实验六-抽样定理的MATLAB仿真

合集下载

实验六 matlab采样定理的建模和验证

实验六 matlab采样定理的建模和验证

页眉内容
实验六
题目:采样定理的建模和验证
实验目的:通过建模与仿真验证采样定理,理解采样定理的物理实质实验要求:学习和回顾采样定理内容,对采样定理作建模和仿真
实验内容:


fs=1/Ts
2、建模参数要求:
设计模型,验证采样定理.
设基带波形频谱在 0Hz~200Hz 内. Fh=200Hz(信号最高频率),采样率就应该大于 400Hz 。

用窄脉冲采样,要求窄脉冲宽度是采样周期的 1/10。

从而得到系统仿真步长: 小于等于 1/4000,仿真系统的仿真步长取 1/4000。

采样器用乘法器实现. 而恢复时用低通滤波器实现. 低通滤波器的带宽等于信
号最高频率 Fh,即等于 200Hz.
4、修改基带信号最高频率,如最高频率为200Hz、250Hz 等等,观察采样前后以及恢复的
波形和频谱。

请用实验方法得到频谱混叠后的频谱图和相应的波形。

5. 将被采样信号修改为正弦波、三角波和方波,观察采样前后和恢复非波形和频谱。

实验报告内容和要求:(!!注意每部分得分情况!!)
1.建立采样和恢复模型,说明关键模块的参数设置(30分)
仿真模型建立:
参数设置:
信源与滤波器参数:
2.修改采样率,如采样率为150Hz,200Hz、300Hz等等,观察采样前后以及恢复的波形和频谱。

请用实验方法得到频谱混叠后的频谱图和相应的波形。

(40分)
150Hz:
200Hz:
300Hz:。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。

二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在 > 各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须 >2 (或 >2)。

(对取样频率的要求,即取样频率要足够大,)(t f )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号。

一个频谱在区间(-,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

(a)(b)(c)图2.1抽样定理a) 等抽样频率时的抽样信号及频谱(不混叠) b) 高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠) 2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T sδ⋅=,其中,冲激采样信号)(t sT δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n ss n )(ωωδω,其中ssT πω2=。

设)(ωj F ,)(ωj F s分别为)(t f ,)(t f s的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n ss n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω若设)(t f 是带限信号,带宽为mω, )(t f 经过采样后的频谱)(ωj F s就是将)(ωj F 在频率轴上搬移至ΛΛ,,,,,02ns ssωωω±±±处(幅度为原频谱的sT 1倍)。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真抽样定理,也被称为Nyquist定理或香农定理,是一种关于信号采样的基本理论。

它的核心观点是:如果对信号进行合适的采样,并且采样频率大于信号中最高频率的两倍,那么原始信号可以从采样信号中完全或几乎完全地恢复。

在MATLAB中,我们可以实现抽样定理的探讨和仿真。

下面将详细介绍如何进行这样的实现。

首先,我们可以通过使用MATLAB内置的函数来生成一个连续时间的信号。

例如,我们可以使用sinc函数生成一个带宽有限的信号,其频率范围为[-F/2, F/2],其中F是信号的最大频率。

以下是一个示例代码:```MATLABFs=100;%采样率Ts=1/Fs;%采样周期t=-1:Ts:1;%连续时间序列f_max = 10; % 信号最大频率signal = sinc(2*f_max*t); % 生成带宽有限的信号```然后,我们可以使用MATLAB的plot函数来显示生成的信号。

以下是一个示例代码:```MATLABplot(t, signal);xlabel('时间');ylabel('信号幅度');title('连续时间信号');```生成的图形将显示带宽有限的信号在连续时间域中的波形。

接下来,我们需要对信号进行离散化采样。

根据抽样定理,理想情况下,采样频率应大于信号中最高频率的两倍。

我们可以使用MATLAB的resample函数来进行采样。

以下是一个示例代码:```MATLABFs_new = 2*f_max; % 新的采样率Ts_new = 1/Fs_new; % 新的采样周期t_new = -1:Ts_new:1; % 新的时间序列signal_sampled = resample(signal, Fs_new, Fs); % 信号采样```然后,我们可以使用MATLAB的stem函数来显示采样后的信号。

以下是一个示例代码:```MATLABstem(t_new, signal_sampled);xlabel('时间');ylabel('信号幅度');title('离散时间信号');```生成的图形将显示采样后的信号在离散时间域中的序列。

应用MATLAB实现抽样定理探讨及仿真

应用MATLAB实现抽样定理探讨及仿真

大学2012~2013学年冬季学期本科生课程研讨报告课程名称:《通信原理B(1)》课程编号:07275128 题目: 应用MATLAB实现抽样定理探讨及仿真学生: 秀凤(组长)学号: 10123889学生: 肖勖学号: 10120787学生: 洪文琍学号: 10123043学生: 周润萍学号:学生: 航学号:评语:成 绩: 任课教师:评阅日期:应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。

二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

) (2)取样频率不能过低,必须>2(或>2)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号。

一个频谱在区间(-,)以外为零的频带有限信号,可唯一地由其)(t f )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号在均匀间隔(<)上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

(a)(b)(c)图2.1抽样定理a) 等抽样频率时的抽样信号及频谱(不混叠) b) 高抽样频率时的抽样信号及频谱(不混叠) c) 低抽样频率时的抽样信号及频谱(混叠)2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样信号)(t s T δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=。

(完整)抽样定理实验

(完整)抽样定理实验

抽样定理实验
一、实验目的:
学会利用MATLAB软件对抽样定理仿真。

通过实验提高学生实际动手能力和编程能力,为日后从事通信工作奠定良好的基础。

二、实验内容
(1)抽样:输入信号为10Hz的正弦波,观察对于同一输入信号有不同的抽样频率时,恢复信号的不同形态。

(要求显示原始信号波形、脉冲抽样信号波形、抽样后信号波形、恢复的信号波形)
(a)当抽样频率大于信号频率的两倍。

(b)当抽样频率小于信号频率的两倍。

三、simulink仿真框图:
图1 simulink仿真框图
四、实验结果分析:
(1)实验结果
图2 抽样频率为200Hz
图3抽样频率为1Hz
(2)分析
>=2f(20Hz),而Simulink中正弦信号发生器无法设置要想使信号无失真的输出,必须满足f
s
f=10Hz,如果将脉冲抽样器中设置为0.05会出现混叠现象,如图4所示,因此频率应当设置的大一些以避免混叠现象。

图4抽样频率为20Hz。

实验六抽样定理的MATLAB仿真设计

实验六抽样定理的MATLAB仿真设计

综合性、设计性实验报告贺鹤学号8专业通信工程班级2013级1班实验课程名称抽样定理的MATLAB仿真指导教师及职称玲香讲师开课学期 2014 至 2015 学年第二学期上课时间 2015年 6 月 17、27日科技学院教务处编印(2) 编程步骤(仿真实验)①确定f(t)的最高频率fm。

对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。

②确定Nyquist抽样间隔TN 。

选定两个抽样时间:TS<TN,TS>TN。

③滤波器的截止频率确定:ωm <ωC <ωS -ωm 。

④采样信号f(nTs )根据MATLAB计算表达式的向量表示。

⑤重建信号f(t) 的MATLAB中的计算机公式向量表示。

根据原理和公式,MATLAB计算为:ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); (3)电路连接原理(硬件实验)5.实验数据处理方法①自定义输入信号:f1=cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3)②改变抽样频率,实现欠抽样、临界抽样和过抽样,调试结果分析:(1)频率sf<max2fm时,为原信号的欠采样信号和恢复,采样频率不满足时域采样定理,那么频移后的各相临频谱会发生相互重叠,这样就无法将他们分开,因而也不能再恢复原信号。

频谱重叠的现象被称为混叠现象。

如图1所示图1.fs=140Hz恢复后信号波形及频谱(2)频率sf=max2fm时,为原信号的临界采样信号和恢复,从下图2恢复后信号和原信号先对比可知,只恢复了低频信号,高频信号未能恢复。

如图2所示图2.fs=160Hz恢复后信号波形及频谱(3)频率sf>max2fm时,此时的采样是成功的,它能够恢复原信号,从时域波形可看出,比上面采样所得的冲激脉冲串包含的细节要多,在频域中也没出现频谱的交叠,这样我们可以利用低通滤波器得到无失真的重建。

实验六抽样定理的MATLAB仿真

实验六抽样定理的MATLAB仿真

综合性、设计性实验报告姓名贺鹤学号************专业通信工程班级2013级1班实验课程名称抽样定理的MATLAB仿真指导教师及职称李玲香讲师开课学期2014 至2015 学年第二学期上课时间2015年6 月17、27日湖南科技学院教务处编印4、实验方法步骤及注意事项(1) 设计原理图(2) 编程步骤(仿真实验)① 确定f(t)的最高频率fm 。

对于无限带宽信号,确定最高频率fm 的方法:设其频谱的模降到10-5左右时的频率为fm 。

② 确定Nyquist 抽样间隔T N 。

选定两个抽样时间:T S <T N ,T S >T N 。

③ 滤波器的截止频率确定:ωm <ωC <ωS -ωm 。

④采样信号f(nTs )根据MATLAB 计算表达式的向量表示。

⑤ 重建信号f(t) 的MATLAB 中的计算机公式向量表示。

根据原理和公式,MATLAB 计算为:ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));(3)电路连接原理(硬件实验)5.实验数据处理方法① 自定义输入信号:f1=cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3))(t f a )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号②改变抽样频率,实现欠抽样、临界抽样和过抽样,调试结果分析:(1)频率sf<max2fm时,为原信号的欠采样信号和恢复,采样频率不满足时域采样定理,那么频移后的各相临频谱会发生相互重叠,这样就无法将他们分开,因而也不能再恢复原信号。

频谱重叠的现象被称为混叠现象。

如图1所示图1.fs=140Hz恢复后信号波形及频谱(2)频率sf=max2fm时,为原信号的临界采样信号和恢复,从下图2恢复后信号和原信号先对比可知,只恢复了低频信号,高频信号未能恢复。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真抽样定理是信号处理与通信领域中的一个重要定理,它指出在进行信号采样时,为了避免失真和信息丢失,采样频率必须至少为信号带宽的两倍。

抽样定理还提供了信号的重构方法,可以从采样信号中恢复出原始信号的全部信息。

在这篇文章中,我们将使用MATLAB对抽样定理进行探讨,并进行相关的仿真实验。

首先,我们将介绍抽样定理的基本原理。

在信号处理中,信号可以被表示为时域函数或频域函数。

在时域中,信号可以用冲激函数的线性组合来表示,而在频域中,信号可以被表示为复指数函数的线性组合。

信号的带宽是指信号中包含的频率的范围,通常用赫兹(Hz)来表示。

根据抽样定理,为了准确地恢复信号,采样频率必须至少是信号带宽的两倍。

接下来,我们将使用MATLAB对抽样定理进行仿真实验。

首先,我们将生成一个具有限带宽的信号,并对其进行采样。

然后,我们将根据抽样定理的要求重新构建信号,以验证定理的有效性。

假设我们有一个信号x(t),其频率范围为0至10赫兹,并且我们以20赫兹的采样频率对其进行采样。

我们可以使用MATLAB生成这个信号,并进行采样,代码如下所示:```matlabFs=20;%采样频率t=0:1/Fs:1-1/Fs;%1秒内的采样时刻x = sin(2*pi*10*t); % 10赫兹的正弦波信号stem(t,x);xlabel('时间(秒)');ylabel('幅度');title('原始信号');```接下来,我们将使用抽样定理的频率限制条件对信号进行重构,并绘制重构后的信号。

我们将使用插值的方法对采样信号进行重构,代码如下所示:```matlabt_recon = 0:1/(2*Fs):1-1/(2*Fs); % 重新构建信号时的采样时刻x_recon = interp1(t,x,t_recon); % 插值重构信号stem(t_recon,x_recon);xlabel('时间(秒)');ylabel('幅度');title('重构信号');```通过对原始信号和重构信号的比较,我们可以看到抽样定理的有效性。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。

二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须>2 (或>2)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。

一个频谱在区间(- ,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

(a))(t f )()(t t s S T =)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号(b)(c)图2.1抽样定理a) 等抽样频率时的抽样信号及频谱(不混叠) b) 高抽样频率时的抽样信号及频谱(不混叠) c) 低抽样频率时的抽样信号及频谱(混叠)2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样信号)(t s T δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=。

设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n ss n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω若设)(t f 是带限信号,带宽为m ω, )(t f 经过采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至ΛΛ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s T 1倍)。

抽样定理分析实验报告

抽样定理分析实验报告

一、实验目的1. 深入理解抽样定理的基本原理和适用条件。

2. 通过MATLAB仿真实验,验证抽样定理的正确性。

3. 分析不同采样频率对信号恢复的影响,探讨采样频率对信号质量的影响。

4. 掌握利用MATLAB进行信号处理和频谱分析的方法。

二、实验原理抽样定理是信号与系统理论中的一个重要概念,它指出:如果一个带限信号(即其频谱在有限频率范围内非零)以高于其最高频率两倍(或更高)的频率进行采样,则采样后的信号可以无失真地恢复原信号。

三、实验仪器与软件1. 实验仪器:无。

2. 实验软件:MATLAB。

四、实验步骤1. 生成一个带限信号,如正弦波信号。

2. 设置不同的采样频率,如最高频率的两倍、四倍、六倍等。

3. 对信号进行采样,得到采样序列。

4. 对采样序列进行频谱分析,绘制其幅频曲线。

5. 将采样序列通过逆采样操作恢复原信号。

6. 对恢复的信号进行频谱分析,观察与原信号的频谱是否一致。

五、实验结果与分析1. 不同采样频率对信号恢复的影响实验结果显示,当采样频率低于信号最高频率的两倍时,恢复的信号与原信号存在较大差异,信号失真严重。

当采样频率等于信号最高频率的两倍时,恢复的信号与原信号基本一致,信号失真很小。

当采样频率高于信号最高频率的两倍时,恢复的信号与原信号仍然一致,但信号质量略有提高。

2. 采样频率对信号质量的影响从实验结果可以看出,采样频率越高,恢复的信号质量越好。

这是因为采样频率越高,采样点越密集,能够更准确地反映信号的波形。

但是,采样频率过高也会导致数据量增加,增加存储和传输负担。

3. 抽样定理的验证实验结果验证了抽样定理的正确性。

当采样频率高于信号最高频率的两倍时,采样后的信号可以无失真地恢复原信号。

六、实验结论1. 抽样定理是信号与系统理论中的一个重要概念,对于信号处理和通信领域具有重要意义。

2. 采样频率对信号恢复的质量有重要影响,采样频率越高,恢复的信号质量越好。

3. 利用MATLAB进行信号处理和频谱分析是有效的方法,可以方便地验证抽样定理。

基于MATLAB抽样定理及其信号恢复的仿真

基于MATLAB抽样定理及其信号恢复的仿真

基于MATLAB抽样定理及其信号恢复的仿真基于MATLAB抽样定理及其信号恢复的仿真摘要本设计是运用MATLAB编程来实现抽样定理及其信号恢复的仿真并能在建立的图形用户界面上显示出相应的仿真结果。

目的在于能够熟练的应用MATLAB软件来建立友好的用户界面,通过界面来显示原始信号、抽样信号以及恢复后仿真的信号。

通过编写程序来完成用户界面上各个按钮的功能,通过MATLAB软件中的信号分析的方法来验证抽样定理的正确性。

论文包括用MATLAB语言进行图形用户界面编程的相关知识,如何新建一个图形用户界面,如何添加各种控件,如何更改各种控件的属性,如何使通过编写程序使各种控件实现相应的功能等问题,通过一些有关MATLAB软件的学习来建立一个完整的抽样定理图形用户界面,用户可以利用鼠标或键盘来完成模拟信号的抽样定理及其信号的恢复的全过程,论文中介绍了用MATLAB语言的基本用法和进行信号分析的方法,用户可以选择不同的波形来实现相应的抽样定理并能在图形用户界面上显示相应的波形,在形用户界面上,通过原始信号与恢复信号及其仿真的对比可得出抽样定理的结论。

从而验证抽样的正确性。

关键词MATLAB;抽样定理;仿真AbstractThe design is to use MATLAB programming to achieve sampling theorem and its signal the resumption of the simulation and be able to establish the graphical user interface displayed on the corresponding simulation results. The aim is to skillfully use MATLAB software to create a friendly user interface, through the interface to display the original signal, the sampling signal and the restoration of the signal after the simulation. Through the preparation process to complete the user interface on the various button functions, through the MATLAB software in signal analysis methods to verify the accuracy of sampling theorem.Papers including the use of MATLAB language programming graphical user interface of knowledge, how to create a new graphical user interface, how to add all kinds of controls, how to change the control of various attributes, how to make through the preparation process so that all kinds of controls to achieve the corresponding The functions and so on, through the study of the MATLAB software to create a complete sampling theorem graphical user interface, users can use the mouse or keyboard to complete the analog signal sampling theorem and the restoration of the entire process, the paper introduced by MATLAB language usage and the basic signal analysis method, the user can select a different wave to achieve the appropriate sampling theory and in the graphical user interface displayed on the corresponding waveform, in the form user interface, through the restoration of the original signal and the signal and Simulation The contrast can be drawn to the conclusion sampling theorem. To verify the accuracy of sampling.Keywords MATLAB;sample theory; simulation目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 MATLAB语言的特点 (1)1.2 MATLAB产品主要的应用领域 (1)1.3 抽样定理简介 (1)第2章抽样信号 (3)2.1 抽样信号原理 (3)2.2 模拟信号算法 (4)2.2.1 模拟信号频率计算. (4)2.2.2 采样信号频率计算. (4)2.2.3 模拟信号实现 (5)2.3 本章小结 (7)第3章GUI界面的介绍及设计 (8)3.1 图形用户界面的设计原则 (8)3.2 图形用户界面设计过程 (8)3.2.1 界面设计初步规划 (8)3.2.2 设计MATLAB的GUI (9)3.2.3 创建菜单 (9)3.2.4 控件的设计 (9)3.2.5 对象属性编辑器 (10)3.2.6 回调函数的编写 (10)3.3 算法实现 (11)分析控制系统建模 (11)3.4 信号恢复设计 (11)3.5 GUI界面实现及动态数字调节器软模块的设计 (12)3.6 信号恢复 (14)第4章MATLAB程序仿真 (19)4.1 概述 (19)4.2 程序框图 (19)4.3 恢复原理及其程序设计思想 (20)4.3.1 从冲激抽样信号恢复连续时间信号的时域分析 (20)4.3.2 设计思想 (21)4.3.3 程序框图 (22)结论 (24)致谢 (25)参考文献 (26)附录A (27)附录B (35)第1章绪论MATLAB 是矩阵实验室(点阵式实验室)之意。

MATLAB实现抽样定理探讨与仿真设计

MATLAB实现抽样定理探讨与仿真设计

应用MATLAB实现抽样定理探讨及仿真课程设计的目的利用MATLAB仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。

二. 课程设计的原理模拟信号经过(A/D)变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号J「恢复原信号■ ■:必需满足两个条件:⑴几)必须是带限信号,其频谱函数在> 叫各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2)取样频率不能过低,必须q> 2 % (或J;> 2人)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率二Jl' ' J-大于或等于二,即「一 Xi (I—为连续信号门的有限频谱),则采样离散信号;能无失真地恢复到原来的连续信号-'Il。

一个频谱在区间(-I],】])以外为零的频带有限信号,可唯一地由其在均匀间隔「-(]< ——)上的样点值-./J.:所确定。

根据时域与频域的对称性,可以由时□0「•Ts(t)八弋- nT s)n =^0Q0其傅立叶变换为^2五(①-n 乞),其中⑷。

设 F(j ),F s (j ■)分别为 f (t),f s (t)的 TS□0. Q0F(j A s ' • 一 n 上)二―' F[j (— n *)]T sf (t )经过采样后的频谱 F s (j 「)就是将F (j ,)在频率轴上搬移至0,一 d-」s ,…L 'ns ,…处(幅度为原频谱的1 T s 倍)。

因此,当-2'm 时,频谱不发生 混叠;而当•,s :::2 .m 时,频谱发生混叠。

傅立叶变换,由傅立叶变换的频域卷积定理, 可得(c)b) 高抽样频率时的抽样信号及频谱 c)低抽样频率时的抽样信号及频谱(不混叠) (不混叠)2.1信号采样如图1所示,给出了信号采样原理图孑相乘北)--------- A速)信号采样原理图(a )由图1可见,f s(t )f (t )七T s(t ),其中,冲激采样信号T s(t )的表达式为:F s (j )若设f (t )是带限信号,带宽为--m等抽样频率时的抽样信号及频谱 a)2.1.3信号重构设信号f(t)被采样后形成的采样信号为f s(t),信号的重构是指由f s(t)经过内插处理后,恢复出原来信号f (t)的过程。

MATLAB实现抽样定理探讨及仿真讲解

MATLAB实现抽样定理探讨及仿真讲解

应用MATLAB 实现抽样定理探讨及仿真课程设计的目的利用MATLAB 仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢 复系统的性能。

二. 课程设计的原理模拟信号经过(A/D)变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延 拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大 于信号中最高频率成分的两倍, 这称之为采样定理。

时域采样定理从采样信号 J 「恢复原信号■ ■:必需满足两个条件:才能适用采样定理。

)(2)取样频率不能过低,必须 q > 2 % (或J ; > 2人)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率二 Jl ' ' J -大于或等于二,即「一 Xi ( I —为连续信号门的有限频谱),则采样离散信号;能无失真地恢复到原来的连续信号-'Il 。

一个频谱在区间(-I],】])以外为零的频带有限信号,可唯一地由其在均匀间隔 「-(]< ——)上的样点值-./J.:所确定。

根据时域与频域的对称性,可以由时f(t)连续信号取样脉冲信号S(t)二 TS (t)(1)--:必须是带限信号,其频谱函数在也〉叫各处为零;(对信号的要求,即只有带限信号2.1信号采样如图1所示,给出了信号采样原理图---- 北)T 相乘 ------- A昭)信号采样原理图由图1可见,f s (t) = f (t) ®s (t),其中,冲激采样信号 6s (t)的表达式为:□0T(t)八沁- nT s )n =^0傅立叶变换,由傅立叶变换的频域卷积定理,可得O01 O0F(j s ' 、( ’ 一 n 上)' F[j (一 n 「s )] n - ; Ts n -I若设f(t)是带限信号,带宽为 監,f(t)经过采样后的频谱 F s (j«)就是将F(jco)在频率轴(c)b) 高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱其傅立叶变换为-召('- n 「s ),其中■ -^― n = T s设 F(j ),F s (j )分别为 f (t),f s (t)的F s (j )1 2~ fs'tU等抽样频率时的抽样信号及频谱 (不混叠) a)上搬移至0,一1,二’2s,…厂’ns,…处(幅度为原频谱的1 T s倍)。

MATLAB实现抽样定理探讨及仿真讲解

MATLAB实现抽样定理探讨及仿真讲解

应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。

二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须>2(或>2)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。

一个频谱在区间(-,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

(a))(t f )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号(b)(c)图2.1抽样定理a)等抽样频率时的抽样信号及频谱(不混叠)b)高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠)2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a)由图1可见,)()()(ttftfsTsδ⋅=,其中,冲激采样信号)(ts Tδ的表达式为:∑∞-∞=-=nsTnTtts)()(δδ其傅立叶变换为∑∞-∞=-nssn)(ωωδω,其中ss Tπω2=。

设)(ωjF,)(ωjFs分别为)(tf,)(tfs的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=nssnsssnjFTnjFjF)]([1)(*)(21)(ωωωωδωωπω若设)(tf是带限信号,带宽为mω,)(t f经过采样后的频谱)(ωjFs就是将)(ωjF在频率轴上搬移至,,,,,02nsssωωω±±±处(幅度为原频谱的sT1倍)。

MATLAB实现抽样定理探讨及仿真

MATLAB实现抽样定理探讨及仿真

应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。

二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须>2(或>2)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原来的连续信号 。

一个频谱在区间(-,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

(a))(t f )()(t t s S T δ=)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号(b)(c)图2.1抽样定理a)等抽样频率时的抽样信号及频谱(不混叠)b)高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠)2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a)由图1可见,)()()(ttftfsTsδ⋅=,其中,冲激采样信号)(ts Tδ的表达式为:∑∞-∞=-=nsTnTtts)()(δδ其傅立叶变换为∑∞-∞=-nssn)(ωωδω,其中ss Tπω2=。

设)(ωjF,)(ωjFs分别为)(tf,)(tfs的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=nssnsssnjFTnjFjF)]([1)(*)(21)(ωωωωδωωπω若设)(tf是带限信号,带宽为mω,)(t f经过采样后的频谱)(ωjFs就是将)(ωjF在频率轴上搬移至,,,,,02nsssωωω±±±处(幅度为原频谱的sT1倍)。

应用MATLAB实现抽样定理探讨及仿真

应用MATLAB实现抽样定理探讨及仿真

大学2012~2013学年冬季学期本科生课程研讨报告课程名称:《通信原理B(1)》课程编号:07275128 题目: 应用MATLAB实现抽样定理探讨及仿真学生: 秀凤(组长)学号: 10123889学生: 肖勖学号: 10120787学生: 洪文琍学号: 10123043学生: 周润萍学号:学生: 航学号:评语:成 绩: 任课教师:评阅日期:应用 MATLAB 实现抽样定理探讨及仿真一. 课程设计的目的利用MATLAB ,仿模信号抽样与恢复系统的实际实现,探讨过抽样和欠抽样的信号以及抽样与恢复系统的性能。

二. 课程设计的原理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号恢复原信号必需满足两个条件: (1)必须是带限信号,其频谱函数在>各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须>2(或>2)。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率大于或等于,即(为连续信号的有限频谱),则采样离散信号能无失真地恢复到原)(t f )()(t t s S T =)(t f s 连续信号取样脉冲信号抽样信号)(ωj H )(0t f 理想低通滤波器恢复信号来的连续信号 。

一个频谱在区间(- ,)以外为零的频带有限信号,可唯一地由其在均匀间隔(<)上的样点值所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

(a)(b)(c)图2.1抽样定理a) 等抽样频率时的抽样信号及频谱(不混叠) b) 高抽样频率时的抽样信号及频谱(不混叠) c) 低抽样频率时的抽样信号及频谱(混叠)2.1信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样信号)(t s T δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合性、设计性实验报告
姓名贺鹤学号2
专业通信工程班级2013级1班
实验课程名称抽样定理的MATLAB仿真
指导教师及职称李玲香讲师
开课学期2014 至2015 学年第二学期
上课时间2015年6 月17、27日
湖南科技学院教务处编印
(2) 编程步骤(仿真实验)
①确定f(t)的最高频率fm。

对于无限带宽信号,确定最高频率fm的方法:设其频谱的模降到10-5左右时的频率为fm。

②确定Nyquist抽样间隔T N。

选定两个抽样时间:T S<T N,T S>T N。

③滤波器的截止频率确定:ωm <ωC <ωS -ωm 。

④采样信号f(nTs )根据MATLAB计算表达式的向量表示。

⑤重建信号f(t) 的MATLAB中的计算机公式向量表示。

根据原理和公式,MATLAB计算为:
ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t))));
(3)电路连接原理(硬件实验)
5.实验数据处理方法
①自定义输入信号:f1=cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3)
②改变抽样频率,实现欠抽样、临界抽样和过抽样,调试结果分析:
(1)频率sf<max2fm时,为原信号的欠采样信号和恢复,采样频率不满足时域采样定理,那么频移后的各相临频谱会发生相互重叠,这样就无法将他们分开,因而也不能再恢复原信号。

频谱重叠的现象被称为混叠现象。

如图1所示
图1.fs=140Hz恢复后信号波形及频谱
(2)频率sf=max2fm时,为原信号的临界采样信号和恢复,从下图2恢复后信号和原信号先对比可知,只恢复了低频信号,高频信号未能恢复。

如图2所示
图2.fs=160Hz恢复后信号波形及频谱
(3)频率sf>max2fm时,此时的采样是成功的,它能够恢复原信号,从时域波形可看出,比上
面采样所得的冲激脉冲串包含的细节要多,在频域中也没出现频谱的交叠,这样我们可以利用
低通滤波器得到无失真的重建。

如图3所示
图3.fs=200Hz恢复后信号波形及频谱
综合以上欠采样、临界采样、过采样三种情况的分析,可以看出要使采样信号可以恢复到原信
号,采样频率必须满足时域采样定理,从而验证了时域采样定理。

6. 实现
(1)电路连接图及验证结果
原信号采样信号采样后恢复信号
(2)程序代码及运行结果
1.采样程序:
function fz=caiyang(fy,fs)
fs0=10000; tp=0.1;
t=[-tp:1/fs0:tp];
k1=0:999; k2=-999:-1;
m1=length(k1); m2=length(k2);
f=[fs0*k2/m2,fs0*k1/m1];
w=[-2*pi*k2/m2,2*pi*k1/m1];
图4.1 fs=140Hz原信号波形及频谱图4.2 fs=140Hz取样信号波形及频谱
图4.3 fs=140Hz恢复后信号波形及频谱
②临界采样:f1='cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3)';
fs2=caiyang(f1,160);
fr2=huifu(fs2,160);
图5.1 fs=160Hz原信号波形及频谱图5.1 fs=160H取样信号波形及频谱
图5.1 fs=160Hz恢复后波形及频谱
③过采样:f1='cos(2*pi*80*t)+2*sin(2*pi*30*t)+cos(2*pi*40*t-pi/3)';
fs2=caiyang(f1,200);
fr2=huifu(fs2,200);
图6.1 fs=200Hz原信号波形及频谱图6.1 fs=200Hz取样信号波形及频谱
图6.1 fs=200Hz恢复后信号波形及频谱
7.实验总结
一开始接触这个实验的时候有点迷茫,不知所措。

通过老师的讲解还是有点不知从何下手。

但经过不断地摸索和老师的帮助终于有所头绪。

通过这次数字信号处理课程设计,让我了解了关于MATLAB软件在数字信号处理方面的应用,又一次学习了MATLAB软件的使用和程序的设计,MATLAB的仿真使我更加深入的了解了数字处理的过程,对我对数字信号处理的理解加深了一步——MATLAB拥有强大的数据仿真能力。

MATLAB软件使得困难、枯燥的数字处理过程变得非常简单,不仅能够非常迅速的计算出幅频相频、卷积、等,而且还能自动画出连续、离散的波形曲线。

使我们能非常直观的了解数字信号的处理结果。

在这过程中我遇到了所多的难题,通过与老师和同学的交流和学习,让我学会了很多在课堂上没有理解的难点。

同时也进一步加深了对Matlab的理解和认识。

相关文档
最新文档