中考复习专题训练_一次函数图像应用题
中考复习-一次函数实际应用
中考复习专题三一次函数图象的实际应用类型一行程问题命题角度❶单人行程问题(2019·吉林省实验模拟)从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少 5 km,下坡的速度比在平路上的速度每小时多5 km,设小明出发x h后,到达离乙地y km的地方,图中的折线ABCDEF表示y 与x之间的函数关系.(1)小明骑车在平路上的速度为________km/h,他在乙地休息了________h;(2)分别求线段AB,EF所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85 h,求丙地与甲地之间的路程.【分析】(1)分别计算出小明骑车上坡的速度,小明在平路上的速度,小明下坡的速度,小明在平路上所用的时间,小明下坡所用的时间,即可解答;(2)根据上坡的速度为10 km/h,下坡的速度为20 km/h,所以线段AB所对应的函数关系式为y=6.5-10x,线段EF所对应的函数关系式为y=4.5+20(x-0.9),即可解答;(3)设小明出发a小时第一次经过丙地,根据题意得到6.5-10a=20(a+0.85)-13.5,求出a的值,即可解答.【自主解答】1.快递员张师傅从快递公司出发骑电动车匀速前往幸福家园小区投送快递,到达小区后将快递投放到快递专柜,然后原路匀速返回快递公司,且返回时的速度是返回前速度的1.5倍,张师傅距离快递公司的路程y(千米)与从公司出发所用时间x(小时)的函数图象如图所示,根据图象回答问题:(1)合理解释线段AB表示的实际意义________;(2)图中a=______,直线BC的函数解析式为______;(3)出发x小时,快递员距离快递公司10千米,求x的值.命题角度❷双人行程问题(2019·松原模拟)“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=________;b=________;m=________;(2)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距100米,此时小军骑行的时间为______分钟.【分析】(1)根据题意和函数图象中的数据可以求得a,b,m的值;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以列出相应的方程,从而可以求得t的值.【自主解答】2.(2019·白山一模)周末,甲、乙两名大学生骑自行车去距学校6 000米的净月潭公园,两人同时从学校出发,以a米/分的速度匀速行驶,出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙,甲追上乙后,两人以相同的速度前往净月潭,乙骑自行车的速度始终不变,设甲,乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.(1)求a,b的值;(2)求甲追上乙时,距学校的路程;(3)当两人相距500米时,直接写出t的值是______.3.(2019·白山二模)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟,发现忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与姐姐出发时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮骑共享单车返回家所用的时间是______分钟,他骑共享单车从家到图书馆所用的时间为________分钟;(2)求小亮骑共享单车从家出发去图书馆时,距家的路程y(米)与姐姐出发时间x(分钟)之间的函数关系式;(3)当小亮追上姐姐时,他距图书馆的路程是____米.类型二 注水问题(2019·吉林名校模拟)游泳池换水清洗的整个过程为“排水——清洗——注水”.一个长方体的游泳池在一次换水清洗的过程中,排水速度是注水速度的2倍,清洗的时间为50 min ,这次换水清洗过程中游泳池水量y(m 3)与时间x(min)之间的函数图象如图所示.(1)这次换水清洗的过程中排水的速度为______m 3/min ;(2)求“注水”过程中y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)在该游泳池换水清洗的整个过程中,当池水的水位高度恰好是注满水的池中水位高度的13时,直接写出x 的值.【分析】(1)分析图象可得;(2)根据图象及排水速度是注水速度的2倍求解即可;(3)分两种情况讨论.【自主解答】4.(2019·长春模拟)某贮水塔在工作期间,每小时的进水量和出水量都是固定不变的.每日从凌晨4点到早8点只进水不出水,8点到12点既进水又出水,14点到次日凌晨只出水不进水.下图是某日水塔中贮水量y(立方米)与时间x(小时)的函数图象.(1)求每小时的进水量;(2)当8≤x≤12时,求y与x的函数关系式;(3)从该日凌晨4点到次日凌晨,当水塔中的贮水量不小于28立方米时,直接写出x的取值范围.类型三 费用与工程问题(2019·长春模拟)甲、乙两车间同时开始加工一批零件,加工一段时间后,甲车间的设备出现故障停产维修设备,乙车间继续加工,甲车间维修好设备后提高了工作效率,每小时比出现故障前多加工10个零件,从开始加工到加工完这批零件乙车间的工作效率不变且工作10小时.甲、乙两车间加工这批零件的总数量y(个)与加工时间x(时)之间的函数图象如图所示.(1)甲车间每小时加工零件________个;(2)求甲车间维修完设备后,y 与x 之间的函数关系式;(3)求加工完这批零件总数量的23时所用的时间.【分析】(1)根据“工作效率=工作总量÷工作时间”即可求出甲车间每小时加工零件的个数;(2)根据待定系数法即可得到甲车间维修完设备后,y 与x 之间的函数关系式;(3)先求出零件总数量的23,再根据(2)中的函数关系式,即可得解. 【自主解答】5.(2019·德惠模拟)某快递公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的一次函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?6.(2019·吉林二模)假期小颖决定到游泳馆游泳.游泳馆门票有两种:A种是每天购票进馆,没有优惠;B种是每月先购买贵宾卡,持贵宾卡购票每张可减少8元.设小颖游泳x次,y1(元)是按A种购票方案的费用,y2(元)是按B种购票方案的费用.根据图中信息解答问题:(1)按A种方案购票,每张门票价格为________元;(2)按B种方案购票,求y2与x的函数解析式;(3)如果小颖假期30天,每天都到游泳馆游泳一次,通过计算她选择哪种购票方案比较合算.参考答案类型一【例1】 (1)15 0.1(2)由题意可知,上坡的速度为10 km/h ,下坡的速度为20 km/h , ∴线段AB 所对应的函数关系式为y =6.5-10x ,即y =-10x +6.5(0≤x≤0.2).线段EF 所对应的函数关系式为y =4.5+20(x -0.9),即y =20x -13.5(0.9≤x≤1).(3)由题意可知,小明第一次经过丙地在AB 段,第二次经过丙地在EF 段. 设小明出发a 小时第一次经过丙地,则小明出发后(a +0.85)小时第二次经过丙地,∴6.5-10a =20(a +0.85)-13.5,解得a =0.1,∴0.1×10=1(千米).答:丙地与甲地之间的路程为1千米.跟踪训练1.解:(1)张师傅到达小区后将快递投放到快递专柜(2)3 y =-30x +90(3)分为两种情况:当出发至离公司10千米时,t =10÷20=0.5(h),当回公司至离公司10千米时,10=-30x +90,解得x =83. 【例2】 (1)10 15 200(2)设小军第二次与爸爸相遇时距图书馆的距离为S 米.根据题意得3 000-S 120=15+3 000-S -1 500200, 解得S =750.答:小军第二次与爸爸相遇时距图书馆的距离是750米.(3)704,20或1456跟踪训练2.解:(1)由题意a =9004.5=200,b =6 000200=30, ∴a=200,b =30.(2)9001.5×200+4.5=7.5. 设t 分钟甲追上乙,由题意300(t -7.5)=200t ,解得t =22.5,22.5×200=4 500(米),∴甲追上乙时,距学校的路程为4 500米.(3)5.5分或17.5分两人相距500米时的时间为t 分钟.由题意得1.5×200(t-4.5)+200(t -4.5)=500,解得t =5.5(分);300(t -7.5)+500=200t ,解得t =17.5(分).3.解:(1)2 20(2)∵小亮骑车从家到图书馆用了20分钟,∴点C 对应的时间为30-20=10,即C(10,0).设y =kx +b ,过C(10,0),E(30,3 000),∴⎩⎪⎨⎪⎧10k +b =0,30k +b =3 000,解得⎩⎪⎨⎪⎧k =150,b =-1 500,∴y=150x -1 500(10≤x≤30).(3)2 250类型二【例3】 (1)20(2)1 500÷(20÷2)=150(min),由图可知,150+(75+50)=275(min),∴A(125,0),B(275,1 500).设y =kx +b ,∴⎩⎪⎨⎪⎧125k +b =0,275k +b =1 500,∴⎩⎪⎨⎪⎧k =10,b =-1 250,∴y=10x -1 250(125≤x≤275).(3)50或175.跟踪训练4.解:(1)由图象可知,4点到8点进水20立方米,∴每小时进水量为5立方米.(2)当8≤x≤12时,由图象知,线段过点(8,25)和(12,35).设函数解析式为y =kx +b ,代入(8,25),(12,35)得⎩⎪⎨⎪⎧8k +b =25,12k +b =35,解得⎩⎪⎨⎪⎧k =52,b =5,∴当8≤x≤12时,y 与x 的函数关系式为y =52x +5. (3)9.2≤x≤16.8.类型三【例4】 (1)60(2)(150+10)×(10-4)+540=1 500.设y =kx +b, 把(4,540),(10,1 500)代入得⎩⎪⎨⎪⎧4k +b =540,10k +b =1 500,解得⎩⎪⎨⎪⎧k =160,b =-100,∴y=160x -100.(4<x ≤10)(3)根据题意得1 500×23=1 000, ∴160x-100=1 000,解得x =558. 跟踪训练5.解:(1)设y B 关于x 的函数解析式为y B =kx +b(k≠0).将点(1,0),(3,180)代入得⎩⎪⎨⎪⎧k +b =0,3k +b =180, 解得⎩⎪⎨⎪⎧k =90,b =-90.∴y B 关于x 的函数解析式为y B =90x -90(1≤x≤6).(2)设y A关于x的解析式为y A=k1x.根据题意得3k1=180,解得k1=60.∴y A=60x.当x=5时,y A=60×5=300(千克),x=6时,y B=90×6-90=450(千克),450-300=150(千克).答:如果A,B两种机器人各连续搬运5小时,B种机器人比A种机器人多搬运了150千克.6.解:(1)35(2)设y2=27x+b,将点(10,470)代入得b=200,即y2与x的函数解析式为y2=27x+200.(3)A种费用为30×35=1 050(元),B种费用为27×30+200=1 010(元).答:选择B种购票方案比较合算.。
九年级数学中考专项复习——函数图像与实际问题应用题(附答案)
中考专项复习——函数与实际问题1. 甲、乙两车从A 城出发前往B 城.在整个行程中,甲车离开A 城的距离1km y 与甲车离开A 城的时间 h x 的对应关系如图所示.乙车比甲车晚出发1h 2,以60 km/h 的速度匀速行驶.(Ⅰ)填空:① A ,B 两城相距km② 当02x ≤≤时,甲车的速度为 km/h ③ 乙车比甲车晚 h 到达B 城 ④ 甲车出发4h 时,距离A 城km⑤ 甲、乙两车在行程中相遇时,甲车离开A 城的时间为 h(Ⅱ)当2053x ≤≤时,请直接写出1y 关于x 的函数解析式.(Ⅲ)当1352x ≤≤时,两车所在位置的距离最多相差多少km ?y 1/ km 53232. 已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:离开家的时间/min 6 10 20 46 离家的距离/km12.5(Ⅱ)填空:① 聪聪家到体育场的距离为______km② 聪聪从体育场到文具店的速度为______km/min ③ 聪聪从文具店散步回家的速度为______ km/min④ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.3.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表: 一次购买台数(台) 2 6 15 … 甲电器店收费(元) 6000 … 乙电器店收费(元)4800…(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.4.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.5.共享电动车是一种新理念下的交通工具:主要面向的出行市场,现有A 两种品牌的共享电动车,给出的图象反映了收费元与骑行时间min 之间的对应关系,其中品牌收费方式对应,品牌的收费方式对应. 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为,小明家到工厂的距离为,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时的值是 . (Ⅲ)直接写出,关于的函数解析式.3~10km B y x A 1y B 2y 300m /min 9km x 1y 2y x y /元O 10 20 x /min8 66. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.7. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为 y 乙(个),其函数图象如图所示. (I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =8. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的折出售.在乙书店一次购书的标价总额不超过元的按标价总额计费,超过元后的部分打折.设在同一家书店一次购书的标价总额为(单位:元,). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元… 在甲书店应支付金额/元 … 在乙书店应支付金额/元…(Ⅱ)设在甲书店应支付金额元,在乙书店应支付金额元,分别写出、关于的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额元,则在甲、乙两个书店中的 书店购书应支付的金额少.9. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家,文具店离家.周末小明从家出发,匀速跑步到体育场;在体育场锻炼后,匀速走了到文具店;在文具店停留买笔后,匀速走了返回家.给出的图象反映了这个过程中小明离开家的距离与离开家的时间之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min离开家的距离/ km(II )填空:① 体育场到文具店的距离为______ ② 小明从家到体育场的速度为______ ③ 小明从文具店返回家的速度为______④ 当小明离家的距离为时,他离开家的时间为______ (III )当时,请直接写出关于的函数解析式.81001006x 0x 501503*********y 2y 1y 2y x 2801203km 1.5km 15min 15min 15min 20min 30min km y min x 6122050701.23km km /min km /min 0.6km min 045x ≤≤y x10. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.11. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m②明明在书店停留的时间是min③明明与家距离900m 时,明明离开家的时间是 min(Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式. 时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m400 60012. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km⑤ 当甲车离开A 城120km 时甲车行驶了 h ⑥ 当乙车出发行驶 h 时甲乙两车相距20km13.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F32506886104参考答案1. 解:(Ⅰ)①360 ②60 ③56④6803⑤52或196(Ⅱ)当0≤x ≤2时 160y x =当2223x <≤时 1120y =当222533x <≤时 1280803y x =-(Ⅲ)当1352x ≤≤时由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大 ∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103km2.解:(Ⅰ) 1.5(Ⅱ)①2.5 ②③ ④12或 (Ⅲ)当时当时3. 解:(Ⅰ)16800 33000 14400 36000(Ⅱ)当0<≤5时当>5时,即;=⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数).(x >0且x 为正整数)531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x1y 23000802400y x x %(Ⅲ)设与的总费用的差为元. 则 即. 当时 即 解得.∴当时 选择甲乙两家电器店购买均可 ∵<0∴随的增大而减小∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算4. 解:(Ⅰ)1 0.5(Ⅱ)填空:(i ) 25 (ii )(iii ) (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧x (0≤x ≤15),1(15<x ≤30), x +2(30<x ≤ 45).5.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>6. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y ∵图象过),(500和)(330,80∴⎩⎨⎧+==b k b8033050 1y 2y y 180060002400y x x 6006000y x 0y60060000x10x10x 600y x 1y 2y 23115160115130-解得⎩⎨⎧==505.3b k ∴y 与x 的函数关系式为505.3+=x y )800(≤≤x7. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当时 当时当时∵图象经过(4 120)则 解得:∴ 当时∴(2)设 把 分别代入得解得 ∴与时间t 之间的函数关系式为:8. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲03t t y 40=甲43≤t <120=甲y 84≤t <140b t y +=甲1440120b +⨯=401-=b 84≤t <4040-=t y 甲⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲2b kt y +=乙(5,0)(8,360)⎩⎨⎧+=+=22836050b k b k ⎩⎨⎧-==6001202b k y 乙)乙85(600120≤≤-=t t y9. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x10. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13(Ⅲ)当04x ≤<时5y x =当412x <≤时5154y x =+11. 解:(Ⅰ)1000 600(Ⅱ)①600 ②4 ③4.5或7或338 (Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<) 12. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或213. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x (Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等. 时间/min 2 3 4 12 容器内水量/L 10 15 20 30。
中考数学复习《一次函数》专项提升训练题-附答案
中考数学复习《一次函数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.把一次函数的图象向上平移4个单位长度,得到图象表达式是()A.B.C.D.2.小红骑自行车到离家为千米书店买书,行驶了分钟后,遇到一个同学因说话停留分钟,继续骑了分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离千米与所用时间分之间的关系()A.B.C.D.3.已知直线与x轴的交点在,之间(包括A,B两点),则a的取值范围是()A.B.C.D.4.已知一次函数的图像经过点,且当时,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四5.已知正比例函数的图象上两点、且,则下列不等式中一定成立的是()A.B.C.D.6.已知一次函数的图象与的图象交于点.则对于不等式,下列说法正确的是()A.当时B.当时C.当且时D.当且时7.如图,已知直线与轴、轴分别交于点和点,是线段上一点,若将沿折叠,点恰好落在x轴上的点处,则直线所对应的函数表达式是()A. B. C. D.8.如图,正方形、正方形、正方形的顶点、与和、与、分别在一次函数的图像和轴上,若正比例函数则过点,则的值是()A.B.C.D.二、填空题9.与直线垂直且过点的直线解析式是.10.已知一次函数的图象经过点,则不等式的解是. 11.已知为整数,且一次函数的图像不经过第二象限,则= .12.某家庭电话月租费为10元,若市内通话费平均每次为0.2元,则该家庭一个月的话费y(元)与通话次数x(次)之间的关系式是.13.如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点B的坐标为(4,3),点D为对角线OB上一点.若OA=OD,则点D到x轴的距离为.三、解答题14.已知是一次函数.(1)求m的值;(2)若,求对应y的取值范围.15.某花农培育甲种樱花 3 株,乙种樱花 2 株,共需要成本 1700 元,乙种樱花 2 株,共需成本 1500 元.(1)求甲、乙两种樱花每株成本分别为多少元?(2)据市场调研,1 株甲种樱花售价为 160 元,1 株乙种樱花售价为 840 元.该花农决定在成本不超过 29000 元的前提下培育甲、乙两种樱花,那么要使总利润不少于 5000 元,花农有哪几种具体的培育方案?(3)求出选何种方案成本最少?16.如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段所表示的y与x之间的函数关系式,并写出自变量x的取值范围.17.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A,B两种图书.经调查,购进A 种图书费用y元与购进A种图书本数x之间的函数关系如图所示,B种图书每本20元.(1)当和时,求y与x之间的函数关系式;(2)现学校准备购进300本图书,其中购进A种图书x本,设购进两种图书的总费用为w元.①当时,求出w与x间的函数表达式;②若购进A种图书不少于60本,且不超过B种图书本数的2倍,那么应该怎样分配购买A,B两种图书才能使总费用最少?最少总费用多少元?18.如图,在平面直角坐标系中,直线与轴交于点,直线与轴、轴分别交于点和点,且与直线交于点.(1)求直线的解析式;(2)若点为线段BC上一个动点,过点作轴,垂足为,且与直线交于点,当时,求点的坐标;(3)若在平面上存在点,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点的坐标.参考答案:1.A2.D3.D4.D5.C6.D7.B8.B9.10.11.-3或-212.13.14.(1)解:因为是一次函数,所以且,解得(2)解:由(1)可知,该一次函数的表达式为,因为,所以随的增大而减小.当时;当时,所以当时,.15.(1)解:设甲、乙两种樱花每株成本分别为 x则:解得:故甲种樱花每株成本为 100 元,乙种樱花每株成本为 700元。
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。
中考数学总复习 专题提升四 一次函数图象与性质的综合应用(含答案)
一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是(C )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是(A ),(第2题图))(第14题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 (C )A. 94B. 3C. 4D. 54.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是(C )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是(C )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为y =-2x -2.,(第6题图))7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=__5032014__.解:令x =0,则y =1n +2; 令y =0,则-n +1n +2x +1n +2=0, 解得x =1n +1. ∴S n =12·1n +1·1n +2=12⎝ ⎛⎭⎪⎫1n +1-1n +2,∴S 1+S 2+S 3+…+S 2012=12×⎝ ⎛12-13+13-14+14-15+…+12013-⎭⎪⎫12014=12×⎝ ⎛⎭⎪⎫12-12014=5032014. 8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第__四__象限.9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__(43,0)__.(第9题图)10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10题图水银柱的长度x (cm) 4.2 … 8.2 9.8 体温计的读数y (℃)35.0…40.042.0(1)求y 关于的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35=4.2k +b ,40=8.2k +b ,解得⎩⎪⎨⎪⎧k =54,b =29.75.∴y =54x +29.75.∴y 关于x 的函数关系式为y =54x +29.75.(2)当x =6.2时,y =×6.2+29.75=37.5.答:此时体温计的读数为37.5 ℃.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =k x的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD . (1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.解:(1)如解图,过点A 作AE ⊥x 轴于点E .(第11题图解)∵点A (m ,2),tan∠AOE =13,∴tan ∠AOE =AE OE =2m =13,∴m =6,∴点A (6,2).∵y =k x 的图象过点A (6,2), ∴2=k6,∴k =12,∴反比例函数的表达式为 y =12x.∵点B (-4,n )在 y =12x的图象上,∴n =12-4=-3,∴点B (-4,-3).∵一次函数y =ax +b 过A ,B 两点,∴⎩⎪⎨⎪⎧6k +b =2,-4k +b =-3,解得⎩⎪⎨⎪⎧k =12,b =-1.∴一次函数的表达式为y =12x -1.(2)对于y =12x -1,当x =0时,y =-1,∴点C (0,-1). 当y =-1时,-1=12x,∴x =-12,∴点D (-12,-1), ∴S 四边形OCDB =S △ODC +S △BDC=12×|-12|×|-1|+12×|-12|×|(-3)-(-1)| =6+12 =18.12.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象.(第12题图)(1)求出图中m ,a 的值.(2)求出甲车行驶路程y (km)与时间x (h)的函数表达式,并写出相应的x 的取值范围. (3)当乙车行驶多长时间时,两车恰好相距50 km? 解:(1)由题意,得 m =1.5-0.5=1.120÷(3.5-0.5)=40, ∴a =40×1=40. ∴a =40,m =1.(2)∵260÷40=6.5,6.5+0.5=7,∴0≤x ≤7.当0≤x ≤1时,设y 与x 之间的函数表达式为y =k 1x ,由题意,得 40=k 1, ∴y =40x ;当1<x ≤1.5时, y =40;当1.5<x ≤7时,设y 与x 之间的函数表达式为y =k 2x +b ,由题意,得⎩⎪⎨⎪⎧40=1.5k 2+b ,120=3.5k 2+b , 解得⎩⎪⎨⎪⎧k 2=40,b =-20.∴y =40x -20.∴y =⎩⎪⎨⎪⎧40x (0≤x ≤1),40(1<x ≤1.5),40x -20(1.5<x ≤7).(3)设乙车行驶的路程y 与时间x 之间的函数表达式为y =k 3x +b 3,由题意,得⎩⎪⎨⎪⎧0=2k 3+b 3,120=3.5k 3+b 3, 解得⎩⎪⎨⎪⎧k 3=80,b 3=-160.∴y =80x -160.当40x -20-50=80x -160时, 解得x =94.当40x -20+50=80x -160时, 解得x =194.94-2=14,194-2=114. 答:乙车行驶14 h 或114h ,两车恰好相距50 km.13.经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度×车流密度).求大桥上车流量y 的最大值.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b , 解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x ≤220时,v =-25x +88,当x =100时,v =-25×100+88=48(千米/小时).(2)由题意,得⎩⎪⎨⎪⎧-25x +88>40,-25x +88<60,解得70<x <120.∴应控制大桥上的车流密度在70~120辆/千米范围内. (3)设车流量y 与x 之间的关系式为y =vx , 当0≤x ≤20时, y =80x .∵k =80>0,∴y 随x 的增大而增大, ∴x =20时,y 最大=1600; 当20≤x ≤220时y =(-25x +88)x =-25(x -110)2+4840,∴当x =110时,y 最大=4840. ∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值,是每小时4840辆.14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳设享受医保的某居民一年的大病住院医疗费用为元,按上述标准报销的金额为y 元. (1)直接写出x ≤50000时,y 关于x 的函数表达式,并注明自变量x 的取值范围. (2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元? 解:(1)由题意得:①当x ≤8000时,y =0;②当8000<x ≤30000时,y =(x -8000)×50%=0.5x -4000;③当30000<x ≤50000时,y =(30000-8000)×50%+(x -30000)×60%=0.6x -7000. (2)当花费30000元时,报销钱数为y =0.5×30000-4000=11000, ∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为y =11000+20000×0.6=23000(元), 故住院医疗费用小于50000元.故把y =20000代入y =0.6x -7000中,得 20000=0.6x -7000, 解得x =45000.答:他住院医疗费用是45000元.15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同. (1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少? 解:(1)设甲、乙两种油茶树苗每株的价格分别为x 元,y 元,由题意,得 ⎩⎪⎨⎪⎧y =x +3,100x=160y ,解得⎩⎪⎨⎪⎧x =5,y =8.答:甲、乙两种油茶树苗每株的价格分别为5元,8元.(2)设购买甲种树苗a 株,则购买乙种树苗(1000-a )株,由题意,得 5a +8(1000-a )=5600,解得a =800,∴乙种树苗购买株数为1000-800=200株.答:购买甲种树苗800株,购买乙种树苗200株.(3)设购买甲种树苗b 株,则购买乙种树苗(1000-b )株,设购买的总费用为W 元,由题意,得90%b +95%(1000-b )≥1000×92%, 解得b ≤600.易得W =5b +8(1000-b )=-3b +8000, ∵k =-3<0,∴W 随b 的增大而减小,∴当b =600时,W 最低=6200元.答:购买甲种树苗600株,购买乙种树苗400株时,费用最低,最低费用是6200元. 16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的变化趋势如图①,每个无人售票窗口售出的车票数y 2(张)与售票时间x (h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同. (1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)解:(1)设y 2=ax 2,当x =2时,y 1=y 2=40,把点(2,40)的坐标代入y 2=ax 2,得 4a =40, 解得a =10,∴y 2=10x 2.(2)设y 1=kx +b (1≤x ≤3),把点(1,0),(2,40)的坐标分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧k +b =0,2k +b =40,解得⎩⎪⎨⎪⎧k =40,b =-40. ∴y 1=40x -40.∴当x =3时,y 1=80,y 2=90.设需要开放m 个普通售票窗口,由题意,得 80m +90×5≥900,∴m ≥558.∵m 取整数, ∴m ≥6.答:至少需要开放6个普通售票窗口.。
一次函数图像应用题(带解析版答案)
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。
2022年中考真题汇编 一次函数应用题(一) ---路程问题(1)附答案与解析
二.简答题
1.(2022年江苏盐城)小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离 (m)与出发时间 (min)之间的函数关系如图所示.
(1)小丽步行的速度为__________m/min;
(2)当两人相遇时,求他们到甲地 距离.
A.2.7分钟B.2.8分钟C.3分钟D.3.2分钟
4.(2022年湖北随州)已知张强家、体育场、文具店在同一直线上.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列结论不正确的是()
A 张强从家到体育场用了15minB.体育场离文具店1.5km
(2)①0.8;②0.25;③10或116
(3)当 时, ;当 时, ;当 时,
(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,
故当x=8时,离学生公寓的距离为8×0.1=0.8;
在 时,离学生公寓的距离不变,都是1.2km
故当x=50时,距离不变,都 1.2km;
在 时,离学生公寓的距离不变,都是2km,
(1))解:由函数图象可知小明在离家15分钟时到底体育馆,此时离家的距离为2.5km,
∴小明家离体育馆的距离为2.5km,小明跑步的平均速度为 ,
故答案为:2.5; ;
(2))解:由函数图象可知当 时, ,
当 时,此时y是关于x一次函数,设 ,
∴ ,解得 ,∴此时 ,
综上所述,
(3)解:当小明处在去体育馆的途中离家2km时,
解得,
∴ ,
由上可得,当 时,y关于x的函数解析式为 .
一次函数图像及应用中考题目专项训练
一次函数图像及应用中考题目专项训练1 、(宁夏) 一次函数y=2x-3的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2、(陕西省) 若正比例函数的图像经过点(-1,2),则这个图像必经过点( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)3、(安徽)已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是【 】4、(河北)如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )5.(宜昌)由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V (万米3)与干旱的时间t (天)的关系如图所示,则下列说法正确的是( ).A .干旱第50天时,蓄水量为1 200万米3B .干旱开始后,蓄水量每天增加20万米3C .干旱开始时,蓄水量为200万米3D .干旱开始后,蓄水量每天减少20万米3图4AC B6. (黄冈市)小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A .12分钟B .15分钟C .25分钟D .27分钟第5题 第6题 第7题 7.(桂林)如图,把该图像向左平移一个单位长度,得到的函数图像的解析式为 .8.(佛山)画出一次函数y=-2x+4的图象,并回答:当函数值为正时,x 的取值范围是 .9.(湘西)一次函数y=3x-b+1的图像过坐标原点,则b 的值为 .10.(天津)已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y轴交点的坐标x为__________ .11.(乌鲁木齐)星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y (立方米)与时间x (小时)的函数关系如图2所示. (1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当0.5x ≥时,求储气罐中的储气量一(立方米)与时间x (小时)的函数解析式; (3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.12.(安徽)已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义. 【解】))图2(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.13.(牡丹江)甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B 地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.(1)请将图中的()内填上正确的值,并直接写出甲车从A到B的行驶速度;(2)求从甲车返回到与乙车相遇过程中y与x之间的函数关系式,并写出x的取值范围.(3)求出甲车返回时行驶速度及A、B两地的距离.14.(大兴安岭)邮递员小王从县城出发,骑自行车到A村投递,途中遇到县城中学的学生李明从A村步行返校.小王在A村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s(千米)和小王从县城出发后所用的时间t(分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)小王从县城出发到返回县城所用的时间.(3)李明从A村到县城共用多长时间?分15(浙江省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是()(A) (B) (C) (D) 16(宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。
中考数学专项复习《一次函数》练习题及答案
中考数学专项复习《一次函数》练习题及答案一、单选题1.如图,在一次函数y=﹣x+10的图象上取一点P,作PA⊥x轴,PB⊥y轴,垂足为B,且矩形PBOA的面积为9,则这样的点P个数共有()A.1个B.2个C.3个D.4个2.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.3.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是()A.b=a+15B.b=a+20C.b=a+30D.b=a+404.关于一次函数y=5x-3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.y随x的增大而增大D.图象经过点(-3,0)5.已知函数y=kx(k≠0)的大致图象如图所示,则函数y=kx-k的图象大致是()A.B.C.D.6.防汛期间,下表记录了某水库16h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8h时,达到警戒水位,开始开闸放水,此时,y与xx/h012810121416y/m1414.5151814.412119)A.第1小时B.第10小时C.第14小时D.第16小时7.若点P(2,4)在正比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(−3,4)B.(−2,−4)C.(0.5,4)D.(1,5)8.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A.1B.2C.3D.49.下列y关于x的函数中是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组{y=kx+by=−x+4的解是()A .{x =3y =1B .{x =2.6y =1C .{x =2y =1D .{x =1y =111.关于函数y=ax 2和函数y=ax+a (a≠0)在同一坐标系中的图象,A ,B ,C ,D 四位同学各画了一种,你认为可能画对的图象是( )A .B .C .D .12.已知一次函数y=kx ﹣k 与反比例函数 y =k x在同一直角坐标系中的大致图象是( )A .B .C .D .二、填空题13.如图,直线y =kx −3与x 轴、y 轴分别交于点B 与点A ,OB =13OA ,点C 是直线AB 上的一点,且位于第二象限,当⊥OBC 的面积为3时,点C 的坐标为 .14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.15.若直线y=kx+b平行直线y=3x+4,且过点(1,﹣2),则直线的关系式为.16.若函数y=−x+3与y=2x+b的图象相交于x轴上的一点,则b的值为.17.在平面直角坐标系中将直线y=x+2沿着y轴向下平移3个单位长度,平移后的直线所对应的函数解析式为.18.某自行车存车处在星期日的存车为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车总收入y(元)与x的函数关系式是.三、综合题19.作出函数y=2x+6的图象并回答:(1)x取何值时,y=0;(2)x取何值时,y>0?(3)x取何值时,y<0?20.某家电集团公司研制生产的新家电,前期投资200万元,每生产一台这种新家电,后期还需投资0.3万元,已知每台新家电售价为0.5万元.设总投资为P万元,总利润为Q万元(总利润=总产值-总投资),新家电总产量为x台.(假设可按售价全部卖出)(1)试用x的代数式表示P和Q;(2)当总产量达到900台时,该公司能否盈利?(3)当总产量达到多少台时,该公司开始盈利?21.如图所示,已知二次函数y1=−x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,与y轴的交点为点C.(1)求m的值;(2)若经过点B的一次函数y2=kx+b平分⊥ABC的面积.求k、b的值.22.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x >0)的变化情况.下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线x=32两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.在平面直角坐标系xOy中直线l1:y1=kx+b与直线y=2x平行,且经过点(1,0).(1)求直线l1的解析式;(2)已知直线l2:y2=mx+1,过点p(n,0)作x轴的垂线,与直线l1交于点M,与直线l2交于点N.结合图象回答:①若m=1,当点M在点N的上方时,直接写出n的取值范围;②若对任意的n>2,都有点M在点N的上方,直接写出m的取值范围.24.如图,已知直线y=﹣2x+12分别与Y轴,X轴交于A,B两点,点M在Y轴上,以点M为圆心的⊥M与直线AB相切于点D,连接MD.(1)求证:⊥ADM⊥⊥AOB;(2)如果⊥M的半径为2 √5,请写出点M的坐标,并写出以(﹣52,292)为顶点,且过点M的抛物线的解析式;(3)在(2)条件下,试问在此抛物线上是否存在点P使以P、A、M三点为顶点的三角形与⊥AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】B8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】B13.【答案】(−3,6)14.【答案】x<﹣215.【答案】y=3x﹣316.【答案】-617.【答案】y=x-118.【答案】y=-0.1x+120019.【答案】(1)解答: 由图象得:x=-3时,y=0;(2)解答:y=2x+6>0,解x>-3当x>-3时,y>0;(3)解答:y=2x+6<0,解x<-3当x<-3时,y<0.20.【答案】(1)解:P=200+0.3x,Q=0.5x-(200+0.3x)=0.2 x-200.(2)解:当x=900时即当总产量达到900台时,没有盈利,亏了20万元.(3)解:当Q >0时,开始盈利,即0.2x −200>0,解得x >1000 当总产量超过1000台时,公司开始盈利.21.【答案】(1)解:∵ 二次函数y 1=−x 2+2x +m 的图象与x 轴的一个交点为A (3,0)∴0=−9+6+m ∴ m=3; (2)解:如图∵一次函数y 2=kx +b 平分⊥ABC 的面积 ∴一次函数y 2=kx +b 平分线段AC ∴ 一次函数y 2=kx +b 经过AC 的中点E ∵m=3∴−x 2+2x +3=0时,解得x 1=−1 x 2=3 ∴ 点B 的坐标为B (-1,0) 当x =0时,y =3∴ 点C 的坐标为C (0,3) ∴ 点E 的坐标为E (32,32)∵ 一次函数y 2=kx +b 经过点B ∴{0=−k +b32=32k +b 解得:{k =35b =3522.【答案】(1)解:图象如图所示.(2)解:y=-200x2+400x(0≤x≤ 32)或y=225x(x> 32)(3)解:不能.理由如下:把y=20代入反比例函数y=225x得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45∴第二天早上7:45以后才可以驾车上路∴第二天早上7:00不能驾车去上班23.【答案】(1)解:∵直线l1:y1=kx+b与直线y=2x平行∴k=2把点(1,0)代入直线y=2x+b中得到0=2+b解得b=−2∴直线l1的解析式为y=2x−2;(2)解:如图①若m=1,则直线l2:y2=x+1联立{y=x+1y=2x−2解得{x=3y=4由图象可知当n>3时,点M在点N的上方;②把x=2代入y=2x−2求得y=2把x=2,y=2代入y=mx+1得解得m=1 2∴若对任意的n>2,都有点M在点N的上方,m的取值范围是m⩽12.24.【答案】(1)证明:∵AB是⊥M切线,D是切点∴MD⊥AB.∴⊥MDA=⊥AOB=90°又⊥MAD=⊥BAO∴⊥ADM⊥⊥AOB(2)解:设M(0,m)由直线y=2x+12得,OA=12,OB=6则AM=12﹣m,而DM=2 √5在Rt⊥AOB中AB= √OA2+OB2= √122+62=6 √5∵⊥ADM⊥⊥AOB∴AMDM=ABOB即2√5= 6√56,解得m=2∴M(0,2)设顶点为(﹣52,292)的抛物线解析式为y=a(x+52)2+ 292将M点坐标代入,得a(0+ 52)2+ 292=2解得a=﹣2所以,抛物线解析式为y=﹣2(x+ 52)2+ 292(3)解:存在.①当顶点M为直角顶点时,M、P两点关于抛物线对称轴x=﹣52轴对称此时MP=5,AM=12﹣2=10,AM:MP=2:1,符合题意∴P(﹣5,2);②当顶点A为直角顶点时,P点纵坐标为12,代入抛物线解析式,得﹣2(x+ 52)2+ 292=12解得x=﹣52± √52,此时AP=﹣52± √52,AM=10,不符合题意;③当顶点P为直角顶点时,则由相似三角形的性质可知,P(n,﹣2n+2 )或(2n,﹣n+2)若P(n,2n+2),则﹣2n﹣12n=10,解得n=﹣4,当x=﹣4,y=﹣2(﹣4+52)2+292=10,﹣2n+2=10,符合题意若P(2n,﹣n+2),则﹣n﹣4n=10,解得n=﹣2,而当x=2n=﹣4时,y=﹣2(﹣4+ 52)2+292=10,﹣n+2=4,不符合题意所以,符合条件的P点坐标为(5,2),(4,10).。
中考数学复习:专题3-4 一次函数考点分析及典型试题
一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。
类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。
中考数学复习备考之一次函数(精选40题)
中考数学复习备考之一次函数(精选40题)1.当我们将一条倾斜的直线进行上下平移时,直线的左右位置也发生着变化.下面是关于“一次函数图象平移的性质”的探究过程,请补充完整.(1)如图1,将一次函数y=x+2的图象向下平移1个单位长度,相当于将它向右平移了个单位长度;(2)将一次函数y=﹣2x+4的图象向下平移1个单位长度,相当于将它向(填“左”或“右”)平移了个单位长度;(3)综上,对于一次函数y=kx+b(k≠0)的图象而言,将它向下平移m(m>0)个单位长度,相当于将它向(填“左”或“右”)(k>0时)或将它向(填“左”或“右”)(k<0时)平移了n(n>0)个单位长度,且m,n,k满足等式.2.在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.3.如图,直线y=x+1与x轴交于点A,点A关于y轴的对称点为A′,经过点A′和y 轴上的点B(0,2)的直线设为y=kx+b.(1)求点A′的坐标;(2)确定直线A′B对应的函数表达式.4.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有经验,请画出函数y=﹣|x|的图象,并探究该函数性质.(1)绘制函数图象①列表:下列是x与y的几组对应值,其中a=.x……﹣5﹣4﹣3﹣2﹣112345……y……﹣3.8﹣2.5﹣1155a﹣1﹣2.5﹣3.8……②描点:根据表中的数值描点(x,y),请补充描出点(2,a);③连线:请用平滑的曲线顺次连接各点,画出函数图象;(2)探究函数性质请写出函数y=﹣|x|的一条性质:;(3)运用函数图象及性质①写出方程﹣|x|=5的解;②写出不等式﹣|x|≤1的解集.5.某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.6.随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?7.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?8.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.9.(3分)(2022•深圳)某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的笔记本的单价比乙种类型的要便宜1元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少.10.(3分)(2022•黔西南州)某乡镇新打造的“田园风光”景区今年计划改造一片绿化地,种植A、B两种花卉,已知3盆A种花卉和4盆B种花卉的种植费用为330元,4盆A 种花卉和3盆B种花卉的种植费用为300元.(1)每盆A种花卉和每盆B种花卉的种植费用各是多少元?(2)若该景区今年计划种植A、B两种花卉共400盆,相关资料表明:A、B两种花卉的成活率分别为70%和90%,景区明年要将枯死的花卉补上相同的新花卉,但这两种花卉在明年共补的盆数不多于80盆,应如何安排这两种花卉的种植数量,才能使今年该项的种植费用最低?并求出最低费用.11.(3分)(2022•南通)某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为akg时,它们的利润和为1500元,求a的值.12.(3分)(2022•济宁)某运输公司安排甲、乙两种货车24辆恰好一次性将328吨的物资运往A,B两地,两种货车载重量及到A,B两地的运输成本如表:货车类型载重量(吨/辆)运往A地的成本(元/辆)运往B地的成本(元/辆)甲种161200900乙种121000750(1)求甲、乙两种货车各用了多少辆;(2)如果前往A地的甲、乙两种货车共12辆,所运物资不少于160吨,其余货车将剩余物资运往B地.设甲、乙两种货车到A,B两地的总运输成本为w元,前往A地的甲种货车为t辆.①写出w与t之间的函数解析式;②当t为何值时,w最小?最小值是多少?13.(3分)(2022•长春)已知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)m=,n=;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.14.(3分)(2022•通辽)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y元,其函数图象如图所示.乙(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.15.(3分)(2022•广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥;(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由.16.(3分)(2022•恩施州)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元.甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生.(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?17.(3分)(2022•包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时,日销售量y(单位:千克)与x之间的函数关系式为y=,草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时,草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?18.(3分)(2022•天津)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km.小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min 后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离ykm与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(Ⅰ)填表:离开学生公寓的时间/min585087112离学生公寓的距离/km0.5 1.6(Ⅱ)填空:①阅览室到超市的距离为km;②小琪从超市返回学生公寓的速度为km/min;③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为min.(Ⅲ)当0≤x≤92时,请直接写出y关于x的函数解析式.19.(3分)(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.20.(3分)(2022•遵义)遵义市开展信息技术与教学深度融合的“精准化教学”,某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.(1)求A,B型设备单价分别是多少元;(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用.21.(3分)(2022•黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是km/h,乙车出发时速度是km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.22.(3分)(2022•吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如下:(1)加热前水温是℃.(2)求乙壶中水温y关于加热时间x的函数解析式.(3)当甲壶中水温刚达到80℃时,乙壶中水温是℃.23.(3分)(2022•苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.24.(3分)(2022•衡阳)冰墩墩(BingDwenDwen)、雪容融(ShueyRhonRhon)分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶.决定从该网店进货并销售.第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?25.(3分)(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k ≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.26.(3分)(2022•云南)某学校要购买甲、乙两种消毒液,用于预防新型冠状病毒.若购买9桶甲消毒液和6桶乙消毒液,则一共需要615元;若购买8桶甲消毒液和12桶乙消毒液,则一共需要780元.(1)每桶甲消毒液、每桶乙消毒液的价格分别是多少元?(2)若该校计划购买甲、乙两种消毒液共30桶,其中购买甲消毒液a桶,且甲消毒液的数量至少比乙消毒液的数量多5桶,又不超过乙消毒液的数量的2倍.怎样购买,才能使总费用W最少?并求出最少费用.27.(3分)(2022•凉山州)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A、B两种类型的羽毛球拍.已知购买3副A型羽毛球拍和4副B型羽毛球拍共需248元;购买5副A型羽毛球拍和2副B型羽毛球拍共需264元.(1)求A、B两种类型羽毛球拍的单价.(2)该班准备采购A、B两种类型的羽毛球拍共30副,且A型羽毛球拍的数量不少于B 型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由.28.(3分)(2022•丽水)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达乙地?29.(3分)(2022•德阳)习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A种树苗500株,B种树苗400株,已知B种树苗单价是A种树苗单价的1.25倍.(1)求A、B两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?30.(3分)(2022•牡丹江)在一条平坦笔直的道路上依次有A,B,C三地,甲从B地骑电瓶车到C地,同时乙从B地骑摩托车到A地,到达A地后因故停留1分钟,然后立即掉头(掉头时间忽略不计)按原路原速前往C地,结果乙比甲早2分钟到达C地,两人均匀速运动,如图是两人距B地路程y(米)与时间x(分钟)之间的函数图象.请解答下列问题:(1)填空:甲的速度为米/分钟,乙的速度为米/分钟;(2)求图象中线段FG所在直线表示的y(米)与时间x(分钟)之间的函数解析式,并写出自变量x的取值范围;(3)出发多少分钟后,甲乙两人之间的路程相距600米?请直接写出答案.31.(3分)(2022•梧州)梧州市地处亚热带,盛产龙眼.新鲜龙眼的保质期短,若加工成龙眼干(又叫带壳圆肉)则有利于较长时间保存.已知3kg的新鲜龙眼在无损耗的情况下可以加工成1kg的龙眼干.(1)若新鲜龙眼售价为12元/kg.在无损耗的情况下加工成龙眼干,使龙眼干的销售收益不低于新鲜龙眼的销售收益,则龙眼干的售价应不低于多少元/kg?(2)在实践中,小苏发现当地在加工龙眼干的过程中新鲜龙眼有6%的损耗,为确保果农的利益,龙眼干的销售收益应不低于新鲜龙眼的销售收益,此时龙眼干的定价取最低整数价格.市场调查还发现,新鲜龙眼以12元/kg最多能卖出100kg,超出部分平均售价是5元/kg,可售完.果农们都以这种方式出售新鲜龙眼.设某果农有akg新鲜龙眼,他全部加工成龙眼干销售获得的收益与全部以新鲜龙眼销售获得的收益之差为w元,请写出w与a的函数关系式.32.(3分)(2022•十堰)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y(件)与销售时间x(天)之间的关系式是y=,销售单价p(元/件)与销售时间x(天)之间的函数关系如图所示.(1)第15天的日销售量为件;(2)0<x≤30时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?33.(3分)(2022•齐齐哈尔)在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y(米)与出发时间x(分钟)之间的函数关系如图所示,请结合图象解答下列问题:(1)A、B两地之间的距离是米,乙的步行速度是米/分;(2)图中a=,b=,c=;(3)求线段MN的函数解析式;(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)34.(3分)(2022•黑龙江)为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲 乙进价(元/双)m m ﹣20 售价(元/双) 240 160 已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m 的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a (50<a <70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?35.(3分)(2022•兰州)在平面直角坐标系中,P (a ,b )是第一象限内一点,给出如下定义:k 1=和k 2=两个值中的最大值叫做点P 的“倾斜系数”k .(1)求点P (6,2)的“倾斜系数”k 的值;(2)①若点P (a ,b )的“倾斜系数”k =2,请写出a 和b 的数量关系,并说明理由; ②若点P (a ,b )的“倾斜系数”k =2,且a +b =3,求OP 的长;(3)如图,边长为2的正方形ABCD 沿直线AC :y =x 运动,P (a ,b )是正方形ABCD 上任意一点,且点P 的“倾斜系数”k <,请直接写出a 的取值范围.36.(3分)(2022•河北)如图,平面直角坐标系中,线段AB 的端点为A (﹣8,19),B (6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD,其中C(c,0).当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光.求此时整数m的个数.37.(3分)(2022•攀枝花)如图,直线y=x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD于点E,连结BE.(1)证明:=;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)38.(3分)(2022•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.39.(3分)(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.40.(3分)(2022•黑龙江)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.。
20.2 一次函数的图像(6种题型基础练+提升练)(原卷版)
20.2 一次函数的图像(6种题型基础练+提升练)题型一:判断一次函数的图象题型二:根据一次函数解析式判断其经过的象限..2023下·上海宝山·八年级校考期中)如果0,0ac<,则直线yA.第一象限B.第二象限C.第三象限D.第四象限题型三:已知函数经过的象限求参数范围题型四:一次函数图象与坐标轴的交点问题题型五:一次函数图象平移问题题型六:求直线围成的图形面积一、单选题1.(2023下·上海杨浦·八年级校考期中)一次函数1y mx n =+与2y mnx =(m 、n 为常数,且0mn ¹)在同一平面直角坐标内的图象可能是( )A .B .C .D .2.(2023下·上海杨浦·八年级校考期中)下列命题中,正确的是( )A .一次函数()412y x =--在y 轴上的截距是2-B .一次函数1y x =-的图像与x 轴交于点()1,0-4.(2022秋·上海·八年级期中)如图,直线y kx b =+交坐标轴于A (a ,0),B (0,b )两点.则不等式0kx b +<的解集为( )A .x b >B .x a >C .x b <D .x a<5.(2022秋·上海静安·八年级校考期中)在平面直角坐标系中,函数1y x =-+的图象经过( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限二、填空题8.(2022秋·上海浦东新·八年级校考期中)如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ^于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45°,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.9.(2022秋·上海长宁·八年级校考期中)一次函数y =2x ﹣8与x 轴的交点是 __.10.(2022秋·上海·八年级上海市张江集团中学校考期中)已知一次函数y =2x +4的图像与x 轴、y 轴分别相交于点A 、B ,在直线右侧以AB 为边作正方形ABCD ,则点D 的坐标是________.11.(2022秋·上海·八年级期末)一次函数y =﹣x ﹣1不经过第 __象限.12.(2022秋·上海普陀·八年级校考期中)已知一次函数(0)y kx b k =+¹的图像如图所示,那么不等式0kx b +>的解集是__________.13.(2022秋·上海徐汇·八年级上海市徐汇中学校考期中)直线443y x =-+与x 轴交于点A ,与y 轴交于点B ,将线段AB 绕A 点逆时针旋转90o ,使B 点落在M 点上,则M 点的坐标为__________________.14.(2022秋·上海·八年级期中)一次函数()0y kx b b =+¹图象与坐标轴围成的三角形称为该一次函数的坐标三角形.已知一次函数y x m =+的坐标三角形的面积为3,则该一次函数的解析式为___________.15.(2022秋·上海·八年级上海田家炳中学校考期中)在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.16.(2022秋·上海嘉定·八年级校考期中)已知,一次函数y kx b =+的图像经过点A (2,1)(如下图所示),当1y ³时,x 的取值范围是______17.(2022秋·上海长宁·八年级校考期中)一个一次函数的图像经过点(0,2),且与两坐标轴围成的三角形面积为4,则一次函数解析式是__________________.三、解答题18.(2022秋·上海·八年级期中)已知关于x的方程mx-2=3x+n有无数个解.(1)求出m、n的值.(2)求一次函数y=mx+n与坐标轴围成的三角形的面积.19.(2022秋·上海·八年级期中)已知正比例函数图象经过(﹣2,4).(1)如果点(a,1)和(﹣1,b)在函数图象上,求a,b的值;(2)过图象上一点P作y轴的垂线,垂足为Q,S△OPQ=154,求Q的坐标.。
一次函数图像信息及应用题专题
一次函数图像信息题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像.2.端午节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与.B.港的距离....分别为1y、2y(km),1y、2y与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,a;(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.4.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米O y/km90 30a 0.5 3 P甲乙x/h1.5 2 300 x (时)O y (千米)30一次函数应用题专题训练1.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利10002000(元)已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?,两3.某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A B 种产品50件,已知生产一件A产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元.(1)请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润是多少?4.公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价lO万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.5.我市某乡两村盛产柑桔,村有柑桔200吨,村有柑桔300吨.现将这些柑桔运到两个冷藏仓库,已知仓库可储存240吨,仓库可储存260吨;从村运往两处的费用分别为每吨20元和25元,从村运往两处的费用分别为每吨15元和18元.设从村运往仓库的柑桔重量为吨,两村运往两仓库的柑桔运输费用分别为元和元.(1)请填写下表,并求出与之间的函数关系式;(2)试讨论两村中,哪个村的运费较少;(3)考虑到村的经济承受能力,村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.。
初中数学一次函数的图像专项练习30题(有答案)
初中数学一次函数的图像专项练习30题(有答案)1.本题为选择题,无需改写。
2.在图中,当x>2时,y2>y1,因此结论③正确。
由于y1=kx+b与y2=x+a的图象相交于第三象限,因此a<0,结论②也正确。
而k<0,因此结论①错误。
因此选项C正确。
3.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,应该是选项A。
4.本题为选择题,无需改写。
5.根据题目中的条件,k<0,b>0,因此函数的图象是下降的直线,截距为正数,斜率的绝对值小于1,应该是选项B。
6.将直线l1和直线l2的方程化简可得y=2x+1和y=-x-1,因此直线l1的斜率为2,直线l2的斜率为-1.由于x+y=0,因此该点在第三部分。
因此选项C正确。
7.根据两个函数的表达式可知它们的图象分别是斜率为负数的直线和斜率为正数的直线,应该是选项B。
8.函数y=2x+3的斜率为2,截距为3,应该是选项A。
9.根据图象可知,选项C表示的是y=-x-1的图象,因此选项C正确。
10.将函数kx-y=2化简可得y=kx-2,因此函数的图象是斜率为正数的直线,截距为-2,应该是选项C。
11.由于b1<b2,因此直线y1在直线y2的下方。
由于k1k2<0,因此直线y1和直线y2的斜率异号,相交于第二象限。
因此选项B正确。
12.根据图象可知,选项D表示的是y=abx的图象,因此选项D正确。
13.根据图象可知,降雨后,蓄水量每天增加5万立方米,因此选项B正确。
14.本题为选择题,无需改写。
15.将y=kx代入y=kx-k可得y=k(x-1),因此函数的图象是斜率为正数的直线,截距为-k,应该是选项C。
16.当x增加时,y的值也会增加,且当x大于某个值时,y会大于2.17.当x增加时,y的值也会增加,但当x大于某个值时,y会小于某个值。
18.当x增加时,y的值也会增加,且当x大于某个值时,y会大于某个值。
19.正确的判断是:①k0;③当x=3时,y1=y2;④当03时,y1>y2.20.当x增加时,y1的值也会增加,且当x大于某个值时,y1会大于y2.21.当y小于某个值时,x的取值范围是一定的,具体取值范围需要根据具体函数图象来确定。
中考一轮复习一次函数图像应用分类专题
一次函数图像专题类型一:一次函数与一元一次方程直线:y=kx+b 一元一次方程:kx+b=0➢ 典例精析1、一次函数y=kx+b 的图像如图所示,则方程kx+b-2=0的解是( )A.x=0B.x=1C.x=2D.x=32、如图,一次函数y=kx+b 与x 轴的交点为P ,则关于x 的一元一次方程kx+b=0的解为( )A.-2B.2C.3D.-13、一次函数y=kx-b 的图像如图所示,关于x 的方程kx-b=0的解是( )A.(1,0)B.(0,-1)C.x=1D. x=-14、一次函数y=kx+b的图像如图所示,则关于x的方程kx+b=2的解为()A.x=1B.x=2C.x=3D. 无法判断类型二:一次函数与一元一次不等式(组)Kx+b>0的解集为直线y=kx+b位于x轴上方的相对应的x的取值范围;Kx+b<0的解集为直线y=kx+b位于x轴下方的相对应的x的取值范围;k1x+b1> k2x+b2的解集为直线y1=k1x+b1在y2=k2x+b2上方相对应的x的取值范围;k1x+b1< k2x+b2的解集为直线y1=k1x+b1在y2=k2x+b2下方相对应的x的取值范围;➢典例精析1、如图,直线y=kx+b交坐标轴与A(-3,0)B(0,5)两点,则不等式-kx-b<0的解集为()A.x>-3B.x<-3C.x>3D.x<32、如图,直线y=kx+b(k)经过点(-1,3)则不等式kx+b的解集为()A.xB. xC.xD. .x3、如图,直线:y=x+n与直线:y=kx+m交于点P,下列说法错误的是()A.k<0,m>0B.关于x的方程x+n=kx+m的解为x=3C.关于x的不等式(k-1)x<n-m的解集为x<3D.直线上有两点(),(),若<,则<4、直线:y=与直线:y=在同一平面直角坐标系中的图像如图所示,则关于x的不等式的解集为()A.x>1B.x<1C.x>-2D.x<-2类型三:一次函数与二元一次方程组的解➢典例精析1、已知方程组的解为,则一次函数y=2x+3与y=a x+c的图像交点坐标是()A.(-1,1)B.(1,-1)C.(2,-2)D.(-2,2)2、已知点A(0,4)、C(-2,0)在直线l:y=kx+b上,直线l与函数y=-4x+a 的图像相交于点B。
初中数学一次函数图像及应用练习题(附答案)
初中数学一次函数图像及应用练习题一、单选题1.如图,一次函数11y k x b =+与一次函数224y k x =+的图象交于点(13)P ,,则关于x 的不等式124k x b k x +>+的解集是( )A.1x >B.0x >C.2x >-D.1x <2.在函数32y x =-中,自变量x 的取值范围是( ) A.1x >- B.1x - C.1x >-且2x ≠ D.1x -且2x ≠ 3.如果一个正比例函数的图象经过不同象限的两点()()2,,,3A m B n ,那么一定有( )A.0,0m n >>B.0,0m n ><C.0,0m n <>D.0,0m n <<4.若直线1l 经过点()04,,2l 经过点()3,2,且1l 与2l 关于x 轴对称,则1l 与2l 的交点坐标为( ) A .()2,0-B .()2,0C .()6,0-D .()6,05.如果一次函数y kx b =+,当31x -≤≤时,17y -≤≤,则kb 的值为( ) A.10B.21C.-10或2D.-2或106.若一次函数y kx b =+,当x 得值减小1,y 的值就减小2,则当x 的值增加2时,y 的值( ) A.增加4B.减小4C.增加2D.减小27.在平面直角坐标系中,已知(1,1),(3,5)A B ,要在坐标轴上找一点P ,使得PAB △的周长最小,则点P 的坐标为( )A.(0,1)B.(0,2)C.4,03⎛⎫⎪⎝⎭或(0,1) D.(0,2)或4,03⎛⎫⎪⎝⎭8.函数y kx b =+与21y x =-的图象关于x 轴对称,且交点在x 轴上,则该函数表达式为( ) A.21y x =-+B.21y x =--C.21y x =+D.以上都不对9.已知一次函数的图象与直线1y x =-+平行,且过点(6,2)-,那么一次函数解析式为( ) A.6y x =-B.4y x =--C.10y x =-+D.4y x =10.如果一条直线l 经过不同的三点()()(),,,,,A a b B b a C a b b a --,那么直线l 经过( )A. 第二、四象限B. 第一、二、三象限C. 第二、三、四象限D. 第一、三、四象限11.如图所示,直线4y x =+与两坐标轴分别交于A B 、两点,点C 是OB 的中点,D E 、分别是直线AB ,y 轴上的动点,则CDE 周长的最小值是( )A. B. 310C. D. 12.如图,把Rt ABC 放在直角坐标系内,其中905CAB BC ∠=︒=,,点A B 、的坐标分别为()10,、()40,,将ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 扫过的面积为( )A. 4B. 8C. 16D. 13.如图,一次函数0ax by c ++=的图象与坐标轴交于A B ,两点,且,34x b y c ==-是方程3-2ax by c +=的一组解,则下列结论错误的是( )A .20c b -=B .0abc <C .0a c +=D .1OAB S ∆=14.下列各关系中,不是函数关系的是( ) A.(0)y x x =-≤ B.(0)y x x =±≥C.(0)y x x =≥D.(0)y x x =-≥15.下列式子:①35y x =-;②1y x=;③y =2y x =;⑤y x =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习专题训练:一次函数图像应用题1、有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km的博物馆参观,10分钟后到达距离学校12km处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人和空载时的速度不变,学生步行速度不变,汽车离开学校的路程s(千米)与汽车行驶时间t(分钟)之间的函数关系如图,假设学生上下车时间忽略不计.(1)原计划从学校出发到达博物馆的时间是分钟;(2)求汽车在回头接第二批学生途中的速度;(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.2、我市某校根据规划设计,修建一条1200米长的校园道路。
甲队单独施工5天后,为了能提前完成任务,邀请乙队加入施工,乙队的工作效率是甲队的23,图中线段OA、AB分别表示甲队单独施工与两队合作施工所完成的工作量与施工天数之间的函数关系。
(1)求甲队每天铺路多少米?(2)求图中线段AB所表示的函数关系式?(3)若甲队施工一天,需付工程款8000元,乙队施工一天需付工程款5000元,该工程计划在26天完成,请你设计方案:在不超过计划天数的前提下,如何安排甲乙两队的施工天数(天数为正整数......),使完成该项工程的费用最省?3、某客船往返于A、B两码头,在A、B间有旅游码头C.客船往返过程中,船在C、B处停留时间忽略不计,设客船离开码头A的距离s(千米)与航行的时间t(小时)A CGHF 7.5t (小时)S(千米) DB90E 3之间的函数关系如图所示.根据图象提供的信息,解答下列问题:⑴船只从码头A→B ,航行的速度为 千米/时;船只从码头B→A ,航行的速度为 千米/时;⑵过点C 作CH ∥t 轴,分别交AD 、DF 于点G 、H ,设AC=x ,GH=y ,求出y 与x 之间的函数关系式;⑶若旅游码头C 设在离A 码头30千米处, 一旅游团队在旅游码头C 分两组行动,一组乘橡皮艇漂流而下,另一组乘船到达码头B 后,立即返回. ①求船只往返C 、B 两处所用的时间;②两组在途中相遇,求相遇时船只离旅游码头C 有多远.4.市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系如图12所示;乙工程队铺设广场砖的造价y 乙(元)与铺设面积()2m x 满足函数关系式:y kx =乙.(1)根据图12写出甲工程队铺设广场砖的造价y 甲(元)与铺设面积()2m x 的函数关系式;(2)如果狮山公园铺设广场砖的面积为21600m ,那么公园应选择哪个工程队施工更合算?5、图12y 元48000 280005001000()2m xx (小时)分6、邮递员小王从县城出发骑自行车去A 村投递,途中遇到县城中学的学生明从A 村步行返校.小王在A 村完成投递工作后,在返回途中又遇到明,便用自行车载上明一起去县城,结果小王比预计的时间晚到了1分钟.两人与县城间的距离y (km )和小王从县城出发后所用时间x(分钟)之间的函数关系如下图.假设两人之间交流的时间不计. (1)两人第一次相遇时距县城多远?(2)小王从县城出发到返回县城共用多少时间? (3)明从A 村到县城共用了多少时间?7、已知A 、B 两地相距千米,甲、乙两车同时从A B y地,停留1小时后按原路返回.千米,如图是y 与x 的函数图(1)计算甲、乙两车的速度; (2)几小时后两车相遇;(3)在从开始出发到两车相遇的过程中,设两车之间的距离为s千米,乙车行驶的时间为t小时,求S与t之间的函数关系式.8、A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x (时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.9、1 2 34560120180240300360Oy/千米x/时10、甲车从A地驶往C地,在C停留一段时间后,返回A地,乙车从B地经C地驶往A地,两车同时出发,相向而行,同时到达C地。
设乙车行驶的时间为x(h),两车之...间的距离....为y(km),图中的折线表示y与x之间的函数关系。
信息读取:(1)A、B两地之间的距离为_______km;甲车的速度_________;乙车的速度__________;请解释图中点D的实际意义是_________________________________;(2)求出当16≤时,y与x之间的函数关系式,并在图中补全函数图象。
x11≤11行时间t(h)的函数图象,BC与运行时间t(h(1)从图象看,普通快车发车时间比第一列动车组列车发车时间 1 h(填”早”或”晚”),点B的纵坐标600的实际意义是;(2)请直接在图中画出第二列动车组列车离开甲城的路程s(km)与时间t(h)的函数图象;①求BC的表达式,并写出自变量的取值围;②第二列动车组列车出发多长时间后与普通快车相遇?③请直接写出这列普通快车在行驶途中与迎面而来的相邻两车组列车相遇的时间间隔.12、在一次远足活动中,小聪由甲地步行到乙地后原路返回,小明由甲地步行到乙地后原路返回,到达途中的丙地时发现物品可能遗忘在乙地,于是从丙返回乙地,然后沿原路返回.两人同时出发,步行过程中保持匀速.设步行的时间为t(h),两人离甲地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;(2)分别求出小明由甲地出发首次到达乙地及由乙地到达丙地所用的时间.(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值围.13、甲、乙两地相距720 km,一列快车和一列慢车都从甲地驶往乙地,慢车先行驶1小时后,快车才开始行驶.已知快车的速度是120 km/h,以快车开始行驶计时,设时间为x(h),两车之间的距离.......为y(km),图中的折线是y与x之间的函数关系的部分图象.根据函数图象解决以下问题:(1)慢车的速度是,点B的坐标是;(2)求线段AB所表示的y与x之间的函数关系式;(3)试在图中补全点B以后的图象.y∕14、(本小题满分8分)甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求出甲距A地的路程s与行驶时间t之间的函数关系式.(3)在什么时间段乙比甲离A地更近?15.(本小题满分8分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)o x (分钟)y (千米)10864260504030201016、(本小题满分7分)为迎接2008年奥运会,某学校组织了一次野外长跑活动,参加长跑的同学出发后,另一些同学从同地骑自行车前去加油助威。
如图,线段L 1,L 2分别表示长跑的同学和骑自行车的同学行进的路程y (千米)随时间x (分钟)变化的函数图象。
根据图象,解答下列问题:(1)分别求出长跑的同学和骑自行车的同学的行进路程y 与时间x 的函数表达式; (2)求长跑的同学出发多少时间后,骑自行车的同学就追上了长跑的同学?参考答案1.(1)100 (2)1.8km/min (3)能够合理安排. 方案:从故障点开始,在第二批学生步行的同时出租车先把第一批学生送到途中放下,让他们步行,再回头接第二批学生,当两批学生同时到达博物馆,时间可提前10分钟. ………6分理由:设从故障点开始第一批学生乘车t 1分钟,汽车回头时间为t 2分钟,由题意得:⎩⎨⎧=++=++12212112.18.1)(2.048)(2.02.1t t t t t t t .解得:⎩⎨⎧==163221t t . ………7分 从出发到达博物馆的总时间为:10+2×32+16=90(分钟) .即时间可提前100-90=10(分钟) . ………8分 5.6.(1)甲车速度为100千米/小时, 乙车速度为60千米/小时 (2)348小时两车相遇法一:300460410060-⨯++=348 法二:联立两个函数关系式10070060y x y x=-+⎧⎨=⎩,解得348x = (3)当03t ≤≤时,S=40t ,当34t <≤时,S=30060t -,当3448t <≤时,S=160700t -+— 7.(1)方法一:由图知y 是x 的一次函数,设y kx b =+.Q 图象经过点(0,300),(2,120),∴3002120b k b =⎧⎨+=⎩,.2分 解得90300k b =-⎧⎨=⎩,.3分∴90300y x =-+.即y 关于x 的表达式为90300y x =-+. 方法二:由图知,当0x =时,300y =;2x =时,120y =.所以,这条高速公路长为300千米. 甲车2小时的行程为300-120=180(千米). ∴甲车的行驶速度为180÷2=90(千米/时).∴y 关于x 的表达式为30090y x =-(90300y x =-+). (2)150300s x =-+.(3)在150300s x =-+中.当0s =时,2x =.即甲乙两车经过2小时相遇. 在90300y x =-+中,当1003y x ==,. 120180 240 300 360 y /千米所以,相遇后乙车到达终点所用的时间为1022233+-=(小时).乙车与甲车相遇后的速度()300260290a=-⨯÷=(千米/时).∴90a=(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.9.(1)960;100km/h;60km/h;乙车行驶11小时后被甲车追上;(2)y=40(x-11)=40x-440,过(11,0)、(16,200)的线段;11.(1)10,2(2)解:v2=(10+2)÷1=12,t1=10÷12=56,t2=2÷12=16,∴小明由甲地出发首次到达乙地用了56小时,由乙地到达丙地用了16小时.(3)解:设线段AB所表示的S2与之间的函数关系式为S2=kt+b(0k≠).由(1)可知点A、B的坐标为A(56,10),B(1,8),代入,得51068.k bk b⎧=⎪⎨⎪=+⎩+,解得:1220kb=-⎧⎨=⎩,∴S2=-12t+20 (516t≤≤)12.解:(1)80km/h ,(6,160)(2) 设线段AB所表示的y与x之间的函数关系式为:y=kx+b(k≠0),根据题意得:20 6160 k+bk+b=⎧⎨=⎩解得:k=40,b=-80 ∴y=40x-80(3)见图y∕。