________.三、混合运算例4、(2022·浙江·高一期中)(1)01430.75337(0.064)(2)168---⎛⎫⎡⎤--+-+ ⎪⎣⎦⎝⎭.(2)3121log 24lg 539--⎛⎫- ⎪⎝⎭.【变式训练4-1】、(2021·陕西省米脂中学高一期中)计算: (1)33lg1000log 42log 14+-;(2)()0.51.500.5162536 1.5494-⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭【变式训练4-2】、(2022·湖北·武汉市第六中学高一阶段练习)计算下列各式的值:(1)1132(0.027)2-+ (2)22ln 2225lg 5lg 2lg 2lg 25log 5log 8e ++⋅+⋅+指、对与幂基本运算参考答案【重难点知识点网络】:【重难点题型突破】: 一、指数运算 1、 根式与分数指数幂(1)、性质:(na )n=a (a 使na 有意义);当n 为奇数时,na n=a ,当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.(2)、规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(3)、有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q. 例1、(1)、(2022·山东枣庄·高一期中)下列根式与分数指数幂的互化,正确的是( )A .21()x =- B 12y =C .310)xx -=≠ D .1432](0)x x =>(2)、(2022·湖南·长沙市同升湖高级中学有限公司高一期中))A .2B .532 C .562D .762(3)、(2022·黑龙江省饶河县高级中学高一阶段练习)已知16a a -+=,则1122a a --的值为( ) A .2 B .-2 C .±D .±2【变式训练1-1】、(2022·湖北·恩施市第一中学高一阶段练习) ) A .25a - B .56a -C .56()a -D .56()a --【变式训练1-2】、(2022·上海·高一专题练习)已知11224x x -+=,则1x x -+=_______. 【答案】14【变式训练1-3】、(2022·上海市松江二中高一期中)0)a >化成有理数指数幂的形式为______.例3.(2022·江苏·常州市正行中学高一阶段练习)(1)计算:()1020.52312220.0154--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(20)a >.【变式训练3-1】、(2022·四川省眉山第一中学高一阶段练习)(1)求值:()12303127863125-⎛⎫⨯++-+ ⎪⎝⎭(2) 已知 1a a -+= 求44a a -+的值.二、对数运算 1、对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2、对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么①、log a (MN )=log a M +log a N ; ②、log a MN =log a M -log a N ;③、log a M n =n log a M (n ∈R); ④、log a m M n =nmlog a M (m ,n ∈R ,且m ≠0).(3)换底公式:log b N =log a Nlog a b(a ,b 均大于零且不等于1).例3、(1)、(2022·陕西·永寿县中学高一阶段练习)237log 7log 8log 3⋅⋅=______.(2)、(2022·广西·南宁二中高一阶段练习)计算:()125122log 54⎛⎫--+= ⎪⎝⎭___________.【答案】32##1.5(3)、(2022·陕西渭南·高一期末)已知0a >,且1a ≠,则下列各式恒成立的是( ) A .()2log 2log a a x x = B .2log 2log a a x x =C .log log log a a a x y x y ⋅=⋅D .()log log log a a a x y x y +=+【变式训练3-1】、(2022·江西·南昌市第一中学高一阶段练习))21lg12log 421221(lg 5)lg 2lg 504⎛⎫-+++⋅=⎪⎝⎭______. 【答案】92##4.5【变式训练3-2】、(2022·福建·莆田一中高一阶段练习)已知非零实数,,a b c 满足3624a b c ==,则,,a b c 之间的关系是( ) A .111b a c=+ B .312b a c =+ C .123b a c =+D .321b a c=+【变式训练3-3】、(2022·江苏徐州·高三学业考试)化简15932log 3-+的值为( )A .0B .1C .52D .32【变式训练3-4】、(2022·河北·21032128log 16(πe)25-+-++=__________.【答案】15-##0.2-2132128log 16πe25252311241555故答案为:15-三、混合运算例4、(2022·浙江·高一期中)(1)01430.75337(0.064)(2)168---⎛⎫⎡⎤--+-+ ⎪⎣⎦⎝⎭. (2)3121log 24lg 539--⎛⎫- ⎪⎝⎭.【变式训练4-1】、(2021·陕西省米脂中学高一期中)计算: (1)33lg1000log 42log 14+-;(2)()0.51.500.5162536 1.5494-⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭【变式训练4-2】、(2022·湖北·武汉市第六中学高一阶段练习)计算下列各式的值: (1)1132(0.027)2-+ (2)22ln 2225lg 5lg 2lg 2lg 25log 5log8e ++⋅+⋅+。
人教版数学高中必修一《指数与指数幂等运算》课时训练及答案

2.1.2 指数与指数幂的运算(二)►基础达标1.化简[(-3)2]-12的值等于( )A.3 B .- 3C.33 D .-33解析:[(-3)2]-12=3-12=33.答案:C2. x -2x -1=x -2x -1成立的条件是( )A .x <1B .x ≠1 C.x -2x -1≥0 D .x ≥2 解析:⎩⎪⎨⎪⎧ x -2≥0,x -1>0⇒⎩⎪⎨⎪⎧x ≥2,x >1,∴x ≥2.答案:D3.(-2)100+(-2)101等于( ) A .-1 B .2100 C .(-2)100 D .-2100 解析:(-2)100+(-2)101 =(-2)100+(-2)(-2)100 =(-2)100[1+(-2)] =-(-2)100=-2100. 答案:D4.若x 2=9,则x =________;若x 3=8,则x =________________________________________________________.答案:±3 25.已知a 12+a -12=3,则a 2+a -2=_____________________________________________________.6.设b>0,用分数指数幂表示下列各式:(1)b2·b=________;(2)3b4b=________.答案:7.计算2-12+(-4)02+12-1-(1-5)0的结果是()A.1 B.2 2 C. 2 D.2-12►巩固提高8.求值:23×31.5×612=________.9.化简下列各式:解析:.解析:10.已知x∈R,a>0,设a x+a-x=u,将下列各式分别用u表示:1.进行指数幂运算时,要将指数化为正指数,还要善于利用幂的运算法则.2.注意根式运算与有理数指数幂的相互转化.3.利用指数幂的运算性质进行化简变化时,要注意次序.4.含有绝对值或偶次方根的运算,必要时需要分类讨论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学练习19——指数与指数幂的运算
1.
3
)8(-的值是 ( )
A .2 B.
2- C. 2± D. 8
2.给出下列4个等式:①a
a =2;②
a
a =2)(;③
a
a =3
3;④
a
a =33)(。
其中不一定正确的是
( )
A. ①
B. ②
C. ③
D. ④ 3.若33
2)21(144a a a -=+-,则实数a 的取值范围为 ( ) A.21≤
a
B. 2
1≥a C. 2
1
21≤≤-
a D .R 4.下列说法正确的是 ( ) A.正数的n 次方根是正数)(*
N
n ∈ B.负数的n 次方根是负数)(*N n ∈
C.0的n 次方根是0)(*
N
n ∈ D.
n
a 是无理数)(*N n ∈
5.若,3120<-<
x 则|2|24412-++-x x x 等于 ( )
A. 54-x
B. 3-
C. 3
D. x 45- 6. 35212
-的平方根是
7.若x 满足5)31(4
4=-x ,则x 的值为
8.如果8>x
,则化简33
44)6()8(x x -+-的结果是
9.求下列各式的值:
(1)
=3
248 (2)=462525
(3)
=-2)3( (4)=-33)3(
(5= (6)=-2)3(a (7)=-+-+-33443
3)2()4()2(ππ
10.化简下列各式:
(1)21
15113
3
6622133a b a b a b ⎛⎫⎛⎫⋅⋅-÷ ⎪ ⎪⎝⎭⎝⎭
,其中0,0.a b >>
(2)121
13
3
4
2
23x y
x y -⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭
(3
)186
2
55
a b -
-⎛⎫⋅ ⎪⎝⎭一、 选择题
1.化简(1+232
1-)(1+2
16
1-)(1+28
1-)(1+2
-
4
1)(1+22
1-),结果是( )
A 、 2
1
(1-2321
-)
-1
B 、(1-232
1
-)
-1
C 、 1-2
32
1-
D 、2
1
(1-2321
-)
2.(
36
9
a )4
(
63
9
a )4
等于( )
A 、 a
16
B 、 a
8
C 、 a 4
D 、 a 2
3.若a>1,b<0,且a b
+a -b
=22,则a b
-a
-b
的值等于( )
A 、
6 B 、±2 C 、-2 D 、2
4.已知a>b,ab 0≠下列不等式(1)a 2
>b 2
,(2)2a
>2b
,(3)b
a 11<,(4)a 31
>b 31
,(5)(31)a
<(31)
b
中恒成立的有( )
A 、1个
B 、2个
C 、3个
D 、4个 5.下列关系中正确的是( )
A 、(21)32<(51)32<(21)31
B 、(21)31<(21)32<(51
)32
C 、(51)32<(21)31<(21)32
D 、(51)32<(21)32<(2
1)31
6.已知三个实数a,b=a a
,c=a
a
a ,其中0.9<a<1,则这三个数之间的大小关系是( )
A 、a<c<b
B 、a<b<c
C 、b<a<c
D 、c<a<b
7.一批设备价值a 万元,由于使用磨损,每年比上一年价值降低b%,则n 年后这批设备的价值为( ) A 、na(1-b%) B 、a(1-nb%) C 、a[(1-(b%))n
D 、a(1-b%)
n
8.85
1
3
2
3
x
-
-⎫⎪⎪⎝
⎭
化成分数指数幂为 ( )
A .12
x
- B .415
x
C .415
x
-
D .25
x
9.计算
(12
2
-
-⎡⎤
⎢⎥⎣
⎦
的结果是 ( )
A B . C.
2
D .2
-
10.函数
()2301x y z a a -=+>≠且的图像必经过点 ( )
A .(0,1)
B .(1,1)
C .(2,3)
D .(2,4)
11.函数
232
18x x y --⎛⎫= ⎪
⎝⎭
的增区间为 ( )
A .3,
2⎛⎤-∞ ⎥⎝⎦ B .3,2⎡⎫
+∞⎪⎢⎣⎭
C .
[]1,2 D .(][),12,-∞+∞
12.函数
2
3
x y --=的增区间为 ( )
A .
(),-∞+∞
B .
(),0-∞
C .
()2,+∞
D .
(),2-∞
二、填空题 13.若a 2
3
<a
2
,则a 的取值范围是
14.化简⨯5
3
x
x 3
5
x
x
×
3
5
x
x =
15.三个数1,2,2121
3
⎪⎭
⎫
⎝⎛从小到大的顺序是
16a>0,b>0)=______________
17.求值:()()()xy x y xy yx xx yy
x yx y x y
x y -++-++--=-
312
1
233
3332_____________
三、解答题
18、求值)442)(1
111(1111
111
1x x x x x x -----------+-+- 19、求值25.04245
.0081)2()4(5.7])43[(
+----- 20、3
43
8
58321312
4
4
34
18
1)
27()16()
3(-
---÷⋅z y x y x z y x
19.求函数
1421x x y +=++的定义域与值域.
20.求函数
1x y a =-的定义域(其中01a a >≠且).
21.求满足()
2
2
x x x
x >的正数x 的取值范围.
1.下列说法中正确的是……………………………………………………………………( ) A.-2是16的四次方根 B.正数的
次方根有两个
C. 的 次方根就是
D.
2.下列等式一定成立的是…………………………………………………………………( )
A .2
33
1a
a
⋅=a B .2
12
1a
a
⋅-
=0 C .(a 3)2=a
9
D.6
1312
1
a
a a
=÷
3. 4
31681-
⎪⎭⎫
⎝⎛的值是…………………………………………………………………………( ) A.278 B.278- C.23 D.2
3- 4. 将
3
22-化为分数指数幂的形式为…………………………………………………( )
A .2
1
2-
B .3
12- C .2
12
-
-
D.6
52-
5. 下列各式中,正确的是…………………………………………………………………( )
A .10
= B .1)
1(1
=-- C .7
4
4
71
a
a
=
-
D .5
3
5
31
a
a
=
-
6.设a >0,b >0,化简式子
()()()
6
153
122
2
133
ab b
a
b a ⋅⋅--的结果是………………………( )
A.a
B.
()1-ab C.1-ab D.1-a
7. 化简[3
2
)
5(-]
4
3的结果为…………………………………………………………( )
A .5
B .
5 C .-5
D.-5
8. 式子 经过计算可得到………………………………………………………( )
A. B. C. D.
10. 计算0.027
3
1
-
-(-
7
1)-2
+256
4
3-3-1
+(
2-1)
11. 化简
32
113
2132)(----
÷a
b b a b
a
b a .
12. 已知,32
12
1=+-x
x
求
3
2
12
32
3++++--x x x x 的值.。