反应器类型

合集下载

反应器(化工设备操作维护课件)

反应器(化工设备操作维护课件)

上一内容 下一内容 回主目录
2023/10/13
表 釜式反应器常见故障与处理方法
故障 搅拌轴转数降 低或停止转动
搪瓷搅拌器脱 落 出料不畅
产生原因 皮带打滑 皮带损坏 电机故障 被介质腐蚀
出料管堵塞 压料管损坏
处理方法
调整皮带 更换皮带 修理或更换电机 更换搪瓷轴或修 补 清理出料管 修理或更换配管
2、特点:反应过程伴有传热、传质和反应物的流动过程。 物理与化学过程相互渗透影响,反应过程复杂化。
上一内容 下一内容 回主目录
2023/10/13
§1-2 反应器的类型
• 反应器的类型: 釜式反应器 管式反应器
操作方式 材料 操作压力 绝热管式
换热管式
上一内容 下一内容 回主目录
2023/10/13
2023/10/13
b. 机械密封
机械密封 结构较复 杂,但密 封效果甚 佳。
上一内容 下一内容 回主目录
2023/10/13
4、换热装置
换热装置是用来加热或冷却反应物料,使之符合工艺 要求的温度条件的设备。
其结构型式主要有夹套式、蛇管式、列管式、外部循 环式等,也可用回流冷凝式、直接火焰或电感加热。
上一内容 下一内容 回主目录
2023/10/13
第六章 反应器
第二节 釜式反应器
上一内容 下一内容 回主目录
2023/10/13
§2-1 反应釜基本结构
(一)基本结构:
壳体 密封装置 换热装置 传动装置
上一内容 下一内容 回主目录
2023/10/13
1、搅拌釜式反应器的壳体结构
壳体结构:一般为碳钢材 料,筒体皆为圆筒型。釜 式反应器壳体部分的结构 包括筒体、底、盖(或称 封头)、手孔或人孔、视 镜、安全装置及各种工艺 接管口等。

化工设备基础知识

化工设备基础知识

化工设备基础知识1. 引言化工设备是化学工业生产过程中的核心部分,它们扮演着将原料转化成产品的重要角色。

了解化工设备的基础知识对理解化学工业生产过程以及维护和管理化工设备都十分关键。

本文将介绍化工设备的基本概念、常见类型以及其工作原理和应用。

化工设备是指用于进行化学反应、混合物分离、质量传递或能量传递的设备。

它包括了各种容器、管道、反应器、分离器、换热器以及其他配套设备。

化工设备通常由耐腐蚀的材料制成,如不锈钢、玻璃钢和塑料等。

3.1 反应器反应器是进行化学反应的核心设备,可以用于合成新化合物、转化原料或达到其他化学目的。

常见的反应器类型包括:•批量反应器:适用于小规模实验室研究以及小批量生产。

•连续流动反应器:适用于大规模连续生产,具有高效性和稳定性。

•固定床反应器:反应物在固定的催化剂床上进行反应。

•搅拌式反应器:通过搅拌装置将反应物混合并提供充分的反应接触。

3.2 分离器分离器用于将混合物中的组分分离出来。

常见的分离器类型包括:•蒸馏塔:利用不同组分的沸点差异,通过蒸馏将混合物分离成纯组分。

•萃取塔:利用不同组分在溶剂中的溶解度差异,通过溶剂的流动将混合物分离。

•结晶器:通过调节温度和压力,使溶液中的某些组分结晶从而分离出来。

•过滤器:通过过滤设备将固体颗粒从流体中分离出来。

3.3 换热器换热器用于将热能从一个介质传递到另一个介质。

常见的换热器类型包括:•管壳式换热器:具有管束和外壳两部分,通过管道将热能传递给另一个介质。

•板式换热器:由一系列平行的金属板组成,通过板间流动的介质进行热量交换。

•空气冷却器:利用空气对介质进行冷却,常用于冷却剂回收或冷却过程中的热量排放。

4. 化工设备的工作原理和应用化工设备的工作原理和应用与其类型密切相关。

以下是一些常见化工设备的工作原理和应用举例。

4.1 批量反应器的工作原理和应用批量反应器是一种适用于小规模化学反应的设备。

它的工作原理是将反应物加入到反应器中,然后进行反应,最后将产物取出。

反应器基本理论课件

反应器基本理论课件
反器基本理
• 反应器概述 • 反应器的基础理论 • 反应器的类型与选择 • 反应器的操作与优化
反器概述
01
反应器的定义和分类
分类
连续反应器(Continuous Reactor):反应物以稳定流速连 续加入,产物也连续流出。
定义:反应器是一种用于进行化 学反应的设备或系统,通过控制 反应条件来促进化学反应的进行, 并获取所需的产物。
批式反应器(Batch Reactor): 反应物一次性加入,反应完成后 产物一次性取出。
半连续反应器(Semi-Batch Reactor):反应物一部分连续加 入,一部分批次加入。
反应器在化工流程中的地位
01
02
03
核心设备
反应器是化工流程中的核 心设备之一,直接影响产 品质量和生产效率。
反应条件控制
评估指标
评估反应器性能的主要指标包括反应器的转化率、选择性、产率等。此外,还需关注反应器的能耗、设备寿命、 操作稳定性等方面的指标。在实际应用中,需根据具体反应体系和需求,综合权衡各方面因素,选择最适合的反 应器类型和设计参数。
04
反器的操作

反应器的稳态操作
稳态操作定义
指的是反应器在连续、稳 定的状态下进行操作,各 参数不随时间变化。
适用场景
非均相反应器适用于涉及固-液、固气等反应体系的反应过程,如催化裂 化、气体吸附等。
反应器的选择与评估
选择因素
在选择反应器时,需要考虑反应物的性质、反应条件、产物要求等因素。例如,对于快速反应,宜选择均相反应 器;对于慢反应,宜选择非均相反应器。同时,还需考虑反应器的传热、传质性能,设备的投资与运行成本等因 素。
非理想流动模型
分析实际反应器中可能出现的非理想流动现象,如返混、死区等, 以及这些现象对反应器性能的影响。

化学反应器设计、操作与控制

化学反应器设计、操作与控制

压力控制
压力是化学反应的重要参数,通过调节进料流量和压力调 节系统,将压力控制在适当的范围内,以保证反应的顺利 进行。
流量控制
进料流量对化学反应的影响较大,通过流量计和调节阀, 精确控制进料流量,以保证反应物料的均匀投入。
反应过程监控
温度监测
实时监测反应器内的温度变化 ,确保温度在预设范围内波动

研究反应的动力学性质,如反应速率 常数、活化能等,以优化反应过程。
02 化学反应器操作
操作参数控制
温度控制
保持反应器内的温度稳定,是实现化学反应的重要条件。 通过加热和冷却系统,将温度控制在适宜的范围内,以获 得最佳的反应效果。
液位控制
保持反应器内的液位稳定,对于化学反应的稳定性和安全 性至关重要。通过液位传感器和调节阀,实时监测和控制 液位高度。
反应器材料选择
根据反应条件选择耐 腐蚀、耐高温、耐高 压的材料。
对于特殊反应,如强 氧化、还原等,需选 用具有特殊性能的材 料。
考虑材料的机械性能、 加工性能和经济性。
反应器热力学与动力学基础
分析反应的热力学性质,如反应平衡 常数、熵变等,以确定最佳反应条件。
利用热力学和动力学数据,进行反应 器模拟和优化。
预防措施
加强设备维护和巡检,制定应急预案,提高员工安全意识。
案例分析
某化工厂反应器爆炸事故的调查与预防措施。
05 未来展望与挑战
新材料与新技术的应用
新材料的研发
随着科技的发展,新型的高性能材料如纳米材料、复合材料 等在化学反应器中的应用越来越广泛。这些新材料具有优异 的物理和化学性能,可以提高反应器的效率、降低能耗和减 少环境污染。
环保要求
严格控制三废(废气、废水和固 废)的排放,采用环保材料和工 艺,降低能耗和资源消耗,实现 绿色生产。

生物反应器的原理及类型

生物反应器的原理及类型

2、宏观流体和微观流体
习惯上人们把具有不同停留时间的物料颗粒之间的混合称为 返混,也有人将这种混合称为宏观混合。它由停留时间分布 来表征。同时,还有另外一种混合,用于描述物料在反应器 内流动时的聚集状态。这种混合又称为微观混合。
宏观流体即流体中分子聚集成团块流体,这些流体粒子之间 不发生任何物质交换,各个粒子都是孤立的、各不相干的, 它们之间不产生混合。这种状态又称为完全离析的状态。在 实际流动中,不聚并的液滴、固体粒子及非常粘稠的液体等 均可认为是宏观流体。
牛顿型流体 :符合牛顿黏性定律的流体
当n=1,τ0=0 τ=μγ(牛顿黏性定律)
非牛顿型流体( τ与γ 之比不是常数)根据其比值不同又可 分为以下几类:
A、宾汉(Bingham)塑性流体
τ=τ0+μγ
(τ<τ0时,流体不流动,流动曲线为不过原点的直线)
例如:黑曲霉,产黄青霉,灰色链霉菌等丝状菌发酵液
如果培养物受氧限制,生长量就与氧传递量相关。在分 批培养中,菌丝体浓度增加,氧传递速率降低,生长速 率很快减慢到零。在受氧限制的连续培养中,由于单位 培养基中氧传递的总量随滞留时间的降低而降低,在高 的稀释率下,菌丝体浓度下降。为了克服氧限制在工业 发酵中的影响,可加水稀释发酵液,从而降低黏度,增 加氧传递速度。
四、剪切力对生物反应的影响
1、剪切 剪切力是单位面积流体上的切向力,剪切力的单位为
N/m2或Pa。 剪切是设计和放大生物反应器的重要参数。在生物过程
中,严格地讲,对细胞的剪切作用泛指作用于细胞表面, 且与细胞表面平行的力,但由于发酵罐中水力学情况非 常复杂,一般剪切力指影响细胞的各种机械力的总称。
微观流体即流体中的分子不与近邻的分子附着而独立流动, 此时物料粒子之间发生的混合是在分子尺度上进行的,如果 反应器中完全不存在宏观流体时,称此状态为微观混合达到 最大,或称最大微观混合。介于上两者之间的称为部分离析 或不完全微观混合,即两者并存于体系之中。

反应器的选型

反应器的选型

反应器的选型反应器是化学工程中不可或缺的重要设备,是化学反应过程中完成反应的主体,直接关系到工艺的效率和成本等问题。

选型合适的反应器对于工艺的成功实施具有至关重要的作用。

选型原则选型反应器的目的是为了满足化学反应的需求,使得反应过程更为充分、稳定和安全。

在选型时应该考虑以下几个方面:反应类型和物理性质反应类型和物理性质是基本的影响反应器选择的方面。

比如反应的温度、压力和化学制品、催化剂等的物理性质。

不同的反应类型需要不同的反应器,比如液相、气相和固相反应等。

体积和热传递反应体积和热传递也是选型反应器时需要考虑的因素。

不同的反应需要的反应器体积大小不同,而反应的体积大小又直接关系到反应速率和转化率等问题。

同时,热传递也是一个非常重要的因素,在高温反应时,需要选择耐高温的材料,并且需要对反应器进行高效的加热或冷却。

填料和流动方式填料和流动方式也是选型反应器所需考虑的因素。

填料可以增加反应器的反应面积,从而提高反应效率。

而流动方式可以改变反应器内部液体的流动状态,从而提高反应物的混合程度。

安全性反应器的安全性同样需要考虑。

反应器需要保证稳定运行,在工艺参数的控制下,消除任何可能发生事故的风险,减小安全事故的发生频率和严重程度。

常见反应器类型不同的反应需要对应不同的反应器类型。

以下是常见的反应器类型:管式反应器管式反应器是一种流下式反应器,其结构简单,操作方便。

通常使用于高温高压反应,能够保证反应均匀性和控制能力。

搅拌式反应器搅拌式反应器是一种混合反应器,可以对反应物进行充分混合,增加反应面积,提高反应速率。

固定床反应器固定床反应器是一种固态反应器,采用催化剂固定在反应器内,通过反应物的流动让反应物经过催化剂表面进行反应。

流化床反应器流化床反应器是一种流态反应器,可以实现反应物的充分混合,提高混合程度。

小结反应器选型是化学工程中比较重要的一步,合理的反应器选择可以使得反应效率更高、成本更低、安全性更高。

反应器

反应器
③ 非等温非绝热反应器 与外界有热量交换,反应器内也有热反馈,但达不到等温条件的反应器,如列管 式固定床反应器。
换热可在反应区进行,如通过夹套进行换热的搅拌釜,也可在反应区间进行,如级间换热的多级反应器。
操作条件
主要指反应器的操作温度和操作压力。温度是影响反应过程的敏感因素,必须选择适宜的操作温度或温度序 列,使反应过程在优化条件下进行。例如对可逆放热反应应采用先高后低的温度序列以兼顾反应速率和平衡转化 率(见化学平衡)。
感谢观看
操作方式
反应器按操作方式可分为:
①间歇釜式反应器,或称间歇釜。
操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。间歇釜 的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。但有些反应过程,如一些发酵反应和聚合反应, 实现连续生产尚有困难,至今还采用间歇釜。
选型
对于特定的反应过程,反应器的选型需综合考虑技术、经济及安全等诸方面的因素。
反应过程的基本特征决定了适宜的反应器形式。例如气固相反应过程大致是用固定床反应器、流化床反应器 或移动床反应器。但是适宜的选型则需考虑反应的热效应、对反应转化率和选择率的要求、催化剂物理化学性态 和失活等多种因素,甚至需要对不同的反应器分别作出概念设计,进行技术的和经济的分析以后才能确定。
除反应器的形式以外,反应锅的操作方式和加料方式也需考虑。例如,对于有串联或平行副反应的过程,分段 进料可能优于一次进料。温度序列也是反应器选型的一个重要因素。例如,对于放热的可逆反应,应采用先高后 低的温度序列,多级、级间换热式反应器可使反应器的温度序列趋于合理。反应器在过程工业生产中占有重要地 位。就全流程的建设投资和操作费用而言,反应器所占的比例未必很大。但其性能和操作的优劣却影响着前后处 理及产品的产量和质量,对原料消耗、能量消耗和产品成本也产生重要影响。因此,反应器的研究和开发工作对 于发展各种过程工业有重要的意义。

化工行业设备

化工行业设备

化工行业设备化工行业设备是指用于化工生产过程中的各类设备,包括反应器、分离器、蒸馏塔、干燥机、加热器、冷却器、搅拌器等等。

化工行业设备在化学反应的过程中扮演着重要的角色,不仅能够提高反应效率,还能保证反应质量和产品性能。

下面从以下五个方面详细介绍化工行业设备的特点和应用。

1. 反应器反应器是进行化学反应必不可少的设备。

化工行业中常见的反应器类型有批量反应器、连续反应器、半连续反应器等等。

批量反应器是最常见的反应器类型,适合小批量生产,而连续反应器适合大规模生产,能够持续进行反应。

反应器的材料通常选择不锈钢,可以防止反应器受到腐蚀。

2. 分离器分离器用于将化学反应后生成的不同物质分离开来。

化工行业中常见的分离器有萃取塔、萃取柱、膜分离器等等。

例如,蒸汽蒸馏是常用的分离技术,它可以用来分离液体混合物中的各种组分。

3. 干燥机干燥机主要用于将物料中的水分或其它液态溶剂等挥发出去,以达到要求的干燥水平。

常见的干燥机有气流干燥机、真空干燥机、喷雾干燥机等等。

干燥机的选择应该根据物料性质、设备成本、生产规模等因素来进行。

4. 蒸馏塔蒸馏塔是一种可以分离混合物中不同组分的设备,广泛应用于化工、制药等行业。

常见的蒸馏塔包括板式蒸馏塔、填料式蒸馏塔等等。

蒸馏塔可以使用不同的工作原理,如真空蒸馏、吸附蒸馏、气相色谱蒸馏等。

5. 搅拌器搅拌器通常用于将反应物混合均匀,促进化学反应的进行。

搅拌器种类繁多,有机械搅拌器、气体搅拌器、超声波搅拌器等。

选择合适的搅拌器应该根据反应需求、物料特性、设备维护成本等因素来进行。

总结起来,化工行业设备种类繁多,不同的设备具有不同的特点和应用范围。

化学反应的进行离不开这些设备的支持,同时他们的合理使用也能够提高反应效率、保证产品质量,从而为化工行业的发展带来更大的推动力。

反应器设计最基本的内容

反应器设计最基本的内容

热力学第二定律
熵增原理,用于判断反应自发性和热力学可行 性。
平衡常数
描述反应达到平衡时反应物和产物浓度的关系。
传递过程基础
1 2
流动模型
描述反应物在反应器内的流动特性,如平推流、 全混流等。
传热模型
计算反应过程中的热量传递,如导热、对流和辐 射等。
3
传质模型
描述反应物和产物在反应器内的浓度分布和传递 过程。
应用
广泛应用于石油、化工等领域中 的气固相非催化反应。
02
反应器设计基础
化学反应动力学
反应速率方程
描述反应速率与反应物浓度的关系。
反应机理
确定反应过程中的基元反应和反应路径。
动力学参数
通过实验测定反应速率常数、活化能等动力学参 数。
热力学基础
热力学第一定律
能量守恒定律,用于计算反应过程中的能量变 化。
广泛应用于石油、化工、环保等领域 中的气固相催化反应。
特点
固定床反应器具有较高的空速和较低 的反应压力,适用于气固相催化反应, 催化剂可重复使用。
流化床反应器
定义
流化床反应器是一种填充有固体 催化剂的反应器,用于实现气固
相非催化反应。
特点
流化床反应器具有较高的空速和 较大的接触面积,适用于气固相
非催化反应,操作稳定。
塔式反应器
定义
塔式反应器是一种塔状反 应器,内部装有填料或塔 盘,用于实现气液或液液 反应。
特点
塔式反应器具有较大的接 触面积和较长的停留时间, 适用于气液传质和液液传 质,操作稳定。
应用
广泛应用于石油、化工、 环保等领域中的气液反应 和液液反应。
固定催化 剂的反应器,用于实现气固相催化反 应。

化学反应器的类型

化学反应器的类型

用于多相反应过程
底层内部装有不动的固体颗粒,固体颗粒可以是催化剂 或是反应物
用于多相反应系统
反应过程中反应器内部有固体颗粒的悬浮和循环运动, 多相反应体系,可以提高传热
提高反应器内液体的混合性能
速率
固体颗粒自上而下作定向移动与反应流体逆向接触
用于多相体系,催化剂可以连 续再生
是固定反应器的一种,但反应物还包括气液两种
化学反应器的类型
反应器的类型很多,如果按反应器的工作原理 来分,可以概括为以下几种类型:
种类 管式反应器 釜式反应器
塔式 (填料塔板式塔)
固定床
流化床
移动床 滴流床
特点
应用范围
长度远大于管径,内部没有任何构件
多用于均相反应过程
高度与直径比约为2-3内设搅拌装置和档板
均相、多相反应过程均可
高度远大于直径,内部设有填料、塔板等以提高相互接 触面积
化学反应器的操作方式
(2)连续操作的特征是连续地将原料输入反应器,反应产物也连续地从反应器流 出。采用连续操作的反应器叫做连续反应器或流动反应器。
大规模工业生产的反应器绝大部分都是采用连续操作,因为它具有产品质量稳定, 劳动生产率高,便于实现机械化和自动化等优点。
(3)半间歇(或半连续)操作特点是一种物料一次加入,另一种物料连续加入,可以 控制反应速度、反应温度。兼有以上两种过程的特点,情况比较复杂。
属于固定床的一种,用于使用 固体催化剂的气液反应过程
化学反应器的类型
(a)管式反应器
(b)规整填料塔反应器 (c)喷雾塔式反应器
(d)板式塔反应器
(e)鼓泡塔反应器
(f)气液搅拌釜式反应器
(g)循环式浆态反应器 (h)半连续浆态床反应器 (i)机械搅拌浆态床反应器

连续流反应器的类型

连续流反应器的类型

随着社会不断进步,人们生活水平持续提高,人们对于产品的要求也在不断提高。

而在化工医药领域连续流反应器可以通过强化化工生产过程来实现更高效、优质、环保的的生产。

一、微反应器类型微反应器有多种分类方法,按操作模式可分为问歇微反应器、半连续微反应器和连续微反应器,其中间歇微反应器的报道较少,而半连续微反应器未见有报道;按用途可分为试验用微反应器和生产用微反应器,其中试验用微反应器主要用在药物筛选、催化剂性能测试及工艺开发优化等;按反应物的相态可分为液液相微反应器、气液相微反应器、气固相催化微反应器和气液固三相微反应器。

1、管式反应器一种呈管状、长径比很大的连续操作反应器。

这种反应器可以很长,如丙烯二聚的反应器管长以公里计。

反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。

通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流(见流动模型)(见彩图)。

管式反应器返混小,因而容积效率(单位容积生产能力)高,对要求转化率较高或有串联副反应的场合尤为适用。

此外,管式反应器可实现分段温度控制。

其主要缺点是,反应速率很低时所需管道过长,工业上不易实现。

2、固定床反应器又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。

固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。

床层静止不动,流体通过床层进行反应。

它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。

固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。

用于气固相或液固相非催化反应时,床层则填装固体反应物。

涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。

二、微反应器适合的类型有研究表明,在精细化工领域只有约30%的有机反应可以通过采用微反应器,在收率、选择性或安全性等方面得到提高。

厌氧生物反应器分类

厌氧生物反应器分类

厌氧生物反应器分类厌氧生物反应器是一种利用厌氧微生物进行有机废弃物降解和能源转化的设备。

根据不同的工艺和应用,厌氧生物反应器可以被分为多个类型。

本文将介绍常见的四种厌氧生物反应器分类。

一、厌氧污泥法反应器厌氧污泥法反应器是一种利用厌氧污泥进行废水处理的设备。

在厌氧环境中,厌氧污泥能够降解有机物,并产生甲烷等可再生能源。

常见的厌氧污泥法反应器包括厌氧污泥法废水处理系统和厌氧消化池。

厌氧污泥法反应器适用于高浓度有机废水的处理,具有处理效率高、产气量大、操作简便等优点。

二、厌氧发酵反应器厌氧发酵反应器是一种利用厌氧微生物进行有机物发酵的设备。

在厌氧环境中,厌氧微生物能够通过发酵过程将有机物转化为有机酸、气体等产物。

常见的厌氧发酵反应器包括厌氧发酵罐和厌氧发酵槽。

厌氧发酵反应器广泛应用于生物质能源和有机废弃物的转化,具有资源利用高效、环境友好等优点。

三、厌氧滤池反应器厌氧滤池反应器是一种利用滤料固定化厌氧微生物进行废水处理的设备。

在厌氧滤池中,厌氧微生物能够通过附着在滤料表面的生物膜进行有机物降解和氮、磷去除。

常见的厌氧滤池反应器包括厌氧滤池和厌氧生物滤池。

厌氧滤池反应器适用于中低浓度有机废水的处理,具有处理效果稳定、占地面积小等优点。

四、厌氧气浮反应器厌氧气浮反应器是一种利用气浮技术和厌氧微生物进行废水处理的设备。

在厌氧气浮反应器中,厌氧微生物能够通过气泡的升浮作用将有机物和悬浮物从废水中去除。

常见的厌氧气浮反应器包括厌氧气浮池和厌氧气浮槽。

厌氧气浮反应器适用于高浓度有机废水和高浓度悬浮物的处理,具有处理效果好、气浮效率高等优点。

总结起来,厌氧生物反应器是一种重要的废水处理和能源转化设备,根据不同的工艺和应用可以分为厌氧污泥法反应器、厌氧发酵反应器、厌氧滤池反应器和厌氧气浮反应器等多种类型。

这些不同类型的厌氧生物反应器在废水处理和有机废弃物转化方面发挥着重要作用,为实现资源循环利用和环境保护做出了贡献。

反应器结构及工作原理图解

反应器结构及工作原理图解

反应器结构及工作原理图解小7:这里给大家介绍一下常用的反应器设备,主要有以下类型:①管式反应器。

由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。

②釜式反应器。

由长径比较小的圆筒形容器构成,常装有机械搅拌或气流搅拌装置,可用于液相单相反应过程和液液相、气液相、气液固相等多相反应过程。

用于气液相反应过程的称为鼓泡搅拌釜(见鼓泡反应器);用于气液固相反应过程的称为搅拌釜式浆态反应器。

③有固体颗粒床层的反应器。

气体或(和)液体通过固定的或运动的固体颗粒床层以实现多相反应过程,包括固定床反应器、流化床反应器、移动床反应器、涓流床反应器等。

④塔式反应器。

用于实现气液相或液液相反应过程的塔式设备,包括填充塔、板式塔、鼓泡塔等(见彩图)。

一、管式反应器一种呈管状、长径比很大的连续操作反应器。

这种反应器可以很长,如丙烯二聚的反应器管长以公里计。

反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。

通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流。

分类:1、水平管式反应器由无缝钢管与U 形管连接而成。

这种结构易于加工制造和检修。

高压反应管道的连接采用标准槽对焊钢法兰,可承受1600-10000kPa 压力。

如用透镜面钢法兰,承受压力可达10000-20000kPa 。

2、立管式反应器立管式反应器被应用于液相氨化反应、液相加氢反应、液相氧化反应等工艺中。

3、盘管式反应器将管式反应器做成盘管的形式,设备紧凑,节省空间。

但检修和清刷管道比较困难。

4、U形管式反应器U形管式反应器的管内设有多孔挡板或搅拌装置,以强化传热与传质过程。

U形管的直径大,物料停留时间增长,可应用于反应速率较慢的反应。

5、多管并联管式反应器多管并联结构的管式反应器一般用于气固相反应,例如气相氯化氢和乙炔在多管并联装有固相催化剂的反应器中反应制氯乙烯,气相氮和氢混合物在多管并联装有固相铁催化剂的反应器中合成氨。

反应装置文档

反应装置文档

反应装置1. 简介反应装置是用于进行化学反应的设备,它提供了一个控制反应过程的环境,包括温度、压力、混合度等因素。

反应装置主要由反应器、加热装置、冷却装置、搅拌装置和控制系统等组成。

2. 反应器反应器是反应装置的核心组成部分,它是进行化学反应的容器。

根据反应的需求,反应器可以分为多种类型,如批量反应器、连续反应器和半批量反应器等。

常见的反应器类型包括:•批量反应器:批量反应器是将反应物加入反应器中,控制温度、压力和反应时间等因素进行反应的装置。

它适用于小规模的实验和生产过程。

•连续反应器:连续反应器是在反应过程中连续地添加反应物和去除产物的装置。

它适用于大规模的生产工艺,能够持续地进行反应,提高生产效率。

•半批量反应器:半批量反应器是将部分反应物固定在反应器中,然后连续地添加其他反应物的装置。

它适用于某些需要固定反应物的反应过程。

3. 加热装置加热装置是反应装置中的一个重要组成部分,它提供所需的温度条件,使反应物能够快速发生化学反应。

加热装置可以使用不同的能量源,如电加热、火焰加热和外部热源等。

常见的加热装置有:•电加热:利用电能产生热量进行加热,通过控制电流和电压等参数来达到所需的温度条件。

•火焰加热:通过燃烧燃料产生火焰进行加热。

常见的火焰加热装置有燃气灯和酒精灯等。

•外部热源:使用外部的热源,如蒸汽或其他加热介质,将热量传递给反应器进行加热。

4. 冷却装置冷却装置是为了控制反应过程中的温度,防止反应物过热或失控。

冷却装置能够通过吸取反应器中的热量,将其散发到周围环境中,以保持反应物的稳定。

常见的冷却装置有:•冷却水循环系统:通过水循环的方式,将冷却水流经反应器的外壁或内部冷却管,以吸收热量实现冷却。

•冷凝器:将反应物的蒸汽通过冷凝作用转变为液体,从而释放出大量热量。

•气体冷却器:将反应物中的气体通过与冷却介质的接触,实现冷却。

5. 搅拌装置搅拌装置是为了保持反应物的均匀混合,在反应过程中提供足够的接触面积,以促进反应的进行。

化工反应器分类、特征、应用及放大方法

化工反应器分类、特征、应用及放大方法


化工反应过程的放大方法:
1、逐级经验放大法 2、数学模拟法 3、部分解析法 4、相似放大法
第一种 逐级经验放大法

定义: 运用物质模型从实验室规模的小试开始,经过逐 级放大的模型试验研究,直到将化工过程放大成为生产规 模。


依据:以前一级试验所取得的研究结果和数据为依据。
特点:比较原始,不够精确,不够经济,但有一定的价值

特点:用一组微分方程或一组代数方程,描述过
程的动态规律。是目前比较先进、科学的方法。

要求:即能描述过程,又简单便于应用。

一、数学模型 建立数学模型的思维方法

如反应器模型的基础: 热力学方程、反应动力学方程、三大传 递 物料衡算式、热量衡算式、动量衡算式 数学模型的简化 非理想流动模型—— 轴向分散模型、多釜 串联模型

考察设备内物料的流动与混合,传热和传质等物理过
程的规律。 反应器内各种物理过程的规律,只随反应器的型式或 结构的改变而改变,反应的类型不会改变传递规律。
综合化学反应特征和传递过程特征,建立函
数关系式,形成数学模型,预测工业反应器 性能。

只要反应器的型式结构和化学反应相同, 由数学模型表示的过程动态规律应不受设备 几何尺寸的限制,因此用数学模型进行工业 反应器的设计,应不存在放大效应。


数学模型的针对性

每一种数学模型都有一定的限制范围 。

例:管式反应器内物料的返混可以用扩散
模型描述,但扩散模型不能描述物料在管 式反应器的层流或湍流状态。

二、研究方法 以化学反应过程开发为例,按以下步骤 进行:
测定反应热力学和动力学的特征规律及其参数。

反应器类型

反应器类型

反应器类型管式反应器、固定床,流化床1、管式反应器一种呈管状、长径比很大的连续操作反应器。

这种反应器可以很长,如丙烯二聚的反应器管长以公里计。

反应器的结构可以就是单管,也可以就是多管并联;可以就是空管,如管式裂解炉,也可以就是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。

通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流(见流动模型)(见彩图)。

管式反应器返混小,因而容积效率(单位容积生产能力)高,对要求转化率较高或有串联副反应的场合尤为适用。

此外,管式反应器可实现分段温度控制。

其主要缺点就是,反应速率很低时所需管道过长,工业上不易实现。

管式反应器与釜式反应器还就是有差异的,至于就是否可以换回还要瞧您的反应的工艺要求与反应过程如何,一般的说,管式反应器属于平推流反应器,釜式反应器属于全混流反应器,您的反应过程对平推流与全混流的反应有无具体的要求?管式反应器的停留时间一般要短一些,而釜式反应器的停留时间一般要长一些,从移走反应热来说,管式反应器要难一些,而釜式反应器容易一些,可以在釜外设夹套或釜内设盘管解决,您的这种情况,能否可以考虑管式加釜的混合反应进行,即釜式反应器底部出口物料通过外循环进入管式反应器再返回到釜式反应器,可以在管式反应器后设置外循环冷却器来控制温度,反应原料从管式反应器的进口或外循环泵的进口进入,反应完成后的物料从釜式反应器的上部溢流出来,这样两种反应器都用了进去。

2、固定床反应器又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。

固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。

床层静止不动,流体通过床层进行反应。

它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。

固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。

酶反应器的认知与操作—几种常用的酶反应器

酶反应器的认知与操作—几种常用的酶反应器

他们采用了甲酸脱氢酶(FDH),该酶需 NAD—,接受由甲酸脱下来的氢,生成 NADH,即NAD+得到了再生。此项设计, 利用液-液双水相技术,获得廉价的甲酸 脱氢酶和亮氨脱氢酶,将两种酶和NADH 一同在PFG-20000上进行固定化,再把这 个反应系统置于超滤膜反府器内,如图 9.2-4所示。
将酶固定化于膜状惰性支持物上,将其卷 成螺旋卷状,填充于柱中,称为螺旋卷膜式 反应器(图9.2-1)。以包埋法为主制备的凝 胶成型薄片固定化酶圆盘,叠装在旋转轴上, 把整个装置浸泡在底物液中,即成转盘型酶 膜反应器。此型反应器,结构较简单,容易 放大,但反应器中单位体积的催化剂的有效 面积较小。
空心酶管反应器(图9.2-2),是将酶固定化 于内径约1mm的细管的内壁,组装而成,底 物流经管内与酶接触进行反应,这类反应器 在自动分析仪中应用较多。膜型反应器,特 别是中空纤维膜反应器,结构复杂,制作麻 烦,成本高,传质阻力大,不适宜于黏稠和 不溶性底物应用。
填充床所用的面定化酶(或细脑),可以是颗 粒状或片状或膜状的,分层装填,还可用半 透性中空纤维固定化酶,竖直平行装填反应 器柱管(图9.2-1)。PFR液体流动的方式, 有下向流、上向流或是循环流之分,工业上 通常多用上向流,可以避免下向流动的液压 对柱床的影响,对反应产生气体的,尤应注 意。
PFR的优点是:结构简单,容易操作,效 率高、易于实现白动化,对于存在产物抑制 的反血.较为适宜。冈而。目前工业上较为 普遍地采用这种反应器。它的缺点是:传质 相传热都不太好,温度和PH接制较难,更 换催化剂相当麻烦,不适宜于不溶性或黏稠 性底物。
图9.2-1各种不同类型酶酶反应器 a—间隙式反应器;b—连续流搅拌罐反应器;c—填充床反应器;d—循环流填充床反应器;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反应器类型
管式反应器、固定床,流化床
1、管式反应器
一种呈管状、长径比很大的连续操作反应器。

这种反应器可以很长,如丙烯二聚的反应器管长以公里计。

反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。

通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流(见流动模型)(见彩图)。

管式反应器返混小,因而容积效率(单位容积生产能力)高,对要求转化率较高或有串联副反应的场合尤为适用。

此外,管式反应器可实现分段温度控制。

其主要缺点是,反应速率很低时所需管道过长,工业上不易实现。

管式反应器与釜式反应器还是有差异的,至于是否可以换回还要看你的反应的工艺要求和反应过程如何,一般的说,管式反应器属于平推流反应器,釜式反应器属于全混流反应器,你的反应过程对平推流和全混流的反应有无具体的要求?管式反应器的停留时间一般要短一些,而釜式反应器的停留时间一般要长一些,从移走反应热来说,管式反应器要难一些,而釜式反应器容易一些,可以在釜外设夹套或釜内设盘管解决,你的这种情况,能否可以考虑管式加釜的混合反应进行,即釜式反应器底部出口物料通过外循环进入管式反应器再返回到釜式反应器,可以在管式反应器后设置外循环冷却器来控制温度,反应原料从管式反应器的进口或外循环泵的进口进入,反应完成后的物料从釜式反应器的上部溢流出来,这样两种反应器都用了进去。

2、固定床反应器
又称填充床反应器,装填有固体催化剂或固体反应物用以实现多相反应过程的一种反应器。

固体物通常呈颗粒状,粒径2~15mm左右,堆积成一定高度(或厚度)的床层。

床层静止不动,流体通过床层进行反应。

它与流化床反应器及移动床反应器的区别在于固体颗粒处于静止状态。

固定床反应器主要用于实现气固相催化反应,如氨合成塔、二氧化硫接触氧化器、烃类蒸汽转化炉等。

用于气固相或液固相非催化反应时,床层则填装固体反应物。

涓流床反应器也可归属于固定床反应器,气、液相并流向下通过床层,呈气液固相接触。

固定床反应器有三种基本形式:①轴向绝热式固定床反应器(图1)。

流体沿轴向自上而下流经床层,床层同外界无热交换。

②径向绝热式固定床反应器。

流体沿径向流过床层,可采用离心流动或向心流动,床层同外界无热交换。

径向反应器与轴向反应器相比,流体流动的距离较短,流道截面积较大,流体的压力降较小。

但径向反应器的结构较轴向反应器复杂。

以上两种形式都属绝热反应器,适用于反应热效应不大,或反应系统能承受绝热条件下由反应热效应引起的温度变化的场合。

③列管式固定床反应器由多根反应管并联构成。

管内或管间置催化剂,载热体流经管间或管内进行加热或冷却,管径通常在25~50mm之间,管数可多达上万根。

列管式固定床反应器适用于反应热效应较大的反应。

此外,尚有由上述基本形式串联组合而成的反应器,称为多级固定床反应器。

例如:当反应热效应大或需分段控制温度时,可将多个绝热反应器串联成多级绝热式固定床反应器,反应器之间设换热器或补充物料以调节温度,以便在接近于最佳温度条件下操作。

特点
固定床反应器的优点是:①返混小,流体同催化剂可进行有效接触,当反应伴有串联副反应时可得较高选择性。

②催化剂机械损耗小。

③结构简单。

固定床反应器的缺点是:①传热差,反应放热量很大时,即使是列管式反应器也可能出现飞温(反应温度失去控制,急剧上升,超过允许范围)。

②操作过程中催化剂不能更换,催化剂需要频繁再生的反应一般不宜使用,常代之以流化床反应器或移动床反应器。

固定床反应器中的催化剂不限于颗粒状,网状催化剂早已应用于工业上。

目前,蜂窝状、纤维状催化剂也已被广泛使用。

3、流化床反应器
流化床反应器是一种利用气体或液体通过颗粒状固体层而使固体颗粒处于悬浮运动状
态,并进行气固相反应过程或液固相反应过程的反应器。

在用于气固系统时,又称沸腾床反应器。

流化床反应器在现代工业中的早期应用为20世纪20年代出现的粉煤气化的温克勒炉(见煤气化炉);但现代流化反应技术的开拓,是以40年代石油催化裂化为代表的。

目前,流化床反应器已在化工、石油、冶金、核工业等部门得到广泛应用。

流化床反应器的结构有两种形式:①有固体物料连续进料和出料装置,用于固相加工过程或催化剂迅速失活的流体相加工过程。

例如催化裂化过程,催化剂在几分钟内即显著失活,须用上述装置不断予以分离后进行再生。

②无固体物料连续进料和出料装置,用于固体颗粒性状在相当长时间(如半年或一年)内,不发生明显变化的反应过程。

与固定床反应器相比,流化床反应器的优点是:①可以实现固体物料的连续输入和输出;②流体和颗粒的运动使床层具有良好的传热性能,床层内部温度均匀,而且易于控制,特别适用于强放热反应;③便于进行催化剂的连续再生和循环操作,适于催化剂失活速率高的过程的进行,石油馏分催化流化床裂化的迅速发展就是这一方面的典型例子。

然而,由于流态化技术的固有特性以及流化过程影响因素的多样性,对于反应器来说,流化床又存在粉明显的局限性:①由于固体颗粒和气泡在连续流动过程中的剧烈循环和搅动,无论气相或固相都存在着相当广的停留时间分布,导致不适当的产品分布,阵低了目的产物的收率;②反应物以气泡形式通过床层,减少了气-固相之间的接触机会,降低了反应转化率;③由于固体催化剂在流动过程中的剧烈撞击和摩擦,使催化剂加速粉化,加上床层顶部气泡的爆裂和高速运动、大量细粒催化剂的带出,造成明显的催化剂流失;④床层内的复杂流体力学、传递现象,使过程处于非定常条件下,难以揭示其统一的规律,也难以脱离经验放大、经验操作。

近年来,细颗粒和高气速的湍流流化床及高速流化床均已有工业应用。

在气速高于颗粒夹带速度的条件下,通过固体的循环以维持床层,由于强化了气固两相间的接触,特别有利于相际传质阻力居重要地位的情况。

但另一方面由于大量的固体颗粒被气体夹带而出,需要进行分离并再循环返回床层,因此,对气固分离的要求也就很高了。

(见流态化、流态化设备)。

相关文档
最新文档