LCD 驱动原理
LCD基本驱动原理
![LCD基本驱动原理](https://img.taocdn.com/s3/m/31a6c8834128915f804d2b160b4e767f5acf808f.png)
LCD基本驱动原理LCD(液晶显示器)的基本驱动原理是利用液晶分子在电场作用下改变其排列方式来控制光的透过和阻挡,从而实现图像的显示。
下面将以液晶显示器的构造、液晶原理和驱动方法三个方面详细介绍LCD的基本驱动原理。
液晶显示器主要由三部分组成:玻璃基板,液晶层和电极层。
液晶层是一层特殊的有机化合物,它在没有电场时呈现正常或散乱的排列状态;而在有电场作用下,液晶分子会发生定向,使光线通过的情况发生改变。
电极层是由透明导电材料制成的,它能够在液晶层上施加电场。
玻璃基板用来提供结构支撑和保护。
液晶的驱动原理基于液晶分子的排列方式,液晶分为向列型和相序型两种。
向列型液晶具有向列排列,这意味着分子在没有电场作用下是按照规则排列的,在电场作用下分子会倾斜或扭曲改变光的透过和阻挡。
相序型液晶则具有无序排列,电场的作用下,它们会排列成特定的序列,使光线通过的情况发生变化。
根据液晶材料的不同,液晶显示器被分为TN (扭曲向列型)、STN(超扭曲向列型)、IPS(In-Plane Switching,平面转向型)和VA(Vertical Alignment,垂直向列型)等类型。
液晶显示器的电极层通过施加电压,产生电场。
液晶分子受到电场的作用,改变排列状态,从而改变传递的光的强度和偏振方向。
根据不同的液晶构造和目标显示效果,液晶显示器的驱动方法也有所不同。
最常用的驱动方法是矩阵驱动法,其中最常见的是被动矩阵驱动法和主动矩阵驱动法。
被动矩阵驱动法是通过将水平和垂直方向的扫描线分别与透明电极交叉连接来驱动液晶分子。
每个像素点都位于两条扫描线的交叉点上,通过施加相应的电压,控制液晶分子改变透光或阻挡光。
主动矩阵驱动法使用了一个透明的源驱动器和一个选通驱动器。
透明的源驱动器是将输入像素数据线连接到显示面板的水平行,而选通驱动器是将输出扫描线驱动到显示面板的垂直行。
通过控制源驱动器和选通驱动器的电压,选择性地驱动特定的像素点,从而控制液晶分子的排列,实现图像的显示。
LCD驱动原理简介-标
![LCD驱动原理简介-标](https://img.taocdn.com/s3/m/98c653384a35eefdc8d376eeaeaad1f346931164.png)
LCD驱动原理简介-标聯建産品部教育訓練資料目录一.目的 (3)二.主要內容 (3)1. 直接驱动法 (3)2. 多工驱动法 (4)3. 其它 (7)(1) HI-FAS (7)(2) MLS (8)三.结论 (9)四. 问题与解答 (9)一.目的1.了解LCD驱动原理。
2.了解直接驱动和多工驱动的不同点。
二.主要内容从电子学角度考虑液晶显示原理为:在外加电场的作用下具有偶极矩的液晶棒状分子在排列状态上发生变化,使得通过液晶显示器件的光被调制,从而呈现明与暗或透过与不透过的显示效果。
在这里只是介绍一下我们现在用到的LCD驱动方式:直接驱动(Static driving)、多工驱动(Multiplex driving).1.直接驱动法驱动方法是将每一个字节都分别拉出一个电极(segment)与共同电极(common)相对应;其单独驱动,不与其它电极复合使用。
Common Layout Segment Layout直接驱动电路多工驱动线路多工驱动电路多工驱动电路的实现可以等效为两组“开关”电路。
如下图:多工驱动实现的原理在多工驱动下的液晶像素有三种情况:选择,半选择,未选择。
选择电压〉阀值电压(亮)。
半选择电压<阀值电压(对比好)由于液晶驱动是交流驱动,所以在列驱动脉冲序列中,幅值V1和V6,V3和V4相互交换,在一个周期内幅值为V1或V3,在另一个周期内为V6或V4,从而实现交流驱动的性能。
在行驱动脉冲序列中,不仅幅值V1和V6,V2和V5交替变化,而且相对于列驱动脉冲序列还有相位变化,即相位差为180o。
这样才能实现在选择像素上电位差最大。
例:像素(com2,seg1)上选择电压为(扫描第二行时)Vcom2-Vseg1=V6-V1=VLCD或Vcom2-Vseg1=V1-V6=-VLCD例:像素(com2,seg1)上未选择电压为(扫描第一,七行时)Vcom2-Vseg1=V2-V3=1/5VLCD或Vcom2-Vseg1=V5-V4=-1/5VLCD例:像素(com1,seg1)上半选(行选而列未选)电压为(扫描第一行时)Vcom1-Vseg1=V6-V3=-3/5VLCD或Vcom1-Vseg1=V1-V4=-3/5VLCD例:像素(com1,seg1)上半选(列选而行未选)电压为(扫描第二行时)Vcom1-Vseg1=V2-V1=-1/5VLCD或Vcom1-Vseg1=V5-V6=1/5VLCD由此可见,选择像素上的电压最大,为VLCD;为选择像素的电压最小,为1/5VLCD;半选择像素电压最大为3/5VLCD,所以只要我们把半选择像素上的电压控制在液晶的阀值电压之下,即可实现比较好的对比度。
LCD的原理及驱动方法简介和应用
![LCD的原理及驱动方法简介和应用](https://img.taocdn.com/s3/m/be15f19e6bec0975f465e266.png)
LCD 原理及驱动方法简介1、LCD 显示器原理LCD 是一种被动式显示器,其本身不发光,只是调节光的亮度。
LCD 利用液晶的扭曲-向列效应制成,这是一种电场效应,夹在两片导电玻璃电极间的液晶经过一定的处理,它内部的分子呈90°的扭曲,当线性偏振光透过时其偏振面便会旋转90。
当在玻璃电极上加上电压后,在电场作用上,液晶的扭曲结构消失,其旋光作用也消失,偏振光便可直接通过。
当去掉电场后,液晶分子又恢复其扭曲结构。
把这样的液晶置于两偏振片之间,改变偏振相对位置就可得到字的显示形式。
LCD 七段显示器有a~g 七段外,还有一个公共极COM 。
可用静态方式驱动,也可用动态方式驱动。
前者加直流信号,后者加交流信号。
今天所讲的LCD 驱动也是用动态方式驱动的。
当加在a~g 七段中的某一电极的方波与公共电极COM 上的方波信号同相时,相对电压为0,则该段不显示;当加在某段电极上的方波与公共电极COM 的非选通点上加只有选通点电压的少交叉效应的影响,这就是上面仅仅是COM口的驱动波形,那么SEG口的驱动波形又是怎样的呢?对应上面的6个时段,在COM口为高电平时,如果该段需要显示,则对应的SEG口输出低电平;反之,则输出高电平。
根据同LED的有关段显示的规则,得出如下表所示的段码表。
段码表:L C D码表(4位半-18.8.8.8)com1 seg1com2seg2c o m3s e g3com1seg4com2seg5c o m3s e g6digit f a b e g c dp d s f a b e g c d dp s 0000010101111101100 1110110111001001000 2100001101011110100 3100100101011011100 40101001111010110005001100101110011100 6001000101110111100 7100110111011001000 8000000101111111100 9000100101111011100a000000111111111000b011000101100111100c001011101110110100d110000101001111100e111111111000000000不显示f111101111000010000显示“-”3、程式流程图如下图所示:4、程式如下1;title:通用I/O口驱动LCD范例程式2;MCU:EM78P447BS,clock:2,crystal:4MHz3;LCD规格:1/2Bias,1/3duty4;writer:RenBin5;date:2005-5-2311:276;*****************************************************************7;程式说明:本程式是用通用I/O口驱动LCD的程式,用一个I/O口作COM口及SEG口8;9;-------------------10;port611;port64com112;port65com213;port66com314;port515;port504b/4c16;port514a/4g/4d17;port524f/4e/dp318;port543b/3c/s219;port553a/3g/3d20;port563f/3e/dp221;port722;port702b/2c/s123;port712a/2g/2d24;port722f/2e/dp125;port741b/1c/1h26;port751a/1g/1d27;port761f/1e28;---------------------------------29include<em78p447.inc>1C;*****************************************************;2C;Tilte:EM78447include file;3C;Description:The Definition of EM78x447Registers;4C;Company:ELAN MICROELECTRONICS(SZ)LTD.;5C;Author:YouFang.Bao;6C;Date:5/14/2004;7C;Version:v1.0;8C;******************************************************;9C;10C;======================================================;11C;Operational Registers Define;12C;======================================================;13C;14C;======================================================;15C;Registers R0~R3F;16C;======================================================;17C;18C;R0/IAR:Indirect Address Register19C;200000C R0==0x00210000C IAR==0x0022C;23C;R1/TCC:Time Clock/Counter24C;250001C R1==0x01260001C TCC==0x01270001C RTCC==0x0128C;29C;R2/PC:Program Counter&Stack30C;310002C R2==0x02320002C PC==0x0233C;34C;R3/PSR:Process Status Register35C;360003C R3==0x03370003C PSR==0x03380003C STATUS==0x0339C;{400007C GP==0x07;General read/write bit410006C PS1==0x06;420005C PS0==0x05;(PS0~PS1):Page Select Bits43C;----------------------------------------;44C;PS1PS0Program memory page [Address];45C;00Page0[000-3FF];46C;01Page1[400-7FF];47C;10Page2[800-BFF];48C;11Page3[C00-FFF];49C;----------------------------------------;500004C T==0x04;Time-out bit510003C P==0x03;Power down bit520002C Z==0x02;Zero flag530001C DC==0x01;Auxiliary carry flag540000C C==0x00;Carry flag550000C cy==056C;57C;R4/RSR:RAM Select Register58C;590004C R4==0x04600004C RSR==0x0461C;{620007C RS1==0x07;RAM-Bank Select Bit1630006C RS0==0x06;RAM-Bank Select Bit064C;65C;R5~R7:I/O Port Address66C;670005C PORT5==0x05680006C PORT6==0x06690007C PORT7==0x0770C;710005C P5==0x05720006C P6==0x06730007C P7==0x0774C;750005C R5==0x05760006C R6==0x06770007C R7==0x0778C;79C;R3F/ISR:Interrupt Status Register80C;81003F C R3F==0x3F82003F C ISR==0x3F83C;{840003C EXIF==0x03;External interrupt flag850000C TCIF==0x00;TCC overflow interrupt flag86C870008C mEXIF==0x08;External interrupt flag880001C mTCIF==0x01;TCC overflow interupt flag89C;}90C;91C;92C;======================================================; 93C;Special Purpose Registers Define;94C;======================================================;95C;96C;IOC5~IOC7:I/O Port Control Register97C;980005C IOC5==0x05;Bit[n]=1,Set P5[n]as input pin,n=0~7 99C;Bit[n]=0,Set P5[n]as output pin, n=0~7100C;1010006C IOC6==0x06;Bit[n]=1,Set P6[n]as input pin, n=0~7102C;Bit[n]=0,Set P6[n]as output pin, n=0~7103C;1040007C IOC7==0x07;Bit[n]=1,Set P7[n]as input pin, n=0~7105C;Bit[n]=0,Set P7[n]as output pin, n=0~7106C;107C;108C;IOCB/WCR:Wake-up Control Register for PORT6109C;110000B C IOCB==0x0B111000B C WCR==0x0B112C;{1130007C WUE7==0x07;Control bit is used to enable the wake-up function of P67pin1140006C WUE6==0x06;Control bit is used to enable the wake-up function of P66pin1150005C WUE5==0x05;Control bit is used to enable the wake-up function of P65pin1160004C WUE4==0x04;Control bit is used to enable the wake-up function of P64pin1170003C WUE3==0x03;Control bit is used to enable the wake-up function of P63pin1180002C WUE2==0x02;Control bit is used to enable the wake-up function of P62pin1190001C WUE1==0x01;Control bit is used to enable the wake-up function of P61pin1200000C WUE0==0x00;Control bit is used to enable the wake-up function of P60pin121C;0:Enable internal wake-up122C;1:Disable internal wake-up123C;124C;IOCE/WDTCON:WDT Control Register125C;126000E C IOCE==0x0E127000E C WDTCON==0x0E128C;129C;IOCF/IMR:Interrupt Mask Register130C;131000F C IOCF==0x0F132000F C IMR==0x0F133C;{1340008C mEXIE==0x08;EXIF Interrupt enable bit135C;0:Disable EXIF interrupt136C;1:Enable EXIF interrupt 1370001C mTCIE==0x01;TCIF Interrupt enable bit138C;0:Disable TCC interrupt139C;1:Enable TCC interrupt140C;141C;======================================================; 142C;Others Define;143C;======================================================; 144C;145C;Bit set use BC or BS146C;1470000C B0==0x001480001C B1==0x011490002C B2==0x021500003C B3==0x031510004C B4==0x041520005C B5==0x051530006C B6==0x061540007C B7==0x07155C;======================================================; 156C;Macros Define;157C;======================================================; 158C;----------------------------159C;160C Page0MACRO161C;162C BC PSR,PS0163C BC PSR,PS1164C;165C ENDM166C;167C;----------------------------168C;169C Page1MACRO170C;171C BS PSR,PS0 172C BC PSR,PS1 173C;174C ENDM175C;176C;----------------------------177C;178C Page2MACRO179C;180C BC PSR,PS0 181C BS PSR,PS1 182C;183C ENDM184C;185C;----------------------------186C;187C Page3MACRO188C;189C BS PSR,PS0 190C BS PSR,PS1 191C;192C ENDM193C;194C;----------------------------195C;196C Bank0MACRO197C;198C BC RSR,RS0 199C BC RSR,RS1 200C;201C ENDM202C;203C;----------------------------204C;205C Bank1MACRO206C;207C BS RSR,RS0208C BC RSR,RS1209C;210C ENDM211C;212C;----------------------------213C;214C Bank2MACRO215C;216C BC RSR,RS0217C BS RSR,RS1218C;219C ENDM220C;221C;----------------------------222C;223C Bank3MACRO224C;225C BS RSR,RS0226C BS RSR,RS1227C;228C ENDM229C;----------------------------230C;231C;************************************************; 232C;Clear EM78P447General Register Macro Program; 233C;; 234C;************************************************; 235C;236C m447clrrambank macro237C;238C mov a,@0x10239C mov rsr,a240C$_Clrloop:241C clr r0242C inc rsr243C jbc rsr,6244C bs rsr,5245C jbc rsr,7246C bs rsr,5247C jbs status,z248C jmp$_clrloop249C endm30include"e:\lcd\lcddriverram.inc"1C;title:lcddriver register define2C;mcu:em78p447sb3C;---------------------------------------4C;50010C reg_acc1==0x1060011C reg_acc2==0x1170012C reg_acc3==0x1280017C temp_value==0x17;温度寄存器90019C humi_value==0x19;湿度寄存器10001B C sysstatus==0x1b;标志寄存器11C;--------------------------------------12C;bank1130020C mstimer==0x20140021C stimerlow==0x21150022C stimerhigh==0x22160023C cont==0x2317C;180024C commondata==0x24;common数据寄存器190025C segdata==0x25;segment数据寄存器20C;210026C temp1==0x26;中间变量寄存器220027C temp2==0x27;中间变量寄存器230028C temp3==0x28;中间变量寄存器240029C temp4==0x2925C;26002A C tempL==0x2a;温度bcd码低位寄存器27002B C tempH==0x2b;高位28002C C humiL==0x2c;湿度bcd低位码寄存器29002D C humih==0x2d;高位30C;31002E C timer05s==0x2e;0.5s寄存器32C;temp_value==0x2f;分钟寄存器33C;humi_value==0x30;小时寄存器34C;---------------------------------------------35C;register bit define36C;sysstatus register define370003C timer500ms==3;500ms标志380004C LCDdsp==4;LCD显示标志390005C datachange==5;数据更新标志400006C timer==6;定时标志410007C am==7;上下午标志42C;常数定义4300B2C tcc_5ms==178;tcc5ms timer4400C8C kmstimer==200;1000ms timer45000C C segment==12;define LCD segment data 460002C duty==2470003C common==3;2;define LCD common data 480002C bias==231;32org0xfff3300FFF0000nop34org035000001408jmp start36org137000010000nop3800002083F bc r3f,tcif39000030B1B bs sysstatus,lcddsp40000040B9B bs sysstatus,timer41000051886mov a,@(256-122)42000060041mov tcc,a43000070013reti4400008start:45M m447clrrambank;清寄存器0000818101MOV A,@(16)0000900441MOV RSR,A0000A1??0001$_CLRLOOP:0000A00C01CLR R0,0000B05441INC RSR,0000C0D841JBC RSR,60000D0B441BS RSR,50000E0DC41JBC RSR,70000F0B441BS RSR,5000100E831JBS STATUS,Z00011140A1JMP??0001$_CLRLOOP,46000121800mov a,@0x047000130045mov port5,a48000141800mov a,@0x049000150005iow ioc550;51000161800mov a,@0x052000170046mov p6,a53000181800mov a,@0x054000190006iow ioc655;560001A1800mov a,@0x0570001B0047mov p7,a580001C1800mov a,@0x0590001D0007iow ioc760;610001E1804mov a,@0b00000100;TCC=1:32,4.096ms 620001F0002contw63000201811mov a,@0x116400021000E iow ioce65000221801mov a,@0x016600023000F iow iocf67000241886mov a,@(256-122)68000250041mov tcc,a69;7000026183F mov a,@63;12;59;11;88;00;88;2371000270057mov temp_value,a7200028184A mov a,@74;34;11;11;88;00;88;30 73000290059mov humi_value,a;74;750002A1806mov a,@(common*2)760002B0064mov commondata,a770002C0010eni78;****************************************7980;****************************************810002D main:820002D0004wdtc830002E1096call lcddisplay840002F142D jmp main85;**************************************** 8600030LCD1_table:;段码表87000300020TBL88000311C00RETL@0B00000000;089000321C06RETL@0B00000110;190000331C04RETL@0B00000100;2 91000341C04RETL@0B00000100;3 92000351C02RETL@0B00000010;4 93000361C01RETL@0B00000001;5 94000371C01RETL@0B00000001;6 95000381C04RETL@0B00000100;7 96000391C00RETL@0B00000000;8 970003A1C00RETL@0B00000000;9 98;990003B1C00RETL@0B00000000;A 1000003C1C03RETL@0B00000011;b 1010003D1C01RETL@0B00000001;c 1020003E1C06RETL@0B00000110;d 1030003F1C01RETL@0B00000001;E 104000401C0F RETL@0B00001111;F105106;--------------------------------------------------------------10700041LCD2_table:108000410020TBL109000421C02RETL@0B00000010;0 110000431C06RETL@0B00000110;1 111000441C01RETL@0B00000001;2 112000451C04RETL@0B00000100;3 113000461C04RETL@0B00000100;4 114000471C04RETL@0B00000100;5 115000481C00RETL@0B00000000;6 116000491C06RETL@0B00000110;7 1170004A1C00RETL@0B00000000;8 1180004B1C04RETL@0B00000100;9 119;1200004C1C00RETL@0B00000000;A 1210004D1C00RETL@0B00000000;b 1220004E1C03RETL@0B00000011;c 1230004F1C00RETL@0B00000000;d 124000501C01RETL@0B00000001;E 125000511C05RETL@0B00000101;F 126;--------------------------------------------------------------12700052LCD3_table:128000520020TBL129000531C05RETL@0B00000101;0 130000541C07RETL@0B00000111;1131000551C05RETL@0B00000101;2 132000561C05RETL@0B00000101;3 133000571C07RETL@0B00000111;4 134000581C05RETL@0B00000101;5 135000591C05RETL@0B00000101;6 1360005A1C07RETL@0B00000111;7 1370005B1C05RETL@0B00000101;8 1380005C1C05RETL@0B00000101;9 139;1400005D1C07RETL@0B00000111;A 1410005E1C05RETL@0B00000101;b 1420005F1C05RETL@0B00000101;c 143000601C05RETL@0B00000101;d 144000611C05RETL@0B00000101;E 145000621C07RETL@0B00000111;F 146;--------------------------------------------------------------14700063LCD4_table:148000630020TBL149000641C07RETL@0B00000111;0 150000651C01RETL@0B00000001;1 151000661C03RETL@0B00000011;2 152000671C03RETL@0B00000011;3 153000681C05RETL@0B00000101;4 154000691C06RETL@0B00000110;5 1550006A1C06RETL@0B00000110;6 1560006B1C03RETL@0B00000011;7 1570006C1C07RETL@0B00000111;8 1580006D1C07RETL@0B00000111;9 159;1600006E1C07RETL@0B00000111;A 1610006F1C04RETL@0B00000100;b 162000701C06RETL@0B00000110;c 163000711C01RETL@0B00000001;d 164000721C06RETL@0B00000110;E 165000731C00RETL@0B00000000;F 166;------------------------------------16700074LCD5_table:168000740020TBL169000751C05RETL@0B00000101;0 170000761C01RETL@0B00000001;1 171000771C06RETL@0B00000110;2172000781C03RETL@0B00000011;3 173000791C03RETL@0B00000011;4 1740007A1C03RETL@0B00000011;5 1750007B1C07RETL@0B00000111;6 1760007C1C01RETL@0B00000001;7 1770007D1C07RETL@0B00000111;8 1780007E1C03RETL@0B00000011;9179;1800007F1C07RETL@0B00000111;A 181000801C07RETL@0B00000111;b 182000811C04RETL@0B00000100;c 183000821C07RETL@0B00000111;d 184000831C06RETL@0B00000110;E 185000841C06RETL@0B00000110;F186;---------------------------------------------18700085LCD6_table:188000850020TBL189000861C02RETL@0B00000010;0 190000871C00RETL@0B00000000;1 191000881C02RETL@0B00000010;2 192000891C02RETL@0B00000010;3 1930008A1C00RETL@0B00000000;4 1940008B1C02RETL@0B00000010;5 1950008C1C02RETL@0B00000010;6 1960008D1C00RETL@0B00000000;7 1970008E1C02RETL@0B00000010;8 1980008F1C02RETL@0B00000010;9199;200000901C00RETL@0B00000000;A 201000911C02RETL@0B00000010;b 202000921C02RETL@0B00000010;c 203000931C02RETL@0B00000010;d 204000941C02RETL@0B00000010;E 205000951C00RETL@0B00000000;F206;******************************************* 20700096Lcddisplay:208000960F1B jbs sysstatus,lcddsp2090009714B4jmp lcddisplayret21000098091B bc sysstatus,lcddsp211;212000990417mov a,temp_value;2130009A0050mov reg_acc1,a2140009B117B call sub_bintobcd2150009C0412mov a,reg_acc32160009D006B mov temph,a2170009E0411mov a,reg_acc22180009F006A mov tempL,a219;220000A00419mov a,humi_value221000A10050mov reg_acc1,a222000A2117B call sub_bintobcd223000A30412mov a,reg_acc3224000A4006D mov humih,a225000A50411mov a,reg_acc2226000A6006C mov humiL,a227;228000A705E4djz commondata229000A814AB JMP lcddisplay1;$+3 230000A91806MOV a,@(common*2) 231000AA0064MOV commondata,a 232000AB lcddisplay1:233000AB0424MOV a,commondata 234000AC0020TBL235000AD0000NOP236000AE14B5jmp Lcd1display237000AF14D6jmp Lcd2display238000B014F7jmp Lcd3display239000B11518jmp Lcd4display240000B21539jmp lcd5display241000B3155A jmp lcd6display242000B4lcddisplayret:243000B40012ret244;-----------------------------------------------245;显示LCD1246000B5LCD1display:247000B5042A mov a,tempL;温度个位248000B61030call lcd1_table249000B70066mov temp1,a250;251000B8042B mov a,tempH;温度十位252000B91030call lcd1_table253000BA0067mov temp2,a254000BB0727swapa temp2255000BC0226or a,temp1256000BD0066mov temp1,a257000BE0766swap temp1258;259000BF042C mov a,humiL;湿度个位,260000C01030call lcd1_table261000C10068mov temp3,a262;263000C2042D mov a,humiH;湿度十位264000C31030call lcd1_table265000C40069mov temp4,a266000C50729swapa temp4267000C60228or a,temp3268000C70068mov temp3,a269000C80768swap temp3270;271000C90428mov a,temp3272000CA0047mov port7,a273000CB0426mov a,temp1274000CC0045mov port5,a275;276000CD0016ior ioc6277000CE1A0F and a,@0x0f278000CF1960or a,@0b01100000279000D00006iow ioc6;com1:2:3:2.5v 280000D10406mov a,port6281000D21A0F and a,@0x0f282000D31910or a,@0b00010000283000D40046mov port6,a284000D50012ret285;--------------------------------------------286000D6lcd2display:287000D6042A mov a,tempL;温度个位288000D71041call LCD2_table289000D80066mov temp1,a290;291000D9042B mov a,temph;温度十位292000DA1041call LCD2_table293000DB0067mov temp2,a294000DC0727swapa temp2295000DD0226or a,temp1296000DE0066mov temp1,a297000DF0766swap temp1298;299000E0042C mov a,humiL;湿度个位,300000E11041call LCD2_table301000E20068mov temp3,a302;303000E3042D mov a,humih;湿度十位304000E41041call LCD2_table305000E50069mov temp4,a306000E60729swapa temp4307000E70228or a,temp3308000E80068mov temp3,a309000E90768swap temp3310;311000EA0428mov a,temp3312000EB0047mov port7,a313000EC0426mov a,temp1314000ED0045mov port5,a315;316000EE0016ior ioc6317000EF1A0F and a,@0x0f318000F01950or a,@0b01010000319000F10006iow ioc6;com1:2:3:2.5v 320000F20406mov a,port6321000F31A0F and a,@0x0f322000F41920or a,@0b00100000323000F50046mov port6,a324000F60012ret325;-------326000F7lcd3display:327000F7042A mov a,tempL;温度个位328000F81052call LCD3_table329000F90066mov temp1,a330;331000FA042B mov a,temph;温度十位332000FB1052call LCD3_table333000FC0067mov temp2,a334000FD0727swapa temp2335000FE0226or a,temp1336000FF0066mov temp1,a337001000766swap temp1338;33900101042C mov a,humiL;湿度个位,340001021052call LCD3_table341001030068mov temp3,a342;34300104042D mov a,humih;湿度十位344001051052call LCD3_table345001060069mov temp4,a346001070729swapa temp4347001080228or a,temp3348001090068mov temp3,a3490010A0768swap temp3350;3510010B0428mov a,temp33520010C0047mov port7,a3530010D0426mov a,temp13540010E0045mov port5,a355;3560010F0016ior ioc6357001101A0F and a,@0x0f358001111930or a,@0b00110000359001120006iow ioc6;com1:2:3:5v 360001130406mov a,port6361001141A0F and a,@0x0f362001151940or a,@0b01000000363001160046mov port6,a364001170012ret365;------36600118lcd4display:36700118042A mov a,tempL;温度个位368001191063call lcd4_table3690011A0066mov temp1,a370;3710011B042B mov a,temph;温度十位3720011C1063call lcd4_table3730011D0067mov temp2,a3740011E0727swapa temp23750011F0226or a,temp1376001200066mov temp1,a377001210766swap temp1378;37900122042C mov a,humiL;湿度个位,380001231063call lcd4_table381001240068mov temp3,a382;38300125042D mov a,humih;湿度十位384001261063call lcd4_table385001270069mov temp4,a386001280729swapa temp4387001290228or a,temp33880012A0068mov temp3,a3890012B0768swap temp3390;3910012C0428mov a,temp33920012D0047mov port7,a3930012E0426mov a,temp13940012F0045mov port5,a395;396001300016ior ioc6397001311A0F and a,@0x0f398001321960or a,@0b01100000399001330006iow ioc6;com1:2:2.5v,com:2.5V 400001340406mov a,port6401001351A0F and a,@0x0f402001361900or a,@0b00000000403001370046mov port6,a404001380012ret405;--------------40600139lcd5display:40700139042A mov a,tempL;温度个位4080013A1074call lcd5_table4090013B0066mov temp1,a410;4110013C042B mov a,temph;温度十位4120013D1074call lcd5_table4130013E0067mov temp2,a4140013F0727swapa temp2415001400226or a,temp1416001410066mov temp1,a417001420766swap temp1418;41900143042C mov a,humiL;湿度个位,420001441074call lcd5_table421001450068mov temp3,a422;42300146042D mov a,humih;湿度十位424001471074call lcd5_table425001480069mov temp4,a426001490729swapa temp44270014A0228or a,temp34280014B0068mov temp3,a4290014C0768swap temp3430;4310014D0428mov a,temp34320014E0047mov port7,a4330014F0426mov a,temp1434001500045mov port5,a435;436001510016ior ioc6437001521A0F and a,@0x0f438001531950or a,@0b01010000439001540006iow ioc6;com1:2:0v,com:2.5V 440001550406mov a,port6441001561A0F and a,@0x0f442001571900or a,@0b00000000443001580046mov port6,a444001590012ret445;----------------------------4460015A lcd6display:4470015A042A mov a,tempL;温度个位4480015B1085call lcd6_table4490015C0066mov temp1,a450;4510015D042B mov a,temph;温度十位4520015E1085call lcd6_table4530015F0067mov temp2,a454001600727swapa temp2455001610226or a,temp1456001620066mov temp1,a457001630766swap temp1458;45900164042C mov a,humiL;湿度个位,460001651085call lcd6_table461001660068mov temp3,a462;46300167042D mov a,humih;湿度十位464001681085call lcd6_table465001690069mov temp4,a4660016A0729swapa temp44670016B0228or a,temp34680016C0068mov temp3,a4690016D0768swap temp3470;4710016E0428mov a,temp34720016F0047mov port7,a473001700426mov a,temp1474001710045mov port5,a475;476001720016ior ioc6477001731A0F and a,@0x0f478001741930or a,@0b00110000479001750006iow ioc6;com1:2:2.5v,com:0V 480001760406mov a,port6481001771A0F and a,@0x0f482001781900or a,@0b00000000483001790046mov port6,a4840017A0012ret485;------------------------------------------486;--------------------------------------487;此程式是将小于100的数(reg_acc1)转换为BCD码,488;将高位存放于reg_acc2,低位存入于reg_acc3中。
lcd背光恒流驱动原理
![lcd背光恒流驱动原理](https://img.taocdn.com/s3/m/3a6e54381611cc7931b765ce05087632311274e8.png)
lcd背光恒流驱动原理
LCD背光恒流驱动是指通过恒流源驱动LCD背光灯,以保持恒定的电流流过背光灯,从而保证背光的亮度稳定。
LCD背光灯通常是使用LED作为光源,而LED在工作时需要恒定的电流才能保持稳定的亮度。
因此,恒流驱动电路通过在LED和电源之间插入一个可调电阻或者恒流源,来控制电流的大小,并保持恒定。
恒流驱动电路通常由一个反馈电路、一个比较器和一个功率放大器组成。
反馈电路用于检测实际电流和设定电流之间的差异,产生一个反馈信号。
比较器则将反馈信号与设定电流进行比较,如果实际电流低于设定电流,比较器将产生一个偏高的电平信号。
功率放大器根据比较器的输出信号来驱动LED,提供恒定的电流源。
当实际电流低于设定电流时,比较器会将一个高电平信号发送给功率放大器,功率放大器会增大输出电流,从而提高LED 的亮度。
当实际电流超过设定电流时,比较器会将一个低电平信号发送给功率放大器,功率放大器会减小输出电流,从而降低LED的亮度。
通过这种方式,恒流驱动电路可以保持恒定的LED电流,从而保证背光灯的亮度稳定。
这种恒流驱动原理可以在不同的背光灯应用中使用,包括LCD电视、计算机显示器、手机等。
lcd段码屏驱动原理
![lcd段码屏驱动原理](https://img.taocdn.com/s3/m/82532619a22d7375a417866fb84ae45c3b35c2f3.png)
lcd段码屏驱动原理
LCD段码屏是一种常见的数字显示设备,它的驱动原理主要涉及到显示控制芯片和显示模块两个方面。
1. 显示控制芯片
LCD段码屏的显示控制芯片通常采用CMOS技术制造,它可以通过内部的控制逻辑和存储器,控制LCD每一段的电压信号,从而实现数字图像的显示。
常见的LCD控制芯片有HD44780、KS0108、KS0066等,其中HD44780是一种具有广泛应用的标准控制芯片。
2. 显示模块
LCD段码屏的显示模块由多个LCD段组成,每个LCD段由数根独立的导电柱和两根金属屏蔽板组成,通过在导电柱和金属屏蔽板之间加电压差,实现液晶分子的定向排列,进而改变透射光的相位差,实现数字图像的显示。
在不同的电压条件下,液晶分子的定向状态也不同,对应不同的显示状态。
因此,通过控制每一段的电压信号,就可以实现数字图像的显示。
总结:
LCD段码屏的驱动原理主要包括显示控制芯片和显示模块两个方面。
通过控制每一段的电压信号,就可以实现数字图像的显示。
海量的应用场景,让段码屏成为了数字显示的中坚力量。
lcd显示驱动原理
![lcd显示驱动原理](https://img.taocdn.com/s3/m/c87c3c285e0e7cd184254b35eefdc8d376ee14fd.png)
lcd显示驱动原理液晶显示器(Liquid Crystal Display, LCD)是一种利用液晶体的光学特性来输出图像的设备。
它由液晶层、驱动电路、背光源和控制电路组成。
LCD显示驱动的原理可以分为以下几个步骤:1.电压施加:通过驱动电路向液晶层施加电压,使得液晶分子朝向不同的方向排列,从而改变光的传播方式。
2.光的传播:当液晶分子排列有序时,光的传播路径会改变。
通过调整电压的变化,可以控制液晶分子的排列,从而改变光的传播路径。
3.亮度调节:通过控制电压的大小和频率,可以调节背光源的亮度,从而实现LCD显示的亮度调节。
4.像素控制:LCD面板由一个个像素组成,每个像素都有液晶分子和彩色滤光片。
通过调整液晶分子的排列和滤光片的透光性,可以控制每个像素的颜色和亮度,从而显示出图像。
总的来说,LCD显示驱动是通过驱动电路控制液晶分子的排列和背光源的亮度,从而实现像素的控制和图像显示。
控制电路会接收输入信号,并将其转化为相应的驱动信号,通过驱动电路控制液晶的排列方式和背光的亮度,最终将图像显示在LCD屏幕上。
LCD显示驱动的原理进一步细化如下:1. LCD结构:液晶显示器由液晶分子和彩色滤光片组成。
彩色滤光片负责调整光的颜色,液晶分子则负责控制光的透过与阻挡。
2. 电压控制液晶分子:液晶分子在不同的电场作用下,具有不同的排列方式。
液晶分子的排列方式会影响光的传播路径,从而实现光的显示。
通过驱动电路施加不同的电压,可以改变液晶分子的排列方式。
3. 二极管结构驱动:常见的液晶显示器驱动方式是使用二极管结构。
每个像素有一个单独的液晶分子和驱动电路,通过对每个像素的电压进行控制,可以通过改变液晶分子的排列方式来实现图像的显示。
4. 行列扫描:驱动电路会按照一定的顺序对每一行的像素进行扫描,控制电压的变化使得液晶分子的排列发生变化。
这样可以通过逐行扫描的方式将整个图像显示出来。
5. 背光控制:液晶显示器通常需要背光才能正常显示。
lcd屏幕驱动原理
![lcd屏幕驱动原理](https://img.taocdn.com/s3/m/c4dc5d41e97101f69e3143323968011ca300f7b1.png)
lcd屏幕驱动原理1.引言1.1 概述引言部分旨在介绍本篇文章的主要内容和背景。
本文将详细讨论LCD (Liquid Crystal Display,液晶显示器)屏幕的驱动原理。
LCD屏幕作为现代电子产品中广泛应用的显示器件之一,具有节能、清晰、轻薄等特点,被广泛应用于智能手机、平板电脑、电视、计算机显示器等设备中。
在本文中,我们将首先介绍LCD屏幕的基本原理,包括液晶分子的排列结构、光的透射和偏振特性等。
了解这些基本原理将为后续的驱动工作原理提供必要的背景知识。
接下来,本文将重点探讨LCD屏幕的驱动工作原理。
作为一种主动矩阵显示技术,LCD屏幕的驱动原理涉及到电场调控液晶分子的排列状态,从而实现像素点的显示。
我们将详细解释液晶分子在不同电压下的排列方式,以及如何通过电路信号的控制来实现各种显示效果。
通过对LCD屏幕的驱动原理进行深入的研究和探索,我们可以更好地理解其工作原理,为设计和优化LCD驱动电路提供指导和参考。
同时,我们也可以借此机会探讨一些新兴的LCD驱动技术和未来的发展趋势。
在本篇文章的后续章节中,我们将按照以上提到的大纲,分别介绍LCD 屏幕的基本原理和驱动工作原理,并在结论部分对所讨论的内容进行总结和展望。
希望通过本文的阅读,读者能够对LCD屏幕的驱动原理有一个更清晰的认识,并对相关技术的研究和应用提供一些启发和帮助。
1.2文章结构文章结构部分的内容如下:文章结构部分旨在介绍本文的整体结构和每个部分的主要内容,以便读者能够更好地理解和阅读本文。
本文分为引言、正文和结论三个主要部分。
引言部分主要是对整篇文章进行概括性介绍。
首先,我们会简要概述LCD屏幕驱动原理的背景和重要性。
然后,我们将介绍文章的结构和每个部分的主要内容,以便读者能够有一个整体的把握。
正文部分是本文的主体部分,包括了LCD屏幕的基本原理和LCD屏幕驱动的工作原理。
在2.1小节中,我们将详细介绍LCD屏幕的基本原理,包括LCD的构造和LCD显示原理。
lcd的驱动原理
![lcd的驱动原理](https://img.taocdn.com/s3/m/21bf826b182e453610661ed9ad51f01dc28157b0.png)
lcd的驱动原理
LCD是液晶显示屏的英文缩写,其驱动原理包括液晶分子的
定向和电场的控制。
液晶分子的定向决定了光的透射或反射,而电场的控制则改变液晶分子的定向。
LCD的驱动原理涉及两种类型的液晶分子:向列型液晶和扭
曲向列型液晶。
向列型液晶中,液晶分子的长轴与电场平行,电场的作用使其偏转并改变光的透射。
而扭曲向列型液晶中,液晶分子的长轴与电场垂直,电场的作用使其扭曲并改变光的透射。
LCD显示屏的驱动原理基于多个液晶分子在平面内的组织结构,通过控制电压的大小和方向来实现像素点的显示。
驱动电路将电压信号通过一系列的逻辑门电路转换为具有合适电压的信号,然后通过驱动芯片传输到液晶分子上。
具体来说,LCD的驱动过程包括以下几个步骤:
1. 数据输入:将需要显示的图像数据转换为数字信号,并发送给驱动芯片。
2. 液晶分子定向:驱动芯片根据输入的数据信号,通过驱动电路产生特定的电压信号,并将其传输到液晶分子上。
对不同类型的液晶分子,需要分别设置不同的电压信号。
3. 电场作用:液晶分子根据电压信号的作用,发生转动或扭曲。
液晶分子的摆放方式会改变光的透射性能,从而实现像素的显
示。
4. 透光或反射:经过液晶分子调整后的光线,可以透过或反射出来,形成图像。
这一步需要后面的背光源提供光线。
通过控制液晶分子的定向和应用电场,LCD能够实现像素的显示。
驱动芯片根据输入的图像数据信号,通过驱动电路产生相应的电压信号,将其传输到液晶分子上,从而改变光的透射特性,实现图像的显示。
lcd驱动原理
![lcd驱动原理](https://img.taocdn.com/s3/m/baa783450640be1e650e52ea551810a6f524c8bf.png)
lcd驱动原理LCD驱动原理是指控制液晶显示器(LCD)工作的基本原理和方法。
液晶显示器是一种利用液晶材料的光学特性显示图像的平面显示器。
它通过一个特定的驱动电路将电信号转换为显示图像。
液晶显示器通常由玻璃基板、像素点阵列、驱动电路和灯管组成。
驱动电路起着核心作用,它可以控制每个像素点的电压和开关状态,以达到控制显示效果的目的。
液晶显示器通常采用被动矩阵驱动方式,即通过一个行列排布的驱动电路进行控制。
在驱动电路中,液晶材料扮演着关键角色。
液晶有两种典型状态:向列头方向扭曲和向列尾方向扭曲。
液晶分子扭曲程度决定了其透光性,从而实现信息的显示。
驱动电路通过施加电场来控制液晶分子的扭曲程度。
当电压施加到液晶层时,液晶分子会因电场作用而扭曲,从而改变光的传播路径。
通过改变施加的电压,可以控制液晶分子的扭曲程度,从而调整显示的亮度和颜色。
液晶显示器驱动电路通常由逐行扫描和逐列输出两个阵列组成。
逐行扫描阵列控制每行液晶分子的扭曲程度,逐列输出阵列则控制输出的电压。
通过逐行扫描和逐列输出的方式,可以实现对整个显示器的控制。
驱动电路还包括了时序控制和温度补偿等功能。
时序控制是为了保证电路产生准确的电压和信号,使液晶分子能够按照预定的方式扭曲。
而温度补偿则是为了解决液晶分子在不同温度下的扭曲程度不同的问题,以保证显示的准确性和稳定性。
总之,LCD驱动原理是通过控制驱动电路中液晶分子的扭曲来实现显示效果的原理。
驱动电路中的逐行扫描和逐列输出阵列,以及时序控制和温度补偿功能等,都是为了保证显示器能够正确地显示出图像和信息。
lcd 段码屏驱动原理
![lcd 段码屏驱动原理](https://img.taocdn.com/s3/m/8c23f05d15791711cc7931b765ce05087632752d.png)
lcd 段码屏驱动原理LCD(Liquid Crystal Display)段码屏是一种广泛应用于电子产品中的显示屏技术。
它由液晶材料、电极、电源和控制电路等组成,能够根据输入信号显示出数字、字母、符号等信息。
本文将从原理、驱动方式和应用三个方面介绍LCD段码屏的工作原理。
一、原理LCD段码屏的工作原理基于液晶材料的特性。
液晶是一种介于液体和晶体之间的物质,具有双折射性质。
当液晶材料处于电场作用下,其分子会发生排列变化,从而改变光的透过性。
LCD段码屏利用这一特性,通过控制电场的大小和方向,实现对光的控制和显示效果的变化。
二、驱动方式LCD段码屏主要有静态驱动和动态驱动两种方式。
1. 静态驱动:静态驱动方式是将每个像素点的电压保持不变,不进行刷新。
在这种驱动方式下,需要使用大量的导线和控制电路,因此成本较高且功耗较大。
但是静态驱动方式能够保持图像的稳定性,适用于对显示效果要求较高的场合。
2. 动态驱动:动态驱动方式是通过控制像素点的电压不断刷新来实现显示。
在这种驱动方式下,只需要少量的导线和控制电路,因此成本较低且功耗较小。
但是动态驱动方式会导致图像的稳定性较差,适用于对显示效果要求不高的场合。
三、应用LCD段码屏由于其低功耗、高清晰度和易于集成等特点,在各种电子产品中得到广泛应用。
1. 数码产品:LCD段码屏常用于数码相机、手机和平板电脑等产品的显示屏上,能够显示出清晰、细腻的图像和文字。
2. 家电产品:LCD段码屏也被广泛应用于家电产品中,如电视、洗衣机、空调等。
通过LCD段码屏的显示,用户可以直观地了解到各种信息,如频道、温度、时间等。
3. 仪器仪表:LCD段码屏还可以用于各种仪器仪表的显示,如电子秤、电子琴等。
它能够将测量结果、音符等信息以数字、字母等形式呈现给用户,提高了使用的便捷性和可读性。
LCD段码屏是一种基于液晶材料的显示屏技术,通过控制电场的大小和方向来实现对光的控制和显示效果的变化。
LCD驱动原理
![LCD驱动原理](https://img.taocdn.com/s3/m/d69596ab162ded630b1c59eef8c75fbfc77d94c3.png)
LCD驱动原理LCD(Liquid Crystal Display)是一种常见的显示技术,应用广泛于电子产品中。
LCD的驱动原理涉及到液晶分子的定向和电场的作用。
首先,LCD是由一层液晶层和两个平行的电极构成的。
液晶分子是由长而细长的有机分子构成的,它们具有一定的长向性。
液晶分子表现出液体和晶体两种性质,处于液晶态时,液晶分子呈现有序排列的状态。
LCD的驱动原理基于液晶分子的定向性质。
液晶分子在没有施加电场时,通常会呈现一个有序的旋转状态。
这是通过对液晶层施加一个定向层来实现的。
定向层可以在液晶层上涂覆一层薄膜,使得液晶分子在这个薄膜上有一个偏压定向,液晶分子会沿着这个定向层的方向旋转。
当一个电压差施加在液晶层的两个电极之间时,电场会使得液晶分子发生变形,从而改变了液晶分子的定向。
液晶分子通常是呈现扭转结构,电场的作用使得液晶分子逐渐与电场平行,从而改变了液晶光学特性。
具体而言,液晶分子的定向改变导致光线透过液晶层的传输方式发生变化,从而改变了光线的透过率。
LCD的驱动原理可以分为两个步骤:选择性的激活和调整透明度。
在选择性的激活中,电场会对液晶层中的特定位置施加电场,并改变液晶分子的定向,从而导致光线的透过率发生变化。
这可以通过在液晶层上划分小的单元(像素)来实现,每个像素都有一个液晶分子定向被控制的电极驱动。
在调整透明度中,通过调整电场的大小,来改变液晶分子的扭转程度,从而改变光线的透过率。
这个过程是由电压信号控制的,微电压信号会改变液晶分子的扭转程度,而高电压信号会使液晶分子几乎与电场完全平行。
LCD驱动原理主要涉及到液晶分子的定向和电场的作用。
通过将电场施加在液晶层上,可以改变液晶分子的定向,从而改变光的传输方式,进而改变光的透过率。
这种原理被广泛应用于各种电子产品中,如计算机显示器、电视、手机等。
LCD驱动原理
![LCD驱动原理](https://img.taocdn.com/s3/m/436a0e65f242336c1eb95e5d.png)
DC-DC Converter
Gamma Generator
Data Signal Control Signal VCOM Gamma DVDD AVDD Von/Voff
VCOM Generator
SOURCE PCB
Gate Driver
三、部分功能定义介绍
1、Interface部 1>Output Signal Vsync、Hsync、DE、Data、Clock 2>相关解释 Vsync:决定显示图像的垂直位置。 Hsync:决定显示图像的水平位置。 DE:决定显示图像的垂直/水平位置。
PI
FPD87310
Signal in external & internal Bus
Internal Data Bus Signal
System
Interface Signal
LVDS Embeded Timing Controller
14 . 1" XGA Model Data Filters
c>Gray Scale with a Linear L/C Voltage
g T = Tmax x ( gray # /Max. Gray>
Trans. (%>
100
V4
Trans. (%>
100 V5
g = 1.0
50 V3
Equal interval of Gamma voltage
50 g = 2.2
OE: 控制Gate On输出(考虑Line Delay>。
7>Output timing of Timing Controller(1>
Output timing of Timing Controller(2>
液晶显示器 LCD工作原理及驱动方式
![液晶显示器 LCD工作原理及驱动方式](https://img.taocdn.com/s3/m/f3f9cbaf01f69e31423294d9.png)
液晶显示器 LCD工作原理及驱动方式一. 液晶显示器的工作原理1.什么是液晶显示器有一些物质,它们在固体加热变为液体的过程中,不是直接由固体变为液体,而是先要经一种中间状态,处于中间状态的物质外观上看是具有流动的混浊液体,但是,它们的光学性质和某些电学性质又和晶体相似.是各向异性的.如具有双折射特性.当温度继续升高时,这种浑浊液体变得透明清澈,流向同性液体.反之,这类物质从各向同性液体开始冷却时,一般也要先经过中间状态转变为固态. 这种能在某个温度范围内兼有液体和晶体二者特性的物质叫液晶,它不同于通常的固态,液态和气态,又称物质的第四态.液晶分为热质液晶和溶质液晶两大类.其中热质液晶就是前面所讲的 ,溶质液晶是由于溶液浓度发生变化而出现的液晶相. 目前所用的多是热致液晶.从液晶分子排列分三类:a.向列相液晶. 向列相液晶的长轴互相平行,但分子的重心是杂乱分布的,分子运动自由,对外界作用敏感,因此应用广.b.胆甾相液晶.分子呈扁平形,在空间形成一个螺旋结构.分子的长轴彼此平行,与向列向一样.当温度变化时,螺矩也随之变化,从而使提胆甾相显现不同的颜色.因此这种液晶可用来制作测量物体表面温度.c.近晶相液晶液晶的分子排列成层,在每层内分子长轴平行,其方向垂直于层面.各层中分子的重心杂乱分布.2.液晶显示的原理a.液晶显示器分类:L 按显示方式分透射型,反射型,和投影显示三大类.按机理分,动态散射型,扭曲向列场效应型,电控折射型,宾主效应型,相变存储型,有源矩阵型.超扭曲向列型,铁电液晶型,等等 .b.扭曲向列型 TNLCDa>. 定向薄膜.b>. 偏振光.自然光光波的振动方向在与传播方向的垂直平面内是随机分布的.它通过偏振片时,变成只沿一个方向分布的光,即为偏振光.c>.液晶中光的传播.通过起偏器形成的偏振光其振动方向与上方定向薄膜凹槽走向.一运载.当光向下传播时,光的传播方向随液晶的分子扭曲.因此进入检偏器时,光的振动方向与检偏器偏光轴一运载而能通过检偏器.为非显示状态.如果在需要显示部份,在电极上加电压,于是液晶分子长轴方向将与电场方向平行.偏振光通过液晶时不发生扭曲,因此不能通过检偏器.显示器部份该显示的地方呈非透明状态,为显示状态.d> . 反射与透射式液晶显示器. 在上述液晶显示器的背面上装一个反射板,就构成了反射式显示器,适用于明亮的环境.e>. 高容量点阵液晶显示器.如计算机显示屏,彩色平板电视屏,就是采用此类.二. 彩色液晶显示器原理.按彩色产生原理分: 彩色滤色膜方式 {TN型; STN型; VAN型; FLC型;}彩色光源方式: { TN型; STN型; FLC型}光开关彩色方式:{VAN型;PAN型;HAN型;GH方式.} 彩色滤色膜方式和彩色光源方式是利用彩色滤色膜和彩色光源用为彩色产生源,而其中的液晶单元仅仅起开关作用,因此这两种方式都叫做被动式彩色LCD.主动式彩色LCD的光开关彩色方式和GH方式中,液晶单元是过偏光子的作用使其产生双折射性和二色性的变化,直接捕捉色相变化而工作的.被动式LCD,担任光开关机能的液晶单元,其透过光是无色的黑白光.具体说,TN型,二层单元结构的D-STN型,附加位相差板的F-STN型,ECB方式的VAN 型,强电介质性液晶的FLC型.添加了黑色二色性染料的GH型等液晶单元得到了作用.1.彩色滤色膜方式的彩色LCD如图,具有黑白光开关机能的液晶单元和R,G,B,微彩色滤色膜组合,通过加法混色实现多色显示或全色显示. 按着带状.三角形等配置的R,G,B,各像素之间通常是黑底,所以提高了对比度和色纯度.一般情况下,彩色滤色膜上形成的透明电极在TFT(薄膜晶体管)驱动中作为全部的电极,而在纯矩阵驱动中作为带汰电极.这彩色Lcd的光透过率相当低,所以应附加后照光.后照光除提高LCD辉度有用外,与彩色滤色膜结合还可提高色纯度.彩色滤色片的R,G,B 吸收光,虽然因染色,颜料的色散及电沉积,印刷等有所不同,但都是宽带响应,与三波长的灯结合可实现高的色纯度.这种方法可作出:25.4---508mm的彩色LCD.用于摄相机,小型彩电等2.彩色光源方式的LCD.这种方式LCD中,彩色产生源是由彩色光源及具有黑白光开关机能的液晶构成.一般情况下使用R,G,B,三色作为彩色光源,也就是将卤光灯和氙灯等发出较强的白光,用分色镜分成R,G,B,三基色.另外在R,G,B,整个光源上使用了三个黑白光开关液晶单元,将R,G,B,的光一个个地入射到这些单元中.再用二色棱镜将由各个液晶分解生成的R图像,B图像,G图像等合成.现市场售的TV ,都是TN型和STN型液晶单元用作光开关.三. 液晶显示器驱动方式1.液晶的驱动电压要使液晶显示,两电极间所加电压应是交变的,且电压的正负幅度相同等 ,即不能有直流成份,否则易使液晶发行极化而分解,失效.另外,电压的频率不应低于30hz,否则显示闪烁;但频率也不能太高,若高于200hz液晶功耗大而发热升温,特性变差.2.静态驱动方式在电子表中一些所用位数不多的段式数码液晶显示器都使用静态驱动方式.(用异或门电路)3.点阵式LCD的时间分割驱动方式.像个人计算机的显示器就彩用点阵式,像素量大,不能使用静态驱动方式.时间分割法的原理: 电极为矩阵排列,按顺序给各电极加选通波形.通过此操作,由X电极和Y电极交点形成的像素全部可以是任意的显示状态,X电极称作为扫描电极,Y极叫作信号电极.所有X扫描电极依序加电夺波形完了,则称一个帧周期.对频率叫帧频.时间分割驱动,不仅仅对被选通的像素加电压,而且对非选通的像素加电压.(低于阈值电压).第一帧为正极驱动,第二帧为负极驱动,于是对液晶实验了两帧为周期的交流驱动,而信号电极在正极或负极的帧期间,对选通波形给-v 电位.对于非选通波形纵+V,于是在选通像素施加了波形.很显然,随着扫描电极的增加,有效电压变小,对比度下降.4.字符显示LCD在很多LCD中,在容量驱动中,就用LCD模块.如果用作图形显示,则不需字符发生器(ROM).等离子体显示屏(PDP)一. 特点工作电压低,显示屏厚度薄,有存储机能,工作寿命长从结构分: AC型PDP显示单元, DC型PDP显示单元,二. 原理:不论是AC型PDP显示单元, DC型PDP显示单元, 都是利用气体放电产生辉光进行显示的.与荧光灯的辉光放电原理是一样.在两个电极上加足够的电压引起辉光放电.因为气体中总是有少量的自由电子和正离子存在,在两极较强的电场作用下,电子和正离子都得到加速,电子在自已的行程上将气体原子电离而产生新的电子,正离子处于激发态的原子.激发态的原子回到静态而产生荧光. 在辉光放电中,靠近阴极处有一暗区,离开暗区为长度很短的阴极辉光区,阴极辉光区与阳极之间为较长的阳极辉光区.阴极与阳极爆裂间的电压主要降在阴极附近的暗区.R.G.B.荧光体受到显示单元中混合气体放电而发光的辉光照射后产生的红,绿,蓝的原理进行彩色显示.三. PDP的驱动方式.AC型PDP与DC型PDP的驱动方式相同的.分五大部份: 列驱动,行驱动,动态控制,数据缓冲器及电源部份.四. PDP的电源不论是什么型号的PDP,多利用DC-DC 或AC-DC 电源转换器供电.显示单元电压为180—250V.。
LCD 基本驱动原理
![LCD 基本驱动原理](https://img.taocdn.com/s3/m/d7cd5917e87101f69e31959c.png)
面板極性變化與Common電極 驅動方式的選用
面板極性變化方式 Flick的現象 Crosstalk的現象
Common inversion Gate inversion Data inversion Dot inversion 明顯 不明顯 不明顯 幾乎沒有 垂直與水平方向都容 易發生 水平方向容易發生 垂直方向容易發生 不易發生
Via hole
Glass
TFT Timing chart
DATA
L1 L2 L3
Gate 1 2 3
1H
Frame Time
N
TFT driving principle
• Scanning at-a-line
- Vgh is applied to a gate line - All TFTs on a gate line are turned on - Current flows from data line to pixel and pixels on the gate line are charged up to data voltage - Vgl is applied to a gate line - All TFTs on a gate line are turned off and pixels on the gate line holds the charged voltage tF = 16.7ms
Clc
Cs
Glass Gate Metal Deposition Gate Patterning SiNx Deposition i a-Si Deposition n+ a-Si Deposition Active Patterning Data Metal Deposition Gate Data Metal Patterning n+ a-Si Etch SiNx Deposition Via Hole Patterning ITO Deposition Pixel Patterning n+ a-Si i a-Si Gate insulator SiNx Passivation SiNx Data Pixel
lcd 驱动方式和原理
![lcd 驱动方式和原理](https://img.taocdn.com/s3/m/c05f2ca6534de518964bcf84b9d528ea81c72f98.png)
LCD(Liquid Crystal Display,液晶显示器)驱动方式是指用于控制LCD显示像素的电流或电压的方法。
LCD的工作原理是通过改变液晶分子的排列状态来调节光的透过率,从而实现图像显示。
以下是几种常见的LCD驱动方式和原理:1. 静态驱动方式(Static Driven Method):静态驱动方式是最简单的驱动方式之一。
每一个液晶像素点由一个独立的驱动电路控制,通过施加不同的电压或电场来改变液晶的取向,从而实现显示效果。
静态驱动方式适用于小尺寸的LCD,但对于大尺寸LCD来说,由于需要大量的驱动电路,使得整体结构复杂,成本较高。
2. 动态驱动方式(Dynamic Driven Method):动态驱动方式采用行列交替驱动的方法。
将液晶显示屏分割成若干行和列,通过周期性地切换不同的行和列的驱动电压,来逐行、逐列地更新显示内容。
这种方式可以减少所需的驱动电路数量,降低成本,并适用于大尺寸的液晶显示屏。
3. 时序控制驱动方式(Timing Control Driven Method):时序控制驱动方式通过控制驱动信号的时序来控制液晶的状态和显示内容。
时序控制驱动方式广泛应用于各种尺寸的液晶显示器,可以实现高分辨率、高刷新率和多种显示模式。
4. 被动矩阵驱动方式(Passive Matrix Driven Method):被动矩阵驱动方式是一种简单且低成本的驱动方法。
它通过将液晶像素点排列成行列交错的结构,使用行和列上的电极来控制每个像素点的状态。
然而,被动矩阵驱动方式在显示质量、响应速度和观看角度方面存在一定的限制。
5. 主动矩阵驱动方式(Active Matrix Driven Method):主动矩阵驱动方式采用了TFT(Thin-Film Transistor,薄膜晶体管)技术,每个像素点都有一个对应的TFT,通过控制这些TFT 的导通和截止来改变液晶的取向,从而实现高品质的显示效果。
LCD显示驱动原理
![LCD显示驱动原理](https://img.taocdn.com/s3/m/8d15bb1703020740be1e650e52ea551810a6c91f.png)
7.4 LCD 显示驱动7.4.1 LCD显示原理LCD是基于液晶电光效应的显示器件,液晶显示器的工作原理利用的是液晶的物理特性。
在通电时,液晶排列变得有秩序,使光线容易通过;不通电时,液晶排列则变得混乱,阻止光线通过。
即液晶工作时,使用的是外部光线,自己本身并不发光,所以与CRT相比,液晶显示器的耗电量较低。
液晶显示器有两类。
一类是由薄膜晶体管(Thin Film Transistor)阵列构成的,称为TFT。
其优点是亮度大,色彩鲜艳,可视角度也大;缺点是价格较高,耗电大,容易发生因个别晶体管损坏而在图像上形成斑点的现象。
另一类称为DSTN,其物理基础是液晶在不同的电场下呈现不同的光学特性。
在显示屏上用水平和垂直放置的导线做出网格,并以电信号加以扫描,就可以依次在每个交点上形成并保持一定的电场,从而使该点上的液晶在反射或透过光线时显出不同的颜色。
LCD中使用的、液晶照明的方式有两种——传送式和反射式。
传送式屏幕要使用外加光源照明,称为背光(Backlight),照明光源要安装在LCD 的背后。
传送式LCD在正常光线及光线下,显示效果都很好,但在户外,尤其在日光下,很难辨清显示内容。
反射式屏幕则不需要外加照明电源,使用周围环境的光线(或在某些笔记本电脑中,使用前部照明系统的光线)。
这样,发射式屏幕就没有背光,因此,此种屏幕在户外会哦光线充足的室内,才会有出色的显示效果;但在一般室内光线下,这种显示效果不及背光传送式。
当然,发射式LCD的最大优点是:耗电量较传送式的低。
一般来说实验箱使用传送式背光(CCFL)、彩色STN液晶屏。
一般情况下,嵌入式系统教学平台液晶屏的最大分辨率为320×240,采用彩色STN 制式,使用CCFL背光。
在系统中LCD数据总线由EP7312的DD0-DD4经过逻辑变换后提供给LCD,控制总线由EP7312控制总线经过总线驱动芯片后提供给LCD,时钟信号由EP7312液晶屏控制接口提供其中一部分时钟信号经由D触发器分频后提供给液晶屏。
lcd驱动方式及显示原理
![lcd驱动方式及显示原理](https://img.taocdn.com/s3/m/2505c8dd3186bceb19e8bbce.png)
二.LCD的驅動方式:Static(靜態), Multiplex(多工). 1.Static Driving(靜態驅動): a.驅動原理:(數位信號) 如下圖所示當方格內之信號為1時,則此時LCD點亮, 反之,若方格內為0時,則此時LCD為不點亮的狀態.
LCD驅動方式
及顯示原理
一.LCD的顯示原理:
(1).偏光片的使用:使用偏光片,可決定光的行進路線.
(2).液晶的定向:可使液晶呈現規則排列後,達到扭轉 的功能;不同型態的LCD有不同的扭轉角.
(3).加入電場後的液晶:當所加的電場強度高於液晶的 臨界電壓時,改變原有的扭轉排列狀態.
(4).液晶與偏光片的效應組合:
(3).A TYPE,B TYPE比較: (A TYPE) (B TYPE)
1.在1個frame的時間內即完成 一次正負半週的交替. 2.IC:KS0070,HD44780…等等. 3.驅動Duty數越高時,其顯示 效果越較B TYPE差.
1.在2個frame的時間內完成一 次正負半週的交替. 2.IC:ST7066,SED1561…等等.位信號)(1/8duty)
1
4
2
5
7
8
3
6
8
c.驅動方法:A TYPE,B TYPE (1).A TYPE驅動波形:下方兩張波形圖所示為當LCD顯 示“A”時,A TPYE 之驅動波形.
(2).A TYPE驅動方法:如圖所示當C1電壓為V5時 ,此時對應之S1電壓為V2,C1電壓為VCC時, 此時對應之S1電壓為V3,則此時C1-S1為不 點亮狀態.而當C2電壓為V5時,此時S1電壓 為VCC,而當C2電壓為VCC時,此時S1電壓為 V5,則此時C2-S1為點亮狀態.
lcd驱动原理
![lcd驱动原理](https://img.taocdn.com/s3/m/6b29d451793e0912a21614791711cc7931b77864.png)
lcd驱动原理
LCD驱动原理
LCD(液晶显示器)驱动系统是一套硬件设备,它可以将电脑的显示内容(象图像,文字等)传送到液晶显示器,使显示器能够正确地显示出视觉效果。
LCD驱动系统一般由两部分组成:
1.驱动电路:它是一组具有某种特殊功能的电路,专门负责将电脑发出的指令转换为液晶显示器能够识别的指令,从而达到控制显示器正确显示图像的目的。
2.控制器:它是一种芯片,用来控制整个驱动系统的运行,将驱动电路所转换的指令顺序传送给显示器,使其能够正确显示图像。
LCD驱动系统的主要功能是控制液晶显示器的显示图像,它的结构一般有两种:一种是有外部控制器的驱动系统,这种系统一般由一个控制器和几个驱动电路组成;另一种是集成驱动系统,这种系统由一个芯片内部集成的控制器和驱动电路组成。
LCD驱动系统的主要功能有:
1. 控制显示器的显示宽度、高度、刷新频率和亮度;
2. 将图像信息从显存发送给显示器;
3. 用驱动电路控制显示器周边的接口,如触摸屏接口、视频信号接口等;
4. 控制显示器背光,使其以正确的亮度显示图像;
5. 控制显示器的旋转;
6. 控制显示器的色彩范围;
7. 控制液晶显示器的电压和频率;
8. 控制显示器的节能效果。
每个不同类型的LCD驱动系统实现的功能不尽相同,但是都需要满足上述基本功能,以使液晶显示器正常显示图像。
LCD显色及驱动原理
![LCD显色及驱动原理](https://img.taocdn.com/s3/m/06ff20381611cc7931b765ce050876323012747b.png)
LCD显色及驱动原理LCD(液晶显示器)是一种以液晶为显示材料的平板显示器。
它通过电场调节液晶分子排列来控制光的透过与阻挡,从而实现图像显示。
LCD的显色原理和驱动原理如下:1.LC(液晶)分子排列:LCD中主要使用的液晶分子是向列型液晶分子(例如垂直向列型液晶,或平行向列型液晶)。
在没有电场的作用下,液晶分子呈现有序排列,光线透过时不会发生旋转,从而达到透明的状态。
如果给液晶分子加上电场,电场可以改变液晶分子排列的方向和倾斜角度,从而影响光线的透过与阻挡。
2.极化器和偏振光:LCD中存在两个正交的偏振器,称为极化器和偏振器。
极化器将光线极化为特定的方向,而偏振器只允许特定方向的光线通过。
在两个偏振器之间放置了一个液晶层。
3.透明态:当没有电场应用到液晶分子上时,液晶分子是有序排列的,光线透过时会保持原来的极化状态,通过偏振器后能够完全透过,显示器呈现出透明状态。
4.关闭态:当电场垂直于液晶分子时,液晶分子排列改变,使得光线发生旋转,轴向反转90度,称为液晶分子的扭转。
光线的旋转使得通过偏振器后的光线不再具有与偏振器方向一致的偏振状态,无法透过偏振器,显示器呈现黑色状态。
5.显示色彩:LCD显示器要显示色彩,是通过调节每个像素点的亮度和颜色来实现的。
每个像素点由三个亮度可变的基本色彩点组成,即红、绿、蓝(RGB)三原色。
通过调整液晶分子的旋转角度,通过偏振器的光线透过与阻挡,可以调节每个像素点的透过光线的亮度和颜色,从而实现对图像的显示。
6.驱动原理:LCD显示器的驱动原理是通过控制每个像素点液晶分子的电场来实现的。
每个像素点都有一个独立的电极驱动,电极会施加电场,控制液晶分子的排列方向和倾斜角度。
通过电极的电压调节,可以控制每个像素点的旋转角度,从而实现对光线的调整和图像的显示。
总体而言,LCD显示器的显色原理是通过液晶分子的电场调节来控制光的透过与阻挡,通过调节每个像素点的液晶分子旋转角度来控制光线的亮度和颜色,从而实现对图像的显示。
LCD驱动方式及显示原理
![LCD驱动方式及显示原理](https://img.taocdn.com/s3/m/b19ee9820d22590102020740be1e650e52eacf8e.png)
LCD驱动方式及显示原理LCD (Liquid Crystal Display)是一种平板显示器技术,广泛应用于电子设备的显示屏上。
LCD驱动方式及显示原理是如何实现LCD屏幕的像素控制和图像显示的关键。
下面将详细介绍LCD驱动方式及显示原理。
1.LCD驱动方式:(1)数字式驱动数字式驱动是最常用的驱动方式,通过数字信号来对LCD显示器的像素进行控制。
-静态驱动:使用固定的电压,例如使用一个稳定的电压源,用于控制LCD屏幕的每个像素。
-动态驱动:分类为1/240、1/480、1/960、1/1200等等格式。
它在特定的时钟频率下,快速切换电压,使液晶分子在两种状态之间变化。
(2)模拟式驱动模拟式驱动是通过模拟信号来控制LCD显示器的像素。
它通常用于LCD屏幕上像素点较少的低分辨率显示设备。
-逐行驱动:按照行顺序逐个驱动LCD的所有像素点。
-平面驱动:将整个屏幕划分为很多平面,并且同时驱动每个平面的像素。
2.LCD显示原理:LCD显示原理涉及到电光效应和液晶分子的操控。
(1)电光效应当电压施加在液晶材料上时,其分子将发生旋转或重新排列,从而改变透过的光的方向,从而改变液晶材料的透过性。
液晶显示屏架构中的液晶分子通常被安排成两个平行的玻璃衬底之间的夹层。
当无电压施加在液晶分子上时,它们会形成同心圆状。
而当电压施加在液晶分子上时,它们会改变形状,通常是旋转成平行或垂直的状态。
(2)液晶分子的操控液晶显示屏的构造中包含两片玻璃衬底,每个衬底上都有一个导电层。
当电压施加在导电层上时,它会在液晶分子中产生电场。
根据电场的大小和方向,液晶分子将旋转或重新排列,改变透光的方向,并实现对光的控制。
3.LCD驱动流程:(1)数据输入:控制器将图像数据(RGB值)传输到LCD驱动电路。
(2)数据解码:LCD驱动电路将输入的图像数据转换为液晶分子可理解的电信号。
(3)电场操控:通过电信号操控液晶分子的排列,将其使之平行或垂直。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
講師 :
課程大綱 • 液晶物質簡介 • 液晶的電光效應 • 液晶基本驅動原理 • STN LCDs 驅動原理 • TFT LCDs 驅動原理 • 影響TFT LCDs 畫面品質的因素 • Driver IC 簡介 • TFT LCDs 模組及介面技術簡介
液晶物質的相變化
加熱 冷卻
ΔT
D 1-f
-D f
F
垂直影像訊號電壓波形
水平掃描電壓波形
0
F+D F-D
液晶畫素電壓波形
+D
0 -D
灰階顯示 ─ PHM
•Pulse High Modulation, PHM :
ΔT
+D 1-f
-D f
F
垂直影像訊號電壓波形
0 F+D F-D
0
X +D
-D ΔT/2
Y ΔT/2
水平掃描電壓波形
1st
2nd 3rd
4th
Frame Frame Frame Frame
Pixel 1
Pixel 2
Pixel 3
Pixel 4
Pixel 5
Time
Result 5/5 ON 4/5 gray 3/5 gray
2/5 gray 1/5 OFF
灰階顯示 ─ PWM
•Pulse Width Modulation, PWM :
加熱 冷卻
固體結晶
液晶
液體
液晶分子的種類
Smectic LC 層狀液晶
Nematic LC 線狀液晶
Cholesteric LC 膽固醇狀液晶
液晶分子的排列
Crystalline Liquid
Crystalline
K
SmC
SmA
N
Biaxial
Unaxial
Liquid L
Isotropic Temperature
L Line
(b)
L
(c) 水平掃描波形
(d) 液晶畫素波形
Horizontal Crosstalk 的抑制
(a) 垂直驅動訊號 L Line
(b) 傳 統 驅 動 (c) 水平掃描波形 方 式
(d) 液晶畫素波形
(e) 水平掃描 補償波形 £GV
TN 型 LCDs 顯示原理
Field OFF
Twist 90
Field ON
液晶分子
利用液晶的旋光特性 調變穿透光線
液晶的旋光特性消失
STN LCDs 顯示原理
Twist 270
Field OFF
利用液晶的雙折射 特性調變穿透光線
液晶分子
Field ON
TN & STN 電光轉移曲線 V-T Curve
2
1:2 2.23
3
1:2 1.73
3
1:3 1.92
4
1:3 1.73
8
1:4 1.45
16
1:5 1.29
32
1:7
1.2
64
1:9 1.15
100 1:11 1.11
128 1:12 1.09
200 1:15 1.08
240 1:16 1.06
400 1:17 1.06
APT 驅動波形
4
3
2
正極性驅動波形
Frame N
F
1H
0 +D
+D -D
F-D
液
晶A
畫
-D
素 電
F-D
壓
波 +D
+D
形B
-D
APT Addressing
正極性驅動波形 Frame N
F
0
+D
0
採
+D -D
用
0
補
償
F F-D
驅 動
週
-D
0 -D
期
F F-D
+D 0
-D
Improvement Addressing
Vertical Crosstalk 的抑制 (三)
Optical Negative
液晶驅動原理
電極 液晶 電極 Field OFF // 0 Field ON
液晶顯示器主要優缺點
• 優點
– 低電壓驅動。 – 低消耗電流。 – 體積薄,重量輕。 – 可實現大面積化。 – 彩色化容易。
• 缺點
– 視角限制。 – 外加被光源或投射光源。 – 溫度操作範圍限制。
水平脈波
垂 直
A
驅
動 波
B
形
0 +D
+D -D
-D
A B
F-D
液 晶
A
畫
素
-D F-D
+D
電 壓
+D
+D
波B 形
-D
-D
Vertical Crosstalk 的抑制 (一)
水 平 脈 波
垂 直A 驅 動 波B 形
正極性驅動波形
Frame N
F
1H
0 +D
+D -D
F-D
液
晶A
畫
-D
素
F-D
電
壓 +D
N
Row 1 Row 2 Row 3 Row N
ON
+D
OFF
-D
F-D +D
0 OFF F D2 N 1D2
N
F+D -D
0
ON
SR
ON +D
OFF
-D
OFF +D
0
F-D
F
N
D opt
-D
液晶畫素電壓
0 SR
opt
N 1 N 1
多工驅動法的限制
1.3
1.2
1.1
1.0
100
200
N Bias S.R.
Vsig
Vc
Vsig Vc Vs
Vc-Vs
Vs XOR
ON
OFF
LC Cell Vc
多工驅動法 (振幅選擇驅動法, APT)
F
0 水 平 掃 描 訊 號
T Frame 1 1234
T
垂
直+D
影 像
0
訊號-D
Frame 2
Frame 1
N 1 2 3 Column 1 1 2 3 4
N
F+D
ON F D2 N 1D2
-D -(F-D) F+D
+D -D
-(F+D) IAPT Addressing
另一一 一半條 半的水 的掃平
時描掃 間時描 是間線
採是的 用採掃 負用描 極正週
性極期 的性分 驅的割
動驅成 訊動兩 號訊部 。號份
,,
Horizontal Crosstalk of STN LCDs
A
B
A
B
(a) 垂直驅動訊號
液晶的分類
液晶 分子排列狀態
層狀液晶 Smectic
線狀液晶 Nematic
膽固醇狀液晶 Cholesteric
液晶 形成方式
熱致性液晶
溶致性液晶
Thermotropic Lyotropic
液晶的電光特性
• 異向性 (Anisotropic)
– 排列因數 ( S n ) – 折射率 ( n ne no )
PWM液晶畫素波形 +D
-D PHM 液晶畫素波形
液晶的頻率響應
1.03
正 規
1.02
化 處
1.01
理 V50
1.00
0.99
0.98
0.97
0.96 10
100
1k
頻率
10k
100k
Vertical Crosstalk of STN LCDs
正極性驅動波形
負極性驅動波形
Frame N
1H
F
Frame N+1
•主動矩陣驅動法 (Active Matrix Addressing)
•兩端元件 (MIM, Diode..) •三端元件 (A-Si:H TFT, Ploy-Si TFT ..)
•Plasma Addressing (PALC) •熱掃描驅動法 (雷射掃描) •光掃描驅動法 (電子速掃描
LCDs 靜態驅動法
HL H
H
............................ ............................
IAPT 驅動 IC
............................
2D 0 2D
垂直訊號電極
2D
灰階顯示 ─ FRC
•Frame Rate Control, FRC :
• IAPT Addressing
– Offset +D for Positive Polarity – Offset +F for Negative Polarity – Voltage Range of Segment Driver : F+D – Voltage Range of Common Driver : F+D
240 D 1.48V
F 22.20V
VLCD N 1 D 23.68V
Von ON 2.14V SR 1.07
APT : Segment Driver : 2.96V, Common Driver : 44.40V
IAPT : Segment & Common Drivers : 23.68V