尿素热解法脱硝具体工艺及应用(特选借鉴)
尿素脱硫脱硝原理及工艺
尿素脱硫脱硝原理及工艺尿素脱硫脱硝原理及工艺为了解决大气环境中的硫氧化物和氮氧化物的排放问题,尿素脱硫脱硝技术成为一种常用的减排方法。
本文将详细介绍尿素脱硫脱硝的原理和工艺,并探讨其应用和优缺点。
1. 尿素脱硫原理尿素脱硫是一种基于化学反应的脱硫技术,其原理是利用尿素与硫氧化物之间的反应生成二硫化碳,从而达到脱硫的目的。
尿素脱硫的化学反应如下:2NH2CONH2 + 4SO2 → 2CS2 + 4CO2 + 6H2O + 2N2尿素与硫氧化物反应生成的二硫化碳溶液可以通过各种设备进行处理,达到降低气体中硫氧化物含量的目的。
这种方法在许多工业领域得到了广泛应用。
2. 尿素脱硝原理尿素脱硝是一种针对氮氧化物的减排技术。
氮氧化物主要包括氮氧化物和二氧化氮。
尿素脱硝的原理是利用尿素溶液与氮氧化物之间的化学反应生成氮气和二氧化碳。
尿素脱硝的化学反应如下:2NH2CONH2 + 2NO + O2 → 2N2 + 2CO2 + 4H2O这种脱硝技术可以降低大气中的氮氧化物含量,减少对大气环境的污染。
3. 尿素脱硫脱硝工艺尿素脱硫脱硝工艺一般包括以下几个步骤:步骤一:烟气预处理在尿素脱硫脱硝过程中,烟气首先需要进行预处理。
通过脱除颗粒物和调节温度等方式,确保烟气符合尿素脱硫脱硝的要求。
步骤二:尿素喷射在预处理后的烟气中,尿素溶液通过喷射系统均匀地喷入烟气中。
尿素与烟气中的硫氧化物和氮氧化物发生反应,生成二硫化碳和氮气。
步骤三:二硫化碳洗涤生成的二硫化碳溶液从喷射系统中进入二硫化碳洗涤单元。
在洗涤单元中,通过不同的设备和工艺,将二硫化碳与其他物质进行分离和处理。
步骤四:氮气分离同样,生成的氮气也需要经过分离和处理。
根据实际情况,可以采用不同的工艺来分离和回收氮气,以达到节约资源的目的。
4. 应用与优缺点尿素脱硫脱硝技术广泛应用于燃煤电厂、钢铁厂等工业领域。
它可以大幅度降低烟气中的硫氧化物和氮氧化物排放,减少对大气环境的污染。
尿素热解和水解技术在锅炉烟气脱硝工程中的应用
尿素热解和水解技术在锅炉烟气脱硝工程中的应用尿素热解和水解技术在锅炉烟气脱硝工程中的应用引言:锅炉烟气脱硝工程是环保领域中的重要一环,其主要目的是降低锅炉烟气排放中的氮氧化物(NOx)浓度,减少大气污染对环境和人类健康的影响。
尿素热解和水解技术作为一种现代化的脱硝方法,其应用在锅炉烟气脱硝工程中逐渐受到关注。
本文将从尿素热解和水解技术的原理、应用以及优势等方面综合评估其在锅炉烟气脱硝工程中的价值和作用。
一、尿素热解和水解技术的原理1. 尿素热解技术原理尿素热解技术是利用高温下尿素分解生成氨和氰酸酯的反应过程。
尿素经过加热后产生氨气,而氨气可以与烟气中的NOx反应生成氮气和水,从而实现脱硝的目的。
2. 尿素水解技术原理尿素水解技术是将尿素与碱性溶液反应生成氨气的过程。
水解反应一般在碱性环境中进行,并通过调节反应条件和溶液浓度来实现对NOx 的脱除。
二、尿素热解和水解技术在锅炉烟气脱硝工程中的应用1. 尿素热解技术的应用尿素热解技术因其简便、高效的特点在锅炉烟气脱硝工程中得到广泛应用。
通过在锅炉燃烧过程中注入尿素,可以有效降低烟气排放中的NOx浓度,达到减少大气污染的效果。
尿素热解技术还可以与其他脱硝技术相结合,提高脱硝效果。
2. 尿素水解技术的应用尿素水解技术是一种适用于低温、低压条件下的脱硝方法,因其操作简便、能耗低的特点受到关注。
该技术主要应用于小型锅炉和工业锅炉等烟气处理中,可以有效降低烟气排放中的NOx浓度,实现环境保护的目标。
三、尿素热解和水解技术的优势1. 高效性尿素热解和水解技术在锅炉烟气脱硝工程中具有高效的优势。
通过合理设计脱硝装置和优化工艺参数,可以实现高效的脱硝效果,使锅炉烟气排放中的NOx浓度大幅度降低。
2. 环保性尿素热解和水解技术对环境友好,其产生的副产物往往可以再利用。
在脱硝过程中,尿素经过热解或水解反应后生成的氮气、水和少量的氨气等对环境没有明显的污染。
3. 经济性尿素热解和水解技术的投资和运维成本相对较低,适用于各种规模和类型的锅炉。
尿素热解法脱硝具体工艺及应用
1尿素热解和水解尿素热解反应方程式:CO(NH2)2(溶液) → CO(NH2)2(固) + H2O(气) (1)CO(NH2)2→ NH3+HNCO (2)HNCO+H2O → NH3+CO2(3)目前普遍认为尿素热解制氨的生成分三步实现:(1)尿素水溶液蒸发析出尿素颗粒;(2)尿素热解生成等物质的量的氨气和异氰酸HNCO;(3)异氰酸进一步水解生成等物质量的氨气和二氧化碳[1]。
尿素热解产物HNCO在气相中稳定存在,不易分解,只有在反应温度≥400 °C 时才会发生水解。
反应温度较低致使尿素热解过于复杂,中间反应产物降低了目标产物NH3的转化率,不利于尿素彻底分解。
因此提高反应温度、添加催化剂是脱硝过程中常用的提高尿素分解效率的手段。
尿素水解反应方程式:CO(NH2)2+ H2O → 2 NH3+ CO2(4)表1 尿素热解和水解技术参数对比[2]调研来看,尿素热解的反应速度最快且最安全,现场几乎没有储氨的容器,但其能耗和运行费用很高,所以较早进入中国市场,业绩较多,但用户的运行成本压力较大。
和尿素热解相比,尿素水解由于采用电厂较为丰富的蒸汽作为热源,能耗较低。
但 AOD、U2A 等国外水解技术,反应较慢需要庞大的反应器和缓冲装置,其投资和能耗较高。
催化水解的反应速度也较快,起停迅速,能耗较低,但是该技术相对来说还不是很成熟,在国内尚无应用。
尿素在热解时最终的产物是等量的氨气(NH)和异氰酸(HNCO)。
虽然HNCO能3,但是HNCO在气相下非常稳定,水解反应只有在特进一步发生水解反应生成NH3定的金属或金属氧化物下才能进行[3]。
HNCO的存在对于脱硝过程是不利的,HNCO 与NO能进行还原反应,部分NO被还原成有害的氧化亚氮;在选择性催化还原(selective catalytic reduction,SCR)过程中,HNCO先在SCR催化剂的作用后再进一步与NO发生还原反应,减少了还原反应的时间,从下快速水解成NH3而有可能降低催化效果[4, 5]。
脱硝(尿素)操作规程(借鉴材料)
SNCR尿素脱硝设备操作规程一、脱硝原理脱硝通俗的讲就是将用氨水或者尿素溶液雾化后喷到炉膛里,将硝(即氮氧化合物,主要是一氧化氮、二氧化氮)从烟气中除去,变成对空气无害的氮气。
SNCR脱硝工艺介绍SNCR技术,即选择性非催化还原技术,它是目前主要的烟气脱硝技术之或尿素一。
在炉膛800~1050℃这一狭窄的温度范围内、无催化剂作用下,NH3等氨基还原剂可选择性地还原烟气中的NOx,基本上不与烟气中的O作用,2据此发展了SNCR烟气脱硝技术。
在800~1250℃范围内,NH3或尿素还原NOx 的主要反应为:尿素为还原剂不同还原剂有不同的反应温度范围,此温度范围称为温度窗。
当反应温度过高时,由于氨的分解会使NOx还原率降低,另一方面,反应温度过低时,氨的逃逸增加,也会使NOx还原率降低。
SNCR工艺技术的关键就在于,还原剂喷入系统必须尽可能地将还原剂喷入到炉内最有效温度窗区域内,即尽可能的保证所喷入的还原剂在合适的温度下与烟气进行良好的混合,这样一方面可以提高还原剂利用率,另外一方面可以控制获得较小的氨逃逸。
二、脱硝设备组成本套脱硝设备包括尿素溶液制备系统(搅拌罐、转运泵、储存罐)、脱硝计量泵站系统(计量泵、压力表、管件阀门、底座、电控箱)、分配模块(压力表、压缩空气调节阀)、脱硝喷枪(喷嘴、枪杆、保护套管、混合器、快速接头、快拆卡子等)、管道(尿素溶液管道、压缩空气管道)。
三、尿素溶液制备系统1.尿素溶液作为脱硝还原剂的优点是干净卫生安全。
2.在冬季通常配制成10%的浓度,本项目中搅拌罐的容积为2立方,放4袋50公斤的尿素即可。
在夏季可以配制的浓一些(15-20%),并相应减少计量泵的流量。
在锅炉负荷比较大的情况下可以配的浓度大一些。
3.尿素可以采用农用尿素颗粒,选择标准含氮量的优质尿素为好。
4.尿素非常容易吸水受潮板结,所以储存的时候要放在木托上并保持干燥通风。
5.尿素溶颗粒在溶解时大量吸热,所以在配制尿素溶液时尽量使用热水或者通入蒸汽,以免尿素溶液在低温的情况下结晶堵塞管路或者喷枪。
尿素水解技术在大型电站煤粉锅炉烟气脱硝系统中的应用
尿素水解技术在大型电站煤粉锅炉烟气脱硝系统中的应用所属行业: 大气治理关键词:尿素水解技术脱硝技术水解制氨工艺随着国家新的环保政策的实施,对大型火电机组的烟气净化装置要求更加的严格,其中对NOx污染物的排放提出近零排放的要求。
脱硝过程中使用的还原剂氨气,其在工业生产中主要有热解和水解制氨工艺技术。
其中尿素水解技术由于具备很多优点,已经得到了更加多的关注,其主要的优点是工艺流程简单、运行简单可靠,基础投资适中,本文扼要说明了尿素水解系统的组成、工艺特点,同时介绍了与尿素热解工艺的对比分析情况。
1尿素水解技术在SCR脱硝系统中应用1.1Selected catalytic reduction(SCR)脱硝技术原理SCR脱硝技术其反应原理是烟气中NOx在脱硝反应器中与还原剂在催化单元活性物质作用下发生催化反应,,反应化学方程式如下:催化反有固定的温度区间,只有在合理的温度区间,催化效率才会最高,而这个催化活性区间为300~420℃,温度过高或过低都会损坏催化剂的活性。
1.2尿素水解制氨系统描述在溶解装置中尿素和凝结水在加热盘管加热下,制成40~60%浓度的尿素溶液,通过输送泵将溶液从溶解罐输送道溶液储藏装置,再通过供液泵和计量系统控制进入水解反应器的溶液,在水解反应器中进行尿素水解反应,其热量主要来自加热盘管,产品气在混合装置被热一次风稀释成浓度小于5%的混合气体,并由喷氨格栅装置喷入脱硝反应器。
紧急排放的氨气经水的吸收经由废水泵送至电厂水处理中心中和处理。
具体工艺流程见图1。
图1尿素水解制氨工艺系统图1.3尿素水解制氨系统设备组成尿素水解制氨系统主要有以下设备:溶解装置、储藏装置、输送装置、水解反应装置、废水输送装置、废水收纳装置等。
尿素制氨系统中主要大型设备有尿素溶液储罐和水解反应器。
尿素溶液储罐一般采用两个,满足24小时的尿素溶液消耗,溶解罐本体材质为304L不锈钢圆形容器,并设有人孔、爬梯、相应接口管等,有效容积选择时一般采用满足机组7天最大用氨量来计算,为了保证溶液储罐安全运行,在其上部还需设置各种保障阀门用于保护和调节,同时为了监控安全运行,装有温度计、压力表、液位计和相应的变送器等用于监测设备。
尿素热解技术在锅炉烟气脱硝工程中的应用介绍
尿素热解技术在锅炉烟气脱硝工程中的应用介绍作者:王莹来源:《科技视界》 2014年第31期王莹(北京洛卡环保技术有限公司,中国北京 100000)【摘要】随着国家环保指标的提高,燃煤电站锅炉烟气排放指标控制的越来越严格,燃煤电站烟气污染物的排放受到了国际和社会的广泛关注。
锅炉烟气脱硝在全国各地全面普及,传统的脱硝还原剂液氨的运用受到了安全、地域等因素的限制,尿素热解技术因其安全可靠,逐步成为许多用户的首选。
本文介绍了尿素热解技术的流程及其工程实例,并针对运行中出现的问题提出了解决的对策。
【关键词】烟气脱硝;选择性催化还原;尿素热解0 背景选择性催化还原烟气脱硝技术最早在美国获得专利,于20世纪70年代末首先在日本应用于燃气和燃油锅炉,于80年代初用于燃煤锅炉低尘与高尘环境,于80年代中后期在欧洲经过示范试验后开始商业推广,于90年代初进入美国市场。
继日本和欧洲之后,美国于上世纪末期开始大范围安装烟气脱硝装置,代表了当前世界范围内烟气脱硝技术水平,其脱硝还原剂制备工艺的选型、设计与应用等方面的经验值得国内借鉴。
液氨、氨水及尿素均可作为烟气脱硝还原剂,随着脱硝还原剂储存、制备及供应技术的日渐成熟,脱硝还原剂的选择主要从安全与经济角度考虑。
尽管国外以液氨为还原剂的电站锅炉烟气脱硝工程至今未出现严重的氨泄漏事故,但由于从地方管理部门获得液氨的使用与运输许可证越来越困难,安全防范要求越来越严,相应的安全成本越来越大,因此,氨水和尿素证越来越多地作为脱硝还原剂使用。
目前,国内已经有多家电厂在脱硝工程中采用尿素热解技术,并且取得了成功的应用经验。
1 尿素热解技术目前通用的尿素热解技术基于美国Fule Tech公司设计的尿素热解制氨技术。
1.1 尿素热解原理尿素热解反应过程是将高浓度的尿素溶液喷入热解炉,在温度为350-650℃的热烟气条件下,液滴蒸发,得到固态或者熔化态的尿素,纯尿素在加热条件下分解和水解,最终生成NH3和CO2,NH3作为脱硝还原剂送入反应器内,在催化剂作用下有选择性地将NOx还原成N2和H2O。
尿素热解制氨技术在SCR脱硝中的应用
尿素是一种白色或浅黄色的结晶体 ,吸湿性较强 , 易溶于水 。尿 素分 子式 为 CO ( N H2 ) 2 , 在 高温 高压 (160~ 240 ℃, 2. 0 M Pa ) 或者高温常压 ( 350 ~ 650 ℃,0. 1 M Pa) 条 件 下 , C —N 键 断 裂 分 解 成 N H3 与 CO2 。因尿素运输 、储存方便 ,无需安全及危险性的考 虑 ,故随着尿素转氨制备技术的日渐成熟 ,从 1999 年 开始 ,尿素逐渐用于 SCR 系统的还原剂制备 。
华能北京热电厂 SCR 系统尿素热解制氨采用美 国燃料技术公司 NO x OU TUL TRA 工艺 (图 1) ,目前 该工艺已在 16 台机组上得到应用 ,其流程是 :首先在 溶解系统中将尿素配制成质量浓度为 40 %~50 %的 尿素溶液 ,然后将其输送到尿素溶液储罐 ,尿素溶液经 过大流量循环装置 ( H FD) 后 ,一部分输送到计量和分 配装置 (该装置可根据需要自动控制喷入热解室的尿 素量) ,最后由喷射器喷入绝热分解室 。热解室利用天 然气或柴油燃烧后的烟气进行加热 ,助燃空气为冷空 气或者空气预热器 (空预器) 的出口热风 。雾化的尿素
APPL ICATION OF UREA PY ROLYSIS TO PREPARE AMMONIA TECHNOLOGY INTO SCR D ENITRIFICATIO N
ZHAO Do ng - xian1 ,L IU Zhao - pei2 ,WU Xiao - feng1 ,M EN G De - run1
数值 142 100 ≤5 ≤260~350 ≥4 250 150 250 90 5. 7
66
4 运行情况
华能北京热电厂首台采用 SCR 脱硝系统的机组 于 2007 年 10 月 16 日完成热态调试 ,已正常运行了 6 个月 ,各项指标均能达到设计值 。在此期间采取各种 措施严格控制 SCR 反应器出口的氨逃逸量 ,使其不超 过 3μL/ L 。经过 6 个月的运行 ,4 台锅炉的空预器阻 力没有明显增加 。2008 年 4 月至 5 月期间 ,2 号 、3 号 机组停机进行计划检修 ,对空预器传热元件进行了检 查 ,未发现尿素沉积物 ,金属部件也未发生腐蚀 。
使用尿素的脱硝工艺流程 (2)
使用尿素的脱硝工艺流程1. 背景介绍脱硝是一种用于减少氮氧化物(NOx)排放的重要工艺。
氮氧化物是空气污染物之一,对大气环境和人体健康都有不良影响。
使用尿素作为脱硝剂的脱硝工艺流程被广泛应用于工业领域。
2. 工艺原理尿素脱硝工艺的基本原理是利用尿素在适当条件下分解产生氨气,然后将氨气与氮氧化物发生氨解反应,生成氮气和水蒸气,从而将氮氧化物转化为无害物质。
3. 脱硝工艺流程使用尿素的脱硝工艺通常包括以下几个步骤:3.1. 尿素输送与喷射将尿素溶液从尿素仓库输送至喷射装置,通过喷嘴将尿素溶液喷射到烟气通道中。
3.2. 氨气生成尿素在高温条件下分解产生氨气,这个过程称为氨气生成。
尿素分解的化学反应式如下所示:(NH2)2CO → NH3 + CO23.3. 氨解反应将产生的氨气与烟气中的氮氧化物发生反应,这个过程称为氨解反应。
氨解反应的化学反应式如下所示:4NO + 4NH3 + O2 → 4N2 + 6H2O3.4. 氨解效率控制为了保证氨解反应的高效进行,需要控制氨解效率。
根据烟气中氮氧化物的浓度和氨气的输入量,通过控制尿素喷射量和喷射位置,调整氨解效率。
3.5. 脱硝后处理脱硝后的烟气中含有水蒸气和未完全反应的氨气,因此需要进行后处理。
通常采用冷凝器对水蒸气进行冷凝,然后通过净化设备去除残余的氨气,以保证排放的烟气符合环保要求。
4. 优点和应用领域使用尿素的脱硝工艺具有以下优点:•高效:尿素脱硝工艺能够高效去除烟气中的氮氧化物,使排放的烟气符合环保要求。
•易于操作:尿素脱硝工艺相对简单,操作方便,容易实施和控制。
•安全性高:尿素属于非危险品,使用安全可靠。
尿素脱硝工艺主要应用于以下领域:•火电厂:尿素脱硝工艺可以降低火电厂烟气中的氮氧化物排放,提高环境保护水平。
•钢铁厂:钢铁厂烟气中的氮氧化物是重要的大气污染源,使用尿素脱硝工艺可以有效减少氮氧化物排放。
•汽车尾气净化:尿素脱硝工艺可以应用于汽车尾气净化系统,减少汽车尾气中的氮氧化物排放。
尿素水解SCR脱硝技术在电厂中的应用
尿素水解SCR脱硝技术在电厂中的应用尿素水解SCR脱硝技术是一种常见的电厂烟气净化技术,在电厂中的应用越来越广泛。
本文将介绍尿素水解SCR脱硝技术的原理、工艺流程和在电厂中的应用。
一、原理SCR(Selective Catalytic Reduction)是指选择性催化还原脱硝技术,是一种利用催化剂催化还原剂(如尿素)与NOx反应生成N2和H2O的脱硝技术。
通常情况下,SCR反应需要在高温下进行,因此在电厂中使用的SCR系统通常在锅炉排烟脱硝之后,进入烟气脱硝设备进行处理。
尿素水解SCR脱硝技术是SCR技术的一种改进,其原理是在催化反应器内引入水蒸气,使尿素水解生成氨气,再与NOx反应生成N2和H2O。
该技术不仅可以降低SCR反应所需的温度,从而减少能耗和催化剂的使用量,还可以有效地控制氨气排放,防止对环境造成污染。
二、工艺流程尿素水解SCR脱硝技术的工艺流程通常包括尿素喷射系统、反应器、加热器、催化剂层等几个部分。
1. 尿素喷射系统尿素喷射系统通常由尿素罐、泵、喷嘴等部分组成。
尿素在加入储罐中后通过泵送进喷嘴,喷嘴会将尿素雾化成小颗粒,使其与烟气充分混合。
建议使用高质量的尿素,并定期清洗喷嘴,以保证尿素的准确投入和稳定的性能。
2. 反应器反应器通常由几层催化剂和均布装置组成。
每个催化剂层的催化剂物质和结构不同,主要目的是提高脱硝效率和减少氨排放。
均布装置是为了让尿素和烟气充分混合,保证反应的充分性和效率。
3. 加热器加热器通常位于反应器之前,用于提高烟气温度,使反应器内的催化剂达到最佳工作温度,提高脱硝效果。
4. 催化剂层催化剂层是反应器内最重要的部分,其主要作用是催化尿素水解和NOx的反应,产生N2和H2O。
常用的催化剂有V2O5、WO3等金属氧化物。
三、在电厂中的应用1. 控制NOx排放使用尿素水解SCR脱硝技术可以有效地减少NOx的排放,符合国家的环保要求和标准。
目前,我国的环保法规对NOx的排放标准已经越来越严格,因此采用尿素水解SCR脱硝技术是一个理想的选择。
尿素热解研究及其在脱硝中的应用
尿素热解研究及其在脱硝中的应用摘要:最近几年,随着我国的经济水平和科学技术的发展,政府及各单位对于尿素热解的研究进展以及结果给予了高度的重视。
这篇文章主要是分析了尿素以及尿素水溶液在不同温度条件下进行的分解。
相关的工作人员也进一步探讨了催化剂对于尿素热解中的催化反应。
而且在研究的过程中通过使用催化剂能够不断地提高热解中间产物的水解速度。
关键词:尿素;热解研究;脱硝;应用正文氮氧化物主要是包括一氧化氮,一氧化二氮,二氧化氮,三氧化二氮,四氧化二氮以及五氧化二氮。
其中一氧化氮和二氧化氮是大气污染物中的主要成分。
电厂脱硝的方法中,目前最为广泛应用的就是scr,此方法所使用的还原剂主要是氨水、液氨以及尿素。
前几年液氨和氨水在实际应用的过程中是比较广泛的,但是液氨本身就具有爆炸性和较大的毒性,在运输和储存方面有较大的劣势,氨水也有同样的不利因素。
然而尿素却是一种稳定并且无毒的固体物料,它对人和环境都没有危害,因此它更加便于运输和储存。
一、研究及应用现状尿素在制取氨的过程中,通常是有水解法和热解法两种方式,水解法就是将尿素以水溶液的形式进行加热分解,然而热解法就是将尿素溶液进行快速的加热和雾化之后将其进行分解。
尿素在水解设备中进行水解后,生成物为酸性物质,此物质会对电厂的设备以及系统产生一定的腐蚀性,而且反应过程中还会生成一些难溶于水的中间产物。
所以这就会使得在水解的过程中,其相应的系统会出现堵塞的现象。
然而尿素热解反应会比较完全和彻底,所以它不产生一些中间产物来对管道进行堵塞,而且对于氨气混合物的温度也控制在300℃左右,所以对于入口的烟气温度影响是比较小的。
尿素进行热解的工艺主要是包括燃料的加热以及空气的高温加热,目前所采用的比较普遍的是空气的高温加热。
二、尿素热解反应尿素本身是一种白色或者是浅黄色的结晶体,且易溶于水。
尿素在实际反应的过程中,在高温或者是低温高压的情况下都易发生反应进行分解,但是在达到尿素的熔点温度之前,其分解的量会比较少。
尿素水解SCR脱硝技术在电厂中的应用
尿素水解SCR脱硝技术在电厂中的应用尿素水解SCR脱硝技术是一种基于高效催化剂的烟气脱硝技术,它采用尿素水解产生的NH3作为脱硝还原剂,通过催化剂的作用,使NOx与NH3发生反应,生成氮气和水。
这种技术具有脱硝效率高、催化剂活性好、催化剂寿命长等优点,已广泛应用于电厂中。
电厂是大气污染的主要来源之一,在烟气中NOx的排放量也很大。
NOx是一种对环境和人体健康具有重要影响的污染物,因此必须对其进行减排。
尿素水解SCR脱硝技术是一种通用的脱硝技术,适用于各类型电厂,例如燃煤电厂、燃气电厂等。
在燃煤电厂中,尿素水解SCR脱硝系统一般设置在锅炉尾部烟气排放口附近,通过喷射尿素水解产生的NH3来脱硝,同时还可以追加抑制剂、二氧化硫等,以使烟气达到一定的净化效果。
在燃气电厂中,由于氮氧化物的含量较低,需采用一些预处理措施,如低氮燃烧技术和增加锅炉负荷等,才能使尿素水解SCR脱硝系统发挥最佳效果。
尿素水解SCR脱硝技术实施过程中要注意以下几个方面:1. 催化剂选择催化剂是尿素水解SCR脱硝系统中的核心组成部分,其有效期直接关系到脱硝效率和成本效益。
因此,在选择催化剂时,应根据电厂运行条件、烟气组成等因素来选取,同时应注意催化剂的生产厂家信誉度和售后服务等方面。
2. 尿素水解尿素水解是尿素水解SCR脱硝系统中的关键步骤,其水解效率和水解温度会直接影响到后续的脱硝效果和催化剂寿命。
因此,在尿素水解前应先对尿素粉进行筛分、搅拌、预热等处理。
另外,应避免尿素水解管路及喷嘴堵塞。
3. 脱硝效率监测脱硝效率的监测是尿素水解SCR脱硝系统正常运行的保证。
常用的方法有连续监测、间歇监测和定期监测等。
定期监测一般采用工业雾化试验室进行,可对烟气中NOx、NH3、O2、CO等进行定量分析。
尿素水解SCR脱硝技术在电厂中的应用,不仅实现了对NOx的高效脱除,还减少了对自然环境和人体健康的危害,促进了电厂的绿色发展。
未来,将继续对这种技术进行研究和改进,以适应环保要求的不断提高。
使用尿素的脱硝工艺流程
使用尿素的脱硝工艺流程1. 引言脱硝工艺是用于去除烟气中的氮氧化物(NOx)的一种重要方法。
尿素脱硝工艺是目前应用最广泛的一种脱硝技术,具有高效、低成本和环保等优点。
本文将介绍使用尿素进行脱硝的工艺流程。
2. 工艺原理尿素脱硝工艺是通过将尿素在脱硝催化剂的作用下分解生成氨,然后与烟气中的氮氧化物发生反应,最终生成氮气和水蒸气。
整个脱硝过程可以分为尿素溶液的制备、尿素溶液的喷雾和催化剂的反应三个步骤。
3. 脱硝工艺流程使用尿素进行脱硝的工艺流程如下:•步骤1:尿素溶液的制备–将适量的尿素粉末加入蒸馏水中,并搅拌均匀,制备成一定浓度的尿素溶液。
–尿素溶液的浓度一般需要根据烟气中的氮氧化物浓度来确定,通常在5-10%之间。
•步骤2:尿素溶液的喷雾–利用喷嘴或雾化器将尿素溶液均匀喷雾进入烟气脱硝装置中。
–尿素溶液的喷雾方式可以根据具体设备的要求进行选择,常见的方式包括压缩空气喷雾、超声波雾化等。
•步骤3:催化剂的反应–尿素溶液在进入烟气脱硝装置后,与脱硝催化剂接触发生反应。
–催化剂通常是采用钢丝网或陶瓷材料制成的结构,具有较大的表面积,以提高反应效果。
–反应温度一般在150-450摄氏度之间,反应时间视具体情况而定。
•步骤4:脱硝产物的处理–反应后的烟气中生成的氮气和水蒸气将通过设备的排气口排放到大气中。
–如有需要,可以对排放的氮气进行进一步处理,以满足排放标准。
4. 工艺优势使用尿素进行脱硝的工艺具有以下优势:•高效:尿素可以在脱硝催化剂的作用下快速分解,与氮氧化物迅速反应生成氮气和水蒸气。
•低成本:尿素是一种廉价且易得的化学品,生产成本较低。
•环保:尿素脱硝工艺产生的废气只包含无害的氮气和水蒸气,对环境没有污染。
5. 工艺应用尿素脱硝工艺广泛应用于以下领域:•火力发电厂:尿素脱硝工艺可以减少燃煤等燃料燃烧过程中产生的氮氧化物排放。
•工业锅炉:尿素脱硝工艺可以降低工业锅炉的氮氧化物排放,提高锅炉的环保性能。
尿素烟道热解制氨技术在火力发电厂脱硝工程中的应用
尿素烟道热解制氨技术在火力发电厂脱硝工程中的应用摘要:介绍了尿素烟道热解制氨技术在火力发电厂中的应用情况,并指出该技术在脱硫系统中的应用,为进一步优化尿素水解制氨系统提供便利的途径,通过更换夹套和更换原来的气体半管伴热,并加入一种新型的水解反应器,可以提高反应溶液的浓度,从而大大改善脱硝系统的安全性,为类似的热解技术提供一个解决方案。
关键词:火力发电厂;烟气脱硝技术;尿素热解制氨工艺;应用工艺前言:随着我国科技的飞速发展,对环境保护的要求也是越来越高,特别是最近一段时间,全国各地的燃煤锅炉都在进行着超低排放。
催化还原技术是目前使用最广泛的一种脱硫技术,其原理是将氨气和烟气中的氧化氮与催化剂反应,从而得到无毒、无味、无污染的水和氮。
在催化还原技术中,氮气是最重要的还原剂,其中氨水、液氮、尿素是最重要的还原剂。
因为氨气和氨气都是非常危险的,在储存的时候,都会产生很大的风险。
但尿素却是一种常用的化肥,它具有很好的稳定性,在室温下呈固态,无毒无害。
目前尿素生产技术分为尿素水解和尿素热解制氨两大类。
由于尿素的水解技术消耗的能量较少,而且运行稳定,安全,因此在水力脱硫方面有广泛的应用。
1尿素烟道热解制氨技术原理在尿素的催化热解工艺中,一般都是在进行尿素的调配过程中,将尿素从储藏室中分离出来,然后再从储藏室中取出。
把尿素溶于50%的水中,需要用脱盐水,再用尿素溶解泵把它送到尿素的溶出槽中。
尿素溶液中的尿素要在40~50摄氏度时用蒸汽加热。
将尿素溶液添加到尿素水解反应器,经过水解,生成氨气、二氧化氢、二氧化碳,将其与烟气混合,均匀地喷入脱硫装置,C0(NH2)2+H20+催化剂=C02↑+2NH3↑+催化剂。
尿素热解的化学反应式为:CO(NH2)2= NH3 + HNCO(1)HNCO+H2O=NH3+CO2(2)2尿素烟道热解制氨技术的问题在安装尿素热解炉和加热器时,要充分考虑到一次性粉尘对设备的影响,并采取相应的措施。
尿素热解法SCR烟气脱硝中节能改造的技术及应用
尿素热解法SCR烟气脱硝中节能改造的技术及应用作者:孙剑来源:《科学与财富》2016年第30期摘要:国内外火电厂烟气的主要脱硝技术为尿素热解法SCR(选择性催化还原法)技术。
由于其技术要点为利用热空气作为热源,并且需要电加热器等大功率设备,本文重点分析尿素热解法节能改造的技术及应用。
关键词:SCR;热源;节能引言2015年三部委发布关于印发《全面实施燃煤电厂超低排放和节能改造工作方案》的通知。
到2020年,全国所有具备改造条件的燃煤电厂力争实现超低排放(即在基准氧含量6%条件下,烟尘、二氧化硫、氮氧化物排放浓度分别不高于10、35、50毫克/立方米)。
全国新建燃煤发电项目原则上要采用60万千瓦及以上超超临界机组,平均供电煤耗低于300克标准煤/千瓦时(以下简称克/千瓦时),到2020年,现役燃煤发电机组改造后平均供电煤耗低于310克/千瓦时。
随着国家环保法规的不断完善,NOX作为燃煤锅炉主要的污染物之一正逐渐引起社会和企业的高度重视。
因此分析烟气脱硝技术应用情况,对我国相关节能改造项目技术选择具有一定的指导意义。
1.关于脱硝还原剂的选择目前最常用的还原剂制备方法一般有3?种:液氨法、氨水法、尿素法。
出于安全性和实用性的考虑,尿素法得到更为广泛的应用。
尿素制氨一般分为水解法和热解法。
水解法是将尿素以水溶液的形式进行分解,热解法是直接快速加热雾化后的尿素溶液。
1.1水解法尿素有水解作用,在一定的温度条件下能水解成氨气和二氧化碳。
通过控制反应温度的升降来控制产生氨气混合气体的数量,从而适应不同锅炉负荷的变化。
尿素水解技术主要有AOD法、U2A法及SafeDeNOx?法三种。
其不足主要表现为:尿素水解过程中会生成一些酸性中间体(如氨基甲酸铵等),氨基甲酸铵会严重破坏不锈钢表面的氧化膜,使系统的腐蚀速度加快,超过190℃时,一般的不锈钢材料(如304SS)会遭受严重腐蚀,当超过220℃时,即使采用钛等耐腐蚀材料,系统也会遭受腐蚀。
尿素热解技术在火电厂烟气脱硝工程中的应用
尿素热解技术在火电厂烟气脱硝工程中的应用摘要:本论文对火电厂烟气中氮氧化物减排重要性进行了简单描述;对国际、国内脱硝市场不同工艺对比加以介绍;详细介绍以尿素热解制备还原剂的工艺的优点及适用范围;以工程实例介绍尿素热解工艺。
关键词:烟气脱硝尿素热解制备还原剂工程实例介绍1、我国的NOx污染氮氧化物是大气主要污染物之一。
通常所说的氮氧化物NOx有多种不同形式:如N2O、NO、NO2、N2O3、N2O4 和N2O5,其中NO 和NO2 是重要的大气污染物。
我国氮氧化物的排放量中70%来自于煤炭的直接燃烧,电力工业又是我国的燃煤大户,因此火力发电厂是NOx 排放的主要来源之一。
控制NOX排放的技术指标可分为一次措施和二次措施两类,一次措施是通过各种技术手段降低燃烧过程中的NOX生成量(如采用低氮燃烧器);二次措施是将已经生成的NOX通过技术手段从烟气中脱除(如SCR)。
烟气脱硝是目前发达国家普遍采用的减少NOX排放的方法,应用较多的有选择性催化还原法(SCR)、选择性非催化还原法(SNCR)。
SCR的脱硝率较高,SCR的发明权属于美国,而日本率先于20世纪70年代实现其商业化应用。
目前该技术在发达国家已经得到了比较广泛的应用。
日本有93%以上的烟气脱硝采用SCR,运行装置超过300套。
我国电厂普遍采用SCR技术进行脱硝。
近年来,我国新建大型燃煤机组均按要求同步采用了低氮燃烧方式,并在环境敏感地区开始建设烟气脱硝装置。
一批现有火电厂结合技术改造安装了低氮燃烧器和SCR反应器,以实现国家环保局对NOX大气排放的要求。
2、脱硝还原剂的研究SNCR和SCR脱硝反应都是选择了氨气(反应式NH3),产生NH3的物质被称为脱硝还原剂,现在主要有有三种:即液氨、氨水、尿素。
下面分别做以介绍,并比较出各种的优缺点。
⑴以液氨为还原剂的SCR脱硝工艺系统由催化反应器、氨储存及供应系统、氨喷射系统及相关的测试控制系统等组成。
简易流程如图1--液氨作为还原剂的SCR脱硝工艺流程液氨由槽车运送至液氨储罐,液氨储罐输出的液氨在蒸发器内蒸发为氨气,氨气经加热至常温后送至缓冲罐备用。
尿素热解和水解技术在锅炉烟气脱硝工程中的应用
尿素热解和水解技术在锅炉烟气脱硝工程中的应用
尿素热解和水解技术在锅炉烟气脱硝工程中的应用
摘要:随着国内的经济发展,燃煤电厂锅炉烟气排放的指标控制越加严格,燃煤电厂烟气污染物的排放越来越受到国家和社会的`广泛关注.锅炉烟气脱硫技术已在国内燃煤电厂全面实施,锅炉烟气脱硝技术在北京市已全面普及,在国内其它地方也逐渐推广,作为脱硝还原剂液氨的运用由于受到安全、地域等因素的限制,尿素热解和水解制氨技术逐渐受到青睐,将为许多用户提供选择.作者:杜成章刘诚Du Cheng-zhang Liu Cheng 作者单位:华能北京热电有限责任公司,北京,100023 期刊:华北电力技术 Journal:NORTH CHINA ELECTRIC POWER 年,卷(期):2010, ""(6) 分类号:X773 关键词:脱硝还原剂尿素热解水解应用。
尿素水解SCR脱硝技术在电厂中的应用
尿素水解SCR脱硝技术在电厂中的应用一、尿素水解SCR脱硝技术的基本原理尿素水解SCR脱硝技术是通过在高温烟气中喷射尿素溶液或尿素水解产生的氨气与NOx进行还原反应,将NOx转化为氮气和水,从而实现脱硝的目的。
其基本反应方程式如下:2NO + 2NH3 + 1/2O2 → 2N2 + 3H2O尿素水解SCR脱硝技术的关键就是在高温烟气中喷入足量的氨气,并且确保氨气与NOx充分混合,达到最佳的脱硝效果。
1. 适用范围广尿素水解SCR脱硝技术适用于电厂中所有燃煤锅炉、燃气锅炉和燃油锅炉,特别是在高硫煤的燃烧过程中,硫酸雾化脱硝法不能很好地满足脱硝要求的情况下,尿素水解SCR脱硝技术显得更加重要。
2. 优异的脱硝效果尿素水解SCR脱硝技术可以将NOx的排放降低到非常低的水平,可以实现90%以上的脱硝效率,从而大大减少了电厂对环境的影响。
3. 反应速度快尿素水解SCR脱硝技术具有反应速度快的特点,可以在短时间内对烟气中的NOx进行高效脱除,保证了电厂生产的稳定性。
4. 操作维护简单尿素水解SCR脱硝技术的操作维护相对简单,只需要定期添加适量的尿素溶液或氨气,保证脱硝系统的正常运行即可。
5. 利用废气中的残余氨尿素水解SCR脱硝技术还可以利用废气中的残余氨气进行再生产,从而达到节能的目的。
1. 高效低成本未来尿素水解SCR脱硝技术的发展趋势将更加注重提高脱硝效率的同时降低投资成本和运行成本,以便更多的电厂可以选择该技术进行脱硝。
2. 节能减排随着环保要求的不断提高,尿素水解SCR脱硝技术还将更好地结合节能减排的要求,进一步降低电厂在脱硝过程中的能耗和废气排放。
3. 智能化控制智能化控制将是未来尿素水解SCR脱硝技术的发展方向,通过先进的自动化设备和控制系统,实现脱硝设备的智能化运行,从而更好地保障脱硝效率和稳定性。
尿素热解研究及其在脱硝中的应用
S TUDY oN PYROLYSI S OF UREA AND TS APPLI I CATI oN I DENI N TRI FCATI oN
YU a we L c u JANG P Xio i, IYu h n ,I Ya , ANG i i, Fef CHEN i s e g , HANG e o g e Jn h n S Xu s n 。
ss ofc t l i , a s a k y r e t n n i g c v r in r t f NH 3 i a a yss pl y e ol o e ha c n o e so a e o .The c t l t or p o tn e a a ys s f r mo i g d —
技术经济综 述
c mp st n o r a h v O2一W 03 Ti , o o i o fu e a e V2 i / O2 Cu—Z M 5 Fe—Z M 5 Ti , n z t. a n S , S , O2 a d AlO3ec , mo g t e ,h o e e 一W O3 Ti a x r mey e h n et es e d r t f y r l ssf rHNCO. h m t ep wd rd V2 O5 / O2c ne te l n a c h p e a eo d oy i o h
3 1 2 60 1
[ 摘
要] 介 绍 了国 内外对尿 素热 解的研 究进展 及 其在 选择 性催 化 还 原( C 脱硝 中的应 用 。重 S R)
点分析了尿素和尿素一 水溶液在不同温度条件下的分解, 探讨 了催化锏促进尿素热解 中
间产物异 氰酸 ( HNC 的 水解 和提 高 NH。转化 率 的作 用 。促进 尿 素 分解 的催 化 剂 有 O)
尿素热解制氨技术在SCR脱硝中的应用
尿素热解制氨技术在SCR脱硝中的应用摘要:在目前的热电厂工作中,尿素热解系统起着很大的作用。
该系统在运行中具有非常高的稳定性,并且工作的效率较高,维修的成本也不高,各项指标都能够满足相应的技术要求。
虽然该项技术存在一些缺陷,例如对于氨气的输出含量不能够进行准确的调节,但在进行不断的优化和改进之后,该项技术仍然是电厂脱硝的过程中最适合应用的技术。
关键词:尿素热解;制氨技术;SCR脱硝为了在电厂工作的过程当中提高脱硝效率,在尽可能保证环保要求的条件下减少氮氧化物的排放量,达到氮氧化物排放标准,所以电厂脱硝采用了选择性催化还原SCR的技术,其中制氨技术采用尿素溶液热解法。
一、尿素热解制氨技术的原理尿素这种化学物质在高温高压下通过一定的条件可以将其中的化学键断裂而形成氨气和二氧化碳。
采用尿素作为原料制取氨气,,从原材料的运输、储存来看非常安全,随着人们安全意识的提高,近两年国内许多液氨项目改为尿素制氨,越来越多的电厂倾向于选用安全的尿素作为脱硝还原剂。
尿素本身是比较方便储存的,在脱硝系统附近留一块室内空地单独堆放即可,尿素在运输的过程无危险性,且原材料的获取很方便,所以通过尿素来进行氨气的制备是目前工业中应用普遍的一项技术,从1999年便开始逐渐用尿素来制备氨气。
该项技术的工作原理是首先在系统当中加入一定浓度的尿素溶液,然后通过循环将尿素输送到分配装置当中,计量分配后通过喷射器将尿素输送到绝热分解室,在绝热分解室内通过燃烧石油柴油或者其他物质来进行温度的提升,这样被喷射出来的尿素就可以在绝热分解室里得到分解,分解出的氨气便可以进一步地输送到SCR系统当中。
热解脱硝工艺流程图见图一。
图一尿素热解工艺流程图与其他的工艺相比,采用尿素热解的工艺可以使反应物更加完全的接触,进行完全反应,并且在反应的过程中间没有其它的杂物产生,不会对系统进行堵塞。
另外产生的氨气温度不会过高,在下一步继续反应的过程当中不会对工艺系统产生其他方面的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1尿素热解和水解
尿素热解反应方程式:
CO(NH2)2 (溶液) → CO(NH2)2 (固) + H2O(气) (1)
CO(NH2)2→ NH3+HNCO (2)
HNCO+H2O → NH3+CO2 (3)目前普遍认为尿素热解制氨的生成分三步实现:(1)尿素水溶液蒸发析出尿素颗粒;(2)尿素热解生成等物质的量的氨气和异氰酸HNCO;(3)异氰酸进一步水解生成等物质量的氨气和二氧化碳[1]。
尿素热解产物HNCO在气相中稳定存在,不易分解,只有在反应温度≥400 °C 时才会发生水解。
反应温度较低致使尿素热解过于复杂,中间反应产物降低了目标产物NH3的转化率,不利于尿素彻底分解。
因此提高反应温度、添加催化剂是脱硝过程中常用的提高尿素分解效率的手段。
尿素水解反应方程式:
CO(NH2)2 + H2O → 2 NH3 + CO2(4)
表1 尿素热解和水解技术参数对比[2]
调研来看,尿素热解的反应速度最快且最安全,现场几乎没有储氨的容器,但其能耗和运行费用很高,所以较早进入中国市场,业绩较多,但用户的运行成本压力较大。
和尿素热解相比,尿素水解由于采用电厂较为丰富的蒸汽作为热源,能耗较低。
但AOD、U2A 等国外水解技术,反应较慢需要庞大的反应器和缓冲装置,其投资和能耗较高。
催化水解的反应速度也较快,起停迅速,能耗较低,但是该技术相对来说还不是很成熟,在国内尚无应用。
尿素在热解时最终的产物是等量的氨气(NH3)和异氰酸(HNCO)。
虽然HNCO 能进一步发生水解反应生成NH3,但是HNCO在气相下非常稳定,水解反应只有在特定的金属或金属氧化物下才能进行[3]。
HNCO的存在对于脱硝过程是不利的,HNCO与NO能进行还原反应,部分NO被还原成有害的氧化亚氮;在选择性催化还原(selective catalytic reduction,SCR)过程中,HNCO先在SCR催化剂的作用下快速水解成NH3后再进一步与NO发生还原反应,减少了还原反应的时间,从而有可能降低催化效果[4, 5]。
2 尿素热解制氨及其耦合SCR脱硝流程
图 1 尿素掺杂催化剂热解制氨的实验装置[3]
图1为单纯的尿素掺杂催化剂热解制氨的实验室搭建装置图,并非实际应用中耦合SCR脱硝的工艺图。
图2 尿素热解制氨工艺
流程(图2):首先在溶解系统中将尿素配制成质量浓度为40%~50%的尿素溶液,然后将其输送到尿素溶液储罐,尿素溶液经过大流量循环装置(HFD)后,一部分输送到计量和分配装置(该装置可根据需要自动控制喷入热解室的尿素量),最后由喷射器喷入绝热分解室。
热解室利用天然气或柴油燃烧后的烟气进行加热,助燃空气为冷空气或者空气预热器(空预器)的出口热风。
雾化的尿素溶液在热解室里进行完全分解,分解产物NH3与稀释空气混合后进入SCR喷氨系统。
热解室提供充分的停留时间,高温下尿素全部转化为NH3,转化率达100%。
图 3 尿素热解制氨SCR烟气脱硝工艺流程[6]
尿素热解法的氨气来源于尿素间接制备,袋装尿素颗粒储存于尿素储备间,人工开袋后的尿素颗粒通过斗提机输送到尿素颗粒储仓中储存,尿素颗粒储仓连接给料机将尿素颗粒输送到溶解罐中,用去离子水将尿素颗粒溶解配制成浓度为40%~50%的尿素溶液,通过尿素溶液循环泵储存在尿素溶液储罐内,储罐内的尿素溶液经由供液泵,从尿素溶液循环母管抽出,经计量分配装置喷射器进入锅炉转向室内高温烟气空间,在锅炉转向室内烟气与尿素溶液喷射装置喷出的尿素溶液液滴混合,混合之后烟气的热量加热尿素溶液液滴,,并使其逐步蒸发、分
解,将尿素分解为氨气和二氧化碳。
随后,水蒸气、氨气、二氧化碳等混合气体在SCR反应器前烟道内的适当位置通过喷氨格栅喷入烟气系统中,喷入的混合气体与烟气进行混合,氮氧化物在SCR反应器里面催化剂表面扩散,在催化剂作用下有选择性地将烟气中的氮氧化物还原生成生氮气和水来减少氮氧化物排放。
3 尿素热解制氨耦合SCR脱硝现状
目前,SCR脱硝中的尿素热解制氨技术均是采用热解炉高温(350-650 °C)热解来达到尿素完全转化为NH3的目的。
有关热解过程中,温度不够,中间产物HNCO的催化水解,其水解催化剂并没有得到工程化应用,也没有配套的工业化装置。
华能北京热电厂SCR系统尿素热解制氨采用美国燃料技术公司NO x OUT ULTRA工艺,目前该工艺已在16台机组上得到应用,其流程参见图2。
此工艺用于SCR脱硝在国内尚属首次。
推测:尿素热解过程中HNCO水解催化剂就是SCR催化剂,置于SCR脱硝反应器中,没有完全水解转化的气相HNCO和混合气中的H2O经过催化剂床层水解成NH3和CO2,NH3-SCR反应同时进行,此过程中,HNCO的水解会对催化剂脱硝有所影响。
参考文献
[1] 王莹. 尿素热解技术在锅炉烟气脱硝工程中的应用介绍[J]. 科技视界. 284-285.
[2] 彭代军. 锅炉烟气脱硝尿素热解与水解制氨技术对比[J]. 能源与节能. 2014, 1: 188-192.
[3] Piazzesi G.The catalytic hydrolysis of isocyanic acid (HNCO) in the Urea-SCR process[D].Italy:ETH Zurich,2006.
[4] 陈镇超等. 尿素催化水解特性实验研究[J]. 中国电机工程学报. 2011, 31(35): 41-46.
[5] Fang H L,DaCosta H F M.Urea thermolysis and NOx reduction with and without SCR catalysts[J].Applied Catalysis B:Environmental,2003,46(1):17-34.[6] 李海英. 燃煤锅炉尿素热解制氨SCR脱硝技术的优化[J]. 节能. 2016, 1:。