二次根式经典练习题汇总

合集下载

二次根式练习10套(附答案)

二次根式练习10套(附答案)

2 | 1 的结果是(
a
0
b
5
14、下列算式中正确的是( A、 m C、 7
) B、 5 D、
(2)若 a b 3 ,则
ab ≤
3 n 3 mn 3 x 3 x 10
a 3 b 8 ab
1 3 5 52 5 2 2
(3)若 a b 6 ,则
3 2
ab ≤ 3 ab ≤________.
3
) D、
2 3
B、 D、
5 6 5 6
B、–5
5
C、 3.14
10 3

2、 ( 3) 的算术平方根是( A 、9 B、–3
3 3 3 的结果(保留 4 个有效数字)是(
B、3.174 C、3.175 D、3.1743
3、下列叙述正确的是(
A、0.4 的平方根是 0.2 C、 6 是 36 的算术平方根 4、下列等式中,错误的是( A、 )
x 4 ( y 6) 2 0 ,则 x y ________。
5 a 是一个数 m 的平方根,则 a ____, m ______ .
数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( A .1 个 19、 x 是 ( A. 3 B. 2 个
10、如果 2a 1 和
0
C
BD=2, 求 CD。
A B
D 第 30 题图
31、在△ABC 中,AB=15,AC=13,BC 边上高 AD=12,试求△ABC 周长。
3
二次根式练习 01
答案: 一、填空题:
2 ,0.6;3.±2,2;4.0 和 1,0 和±1; 3 120 5.±16,-4;6.5 或 7 ;7.24;8.直角;9.-2;10.-4,81;11. ; 17

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题(含答案和解析)

初中数学二次根式精选试题一.选择题1. (2018·湖南怀化·4分)使有意义的x的取值范围是()A.x≤3B.x<3 C.x≥3D.x>3【分析】先根据二次根式有意义的条件列出关于x的不等式.求出x 的取值范围即可.【解答】解:∵式子有意义.∴x﹣3≥0.解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件.熟知二次根式具有非负性是解答此题的关键.2.(2018•江苏宿迁•3分)若实数m、n满足.且m、n恰好是等腰△ABC的两条边的边长.则△ABC的周长是()A. 12B. 10C. 8D. 6【答案】B【分析】根据绝对值和二次根式的非负性得m、n的值.再分情况讨论:①若腰为2.底为4.由三角形两边之和大于第三边.舍去;②若腰为4.底为2.再由三角形周长公式计算即可.【详解】由题意得:m-2=0.n-4=0.∴m=2.n=4.又∵m、n恰好是等腰△ABC的两条边的边长.①若腰为2.底为4.此时不能构成三角形.舍去.②若腰为4.底为2.则周长为:4+4+2=10.故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质.根据非负数的性质求出m、n的值是解题的关键.3.(2018•江苏无锡•3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3【分析】根据二次根式的性质把各个二次根式化简.判断即可.【解答】解:()2=3.A正确;=3.B错误;==3.C错误;(﹣)2=3.D错误;故选:A.【点评】本题考查的是二次根式的化简.掌握二次根式的性质:=|a|是解题的关键.4.(2018•江苏苏州•3分)若在实数范围内有意义.则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式.解不等式.把解集在数轴上表示即可.【解答】解:由题意得x+2≥0.解得x≥﹣2.故选:D.【点评】本题考查的是二次根式有意义的条件.掌握二次根式中的被开方数是非负数是解题的关键.5.(2018•山东聊城市•3分)下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A.3与﹣2不是同类二次根式.不能合并.此选项错误;B.•(÷)=•==.此选项正确;C.(﹣)÷=(5﹣)÷=5﹣.此选项错误;D.﹣3=﹣2=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式混合运算顺序和运算法则.6.(2018•上海•4分)下列计算﹣的结果是()A.4 B.3 C.2D.【分析】先化简.再合并同类项即可求解.【解答】解:﹣=3﹣=2.故选:C.【点评】考查了二次根式的加减法.关键是熟练掌握二次根式的加减法法则:二次根式相加减.先把各个二次根式化成最简二次根式.再把被开方数相同的二次根式进行合并.合并方法为系数相加减.根式不变.7. (2018•达州•3分)二次根式中的x的取值范围是()A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2【分析】根据被开方数是非负数.可得答案.【解答】解:由题意.得2x+4≥0.解得x≥﹣2.故选:D.【点评】本题考查了二次根式有意义的条件.利用被开方数是非负数得出不等式是解题关键.8. (2018•杭州•3分)下列计算正确的是()A.B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB.∵.因此A符合题意;B不符合题意;CD.∵.因此C.D不符合题意;故答案为:A【分析】根据二次根式的性质.对各选项逐一判断即可。

二次根式测试题及答案

二次根式测试题及答案

二次根式测试题及答案一、选择题(每题 3 分,共 30 分)1、下列式子一定是二次根式的是()A √xB √x²+1C √x² 1D √1 / x答案:B解析:二次根式的被开方数必须是非负数。

选项 A 中,当 x < 0 时,√x 无意义;选项 C 中,当-1 < x < 1 时,x² 1 < 0 ,√x² 1 无意义;选项 D 中,当 x < 0 时,√1 / x 无意义。

而对于选项 B,因为x² ≥ 0 ,所以 x²+1 ≥ 1 ,√x² + 1 一定有意义。

2、若√(2 a)²= a 2 ,则 a 的取值范围是()A a < 2B a >2C a ≤ 2D a ≥ 2答案:D解析:因为√(2 a)²=|2 a| ,而√(2 a)²= a 2 ,所以|2 a|= a 2 ,即2 a ≤ 0 ,解得a ≥ 2 。

3、下列计算正确的是()A √2 +√3 =√5B 2 +√2 =2√2C 3√2 √2 =3D √2 × √3 =√6答案:D解析:选项 A,√2 与√3 不是同类二次根式,不能合并;选项 B,2 与√2 不是同类二次根式,不能合并;选项 C,3√2 √2 =2√2 。

4、化简√( 5)²的结果是()A 5B 5C ± 5D 25答案:A解析:√( 5)²=| 5| = 5 。

5、若√x 1 +√1 x = 0 ,则 x 的值为()A 0B 1C 1D 2答案:B解析:因为二次根式有意义的条件是被开方数为非负数,所以 x 1 ≥ 0 且1 x ≥ 0 ,解得 x = 1 。

6、下列二次根式中,最简二次根式是()A √1 /2B √02C √2D √20答案:C解析:选项 A,√1 / 2 =√2 / 2 ;选项 B,√02 =√1 / 5 =√5 / 5 ;选项 D,√20 =2√5 。

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题1.如果二次根式有意义,那么x应该满足的条件是.2.若两个最简二次根式与是同类二次根式,则a =.3.已知,则x2﹣4x+1的值为.4.关于x的代数式有意义,满足条件的所有整数x的和是9,则a的取值范围.5.已知,.则(1)x2+y2=.(2)(x﹣y)2﹣xy=.6.若x=1+,则x3﹣3x2+2x﹣=.7.实数a、b满足,则a2+b2的最大值为.8.已知x=,y=,且19x2+123xy+19y2=1985,则正整数n的值为.9.计算:(1)82014×(﹣0.125)2015;(2)﹣﹣(π+2020)0.10.计算题:(1)(3+)(3﹣)﹣(﹣1)2;(2)(2﹣3).11.一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.设a+b(其中a、b、m、n均为正整数),则有a+b =m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样可以把部分a+b的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=.(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)化简参考答案与试题解析1.如果二次根式有意义,那么x应该满足的条件是x≤,且x.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x+1≠0,且2﹣3x≥0,解得x≤,且x.故答案为:x≤,且x.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.若两个最简二次根式与是同类二次根式,则a=2.【分析】根据一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式列出方程求a即可.【解答】解:∵3a﹣1=11﹣3a,∴6a=12,∴a=2.故答案为:2.【点评】本题考查了同类二次根式,最简二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.3.已知,则x2﹣4x+1的值为2.【分析】先根据分母有理化求出x值,然后利用完全平方公式对代数式变形,再代入数据求解即可.【解答】解:===,x2﹣4x+1=x2﹣4x+4﹣4+1=(x﹣2)2﹣3,把代入上式中,原式===2,故答案为:2.【点评】本题主要考查了代数式求值,二次根式的运算,分母有理化等知识点,解题的关键在于能够利用完全平方公式对代数式进行变形求解.4.关于x的代数式有意义,满足条件的所有整数x的和是9,则a的取值范围﹣1<a≤0.【分析】根据二次根式的被开方数是非负数求出x的取值范围,根据满足条件的所有整数x的和是9,得到x=4,3,2,从而1<a+2≤2,从而得出答案.【解答】解:∵4﹣x≥0,x﹣a﹣2≥0,∴a+2≤x≤4,∵满足条件的所有整数x的和是9,∴x=4,3,2,∴1<a+2≤2,∴﹣1<a≤0.故答案为:﹣1<a≤0.【点评】本题考查了二次根式有意义的条件,根据二次根式的被开方数是非负数求出x 的取值范围是解题的关键.5.已知,.则(1)x2+y2=14.(2)(x﹣y)2﹣xy=11.【分析】(1)先分母有理化求出x,再去求x﹣y和xy的值,根据完全平方公式进行变形,最后代入求出答案即可;(2)把x﹣y=﹣2,xy=1代入,即可求出答案.【解答】解:(1)∵x===2﹣,y=2+,∴x﹣y=(2﹣)﹣(2+)=﹣2,xy=(2﹣)×(2+)=4﹣3=1,∴x2+y2=(x﹣y)2+2xy=(﹣2)2+2×1=12+2=14,故答案为:14;(2)由(1)知:x﹣y=﹣2,xy=1,所以(x﹣y)2﹣xy=(﹣2)2﹣1=12﹣1=11,故答案为:11.【点评】本题考查了二次根式的化简求值,分母有理化和完全平方公式等知识点,能求出x﹣y和xy的值是解此题的关键,注意:(x﹣y)2=x2﹣2xy+y2.6.若x=1+,则x3﹣3x2+2x﹣=5.【分析】先将原式进行分组,然后进行因式分解,代入x的值,再根据二次根式混合运算顺序(先算乘方,然后算乘法,最后算加减)及计算法则进行计算.【解答】解:原式=(x3﹣3x2)+2x﹣=x2(x﹣3)+2x﹣,当x=1+时,原式=(1+)2(1+﹣3)+2(1+)﹣=(1+2+7)(﹣2)+2+2﹣=(8+2)(﹣2)+2+2﹣=8﹣16+14﹣4+2+2﹣=5.故答案为:5.【点评】本题考查二次根式的混合运算,理解二次根式的性质,掌握完全平方公式(a+b)2=a2+2ab+b2的结构是解题关键.7.实数a、b满足,则a2+b2的最大值为52.【分析】根据=|a|化简变形得:|a﹣2|+|a﹣6|+|b+4|+|b﹣2|=10,a到2和6的距离之和=4,b到﹣4和2的距离之和是6,得到2≤a≤6,﹣4≤b≤2,根据|a|最大为6,|b|最大为4即可得出答案.【解答】解:原式变形为++|b+4|+|b﹣2|=10,∴|a﹣2|+|a﹣6|+|b+4|+|b﹣2|=10,∴a到2和6的距离之和是4,b到﹣4和2的距离之和是6,∴2≤a≤6,﹣4≤b≤2,∴|a|最大为6,|b|最大为4,∴a2+b2=62+(﹣4)2=36+16=52.故答案为:52.【点评】本题考查了二次根式的性质与化简,根据绝对值的性质得到2≤a≤6,﹣4≤b ≤2是解题的关键.8.已知x=,y=,且19x2+123xy+19y2=1985,则正整数n的值为2.【分析】先将x,y分母有理化化简为含n的代数式,可得x+y=4n+2,xy=1,然后将xy =1代入19x2+123xy+19y2=1985,结果化简为x2+y2=98,进而求解.【解答】解:∵x===()2=2n+1﹣2,y=,=()2=2n+1+2,∴x+y=4n+2,xy=1,将xy=1代入19x2+123xy+19y2=1985得19x2+123+19y2=1985,化简得x2+y2=98,(x+y)2=x2+y2+2xy=98+2=100,∴x+y=10.∴4n+2=10,解得n=2.故答案为:2.【点评】本题考查二次根式的分母有理化,解题关键是利用整体思想求解.9.计算:(1)82014×(﹣0.125)2015;(2)﹣﹣(π+2020)0.【分析】(1)原式逆用积的乘方运算法则计算即可求出值;(2)原式利用二次根式性质,分母有理化,以及零指数幂法则计算即可求出值.【解答】解:(1)原式=(﹣8×0.125)2014×(﹣0.125)=(﹣1)2014×(﹣0.125)=﹣0.125;(2)原式=2﹣﹣1=﹣1.【点评】此题考查了分母有理化,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则是解本题的关键.10.计算题:(1)(3+)(3﹣)﹣(﹣1)2;(2)(2﹣3).【分析】(1)利用平方差公式及完全平方公式进行求解较简便;(2)先化简,再算括号里的运算最后算除法即可.【解答】解:(1)(3+)(3﹣)﹣(﹣1)2=9﹣5﹣(3﹣2+1)=9﹣5﹣3+2﹣1=2;(2)(2﹣3)=(8)=﹣=.【点评】本题主要考查二次根式的混合运算,解答的关键是对相应的运算法则的掌握与运用.11.一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.设a+b(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样可以把部分a+b的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn.(2)利用所探索的结论,找一组正整数a、b、m、n填空:21+4=(1+ 2)2;(3)化简【分析】(1)将(m+n)2用完全平方公式展开,与原等式左边比较,即可得答案;(2)设a+b=,则=m2+2mn+5n2,比较完全平方式右边的值与a+b,可将a和b用m和n表示出来,再给m和n取特殊值,即可得答案;(3)利用题中描述的方法,将要化简的双重根号,先化为一重根号,再利用分母有理化化简,再合并同类二次根式和同类项即可.【解答】解:(1)∵,=m2+2mn+3n2∴a=m2+3n2,b=2mn故答案为:m2+3n2,2mn.(2)设a+b=则=m2+2mn+5n2∴a=m2+5n2,b=2mn若令m=1,n=2,则a=21,b=4故答案为:21,4,1,2.(3)=﹣=﹣=﹣=﹣=++﹣=+【点评】本题考查了利用分母有理化和利用完全平方公式对二次根式化简,以及对这种方法的拓展应用,本题具有一定的计算难度.。

(完整版)二次根式训练经典题目汇总

(完整版)二次根式训练经典题目汇总

二次根式的混合运算二次根式的运算知识点及经典试题知识点一:二次根式的乘法法则:,即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数)(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能写成的形式,则应化简,如.知识点二、积的算术平方根的性质,即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:21.在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.(3)作用:积的算术平方根的性质对二次根式化简(4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式②利用积的算术平方根的性质③利用(一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式移到根号外④被开方数中每个因数指数都要小雨2(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简知识点三、二次根式的除法法则:,即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(3)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,其中,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题.(2)步骤①利用商的算术平方根的性质②分别对a,b利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化(3)被开方数是分数或分式可用商的算术平方根的性质对二次根式化简知识点五:最简二次根式1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式.要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的代分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数;(2)被开方数是多项式的要进行因式分解;(3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;(5)化去分母中的根号;(6)约分.3.把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法.实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式;(3)不是同类二次根式,不能合并知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;(3)合并同类二次根式.知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次式之和或差,或是有理式.规律方法指导二次根式的运算,主要研究二次根式的乘除和加减.(1)二次根式的乘除,只需将被开方数进行乘除,其依据是:;;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.经典例题透析类型一、二次根式的乘除运算1、计算(1)×;(2)×;(3)×;(4)×.解:(1)×=;(2)×==;(3)×==9;(4)×==.2、计算:(1);(2);(3);(4).思路点拨:直接利用便可直接得出答案.解:(1)===2;(2)==×2=2;(3)===2;(4)===2.3、化简(1);(2);(3);(4);(5).思路点拨:利用直接化简即可.解:(1)=×=3×4=12;(2)=×=4×9=36;(3)=×=9×10=90;(4)=×=××=3xy (5)==×=3.举一反三【变式1】判断下列各式是否正确,不正确的请予以改正:(1);(2)×=4××=4×=4=8.解:(1)不正确.改正:==×=2×3=6;(2)不正确改正:×=×====4.4、化简:(1);(2);(3);(4).思路点拨:直接利用就可以达到化简之目的.解:(1)=(2)=(3)=;(4)=.举一反三【变式1】已知,且x为偶数,求(1+x)的值.思路点拨:式子=,只有a≥0,b>0时才能成立.因此得到9-x≥0且x-6>0,即6<x≤9,又因为x为偶数,所以x=8.解:由题意得,即∴6<x≤9,∵x为偶数,∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴当x=8时,原式的值==6.5、计算(1)·(-)÷(m>0,n>0);(2)-3÷()×(a>0).解:(1)原式=-÷=-==-;(2)原式=-2=-2=- a.类型二、最简二次根式的判别6、下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).思路点拨:判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是最简二次根式.解:和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.总结升华:对于最简二次根式的判断,一定要把握其实质,既要注意其中的“似是而非”,还要注意其中的“似非而是”,特别象这样的式子,带有很大的隐蔽性,更应格外小心.7、把下列各式化成最简二次根式.(1);(2);(3);(4);(5)思路点拨:把被开方数分解因数或分解因式,再利用积的算术平方根的性质及进行化简.解:(1) ;(2) ;(3) ;(4);(5) .类型三、同类二次根式8、如果两个最简二次根式和是同类二次根式,那么a、b的值是( )A.a=2,b=1B.a=1,b=2C.a=1,b=-1D.a=1,b=1思路点拨:根据同类二次根式的识别方法,在最简二次根式的前提下,被开方数相同.解:根据题意,得解之,得,故选D.总结升华:同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式1】下列根式中,能够与合并的是( ) A. B. C.D.思路点拨:首先要把不是最简二次根式的化成最简二次根式,然后比较它们的被开方数是否相同,如果相同,就能进行合并,反之,则不能合并.解:合并,故选B.总结升华:同类二次根式的判断,关键是能够熟练准确地化二次根式为最简二次根式.【变式2】若最简根式与根式是同类二次根式,求a、b的值.思路点拨:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简成|b|·,才由同类二次根式的定义得3a-b=•2,2a-b+6=4a+3b.解:首先把根式化为最简二次根式:==|b|·由题意得,∴,∴a=1,b=1.类型四、二次根式的加减运算9、计算(1)+(2)-思路点拨:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.解:(1)+=2+3=(2+3)=5(2)-=4-8=(4-8)=-4总结升华:一定要注意二次根式的加减要做到先化简,再合并.举一反三【变式1】计算(1)3-9+3;(2)(+)+(-);(3);(4).解:(1)3-9+3=12-3+6=(12-3+6)=15;(2)(+)+(-)=++-=4+2+2-=6+;(3)(4)【变式2】已知≈2.236,求(-)-(+)的值.(结果精确到0.01)解:原式=4---=≈×2.236≈0.45.类型五、二次根式的混合运算10、计算:(1)(+)×(2)(4-3)÷2.思路点拨:二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2;(2)(4-3)÷2=4÷2-3÷2=2-.11、计算(1)(+6)(3-);(2)(+)(-).(3)()()200020013232______________-+=思路点拨:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立. 解:(1)(+6)(3-)=3-()2+18-6=13-3;(2)(+)(-)=()2-()2=10-7=3.(3)略类型六、化简求值12、已知4x 2+y 2-4x-6y+10=0,求(+y 2)-(x 2-5x )的值.思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值. 解:4x 2+y 2-4x-6y+10=0 4x 2-4x+1+y 2-6y+9=0 ∴(2x-1)2+(y-3)2=0 ∴x=,y=3原式=+y 2-x 2+5x=2x +-x +5=x+6当x=,y=3时,原式=×+6=+3.举一反三【变式1】先化简,再求值.(6x +)-(4y +),其中x=,y=27. 解:原式=6+3-(4+6)=(6+3-4-6)=-,当x=,y=27时,原式=-=-.【变式2】.已知2+1,求(22121x x x x x x +---+)÷1x 的值.类型七、二次根式的应用与探究13、一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?解:设底面正方形铁桶的底面边长为x,则x2×10=30×30×20,x2=30×30×2,x=×=30.答:铁桶的底面边长是30厘米.14、如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)15、探究过程:观察下列各式及其验证过程.(1)2=验证:2=×====(2)3=验证:3=×====同理可得:45,……通过上述探究你能猜测出: a =_______(a >0),并验证你的结论.解:a =验证:a ====.总结升华:解答此类问题的特点是根据题目给出的条件,寻找内在联系和一般规律,然后猜想所求问题的结果,有利于提高综合分析能力. 【变式1】对于题目“化简求值:1a 2212a a+-,其中a=15”,甲、乙两个学生的解答不同. 甲的解答是:1a 2212a a +-=1a 21()a a -1a +1a -a=2495a a -= 乙的解答是:1a 2212a a +-=1a 21()a a-1a +a -1a =a=15 谁的解答是错误的?为什么?跟踪练习21.1 二次根式:1. 使式子4x - 。

二次根式 练习题及答案

二次根式 练习题及答案

二次根式练习题一.填空题(共15小题)1.使代数式有意义的x的取值范围是.2.若代数式+有意义,则实数x的取值范围是.3.计算﹣的结果为.4.实数a,b在数轴上的位置如图所示,且|a|>|b|,则式子化简的结果为.5.已知y=++2022,则x2+y﹣3的值为.6.若实数x,y满足+(y﹣8)2=0,则=.7.如图,如果正方形ABCD的面积为12,正方形BEFG的面积为6,则△ADF的面积等于.8.化简:=.9.当x=﹣1时,代数式x2+2x+2022的值是.10.已知x=+3,则代数式x3﹣x2﹣26x+5的值为.11.若m=,则m5﹣2m4﹣2015m3=.12.若a=+3,b=3﹣,则的值为.13.若a=1+,b=1﹣,则代数式a2﹣ab+b2的值为.14.若m满足关系+=+,则m的值为.15.若a+6,当a,m,n均为正整数时,则的值为.16.计算:(1)(﹣)﹣2﹣(﹣1)2023+(π﹣2023)0;(2)[a3•a5+(3a4)2]÷a2;(3)(﹣)×;(4)2(﹣)﹣(2﹣4).17.计算下列各题(1);(2);(3);(4).18.计算:.参考答案与试题解析1.使代数式有意义的x的取值范围是x≥﹣2且x≠﹣1.【分析】根据二次根式的被开方数是非负数,分式的分母不等于0即可得出答案.【解答】解:∵x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1.故答案为:x≥﹣2且x≠﹣1.【点评】本题考查二次根式有意义的条件,分式有意义的条件,掌握二次根式的被开方数是非负数,分式的分母不等于0是解题的关键.2.若代数式+有意义,则实数x的取值范围是 3.5≤x≤5.【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:根据题意得:,解得:3.5≤x≤5.故答案为:3.5≤x≤5.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.3.计算﹣的结果为﹣.【分析】先化简每一个二次根式,然后再进行计算即可解答.【解答】解:﹣=﹣2=﹣,故答案为:﹣.【点评】本题考查了二次根式的混合运算,分母有理化,准确熟练地进行计算是解题的关键.4.实数a,b在数轴上的位置如图所示,且|a|>|b|,则式子化简的结果为2b﹣a.【分析】根据题意可得:|a|>|b|,a<0<b,从而可得a+b<0,a﹣b<0,然后利用二次根式的性质,绝对值的意义,进行化简计算,即可解答.【解答】解:∵|a|>|b|,a<0<b,∴a+b<0,a﹣b<0,∴=﹣a+(a+b)+(b﹣a)=﹣a+a+b+b﹣a=2b﹣a,故答案为:2b﹣a.【点评】本题考查了二次根式的性质与化简,实数与数轴,整式的加减,准确熟练地进行计算是解题的关键.5.已知y=++2022,则x2+y﹣3的值为2023.【分析】根据二次根式有意义的条件得到x2=4,进而求出y的值,代入代数式求值即可.【解答】解:根据题意得:x2﹣4≥0,4﹣x2≥0,∴x2=4,∴y=2022,∴原式=4+2022﹣3=2023.故答案为:2023.【点评】本题考查二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.6.若实数x,y满足+(y﹣8)2=0,则=6.【分析】先根据算术平方根和偶次方的非负性可得,x﹣32=0,y﹣8=0,从而求出x,y 的值,然后代入式子中,进行计算即可解答.【解答】解:∵+(y﹣8)2=0,∴x﹣32=0,y﹣8=0,∴x=32,y=8,∴=+=4+2=6,故答案为:6.【点评】本题考查了二次根式的化简求值,准确熟练地进行计算是解题的关键.7.如图,如果正方形ABCD的面积为12,正方形BEFG的面积为6,则△ADF的面积等于6﹣3.【分析】先求出正方形的边长,根据S△ADF=AD•AG计算即可.【解答】解:∵正方形ABCD的面积为12,正方形BEFG的面积为6,∴AB=AD=2,BG=,∴S△ADF=AD•AG=×2×(2﹣)=6﹣3.故答案为:6﹣3.【点评】本题考查二次根式的应用,正方形的性质,三角形的面积公式等知识,解题的关键是灵活掌握三角形的面积公式,属于中考常考题型.8.化简:=2x﹣3.【分析】先根据题意得出x的取值范围,再进行进行乘方和开方的运算.【解答】解:∵x﹣2>0,∴x>2,1﹣x<0,原式化简为:x﹣2+x﹣1=2x﹣3,故答案为:2x﹣3.【点评】本题考查了二次根式的基本运算,解题关键在于通过x的取值正确去括号进行计算.9.当x=﹣1时,代数式x2+2x+2022的值是2034.【分析】将已知变形,得到x2+2x=12,即可得到答案.【解答】解:∵x=﹣1,∴x+1=,∴(x+1)2=13,即x2+2x+1=13,∴x2+2x=12,∴x2+2x+2022=2034;故答案为:2034.【点评】本题考查与二次根式相关的代数式求值,解题的关键是将已知变形,得到x2+2x =12.10.已知x=+3,则代数式x3﹣x2﹣26x+5的值为﹣15.【分析】把所求的式子变形为(x﹣1)(x2﹣26)﹣21,然后再把x的值代入进行计算即可解答.【解答】解:∵x=+3,∴x3﹣x2﹣26x+5=x3﹣x2﹣26x+26﹣26+5=x2(x﹣1)﹣26(x﹣1)﹣21=(x﹣1)(x2﹣26)﹣21=(+3﹣1)[(+3)2﹣26]﹣21=(+2)(6﹣12)﹣21=6(+2)(﹣2)﹣21=6×1﹣21=﹣15,故答案为:﹣15.【点评】本题考查了二次根式的化简求值,把所求的式子变形为(x﹣1)(x2﹣26)﹣21是解题的关键.11.若m=,则m5﹣2m4﹣2015m3=0.【分析】将m化简可得m=+1,代入到原式=m3[(m﹣1)2﹣2016]即可得.【解答】解:∵m====+1,∴原式=m3(m2﹣2m﹣2015)=m3[(m﹣1)2﹣2016]=m3[(+1﹣1)2﹣2016]=0,故答案为:0.【点评】本题主要考查二次根式的化简和整式的运算,熟练掌握二次根式的性质和整式运算的法则是解题的关键.12.若a=+3,b=3﹣,则的值为5.【分析】先求出a+b=6,ab=2,再将所求式子变形后整体代入.【解答】解:∵a=+3,b=3﹣,∴a+b=6,ab=2,∴====5,故答案为:5.【点评】本题考查二次根式变形求值,解题的关键是观察已知和所求式子的特点,求出a+b=6,ab=2,再整体代入计算.13.若a=1+,b=1﹣,则代数式a2﹣ab+b2的值为1.【分析】根据完全平方公式把所求的式子变形为(a+b)2﹣3ab,然后进行计算即可解答.【解答】解:∵a=1+,b=1﹣,∴a2﹣ab+b2=(a+b)2﹣3ab=(1++1﹣)2﹣3×(1+)×(1﹣)=22﹣3×(﹣1)=4+3=7,故答案为:7.【点评】本题考查了二次根式的化简求值,熟练掌握完全平方公式是解题的关键.14.若m满足关系+=+,则m的值为21.【分析】由二次根式的定义可得x+y=19,则有+=0,从而可求解.【解答】解:由题意得:x﹣19+y≥0,19﹣x﹣y≥0,则x+y≥19,x+y≤19,∴x+y=19,∴+=0,则3x+5y﹣2﹣m=0①,2x+3y﹣m=0②,①﹣②得:x+2y﹣2=0,解得:y=﹣17,则x﹣17=19,解得:x=36,∴2×36+3×(﹣17)﹣m=0,解得:m=21.故答案为:21.【点评】本题主要考查二次根式的加减法,解答的关键是由二次根式的定义得出x+y=19.15.若a+6,当a,m,n均为正整数时,则的值为2或2.【分析】通过完全平方公式去掉括号求出a=m2+3n2,2mn=6,根据a,m,n均为整数,分两种情况求出m,n,进一步求出a,从而求解.【解答】解:∵a+6,∴a+6=m2+2nm+3n2(a,m,n均为整数),∴a=m2+3n2,2mn=6,∴mn=3,①m=1,n=3,a=28,②m=3,n=1,a=12,故的值为2或2.【点评】本题主要考查了二次根式的混合运算,完全平方式,熟练掌握完全平方式的应用是解题关键.二.解答题(共3小题)16.计算:(1)(﹣)﹣2﹣(﹣1)2023+(π﹣2023)0;(2)[a3•a5+(3a4)2]÷a2;(3)(﹣)×;(4)2(﹣)﹣(2﹣4).【分析】(1)先根据负整数指数幂,零指数幂,有理数的乘方进行计算,再算加减即可;(2)先算括号内的乘方和乘方,再合并同类项,最后算除法即可;(3)先根据二次根式的性质进行计算,再根据二次根式的乘法法则进行计算即可;(4)先根据二次根式的乘法法则进行计算,再根据二次根式的加减法法则进行计算即可.【解答】解:(1)(﹣)﹣2﹣(﹣1)2023+(π﹣2023)0=4﹣(﹣1)+1=4+1+1=6;(2)[a3•a5+(3a4)2]÷a2=(a8+9a8)÷a2=10a8÷a2=10a6;(3)(﹣)×=(3﹣)×2=2×2=4×6=24;(4)2(﹣)﹣(2﹣4)=2﹣3﹣+2=4﹣4.【点评】本题考查了整式的混合运算,零指数幂,负整数指数幂,二次根式的混合运算等知识点,能正确根据整式的运算法则和二次根式的运算法则进行化简是解此题的关键,注意运算顺序.17.计算下列各题(1);(2);(3);(4).【分析】(1)类比多项式乘多项式的计算方法计算;(2)类比多项式除以单项式的方法计算;(3)利用平方差公式计算;(4)利用完全平方公式计算.【解答】解:(1)()×=4;(2)(4)÷2=2;(3)()()=5﹣3=2;(4)=18+6+5=23.【点评】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.18.计算:.【分析】先根据二次根式的性质,二次根式的乘法法则和完全平方公式进行计算,再根据二次根式的加减法则进行计算即可.【解答】解:=3﹣2+1﹣2﹣=3﹣2+1﹣2﹣4=﹣4.【点评】本题考查了二次根式的混合运算,能正确根据二次根式的运算法则进行计算是解此题的关键.。

二次根式计算题 100 道

二次根式计算题 100 道

二次根式计算题 100 道一、化简类1、√82、√183、√274、√325、√506、√727、√988、√1289、√16210、√200二、计算类11、√2 +√812、√3 √1213、2√5 +3√2014、4√12 9√2715、√27 √7516、√48 +√1217、√18 √32 +√218、√24 √6 +3√819、2√12 6√1/3 +√4820、3√45 √125 +5√20三、乘法运算类21、√2 × √822、√3 × √1223、√5 × √2024、√6 × √3025、2√3 × 3√226、3√5 × 2√1027、4√2 × 5√828、5√6 × 6√329、√18 × √2430、√27 × √32四、除法运算类31、√8 ÷ √232、√18 ÷ √333、√24 ÷ √634、√48 ÷ √1235、√50 ÷ √536、√72 ÷ √837、√98 ÷ √738、√128 ÷ √1639、√162 ÷ √1840、√200 ÷ √20五、混合运算类41、(√5 +√3)(√5 √3)42、(√2 + 3)(√2 1)43、(2√3 1)(2√3 + 1)44、(3√2 + 2)(3√2 2)45、(√5 2)²46、(√3 + 1)²47、(2√5 3)²48、(4√2 + 1)²49、√(2 √3)²50、√(3 √5)²六、分母有理化类51、 1/(√2 1)52、 1/(√3 √2)53、 2/(√5 +√3)54、 3/(√6 √5)55、 4/(√7 √6)56、 5/(√8 √7)57、 6/(√9 √8)58、 7/(√10 √9)59、 8/(√11 √10)60、 9/(√12 √11)七、含参数类61、已知 a =√2 + 1,b =√2 1,求 a² b²62、若 x = 2 +√3,y =2 √3,求 x²+ y²63、设 m =√5 + 2,n =√5 2,计算 m² n²64、已知 p = 3 +√2,q =3 √2,求 p² 2pq + q²65、当 a =√7 + 2,b =√7 2 时,求(a + b)²(a b)²66、若 x =√11 + 3,y =√11 3,计算 xy67、给定 m =2√3 + 1,n =2√3 1,求 m²n + mn²68、设 a = 4 +√15,b =4 √15,求 a²b ab²69、已知 c = 5 +2√6,d =5 2√6,求 c²/d + d²/c70、当 e =3√2 + 1,f =3√2 1 时,求 ef/(e + f)八、比较大小类71、√11 与√1372、√15 与 473、2√3 与3√274、√5 + 1 与 375、2√7 3 与 276、√18 √12 与√10 √877、√20 +√5 与5√278、3√11 2√7 与4√3 √1979、√17 √13 与√11 √780、5√2 3√3 与4√3 2√2九、求值类81、已知 x =√3 + 1,求 x² 2x + 2 的值82、若 y =√5 2,求 y²+ 4y + 4 的值83、当 z =2√2 1 时,求 z²+ 2z + 1 的值84、已知 a =√7 + 3,求 a² 6a 7 的值85、若 b =√10 1,求 b² 2b 1 的值86、当 c =3√3 + 2 时,求 c² 4c 5 的值87、已知 d =4√2 3,求 d²+ 6d + 5 的值88、若 e =√13 2,求 e²+ 4e + 3 的值89、当 f =5√2 + 1 时,求 f² 10f + 26 的值90、已知 g =6√3 5,求 g² 12g + 40 的值十、综合应用类91、一个直角三角形的两条直角边分别为√12 厘米和√27 厘米,求这个直角三角形的面积。

(完整版)二次根式专题练习(含答案).doc

(完整版)二次根式专题练习(含答案).doc

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x 的取值范围是()A .x<1 B.x≤1 C .x> 1D. x≥ 12.若 1<x<2,则的值为() A .2x﹣4 B.﹣ 2 C .4﹣2x D.2 3.下列计算正确的是() A .=2B.=C.=x D.=x 4.实数 a , b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B.2a ﹣b C .﹣ b D.b5.化简+ ﹣的结果为() A . 0 B. 2 C .﹣ 2 D. 26.已知 x<1,则化简的结果是() A . x﹣ 1 B.x+1 C .﹣ x﹣1D . 1﹣ x7.下列式子运算正确的是() A .B. C .D.8.若,则 x3﹣ 3x2+3x 的值等于()A .B. C .D.二.填空题9.要使代数式有意义,则 x 的取值范围是.10.在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为.11.计算:=.12 .化简:=.13.计算:(+)=.14.观察下列等式:第 1 个等式: a 1==﹣1,第 2 个等式: a 2==﹣,第 3 个等式: a 3==2,第 4 个等式: a 4==2,按上述律,回答以下:( 1)写出第 n 个等式: a n=;( 2) a 1+a 2+a 3+⋯+a n =.15.已知 a 、b 有理数,m 、n 分表示16.已知: a <0,化17.,的整数部分和小数部分,且 amn+bn 2=1 , 2a+b=.=.,,⋯,., S=(用含n的代数式表示,其中n 正整数).三.解答18.算或化:(3+);19.算:( 3)(3+)+(2)20.先化,再求:,其中x=3(π 3)0.21.算:(+ )× .22.算:×() +| 2 |+ ()﹣3.23.算:(+1 )(1)+ ()0.24.如,数 a 、b 在数上的位置,化:.25.材料,解答下列.例:当 a >0 ,如 a=6|a|=|6|=6,故此a的是它本身;当a=0 , |a|=0 ,故此 a 的是零;当a <0 ,如 a= 6 |a|=|6|= ( 6),故此 a 的是它的相反数.∴ 合起来一个数的要分三种情况,即,种分析方法渗透了数学的分思想.:( 1)仿照例中的分的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.26.已知: a=,b=.求代数式的.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.28.化求:,其中..参考答案与解析一.选择题1.( 2016? 贵港)式子在实数范围内有意义,则x 的取值范围是()A . x< 1B.x≤1 C . x>1D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得 x 的取值范围.【解答】解:依题意得: x﹣ 1> 0,解得 x>1.故选: C .【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零..2.( 2016? 呼伦贝尔)若 1<x<2,则的值为()A . 2x﹣4 B.﹣ 2 C .4﹣2x D.2【分析】已知 1< x< 2,可判断 x﹣3<0,x﹣ 1>0,根据绝对值,二次根式的性质解答.【解答】解:∵ 1< x< 2,∴x﹣ 3< 0, x﹣ 1>0,原式 =|x ﹣ 3|+=|x ﹣3|+|x﹣1|=3﹣x+x ﹣ 1=2.故选 D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当 a > 0 时,表示a的算术平方根;当 a=0 时,=0 ;当 a 小于 0 时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.( 2016? 南充)下列计算正确的是()A .=2B.= C .=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解: A 、=2,正确;B、=,故此选项错误;C 、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选: A ..【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.( 2016? 潍坊)实数 a ,b 在数轴上对应点的位置如图所示,化简|a|+的结果是()A .﹣ 2a+b B. 2a ﹣ b C .﹣ bD .b【分析】直接利用数轴上 a ,b 的位置,进而得出 a <0,a ﹣b < 0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示: a <0,a ﹣b <0,则 |a|+=﹣a ﹣( a ﹣b )=﹣2a+b .故选: A .【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.( 2016? 营口)化简+﹣的结果为()A . 0 B.2 C .﹣ 2D. 2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3 +﹣2=2,故选: D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知 x<1,则化简的结果是()A . x﹣ 1B.x+1 C .﹣ x﹣1 D.1﹣x【分析】先进行因式分解, x2﹣2x+1= (x﹣1)2,再根据二次根式的性质来解题即可..【解答】解:==|x ﹣1|∵x< 1,∴原式 =﹣( x﹣ 1) =1﹣ x,故选 D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A .B. C .D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解: A 、和不是同类二次根式,不能计算,故 A 错误;B、=2,故B错误;C 、=,故C错误;D、=2 ﹣+2+ =4,故 D 正确.故选: D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A .B. C .D..【分析】把 x 的值代入所求代数式求值即可.也可以由已知得(x﹣1)2 =3,即 x2﹣ 2x﹣2=0,则 x3 ﹣3x2+3x=x (x2﹣ 2x﹣2)﹣( x2﹣2x ﹣2)+3x ﹣ 2=3x﹣ 2,代值即可.【解答】解:∵ x3﹣3x2 +3x=x ( x2﹣3x+3 ),∴当时,原式 =()[﹣3()+3]=3+1 .故选 C .【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.( 2016? 贺州)要使代数式有意义,则x的取值范围是x≥﹣ 1 且 x≠0.【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于 0,列不等式组求解.【解答】解:根据题意,得,解得 x≥﹣ 1 且 x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.( 2016? 乐山)在数轴上表示实数 a 的点如图所示,化简+|a ﹣2| 的结果为3.【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得: a ﹣5<0,a ﹣ 2> 0,则+|a ﹣ 2|=5﹣a+a ﹣2=3..【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.( 2016? 聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12 .故答案为: 12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.( 2016? 威海)化简:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式 =3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.( 2016? 潍坊)计算:(+)=12.【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式 = ?(+3)=×4=12 ..【点】本考了二次根式的算:先把各二次根式化最二次根式,再行二次根式的乘除运算,然后合并同二次根式.在二次根式的混合运算中,如能合目特点,灵活运用二次根式的性,恰当的解途径,往往能事半功倍.14.( 2016? 黄石)察下列等式:第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2,第 4 个等式: a 4= = 2,按上述律,回答以下:( 1)写出第 n 个等式: a n= = ;;( 2) a 1+a 2+a 3+⋯+a n = 1 .【分析】( 1)根据意可知,a 1= = 1,a 2 = = ,a 3= =2,a4==2,⋯由此得出第 n 个等式: a n = = ;( 2)将每一个等式化即可求得答案.【解答】解:(1)∵第 1 个等式: a 1= = 1,第 2 个等式: a 2= = ,第 3 个等式: a 3= =2 ,第 4 个等式: a 4= =2,∴第 n 个等式: a n= = ;(2) a 1+a 2+a 3+⋯+a n=(1)+()+(2)+(2) +⋯ +()故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知 a 、b 为有理数, m 、n 分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分 a ,其小数部分用﹣a表示.再分别代入 amn+bn 2=1 进行计算.【解答】解:因为 2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把 m=2 ,n=3 ﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得( 6a+16b )﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以 6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以 2a+b=3 ﹣0.5=2.5 .故答案为: 2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知: a <0,化简=﹣2.【分析】根据二次根式的性质化简.【解答】解:∵原式 =﹣=﹣又∵二次根式内的数为非负数∴a=0∴a=1 或 1∵a <0∴a= 1∴原式 =0 2= 2.【点】解决本的关是根据二次根式内的数非数得到 a 的.17.,,,⋯,., S=(用含n的代数式表示,其中n 正整数).【分析】由 S n =1++===,求,得出一般律.【解答】解:∵ S n =1++===,∴==1+=1+,∴S=1+1+1++⋯ +1+=n+1==.故答案:.【点】本考了二次根式的化求.关是由S n形,得出一般律,找抵消律.三.解答(共11 小)18.( 2016? 泰州)算或化:( 3+);【解答】解:(1)﹣( 3 + )=﹣( + )=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.( 2016? 盐城)计算:( 3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式 =9 ﹣7+2﹣ 2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.( 2016? 锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x 的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=× 4﹣﹣1,=2 ﹣﹣1,=﹣1.把 x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×合运算顺序,先计算乘法,再计算加法,求出算式(【解答】解:(+)×= ×+×;然后根据二次根式的混+)×的值是多少即可.=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+ ()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8 ,然后化简后合并即可.【解答】解:原式 =﹣+2 +8=﹣3 +2 +8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运.算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1 )(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣ 1+2﹣1,然后进行加减运算.【解答】解:原式 =3﹣ 1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数 a 、b 在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知, a <0,且 b >0,∴a ﹣b <0,∴,=|a| ﹣|b|﹣[﹣(a﹣b)],=(﹣ a )﹣ b+a ﹣b ,=﹣2b .【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定 a 、 b 及 a ﹣ b 的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定 a 、b 及 a ﹣b 的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当 a >0 时,如 a=6 则|a|=|6|=6,故此时a的绝对值是它本身;当a=0 时, |a|=0 ,故此时 a 的绝对值是零;当a <0 时,如 a= ﹣ 6 则|a|=| ﹣ 6|= ﹣(﹣ 6),故此时 a 的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:( 1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;( 2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;( 2)由( 1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当 a >0 时,=a ;②当 a < 0 时,= ﹣ a ;③当 a=0 时,=0.26.已知: a=,b=.求代数式的值.【分析】先求得 a+b=10 ,ab=1 ,再把求值的式子化为 a 与 b 的和与积的形式,将整体代入求值即可.【解答】解:由已知,得 a+b=10 ,ab=1 ,∴===.【点】本关是先求出a+b 、ab 的,再将被开方数形,整体代.27.下列材料,然后回答.在行二次根式的化与运算,我有会碰上如,,一的式子,其我可以将其一步化:(一)==(二)===1(三)以上种化的步叫做分母有理化.可以用以下方法化:====1(四)( 1)用不同的方法化.( 2=;=.( 3)化:+++⋯+.【分析】(1 )中,通察,:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到分的目的;( 2)中,注意找律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出抵消的情况.【解答】解:(1)=,=;.(2)原式 =+⋯+=++⋯+=.【点】学会分母有理化的两种方法.28.化求:,其中.【分析】由 a=2+,b=2,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式 =+,分后得+,接着分母有理化和通分得到原式=,然后根据整体思想行算.【解答】解:∵ a=2+>0,b=2>0,∴a+b=4 ,ab=1 ,∴原式 =+=+=+=,当 a+b=4 ,ab=1 ,原式 =×=4.【点】本考了二次根式的化求:先把各二次根式化最二次根式,再合并同二次根式,然后把字母的代入(或整体代入)行算.。

二次根式练习10套(附答案)

二次根式练习10套(附答案)

二次根式练习01f填空JS1、卜列和«1(1)3 141592( (2)0.3 (3)≡- (4)√2 (5)-√8(6)y (7)0 3030030003.■其中无理数有 ______ •有理数右 ________ (填序号)42、亍的平力H _______ ・0 216的立方H.3、JlB的平方根________ .阿的立方根 ___________ .4、球术平方根等于它本身的数有_______ ・立方根等于本身的数右________5、若X2 = 256. W-IX= ________ ・若x j = -216. WX= ___________ .6、LI)IlRtMBC两边为3∙ 4・则第三边长_________ >7、若三角形三边之比为3: 4:5∙网长为24.则三角形向枳_______& L!⅛∣≡A形L 2n+ IJn1 ÷2n f2n2 + 2n+ Ln为止整数.則此三角滞是三角形.9. ⅛ι⅛√χ34+(y+6)j -0 ・則x + y- _______________10.如果2a-lfπ 5-a是一个数m的平方根•则& = ____________ m= _______ IU三角形二边分别为& 15. 17.那么仪长边上的岛为_____________ .12. K角三角形三角形FWiftft边长为3和4・三角形内一点到备边铢离相等.那么这个丽离为________二.13. 卜刊几组数中不能作为H角二角形三边长度的足< )Aa = 6t b= 24»C= 25 Ba = 1.5,b = 2»C= 2.52 5C. a ≡ —t b ■ 2f c ■ —D. a ■ 15,b ■& C ■ 173 414. 小强Ift御家甲.彩电荧屏的长为58cm •宽为46cm •则这台电视机尺寸足( >A 9 英Q (23 Cm )B 21 英寸(54Cnl) C.29 英寸(74Cm )D S4 英寸« 87Cm)15. 等腰二角形腰长IOan.底边16cm.则面积( >A 96Cm I B. 48Cm i C. 24cm1 D 32Cm J16. 三何形二边a,b,c满足(a+b)'∙c∣+ 2ab∙则这个三角形足()A 角形B.钝ffj^∑flj形 C. H角三角形D等腰三角形17. (-6)'的平方根足( )A - 6B 36 C. 士6 D. ±麻18. bħj∣⅛jg∣E确的个故冇,(I)Va7 = a t(2)√aτ≡a(3)无限小数都足无珅数<4)有眼小数郝是有理数(5)实数分为IE实数和岁实数两类( 〉A l个 B.2个 C 3个D4个19. x½(-√9)2的平方Mi∙ y足64的立方根•则χ + y= <>A 3 B.7 C3. 7 D l. 720. Fnfl三角形边长度为5. 12.則斜边上的高( )IS 60A 6B 8 C. — D —13 132k Γ{ffi~∕fi形边K为a,b.斜边I•高为h∙则卜列冷犬总能成立的地(A. ab= Ii 2 B a 1÷b 2 = 2h i22. ⅛ιffl ∙fi∕{j Ξ角形尿片.两HftJ 边AC-6αnBC-8αn ・现将直角边AC 沿Fl 线AD 折叠.便它落在料边AB 上•且,j AE ⅛fr.则CD 等F ()(3×2Xr = -824.用i ∣∙nsi ∣∙W:(结果保留3个有效数字)A. 2cm B 3an C 4cm 三、计算层23.求F 列待式中X 的值:(1)16X 2-49=0第 22 JSra(2XX-1)2 = 25(4A(x∙F J7(I)VB四、作图题(?)VB(3)√6-< (4)2√3-3√225.庄数轴上Bii 岀■罷的点•D.5an% 25 Sffl26. IT的JI方形网格■毎个止方形顶点叫格点•请在图和Bi—个面枳为10的正方形•五■解善JR27.已Ial如图所示•四边形ABCD 中AB- 3cnχAD- 4α∏BC - 13ClnCD - 12an ZA- 90°求四边形ABCD 的∣6i⅛U«27 JSffl28. ⅛ι附所示•在1⅛长为C的正方形中.有四个斜边为c∙宜角边为a,b的全肆Hfn三和彤.你虢利用这个图说明勾股定円叫?耳出Pf由“%2Sβffl 229.如图所示・】5只空油饲(毎只油桶底面虫径均为60Cm >堆在•起.妥给它盖一个遮甬棚•逋甬棚起码耍多奇?(结呆保昭一位小数〉30.如图所示∙ ΛlRtΔABC 中∙ ZACB- 90° . CDALAB 边上高•若 AD=S.引.XZSABC 中.AB≡15. AC≡13・ BC 边 l:A AD=12.试求/.ABC 周长.BD=2. 求CD,二次根式练习1一.填空题:1. 4. 6. 7. k 2、3、5; 2・0. 6:3. ±2∙ 2: 4. 0 和1∙ 0 和±hL PO 5・±16∙・4: 6・5Λ√7 :7・ 24: S.宜角:9・・2: 10.)・ 81: 11. ≤-:二选择业:13-22: ACBCCBDDDB三.It WSSi23. (1) (2)x=6 或x≡4 (3) x≡-l: (4) x≡6: 24.用il 弊器4计“答案略BL作图題,(«)五、解答题* 27. Ie示,遗箔BD.面税为56: 28.捉川利用面农证明ι 29. 327. S:二次根式练习2 30. CD-4∣ 31.周长为42.二次根式练习02一.选择题〈毎小题2分.共30分) h 25的平方根是()c. V≡2l6--6 D. -Vδ^δol≡-o 15. 下列各数中.无理数的个数有()-O lOlooh √7. 丄 -?• √2-√3. 0, -√1642AV 1 B 、 2 CU 3D 、 46. 如果J 口有总义.則X 的取值范围是()A. X ≥ 2B. X < 2C. X≤ 2D. X > 27. 化简∣1-√2∣+1的结果是()C∙ ±5 D. ±√52、 (-3)】的算术平方桟是()AK 9 B.・3 C 、±3 3. 下列叙述正确的是()A. 0.4的平方根是±0 2 C. ±6是36的算术平方根 4.下列等式中,钳误的是()D. 3B. -(-2?的立方根不存在 D.・27的立方根是・3A . 2- √2B ∙ 2 + √2c 、2 O. √2 8∙下列各式比较大小正确的是() A. -√2<.√3 趴-営八徑56C. -n < -3 14 D 、- VTO >-3 9∙用计算澎求得√3 + V3的络果(保留4个有效数字)是(A. 3. 1742 B % 3.174 CW 3. 175 2'如果栏F=In成立,则实数m 的取值范围是(IK 计鼻5→√5×-^t 所得络果正飜的是( A 、 5 B 、 2512、若x<0,则匚五[的结果为()X13. ∙∙b 为实数.在数轴上的位置如图所示.则ja-b ∣÷√Γβ的值是(—bB. bC. b —2DD.2a —b14. 下列算式中正确的是()AW m λ∕3 - n√3 = m - n√3 B 、5λ∕a + 3√b = 8x ^b C 、7√x+3>∕x≡ IOD∙ ^J545 ■ 2√5D. 3. 1743A. m≥ 3Bi m≤0C% 0 < m≤ 3D∙ O≤m≤3A. 2B. O C∙ O 或-2 D.■ ・15. 左二次根式:ω√Γ5;②爲;③個;④Q 中.与書是同类二次根式的是()A.①蜩B、②和③ C、①她D.③和④二.填空題〈哥小题2分.共20分〉16. - 125的立方根是 ____17. 如果∣3∣≡9t那么L ________ I如果X2 = 9t那么X= _________ •18. 要使心匚3有慮义,则”可以取的嵌小整数是 __________ •19. 平方根等于本身的数是_______ ;立方根需于本身的数是________20. X是实数•且2"・y-0,则______________21. 若仏b是实数・Ia-II+J2b + l = θ. Wa2-2b= _______________22、计算:Φ(-2√3)* = _②启事= _____________________23, SVrS5 = 1 22& = 2 645.则"1850000=.24. 计算:√2 + √8 + √18≡ 25、已知正数"和九有下列命SL(1) Sa+b≡2f M√ab≤l(2)若a+b≡3, M√ab≤∣■(3〉若a+b = 6. M√ab≤3根聞以上三个命題所提供的规徉豹想:若a+b≡9t则屈W _______________三.解答題(共50分)26. ■接写岀答案OO分)Φ√144②士」(■二$③ V-O O64④斗5)f⑤^6×y∕8CD√48-√3⑧(√I + 2∣1φ(√3÷√5)(√5-√3)27■计Jr化閒:(熨求有必夏的解答过程)(18分〉②書(3√I - √7¾6^)√T7-J ∣+√I?TF= 5pj r = ---------------- ∫⅛r =--------------------- √θr = -------------------- •根据计算结果•回答:(1)・ Q —定等于a 吗?你发现其中的规律了吗?谄你用自己的语言描 述出来.(2).利用你总纽的规律,计算①若X 〈人M √(x - 2): - _____________② √(3.14-π)1= ________ ____⑤(-√3),÷√32-2^I28.探究題(10分)29. (6分)己知一个正方形边长为3c叫另一个正方形的面积是它的面积的4 倍.求第二个正方形的边长•饰确到O ICm). --------------- 4 30. (6分)已知X、y满足√2x-3y-l+∣x- 2y+2∣= 0.求2x-<y的平方根附加掘31. (5分)已WX-Iy- L9求下列各式的值32. (5分)已知AZBC的三边为(U b、c・化简J(a +b + c)' + J(a _ b_ cj + Jp- C — a),- — a — b)i根式002参考答案_■ CODBCa)C BeCACOC二• 一5;±9ι±3{2; O S ±K 0; ±0.5; 2; 12;122∙ 8∣三、12J ±|; -0.4i5; 4√3 ; -y-53√3 s9+4√5 ; 2{ 1.5;3; ^6;;羽;牛曲;3+V∑; 1;3; 0. 5; 6:扌;J ; 0;不一定•因为■ IaI ; 2-x; J -3.14 ;6cm;± 2>∕3;;4c •二次根式练习03填空题:每题2分,共28分)1.4的平方根是_________________ .2. 旅的平方根是__________________ •3. 如数亿师数轴上的住置如图所示.则化简7?歹的结昊足------------- 1-------- 1 --------------- ! ------------a o »4. _______________________________________ -右的豆方碎僧数= _______________________________________________ ・5∙己知S b∣ = ?上=Z I,则Ja 4∙ 2b = __________ ・6. ・J(I -刖≡冲7则尸点取7I•范围是____________________ .7. 在实数范IS内分解因式:#-4 = ____________________ ・≡∙化简:捋M9∙化简吋13.妇^J(6-R(X-4沪=0-耳圧?则命取值范围是14・己夕DQY 0,则J^ = ________________ ・二、迭择題(每题4分,共20分〉15.下列说法正确的是( ).(A) 7伏绝对值的平方根是1⑻0的平方根是0(C) £是最简二戻視式(D) G)冷亍才16 •计M(√2-iχ√2+l)啲鉛黑敏)・(A) √2 + l (B) 3血- I (C) 1 (D) -1】7.若寸X+J,÷1 = 2,则& +昭値杲( )•ω±√3⑻±1 (C)I (D) √318.下列各工〔展于最商相式的呈( )•(A) 7771 (B) TΛ7 (C) √i2(D) √0519•式子<ΞI的耽值取值范围().才+ 2(A) x≥ 1(B) x> 1 且x≠-2(C) x≠-2 (D)才勿且x≠-220. <2, Mr-3∣+J,(Λ-]/的值为( )・(A) 2L4(B)-2 (C)4-2x (D) 2三、计算题(各小题6分.共30分)21. h--2^./45+2√20 ・22∙∕lW居z∕l∙23∙(3-√5)% +(3+毎・24+阿"∙卜 3.f-25.∣√27√÷6x.J∣-z21j∣-√iθ8^.10吒傍「諾卜岳四.化简求值(各小题5分,共10分)27.当X詁J = Q81时,求X£-州・点・*77值.+ √36∑y).其中入=#•*27.五、解答βr各小題8分,共24分)29.有一块面积为(2a * t>)2π的图形木板,挖去一个圆后剩下的木板的面积是(2a・6),疗,问所挖去的圆的半径多少?30.已知正方形纸片的面积是32c√,如果将这个正方形做成一个圆柱,请问这个圆柱底圆的半径是多少(保留3个有效数字)?14.15・ B 16. A 17. D 18. A 19. A20・D1. ±22. ±23. - ab4. -25. 0 或 46. ∕π≥17.(^3 + 2)(Λ+√2X<J -√2)8.軾9∙ ⅛Za 2 +⅛2 Ia12. -Jr X 门・Λ≤4根式003答案21. 亘_2不3 22. 10√2 23・ 24 24. — '[ΛB25. 4:7 —6∖Λ^ — 丄,22G. -各、隔 27. +振-3石;-2. 45 29. 2√2^5 30・ 0.900二次根式练习04一•填空赣(毎題3分,共农分)1. 0.4的平方根 ____________ ,吉的舁术平方根是______________2. -27的立方根3・己知α <-6■则∣3-$46/ + 9卜_________________ •4. 式子也手有意义∙QH得肢值范區是_______________________x+25. 写出两个与誓是同类二矢根武的根式杲_____________________6. 当X < 0,M1 -=入若数P在数粘上如图所示,则化简/百y4√(p-2f捋=10.已知2凸*代,则;T=___________________ .11・当么VO且时,化简厶:加十丄=a - CI13. ________________________________________________________ 己丸;Cj 为实数,y - X 一9+ 9一“ +',则X +y - _______________兀一3W.观察下列各式后,再芫成化简:丿3十2旋=√2 + 2^+l = M十A二血十1.Vτ÷2√10 = V5 + 2√l0+2 = 7(75+ √2)a= √5 + √2, .Jg+2√β= ・祢能曰一个相同炖的化简题吗?頁在横线上, __________________________ 二、选择題(每题4分,共20分)15•下列式子成立的是().(A)Ja2 ÷62 =(2 + ∂(B) “ J-2 = -J- ab(D)J-a "b" = —Λ⅛16. 若/芬与囲赤最筠同娄很式.则•甜=值杲().(A)O φ)l (C)-I (D)I17. 下列计算正确的是( ).(A]√2 +x^≡√5(B)2 + ,β ≡ 2√2(C)^3+√28=5Λ∕7(D)^⅛^ = √4÷√9218. 若b<O r化简+二?的结果是( )•(A) - b后(B)fe√≡^ (C)-£> Pab (P)b^fab19. 把儿Jg阴外的因式移入根号内,结果化简为(>(A)F CB)- V (C)∙Λ£)-石20. 満足廣十"=倚的整敖对(XJ)的个数是] ).(盘)多于?个⑻3个©2个(D)I个三.计算題(各小题6分•共30分) 21.9岳-7√127 4 2√6 3馬.23 .(7 + 4√3)(2 -4)2 十(2 十 √3×2 -M)- √124.舟、乔J 耳+ 6碾.22.2(l + ⅛ + √,48 +四.化简求值(各小题8分,共16分)27•巳哑手君'且曲如^,1+χ,J⅞τr28. α > αD > Q■屈运+爲j= 3血書+MI求竺空t逅的危. a -b五■解答題(各小题8分.共24分〉29. = 2-√5.‰4 -8α5+ 16αa -α÷l.50. i⅛等式JeX■小+ Jeyu TXP-Ja-丿在买数范51内成立・矣中"。

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题一.选择题(共4小题)1.要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣12.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥13.下列结论正确的是()A.3a2bBCD4A.a≠5.使67.已知8.若代数式+9|+=a10.若a=114n+y=,求此三角形的周长12.已知x,y为等腰三角形的两条边长,且x,y满足413.已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.14.若a、b为实数,且,求.15.已知y<++3,化简|y﹣3|﹣.16.已知a、b满足等式.(1)求出a、b的值分别是多少?(2)试求的值.17.已知实数a满足+=a,求a﹣20082的值是多少?参考答案与试题解析一.选择题(共4小题)1.(2016?荆门)要使式子有意义,则x的取值范围是()A.x>故x﹣1解得:x则x故选:C2.(A.x<解得x故选:C3.(A.3a2bBCD.若分式的值等于单项式﹣x的系数是﹣使式子有意义的若分式故选:B.4.(2016?博野县校级自主招生)要使式子有意义,则a的取值范围是()A.a≠0 B.a>﹣2且 a≠0 C.a>﹣2或 a≠0 D.a≥﹣2且 a≠0【解答】解:由题意得,a+2≥0,a≠0,解得,a≥﹣2且 a≠0,故选:D.二.选择题(共5小题)5.(2017?德州校级自主招生)使有意义,则x的取值范围是x≥﹣且x≠0 .【解答】解:根据题意得,3x+2≥0且x≠0,解得x≥﹣且x≠0.故答案为:x≥﹣且x≠0.6.(2016?永泰县模拟)若代数式有意义,则x的取值范围为x≥2且x≠3 .是正整数,则实数的取值范围为x≥|+=a+=a解得b≥7且b≤7,a=3,所以,==4.11.(2016?富顺县校级模拟)已知,求(m+n)2016的值?【解答】解:由题意得,16﹣n2≥0,n2﹣16≥0,n+4≠0,则n2=16,n≠﹣4,解得,n=4,则m=﹣3,(m+n)2016=1.(2016春?微山县校级月考)已知x,y为等腰三角形的两条边长,且x,y满足y=++4,12.求此三角形的周长.【解答】解:由题意得,3﹣x≥0,2x﹣6≥0,解得,x=3,则y=4,当腰为3,底边为4时,三角形的周长为:3+3+4=10,当腰为4,底边为3时,三角形的周长为:3+4+4=11,答:此三角形的周长为10或11.13.(+|+,求c的平方根.所以,b所以,解得所以,a+b+c=1所以,a的平方根是±.14.(.解:根据题意得:,解得:则a=3则原式=15.(2015春?荣县校级月考)已知y<++3,化简|y﹣3|﹣.【解答】解:根据题意得:,解得:x=2,则y<3,则原式=3﹣y﹣|y﹣4|=3﹣y﹣(4﹣y)=﹣2y﹣1.16.(2014春?富顺县校级期末)已知a、b满足等式.(1)求出a、b的值分别是多少?(2)试求的值.【解答】解:(1)由题意得,2a﹣6≥0且9﹣3a≥0,解得a≥3且a≤3,所以,a=3,b=﹣9;(2)﹣+,=﹣+,=6﹣9﹣3,=﹣6.17.(+=a 少?∴a﹣∴2008∴a﹣=2008。

二次根式50道计算题(汇编)

二次根式50道计算题(汇编)

二次根式50道计算题(汇编)本文档包含了50道关于二次根式的计算题,可以帮助你巩固和练习有关二次根式的计算技巧。

题目1.计算 $2\\sqrt{3}$。

2.计算 $3\\sqrt{7}-\\sqrt{2}$。

3.计算 $\\sqrt{12}+\\sqrt{27}$。

4.计算 $4\\sqrt{6} - 2\\sqrt{3}$。

5.计算 $\\sqrt{50}$。

6.计算 $2(\\sqrt{5}+\\sqrt{3})$。

7.计算 $\\sqrt{18} - \\sqrt{8}$。

8.计算 $3\\sqrt{5} + 2\\sqrt{45}$。

9.计算 $\\sqrt{72} - 2\\sqrt{18}$。

10.计算 $4\\sqrt{10} - 3\\sqrt{8}$。

11.计算 $2\\sqrt{6} \\times 3\\sqrt{2}$。

12.计算 $(\\sqrt{3}+\\sqrt{5})^2$。

13.计算 $(\\sqrt{7}-\\sqrt{2})^2$。

14.计算 $(\\sqrt{20}+\\sqrt{5})(\\sqrt{20}-\\sqrt{5})$。

15.计算$(\\sqrt{3}+\\sqrt{2})(\\sqrt{3}-\\sqrt{2})$。

16.计算 $(4\\sqrt{2})^2$。

17.计算 $(\\sqrt{2})^4$。

18.计算 $(\\sqrt{3})^3$。

19.计算 $(\\sqrt{7})^2$。

20.计算 $3\\sqrt{5} \\div \\sqrt{3}$。

21.计算 $\\sqrt{8} \\div 2$。

22.计算 $\\sqrt{18} \\div (\\sqrt{6} \\times\\sqrt{2})$。

23.计算 $2\\sqrt{7} + \\sqrt{7}$。

24.计算 $\\sqrt{11} + 2\\sqrt{11}$。

二次根式测试题及答案

二次根式测试题及答案

二次根式混合运算21、4、(1一血)2+4,1、•五-可2、龙XTJ53、〔迈我.刁)(.2-2.3)5、.2『5[6(伤+需)-(伍弋+7^)7、〔迈十.了一1)(.2-,空+1)-8、〔2,忑-,可)三&9、10、+(丙+④_彳(.;2-尬;「、(莎甘)十所12、昉+.折_g ;「3、伍_V^i ;、'V125'14、(7+7)2-(7-⑦215、器打4i x 匸鬲一31000;16、丨.了-刃-|1-迈丨-丨迈十飞-5|.17、.爲•左-.莎+,-|-18、(3厅一卫)(Is+2弓)20、可■(一而)三E ;苗-诉)x(価+術)辽丐-3迈)2⑸;訥帯2亠迟1 3莎-9g+3•壬i 乔(3,gx 卫)血让电+(虽一1)HI(33_一2b )(且+b )・(V3-2-(应-岛)(五+屈C-gVzS X V14律礙唸)¥(3^2-1)(L+3伍)-(3近-1)2;22、 23、 24、 25、 26、27、2&29、 30、31、32、33、34、35、 36、 37、 38、 39、 40、 41、 2;12+3-..;_45;Ve 葩圧+1)殛-血壬骨Cflx 而CV3-V2)(_■.帀)2-(-T )V27+2VsV2+1(血+V5)2-(血+価)(伍■近):;(°飞一4g+g.§)十殳E(V5"V3+V2)(V5+V3~V2)(-2)=屆-4运(4-亦)-片-(2-2)2*顶-2巫+(-号-1)243、 44、45、46、47、 4&49、50、 51、 52、53、 54、55、 56、57、58、 59、 60、61、62、63、3.莎-一虧-g+Cs-2)Cs+2)10VE X 弋_V16X V18-9.45■=■3.15x_|「眉_2〔眈(V3+V2+V5)(V3~V2~V5)V1S+2^32CV2_2^3)(V2+2V3)V18-(V12+2V2)73(V27+SV3)_3±_X_JLV3~V2V&(屈+顶)-(V&V125)(V5+V6)(V5~V6)(二+1)2_2..玩(.1+1)(1_2)_C2_1)2+C2+1)2_\5+Q2005_^2004)65、66、67、68、 69、 70、 71、 72、 73、 74、 75、 76、 77、 7& 79、 80、 81、82、 83、 84、85、86、87、Ex 适+左+亏_89、血~^2怖-屈90、•可-汙1皿91、.五X(帀+垃1_药).92、空193、93工一F十2&崇38K;94、(升43(「_引2+(2+弓(2-引;95、-几$+3弓〔3-衣弓)一!^冷;97、2a[98、丨.亏一角丨+.可一.伍;101、(刁+.可2008(一了-迈)2009. 102、3亍一218+5馬;103、-跖弓4-|「J;104、容105、(3•.左+書)1亏106、(巧-1)(,孕1)-(,住-24)三飞107、;108、—宀(〒-可(3+可;109、一晋+一五7_.弓?1_1 Vs (.电-一〒)(一E+一〒)+2 〔茁可0+1_3|_2_1⑷(飞_2「可)x .亏_6.1■1(2.卫帀);CV5+V2)(亦_(73~V2)2 〔血一1)2+^-Q2010+2010)° VoTsWii~(書_雇) ■-y^2712■^/48) +6o ; 3 M 4Vs110、111、114、 115、 116、117、118、119、120、121、122、 123、124、125、 Word ⑵(7+4了)(7_4七) +(2+二) 飞3V 2参考合案1、原式=2二-3予-亏;2、原式=.^jx£j=丽=30;3、原式=2-12=-10.4、原式=1-2迈+2+2迈4〔迈-1)-迈=2.5、原式=2,5才(u+2,5“5n)=2,5勺-6u-2,5a=-6a.7、原式=(二)2-(.亏-1)2=2-(3-231)=2亏-28、原式U严W飞二_*二二一乎9、.原式=(布—2肩+")x疼(羽+3^)x逅=1+^[^3310、原式=—+』2P44丁‘彳乙11、原式=(12、原式=2j+33-=;13、原式==-2;33祈514、原式=(7+〒+「了)(7+〒-升了)=14x2斤=23.了15、原式=号心冷X12-10=3+6-10=-1;16、原式=2-計1一戈+2+3一5=-2.17、原式=_恳•.花-2.書+=3書—2爲+.=55518、原式=(3.^-2亏)(3.亍2二)=18-12=6;19、原式=長(2迈-迈+二!)=亏(「◎+£)=E+1__3320、原式=-3g・52宁.&=-15一6宁一&=-15;21、原式=3.予;-2〔+T尾22、原式=3a+-2b23、原式=3-2运+1-(2-3)=5-2二.24、原式专律14一為屈X14=7厂”乙原式=(2号+号)X 1 V -2=3-2=1 原式=,+予X 63ir -m .3ir=2m 3ir +3m .3ir -m .3ir=°;原式=咼犬壬F¥+1Y -1+¥+1『原式=12•方-〉弓+6•込=(12-3-+6).手15.亏;X2迁)=6.㊁+6=迈+3-2孑3很+3-2孑3+_2-原式=.6X.&+&x_&X 1=6+1+6=7+&•原式普X3工+6X !_^-2x ・J=2Q+3.Q -24; 原式=2飞- 言夂弓+3-2=2-&-23+1 =(63-+E-2可+2長-3=3-3+辽--3=-2+二- 3323323原式=,©+(迈+刀(迈-1)+1-迈=3+殳-迈-2+1-公4 原式=2.号+3飞-7号=-2疋;原式=2」牛21xg=Z 討沪14-原式=10-7+=3+!;22 原式=1X (22-刁+仝)=山咒2+lx =£+1;_33 原式=.1-1;__原式=2+3+2,.'3X2-(2-3)=5+2&+1=6+2&原式=2+1-(•厉-込)=3-1=2^ 原式=17-(19-)=-2+£迈; 原式=2.兰-3兰-2迁-3_K - 原式=4.3+12込=1@帀; 原式=¥+2..〒-10‘万=—罟〒; 原式=4:-+迄卫 244'三 原式=6-5=1; 原式=12+18-12乞=賀-1殳飞;25、26、27、2&29、30、31、 32、33、34、35、36、37、 38、 39、 40、41、42、43、44、45、 46、47、 4& 49、 50、原式=-4=(6—3—丄)疋+1=+1 55原式=[.*-(.亏-一劝][上+(二-二)】=5—(.£-一可2=5-(5-2电)=2g. 原式=4x2§-16,+12-16-8了=-4-16兀;原式=2-(4-42+2)=2p-6+42=6至-6.V 23 原式=2x2号—2x3号+5—2号+1=上—6号—2号+6=6—7g. ■ila原式=0+2^-3=^-. 原式=一技斤; 原式=-+6=-■&+"6=0- V 57 *X 打和.疋一卫-互x 卫=2-了+方-2去左 (18-莎三2p=g 亟W-号莎巨=壬_斗1原式=9.乜-14.矛4了=-了;原式=:曲*-4只3.去.㊁-12二=-11_瓦原式=2.3x =12.6;原式=X3gx.=-些;V57V105原式=12乜-2亍6了=16‘方;原式=(4乞-2左+6•迈)x.=2亍2241原式=27*+(3x 亏X¥)x.—&迈=3亏x.-&W=-8㊁;93原式=Cl )2-('E+;E )2=3-(2+2[75+5)=-4-2I 'T5 原式=3立+8立=11迈; 原式=2-12=-10; 原式=^23^23-61石=0; 51、52、 53、54、55、56、57、58、 59、 60、 61、62、63、64、65、66、 67、 68、 69、 70、 71、 72、 73、74、75、76、 原式=(4飞-2.空+6込)+2迁=2.审2原式=6.号-3飞-£<+577、原式=十=一=1.4从22278、原式之页":环-爭而£-寺戶+匸送戶+乎79、原式=3飞-锂了+2至)=3迈-殳,了-殳迈=迈-殳,了;80、原式=,3(3,3+2,3)=9+6=1581、原式=(一了+込)2-^=3+2+2乞-乙=5+E82、原式=4;5+315—2,2+4'.■2=F.「5+Z/2;83、原式=北电+孔迈-10.15;84、原式=5-6=-1;85、原式=4+2二_呂飞=4_&飞86、(1+_劝(1-3-(.㊁-1)2+(迈+1)2=1-C2)2-(2-2_卫+1)+2+2空+1=1-2—2+2•.龙-1+2+2・「戈+1=4・「2-1.87、原式=亏+4x.—亏+1=亏+门-,亏+1=1+2488、原式=(40了-诣了+8^)十飞=30上十主=15卫;89、原式=2迈-迈+2=2+p.90、原式=3飞-锂+.引+1=3弓+1=2了-1;91、原式=2弓况(5弓+3-4弓)=2.茅X2.亏=12.92、原式=2+2•迈+4+2:=姑93、原式=9I'3X-14:+24l3H=;94、原式=(7+4二)(7-4手)+4-3=49-48+1=2;95、原式=-4x殳匕+9.空-12-O-D=-8七+9匕-12-㊁+1=-11;96、原式=.-:+'•=2x工-工+=空j X可*4zz97、原式=2a(b爲-2x3b一:爲+)=2ob書-+ab£=512222v0398、原式=电—+3-5戈=2二-4上;99、原式=12-4二+1=13-4手;100、原式=22+—护2SS101、原式=()=迓一乜102、原式=3x2迈-2x3-「^5x4力=6迈-6「020迈=20•力;103、原式=7-..&-3':Q|+2=6|;e原式¥・(-舟)乂=-暑扣=春%忑原式=3飞+.电+右上=3込+孑普-亏; 原式=3-1-=2-3+ 原式仝2+1—;x2亏=2+1-2=1; V55_ 原式=3-2二+1-1=3-2j 原式=+4•二-3工=丄 22 五二亏—空二飞_1^3-1=0;V3V3V3' (.号一刁(■角+万)+2=(可'-行)2+2=5-7+2=0;(飞_2.可)x .亏-6g=玉-4玉-号三=-9.◎-号亍-普原式=4-5=-1; 原式Px 巴=1;ba原式=5-2-5+2乞=2飞一戈; 原式=- 原式=2,了(5〒+了-4引=2jj-2.1=12;原式=49-48+2+,「&=3+&.原式==弓一方-殳了+3卫=-飞 •L105、106、107、108、109、110、111、 112、 113、 114、115、116、117、118、119、120、 121、 122、 123、 124、125、-3|-2-1=1+3-2=32; 22 原式=4-2了+一了-1=3-込原式==3-2=1. V5 原式=_2.&+1+6J 3=4飞+1。

二次根式20道典型题练习

二次根式20道典型题练习

二次根式20道典型题练习(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次根式典型题练习1、 在实数范围内分解因式:429__________,2__________x x -=-+=。

2、 2x =,则x 的取值范围是 。

3、 当15x ≤5_____________x -=。

4、 把的根号外的因式移到根号内等于 。

5、 若A =( ) A. 24a + B. 22a + C. ()222a + D. ()224a +6、 若1a ≤ )A. (1a -B. (1a -C. (1a -D. (1a -7、=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2xD. 2x ≥8、 的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a -9、 去掉下列各根式内的分母:())10x ())21x10、 已知2310x x -+=11、 已知,a b 为实数,且(10b -=,求20052006a b -的值。

12、已知0xy ,化简二次根式 )13、对于所有实数,a b ,下列等式总能成立的是( )A.2a b =+a b =+22a b =+a b =+14、 -和- )A. 32--B. 32--C. -=-不能确定15、 )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为316、 化简:())10,0a b ≥≥ ()2()3a17、 把根号外的因式移到根号内:()1.-()(2.1x -18、计算及化简:⑴. 22- ⑵⑶⑷19、 已知:x y ==32432232x xy x y x y x y -++的值。

20、 已知:11a a +=+221a a+的值。

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题及答案二次根式练题及答案(一)一、选择题(每小题2分,共24分)1.若在实数范围内有意义,则 $\sqrt{x-3}$ 的取值范围是()A。

$x\geq 3$ B。

$x>3$ C。

$x\leq 3$ D。

$x<3$2.在下列二次根式中。

$\sqrt{x-2}$ 的取值范围是 $x\geq2$ 的是() A。

$\sqrt{x-2}$ B。

$\sqrt{2-x}$ C。

$\sqrt{2+x}$ D。

$\sqrt{4-x^2}$3.如果 $x\geq 1$,那么 $\sqrt{x^2-2x+1}$ 的值是()A。

$1$ D。

无法确定4.下列二次根式,不能与$\sqrt{2}+\sqrt{3}$ 合并的是()A。

$\sqrt{2}+\sqrt{3}$ B。

$\sqrt{2}-\sqrt{3}$ C。

$\sqrt{3}-\sqrt{2}$ D。

$\sqrt{3}+\sqrt{2}$5.如果最简二次根式 $\sqrt{a}+\sqrt{b}$ 与 $\sqrt{a}-\sqrt{b}$ 能够合并,那么 $a$ 的值为()A。

2 B。

3 C。

4 D。

56.已知 $\sqrt{a}+\sqrt{b}=\sqrt{3}+\sqrt{2}$,则 $\sqrt{a}-\sqrt{b}$ 的值为()A。

$\sqrt{3}-\sqrt{2}$ B。

$\sqrt{2}-\sqrt{3}$ C。

$\sqrt{3}+\sqrt{2}$ D。

$\sqrt{2}+\sqrt{3}$7.下列各式计算正确的是()A。

$\sqrt{8}+\sqrt{12}=4\sqrt{2}+2\sqrt{3}$ B。

$\sqrt{5}+\sqrt{20}=3\sqrt{5}$ C。

$\sqrt{3}+\sqrt{2}=\sqrt{5}$ D。

$\sqrt{6}+\sqrt{3}=\sqrt{18}$8.等式 $\sqrt{x+3}-\sqrt{x-1}=2$ 成立的条件是()A。

二次根式练习题50道(含答案)

二次根式练习题50道(含答案)

二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。

二次根式(全章)习题及答案

二次根式(全章)习题及答案

二次根式21.1 二次根式:1. 有意义的条件是 。

2. 当__________3. 11m ++有意义,则m 的取值范围是 。

4. 当__________x 是二次根式。

5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

6. 2x =,则x 的取值范围是 。

7. 2x =-,则x 的取值范围是 。

8. )1x 的结果是 。

9. 当15x ≤ 5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. =成立的条件是 。

12. 若1a b -+与互为相反数,则()2005_____________a b -=。

13. )))020x y x x y =-+ 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a - )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a +B. 22a +C. ()222a + D. ()224a +17. 若1a≤)A. (1a-(1a-C. (1a-(1a-18.=成立的x的取值范围是()A. 2x≠ B. 0x≥ C. 2x D. 2x≥19.+的值是()A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()123224==⋅⋅⋅⋅⋅-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421. 2440y y+-+=,求xy的值。

22. 当a1取值最小,并求出这个最小值。

23. 去掉下列各根式内的分母:())10x ())x2124. 已知2310-+=,求x x25. 已知,a b(10b-=,求20052006-的值。

a b21.2 二次根式的乘除1. 当0b __________a≤,0=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式与一元二次方程经典练习题aa??aa??A、、 B 、D、??2 C一、选择题ba,对于所有实数),下列等式总能成立的是(8. )1.下列式子一定是二次根式的是(22b?b??aaba?ba??22x2x??2?x2?x B.A. .AD. B . C .??22??2222b?aa?b?1?m3b?aa??b D.C.)m有意义,则2能取的最小整数值是(.若m=3.m=0 A.Bm=1 .DC.m=2 29x?),以下说法中不正确的是( 9. 对于二次根式2xx? A. 它是一个非负数 B. 它是一个无理数的结果是()3.若x<0,则x3 它的最小值为 D. C. 它是最简二次根式2 2 .—C.0D.2 或—B 0 A.227?5?2b?aa??b10. 下列式子中正确的是()A.??B. ( 4.下列说法错误的是)28?649a?6a?是二次根式B.A.是最简二次根式2?3?4?3?x??bxba?ax D.C.222216?xb?a4D.的最小值是.C 是一个非负数二、填空题22nn24?5)?(2?)(?0.3D.2 C.6 B.5 A.4 5.是整数,则正整数的最小值是();②11.①。

yx?a3311??aa?9?计算。

12.化简:计算= ________13.的结果为().化简6ay?x365 ??21xx??2x133011。

14.化简:的结果是113033030.B .A .C .D30302??_____________??1x?5x?时,。

5x1 15.当≤<1?????20012000.把.7a 根号外的因式移入根号内的结果是()______________33???22a.16。

22yx1)1a?(?a a ;1≤,则=17.若0≤的值。

,求代数式???2xy?1?8x?8?1.已知:1x2y 18.先阅读理解,再回答问题:222225??10xx??2x1?x1?12,2,11?1??2?因为所以的整数部分为;1 x<5时,化简:2. 当1<04??xy?y??4y xy的值。

2222?3,??62?2?6,2;2因为的整数部分为所以23.,求若2233?4,?12,33?3??12的整数部分为因为所以;31?122nnn?(12???。

依次类推,我们不难发现n为正整数)的整数部分为;观察下列等式:①4. )2?1(2?1)(12?5。

-y,则xy =______________ 现已知,小数部分是的整数部分是x2?132???3三、计算;②)?2?32)(23?3(2??3224??)45??(93??13?142)((1) ??3??4?2543③;…??)4?3)((4?34?312x331x6?2?926??3x;3()(4) 利??????217?3334?74?5?2用你观察到的规律,化简:x342211?23????????2222的值;、(1)a、(5)0?328)5?b??c?a(?、b满足、c.已知5abc求:33??121112?? (6).为边能否构成三角形?若能构成三角形,求出三角形的、)试问以ab、c(2 .周长;若不能构成三角形,请说明理由1111???......?)计算:7(a11?2a?6. 取什么值时,代数式当取值最小,并求出这个最小值。

103?22?1?2?331?a10a7.若,的值。

的整数部分与小数部分,求分别表示b四、解答题4?b)°;(①等腰梯形是旋转对称图形,它有一个旋转角为180一、选择题))°;(②矩形是旋转对称图形,它有一个旋转角为180 1.下列图形中,既是轴对称图形,又是中心对称图形的是(? A.等边三角形 B.等腰梯形(_____.空:填下列图形中是旋转对称图形,且有一个旋转角为120°是(2)①正三角形;②正方形;③正六边形;④正八边形.写出所有正确结论的序号) C .平行四边形 D.正六边形°,并)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72([是中心对称图形,但不是轴对称图形的是().来源:Z,xx,]3. 2下列图形中,②既是轴对称图形,①是轴对称图形,.平行四边形但不是中心对称图形;且分别满足下列条件:.菱形A.正方形 B.矩形 C D(在镜子中的像是)又是中心对称图形.“ 3.如图所示,平放在正立镜子前的桌面上的数码21085?”折叠,BGB处;沿沿EF折叠,使B51082 ..A21085 B.28015 C58012 D.点落在AD边上的D 2.如图,将矩形ABC111111121085F点.使D点落在D处且BD过二、填空题1;是平行四边形:()求°, 1.把一个图形绕着某一个点旋转180如果旋转后的图形能够与原来的图形重证四边形BEFG合,那么这个图形叫做__________.A yBDA11E._________ 2.请你写出你所熟悉的三个中心对称图形2BA GF..中心对称图形具有什么特点(至少写出两个)3_____________-1Ox BC11DC三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,,判断△BBG的形状,并写出判断过程.)连接(?那2BB1顺时针旋O?、AB两点,将△AOB绕点轴、.如图,直线3y=2x+2与x例如:么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,y轴分别交于 90°得到△A转OB.所以正方形是旋转对称?°后能与自身重合,正方形绕着它的对角线的交点旋转?9011三点的函数解析式为B、AA2 °.90图形,应有一个旋转角为;OB1 ()在图中画出△A()设过、1112,求这个解析式.1( +bx+cy=ax ))判断下列命题的真假(在相应括号内填上“真”或“假”)-3)的解是(14.方程2x(一、填空题x-3)=5(x55,___________,其中一次项系数是_________1.方程x(2x-1)=5(x+3)的一般形式是3=-D.x=A.x=3B.x=xC.=3,x2122_________.二次项系数是_________,常数项是1121B. -C.1 D m≠0,则+n等于()A.-15.若n是方程x.+mx+n=0的根,n2222=_________. k-2)x+k42=0-的一次项系数是-3,则x2.关于的方程(k+1)xk+3(1111212 . )A.- B.D.16.方程(x+ )++(x C)(2x-1)=0的较大根为(22_______.=0_______4.-10=0的一次项系数是一元二次方程ax+bx+c的两根为3.3x233393322)-px+q 可以分解为(17.若2,3是方程x=0+px+q的两实根,则x2222x+_________)+_________=(xx5.+_________=(+10xx+_________) 6.x-2+3)+2)(x C.(x+1)(x+5)D.(xx A.(-2)(x-3) B.(x+1)(x-6) 2_________. ,则这个正方体的棱长为7.一个正方体的表面积是384 cm2)=0的两根中只有一个等于0,则下列条件中正确的是(18.关于x的方程x+mx+n222 +2)x-(x是一元二次方程?(的方程m8._________时,关于xmx+x)=0m≠0,n≠n=0,n≠0 C.m≠0,=0 D.,A.m=0n=0 B.m22_________. 3,x36=0-的解是_________8=0方程9.x-的解是降低到了每19.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,21?a?2a=_________.a是一元二次方程,则-+xa的方程关于10.x(+1)x5=0D.25%A.15%B.20%C.5% 件160元,平均每月降低率为()32_________. ,则矩形的长与宽分别为96 cm,一矩形的长比宽多11.4 cm矩形面积是2)1a=0的一个根,则2a-的值是(是关于20.2x的方程-x22个月后的本息和(不考虑利活期储蓄的年利率为12.0.72%元本金,10005;存入D.6C.5 A.3 B.4_________. 息税)是)21.下列方程适合用因式方程解法解的是(二、选择题222210=0- D.x-11x B.2x+2=0xx=x+4 C.(-1)(xx A.+2)=70 -3 )的一元二次方程有(x下列方程中,关于13.m2522222 3=x =0 +bxax②x①=0 +c 222)mx+m的一个根,那么=0m的值是(mx22.已知=1是二次方程(x-1) -③-x+x+41)-m⑤=0 xa+a④-(x=0 21111 或-1 B.-或1 C.或1 D.A.111222221x?22个B.3个A.2 9 -x=+1)x⑧=2 ⑦(=D.5+C.4 个⑥个2x3x2632)的根是(=0+x)+(-x方程23.升,每次倒出倒出同样多的药液,再用水加满,这时,容器内剩下的纯药液是28223363,x==-C.x=A.x=±,x-=D.B.x=1,x=x211122液体多少升?2m)-x-m=0的解为()24.方程xx+m(2+.31.请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题=m-1,xm,-B.x=1m,x=m C.x=m-1x=-m D.x==A.x=1-m,x-m 22222x视为一个整体,然后设x--1)-5(x1-1)+4=0,我们可以将x为解方程(212121122①5y1=-y,则原方程可化为y+4=0 -,因库存积压,所以就按25.一台电视机成本价为a元,销售价比成本价增加25%=4yy=1,解得21出售,那么每台实际售价为()销售价的70%222-1=1,∴xx=2,=±当y=1时,x B.70%(1+25%)a A.(1+25%)(1+70%)元a元522 1=4,∴x=5,x==4当y时,x±- D.(1+25%+70%)元70%)a a元C.(1+25%)(1-三、解答题2255x,x==∴原方程的解为x-=x,=,-4312三26.某公司一月份营业额万元,求该公司二、第一季度总营业额为100万元,331 月份营业额平均增长率是多少?解答问题:法达到了降次的目)(单位:以大约与水平成27.45°角的方向,向斜上方抛出标枪,抛出的距离s m_________(1)填空:在由原方程得到方程①的过程中,利用.的数学思想的,体现了_________2v246=0 xx(2)解方程--+2 =s m/s)(与标枪出手的速度v单位:之间大致有如下8.9分)米,求标枪出手速度(精确到如果抛出400.1 m/s.、QAD=6 cm,动点PCB、、D为矩形的四个顶点,AB=16 cm,A32.如图1,、Q为止,点B移动,一直到达BC同时出发,点P以3 cm/s的速度向点、别从点A.之间满足:xy学生对概念的接受能力与提出概念所用的时间(min)移动的速度向D以2 cm/s心理学家发现,28.22的面积为33 cm?两点从出发开始到几秒时四边形时所用的时间=59y30)≤x+43(0xx0.1-y=+2.6≤,求当. )(1P、QPBCQ?10 cm QPQP 2()、两点从出发开始到几秒时,点和点的距离是年底将获得的利润与年初1998万元生产某种新产品,100年初投资某工厂29.1998 两年共获利润年底,1999到1999的投资的和作为年初的投资,已知万元,561999 年的年获利率多1998年的年获利率比年的年获利1999年和1998求个百分点,10 率各是多少?升,第一次倒出一部分纯药液后,用水加满,第二次又63一个容器盛满纯药液30.1. 一超市销售某种品牌的牛奶,进价为每盒1.5元,售价为每盒2.2元时,每天(2)若小红家有四人,明年小红家减少多少农业税?16000盒。

相关文档
最新文档