高三数学第一轮复习 不等关系与不等式课件 新人教B版
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回目录
(2)若a>b>0,则 a >1,a-b>0.
b
由指数函数的性质
(
a
a -b
)2
>1.
ab
若b>a>0,则0< <1,a-b<0.
b
由指数函数的性质
(
a
)
a -b
2 >1.
∴
a ab b
a b
b
>1,
∴
ab
aabb (ab)2.
(ab) 2
名师伴你行
返回目录
名师伴你行
(1)比较两个代数式的大小,可以根据它们的差的符号进 行判断,一方面注意题目本身提供的字母的取值范围,另 一方面通常将两代数式的差进行因式分解转化为多个因式 相乘,或通过配方转化为几个非负实数之和,然后判断正 负. (2)作商比较通常适用于两代数式同号的情形.
(2)在不等关系的判断中,特殊值法也是非常有 效的方法.
返回目录
名师伴你行
[2010年高考广东卷]“x>0”是“3 x2 0 ”成立的 ()
A.充分非必要条件
B.必要非充分条件
C.非充分非必要条件
D.充要条件
返回目录
名师伴你行
【答案】A 【解析】因为当x>0时,一定有 3 x2 0 ,但当 3 x2 0时, x<0也成立,因此x>0是 3 x2成立0的充分不必要条件. 故应选A.
返回目录
x+y≤9
5x+4y≥30
10×6x+6×8y≥360
0≤x≤4
0≤x≤4
即 0≤y≤7
0≤y≤7
x,y∈N.
x,y∈N,即x+y≤9
名师伴你行
返回目录
考点3 大小比较
名师伴你行
(1)设x+y<0,试比较(x2+y2)(x-y)与(x2+y2)·(x+y) (2)的大小;
ab
(3)(2)已知a>0,b>0,且a≠b,试比较aabb与(ab)2 的大小.
返回目录
名师伴你行
【分析】比较两数(或两式)的大小,一般用比较法,具 体用作差比较还是用作商比较应由数(或式)特点而定. 【解析】 (1)(x2+y2)(x-y)-(x2-y2)(x+y) =(x-y)[(x2+y2)-(x+y)2] =-2Biblioteka Baiduy(x-y). ∵x<y<0,∴x-y<0,-2xy<0, ∴-2xy(x-y)>0, ∴(x2+y2)(x-y)>(x2-y2)(x+y).
返回目录
考点2 应用不等式表示不等关系
名师伴你行
某汽车公司由于发展的需要需购进一批汽车,计划使用不超 过1 000万元的资金购买单价分别为40万元,90万元的A型 汽车和B型汽车.根据需要,A型汽车至少买5辆,B型汽车至 少买6辆,写出满足上述所有不等关系的不等式.
【分析】把握关键点,不超过1 000万元,且A,B两种车型 分别至少5辆,6辆,则不等关系不难表示,要注意取值范 围.
加性).
(4)a>b,c>0⇒ ac>bc;a>b,c<0⇒ac<bc ;a>b> 0,c>d>0 ⇒ac>bd (可乘性).
返回目录
(5) a>b>0 ⇒an>bn (n∈N*)(乘方性). (6) a>b>0= n a >n b (n∈N*)(开方性).
4.熟记下列不等式性质的结论
} (1) a>b c<d ⇒a-c>b-d.
} (2)
a>b>0 d>c>0
⇒ac
b d
.
} (3) a>b ⇒1 < 1 ab>0 a b
返回目录
名师伴你行
考点1 不等式的概念与性质
[2010年高考江西卷]对于实数a,b,c,“a>b”是 “ac2>bc2”的 ( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
返回目录
名师伴你行
某矿山车队有4辆载重为10 t的甲型卡车和7辆载重为6 t的乙 型卡车,有9名驾驶员.该车队每天至少要运360 t矿石至冶 炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天 可往返8次,写出满足上述所有不等关系的不等式.
返回目录
名师伴你行
【解析】设每天派出甲型卡车x辆,乙型卡车y辆,根据题意, 应有如下的不等关系: (1)甲型卡车和乙型卡车的总和不能超过驾驶员人数; (2)车队每天至少要运360 t矿石; (3)甲型卡车不能超过4辆,乙型卡车不能超过7辆. 用关于x,y的不等式表示上述不等关系即可.
返回目录
名师伴你行
【解析】设购买A型汽车和B型汽车分别为x辆,y辆,则
40x+90y≤1 000
4x+9y≤100
x≥5
即
x≥5
y≥6
y≥6
x,y∈N+,
x,y∈N+.
返回目录
名师伴你行
注意区分“不等关系”和“不等式”的异同,不等关 系强调的是关系,可用“>”“<”“≥”“≤”“≠”表示,不等式则 是表现不等关系的式子,对于实际问题中的不等式关系可 以从“不超过”“至少”“至多”等关键词上去把握,并 考虑到实际意义.
返回目录
名师伴你行
【分析】本题利用不等式的性质及充要条件的判定直 接作出判断. 【解析】a>b / ac2>bc2,原因是c可能为0,而若 ac2>bc2,则可推出a>b. 故“a>b”是“ac2>bc2”的必要不充分条件. 故应选B.
返回目录
名师伴你行
(1)准确记忆各性质成立的条件, 是正确应用性 质的前提.
名师伴你行
学案1 不等关系与不等式
知识网络构建 考纲解读 考向预测 填填知学情
课内考点突破 规律探究
名师伴你行
考点1 考点2 考点3 考点4
名师伴你行
返回目录
名师伴你行
考纲解读
不等关系 与不等式
1.了解现实世界和日常生活中的不等关系, 了解不等式(组)的实际背景.
2.了解实数大小的比较方法及实数运算的 基本性质,并能运用不等式的性质判断不 等式是否成立或数(式)的大小.
对应的实数 大 .
2.实数大小的比较
(1)设a,b∈R,则
①a>b⇔ a-b>0 ;
②a=b ⇔ a-b=0 ;
③a<b⇔ a-b<0 .
返回目录
(2)设a,b∈R+,则
a > 1 ⇔ a>b
b
;
② a = 1 ⇔ a=b
b
;
③ a < 1 ⇔a<b .
b
3.不等式的基本性质
(1) a>b⇔b<a (对称性). (2) a>b,b>c⇒a>c (传递性). (3)a>b⇒a+c>b+c ;a>b,c>d⇒a+c>b+d (可
返回目录
名师伴你行
考向预测
纵观近三年新课标区高考可以发现,由于新课程 标准对不等式的性质要求不高,高考也几乎没有单独 命题,作差法比较两实数大小也仅是解决问题的工具, 一般不单独命题,高考对本学案知识的考查往往结合 函数的性质,利用函数中的不等关系比较实数的大小.
返回目录
1.在数轴上的任意两点中,右边点对应的实数比左边点
(2)若a>b>0,则 a >1,a-b>0.
b
由指数函数的性质
(
a
a -b
)2
>1.
ab
若b>a>0,则0< <1,a-b<0.
b
由指数函数的性质
(
a
)
a -b
2 >1.
∴
a ab b
a b
b
>1,
∴
ab
aabb (ab)2.
(ab) 2
名师伴你行
返回目录
名师伴你行
(1)比较两个代数式的大小,可以根据它们的差的符号进 行判断,一方面注意题目本身提供的字母的取值范围,另 一方面通常将两代数式的差进行因式分解转化为多个因式 相乘,或通过配方转化为几个非负实数之和,然后判断正 负. (2)作商比较通常适用于两代数式同号的情形.
(2)在不等关系的判断中,特殊值法也是非常有 效的方法.
返回目录
名师伴你行
[2010年高考广东卷]“x>0”是“3 x2 0 ”成立的 ()
A.充分非必要条件
B.必要非充分条件
C.非充分非必要条件
D.充要条件
返回目录
名师伴你行
【答案】A 【解析】因为当x>0时,一定有 3 x2 0 ,但当 3 x2 0时, x<0也成立,因此x>0是 3 x2成立0的充分不必要条件. 故应选A.
返回目录
x+y≤9
5x+4y≥30
10×6x+6×8y≥360
0≤x≤4
0≤x≤4
即 0≤y≤7
0≤y≤7
x,y∈N.
x,y∈N,即x+y≤9
名师伴你行
返回目录
考点3 大小比较
名师伴你行
(1)设x+y<0,试比较(x2+y2)(x-y)与(x2+y2)·(x+y) (2)的大小;
ab
(3)(2)已知a>0,b>0,且a≠b,试比较aabb与(ab)2 的大小.
返回目录
名师伴你行
【分析】比较两数(或两式)的大小,一般用比较法,具 体用作差比较还是用作商比较应由数(或式)特点而定. 【解析】 (1)(x2+y2)(x-y)-(x2-y2)(x+y) =(x-y)[(x2+y2)-(x+y)2] =-2Biblioteka Baiduy(x-y). ∵x<y<0,∴x-y<0,-2xy<0, ∴-2xy(x-y)>0, ∴(x2+y2)(x-y)>(x2-y2)(x+y).
返回目录
考点2 应用不等式表示不等关系
名师伴你行
某汽车公司由于发展的需要需购进一批汽车,计划使用不超 过1 000万元的资金购买单价分别为40万元,90万元的A型 汽车和B型汽车.根据需要,A型汽车至少买5辆,B型汽车至 少买6辆,写出满足上述所有不等关系的不等式.
【分析】把握关键点,不超过1 000万元,且A,B两种车型 分别至少5辆,6辆,则不等关系不难表示,要注意取值范 围.
加性).
(4)a>b,c>0⇒ ac>bc;a>b,c<0⇒ac<bc ;a>b> 0,c>d>0 ⇒ac>bd (可乘性).
返回目录
(5) a>b>0 ⇒an>bn (n∈N*)(乘方性). (6) a>b>0= n a >n b (n∈N*)(开方性).
4.熟记下列不等式性质的结论
} (1) a>b c<d ⇒a-c>b-d.
} (2)
a>b>0 d>c>0
⇒ac
b d
.
} (3) a>b ⇒1 < 1 ab>0 a b
返回目录
名师伴你行
考点1 不等式的概念与性质
[2010年高考江西卷]对于实数a,b,c,“a>b”是 “ac2>bc2”的 ( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
返回目录
名师伴你行
某矿山车队有4辆载重为10 t的甲型卡车和7辆载重为6 t的乙 型卡车,有9名驾驶员.该车队每天至少要运360 t矿石至冶 炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天 可往返8次,写出满足上述所有不等关系的不等式.
返回目录
名师伴你行
【解析】设每天派出甲型卡车x辆,乙型卡车y辆,根据题意, 应有如下的不等关系: (1)甲型卡车和乙型卡车的总和不能超过驾驶员人数; (2)车队每天至少要运360 t矿石; (3)甲型卡车不能超过4辆,乙型卡车不能超过7辆. 用关于x,y的不等式表示上述不等关系即可.
返回目录
名师伴你行
【解析】设购买A型汽车和B型汽车分别为x辆,y辆,则
40x+90y≤1 000
4x+9y≤100
x≥5
即
x≥5
y≥6
y≥6
x,y∈N+,
x,y∈N+.
返回目录
名师伴你行
注意区分“不等关系”和“不等式”的异同,不等关 系强调的是关系,可用“>”“<”“≥”“≤”“≠”表示,不等式则 是表现不等关系的式子,对于实际问题中的不等式关系可 以从“不超过”“至少”“至多”等关键词上去把握,并 考虑到实际意义.
返回目录
名师伴你行
【分析】本题利用不等式的性质及充要条件的判定直 接作出判断. 【解析】a>b / ac2>bc2,原因是c可能为0,而若 ac2>bc2,则可推出a>b. 故“a>b”是“ac2>bc2”的必要不充分条件. 故应选B.
返回目录
名师伴你行
(1)准确记忆各性质成立的条件, 是正确应用性 质的前提.
名师伴你行
学案1 不等关系与不等式
知识网络构建 考纲解读 考向预测 填填知学情
课内考点突破 规律探究
名师伴你行
考点1 考点2 考点3 考点4
名师伴你行
返回目录
名师伴你行
考纲解读
不等关系 与不等式
1.了解现实世界和日常生活中的不等关系, 了解不等式(组)的实际背景.
2.了解实数大小的比较方法及实数运算的 基本性质,并能运用不等式的性质判断不 等式是否成立或数(式)的大小.
对应的实数 大 .
2.实数大小的比较
(1)设a,b∈R,则
①a>b⇔ a-b>0 ;
②a=b ⇔ a-b=0 ;
③a<b⇔ a-b<0 .
返回目录
(2)设a,b∈R+,则
a > 1 ⇔ a>b
b
;
② a = 1 ⇔ a=b
b
;
③ a < 1 ⇔a<b .
b
3.不等式的基本性质
(1) a>b⇔b<a (对称性). (2) a>b,b>c⇒a>c (传递性). (3)a>b⇒a+c>b+c ;a>b,c>d⇒a+c>b+d (可
返回目录
名师伴你行
考向预测
纵观近三年新课标区高考可以发现,由于新课程 标准对不等式的性质要求不高,高考也几乎没有单独 命题,作差法比较两实数大小也仅是解决问题的工具, 一般不单独命题,高考对本学案知识的考查往往结合 函数的性质,利用函数中的不等关系比较实数的大小.
返回目录
1.在数轴上的任意两点中,右边点对应的实数比左边点