四川大学线性代数3.3和4.1节.ppt

合集下载

线性代数教材讲解ppt课件

线性代数教材讲解ppt课件

a11
A
a21
a12
a22
a1n a2n
am1 am1 amn
矩阵A的
m, n元
简记为
A Amn
aij
mn
aij
.
这m n个数称为A的元素,简称为元.
元素是实数的矩阵称为实矩阵,
元素是复数的矩阵称为复矩阵.
例如
1 9
0 6
3 4
5 3
是一个 2 4 实矩阵,
0
0
单位阵.
0 0 1
线性变换
x1 y1
cosx siny, sinx cosy.
对应 cos sin sin cos
这是一个以原点为中心
旋转 角的旋转变换.
Y P1 x1, y1
Px, y
O
X
三、小结
(1)矩阵的概念 m行n列的一个数表
a11
A
a21
a12
且对应元素相等,即
aij bij i 1,2,,m; j 1,2,,n,
则称矩阵 A与B相等,记作 A B.
(8)线性变换与矩阵之间关系:
例1 n个变量x1, x2,, xn与m个变量y1, y2,, ym之
间的关系式
y1 a11x1 a12 x2 a1n xn ,
y2 a21x1 a22 x2 a2n xn ,
13 2
6 2
2i 2
是一个
33
复矩阵,
2 2 2
1 2 是一个 3 1 矩阵,
4
2 3 5 9
4
是一个 1 4 矩阵,
是一个 11 矩阵.
矩阵与行列式有本质的区别, 行列式是一个算式, 其行数和列数相同,一个数字行列式经过计算 可求得其值, 而矩阵仅仅是一个数表, 它的行数和 列数可以不同.

线性代数总复习PPT 很全!.ppt

线性代数总复习PPT  很全!.ppt
m
x11 x22 xmm 0有非零解
线性方程组1,2 ,
,m
x1
0非零解
xm
R1,2, ,m m m是向量个数
判别法 1
n个n元1,2 ,
,
线性
n
相关
1,2 ,
,n
0
r1,2 , ,n n
n个n元1,2 ,
,
线性无关
n
1,2 ,
,n
0
r1,2 , ,n n
判别法 2
n阶方阵A可逆 A 0 A E
存在方阵B,使AB E,或BA E 秩 Ann n
A的行(列)向量组线性无关。 齐次线性方程组Ann X 0仅有零解 A的特征值全部 0
可逆矩阵的性质
设A,B都是n阶可逆矩阵,k是非零数,则
1
A1 1 A,
3 AB 1 B 1 A1
线性相关,则必可由1,2 ,
,
线性
m
表示,
并且表法惟一。
3、秩(A)= 列向量组的秩 = 行向量组的秩
定理
向量
可由1,2 ,
,
线性表示
m
x11 x22 xmm 有解
线性方程组1,2 ,
,m
x1
有解
xm
R1,2 , ,m R1,2 , ,m,
定理
向量组1,2 ,
,
线性相关
证明 设 x11 x22 x33 0
1.

x11 2 3 x21 2 x32 3 0
x1 x2 1 x1 x2 x3 2 x1 x3 3 0
因为1
,2
,3
线性无关,所以
x1 x1
x2 x2
x3

线性代数(含全部课后题详细答案)4-3PPT课件

线性代数(含全部课后题详细答案)4-3PPT课件
线性代数(含全部课后题详细答 案)4-3ppt课件

CONTENCT

• 课程介绍与教学目标 • 向量空间与线性变换 • 行列式与矩阵运算 • 特征值与特征向量 • 课后习题详解 • 课程总结与拓展延伸
01
课程介绍与教学目标
线性代数课程简介
线性代数是数学的一个分支, 研究线性方程组、向量空间、 矩阵等概念和性质。
简要介绍数值计算中常用的迭代法、插值 法、逼近法等基本方法,培养学生运用计 算机解决实际问题的能力。
简要介绍数学建模的基本思想和方法,通 过实例展示数学建模在解决实际问题中的 应用和价值。
THANK YOU
感谢聆听
05
课后习题详解
习题类型及解题思路
计算题
主要针对线性代数中的基本运算,如矩阵的加减、数乘和乘法等。解题思路通常是按照运算规则逐步进行,注意保持 矩阵的维度一致。
证明题
主要考察学生对线性代数基本定理和性质的理解和掌握。解题思路一般是从已知条件出发,结合相关定理和性质进行 推导,最终得出结论。
应用题
行列式性质
行列式具有线性性、交换性、倍加性 等基本性质,这些性质在行列式的计 算和证明中起到重要作用。
矩阵运算规则
矩阵加法
两个矩阵相加,要求它们具有相同的行数和列数, 对应元素相加。
矩阵数乘
一个数与矩阵相乘,将该数与矩阵中的每一个元素 相乘。
矩阵乘法
两个矩阵相乘,要求第一个矩阵的列数等于第二个 矩阵的行数,结果矩阵的行数等于第一个矩阵的行 数,列数等于第二个矩阵的列数。
将线性代数的知识应用于实际问题中,如求解线性方程组、矩阵的特征值和特征向量等。解题思路是首 先建立数学模型,将实际问题转化为线性代数问题,然后利用相关知识进行求解。

线性代数 幻灯片PPT

线性代数  幻灯片PPT
• 定义8 设有两个n
• 如果向量组A中每一个向量都能由向量组B 线性表示,那么称向量组A能由向量组B线 性表示.
53
线性代数
• 定理6 设有两个n维向量组
•证
出版社 科技分社
54
线性代数
出版社 科技分社
• 因为A组可由B组线性表示,所以存在矩阵
• 使 A=KB.
• 推论 等价的线性无关向量组所含向量个数 相等.
• 2.7 方 阵 的 • 定义12 对n阶方阵A,如果存在一个n阶方
阵B,使AB=BA=E,那么称A是可逆阵,称B 为A的逆阵,记为B=A-1. • 性质1 如果A可逆,那么逆阵惟一. • 证明 设A有两个逆阵B,C
43
线性代数
出版社 科技分社
44
线性代数
出版社 科技分社
45
线性代数
出版社 科技分社
• 定义11 由单位阵经过一次初等变换得到的 方阵称为初等方阵.
• 3种初等变换对应了3类初等方阵.
• 第1类初等方阵:对调E
39
线性代数
出版社 科技分社
40
线性代数
出版社 科技分社
41
线性代数
出版社 科技分社
42
线性代数
出版社 科技分社
• 定理3 设A=(aij)m×n,对A施行初等行变换, 相当于对A左乘相应的m阶初等方阵,对A施 行初等列变换,相当于对A右乘相应的n阶 初等方阵.
出版社 科技分社
线性代数 课件
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
1
线性代数
出版社 科技分社
第1章 行列式
• 1.1 预 备 知 • 设有二元一次方程组
出版社 科技分社

线代3.1 线性代数课件

线代3.1 线性代数课件

(2,1,1,1) 的线性组合?
例3:设向量
1
1
1, 2
1 0
,1
1 3
,2
31,
1
1
5
1
问1,
是否可以由
2
1,2
线性表示?
-13-
例4 设向量组 A: 1 (1 ,1,1)T , 2 (1,1 ,1)T , 3 (1,1,1 )T , 向量 (0,3, )T ,问 为何值时, 不能由 A 线性表示; 能由 A 唯一表示; 能由 A 有
无穷多种表示, 并求所有表示方法.
解 记 A [1 ,2 ,3 ] 只需讨论 Ax 解的情况.
具体解方程组过程略。
0 时,方程组无解, 不能由 A 表示. 0 且 3时, 方程组有唯一解, 可由 A 唯一表示.
-14-
3 时, 方程组有无穷多解, 可由 A 无穷多种表示.
第三章 向量空间Rn
§3.1 向量及其线性组合 §3.2 一个n元向量组的线性相关性 §3.3 向量组的秩 §3.4 向量空间 §3.5 欧氏空间Rn
§3.1 向量及其线性组合
三维空间的向量: 有向线段。建立标准直角坐标系后,
P(x, y, z)
O
它由一点 P 或一个三元数组 (x,y,z) 唯一确定。
anen
-10-
线性方程组的向量表示
a11x1 a12x2 a1nxn b1
n元线性方程组
a21x1 a22x2 a2nxn b2
(1)
am1x1am2x2 amnxn bm
可以用向量形式表示为 x11 x22 xnn B
a11
a12
其中
1
a21
,

线性代数课件34

线性代数课件34

35. 6
返回
四. 直线与直线的位置关系
1. 两直线的夹角 两直线L1与L2的方向向量 s1与 s2的夹角(通常指
锐角)称为L1与L2的夹角,记为< L1, L2 >.
直线 L1 :
x x1 y y1 z z1 ,
m1
n1
p1
直线 L2 :
x x2 y y2 z z2 ,
解 设所求直线的方向向量为 s (m, n, p),
根据题意知
s
n1
,
s
n2
,
取 s n1 n2 (4,3,1),
所求直线的方程 x 3 y 2 z 5 .
4
3
1
返回
例10 判直线 l1 : x y z 4 的位置关系? l2 : x y z
y
M L, M0M// s
x
s (m, n, p),
M0M (x x0, y y0, z z0 )
返回
x x0 y y0 z z0 直线的点向式方程
m
n
p
直线的一组方向数
方向向量的方向余弦称为直线的方向余弦.
返回
例1 求过空间两点A(x1, y1, z1), B(x2, y2, z2)的直线 方程.
解 先作一过点M且与已知直线垂直的平面
3( x 2) 2( y 1) (z 3) 0
再求已知直线与该平面的交点N,
令 x1 y1 z t 3 2 1
x 3t 1


y

2t

1.
z t
返回
代入平面方程得 t 3 , 交点 N (2 ,13 , 3)

四川大学线性代数课件第三章第三节 克莱默法则

四川大学线性代数课件第三章第三节 克莱默法则

注意: Cramer法则仅适用于方程个数与 未知量个数相等的情形。
证 D 0时,方程组有唯一解:
A* 1 X0 A D
A11 1 A12 D A 1n
A21 An1 b1 A22 An 2 b2 A2n Ann bn
1 X 0的第j个分量x j D
A b
k 1
n
kj k

Dj D
例1:
用Cramer法则解线性方程组。
2 x1 x 1 x1
解:

x2
5 x3 x3 7 x3
r1 2r2
r4 r2

x4

8
3 x2 2 x2 4 x2
5 1
6 x4 2 x4 6 x4
例3:
求空间的四个平面 ai x bi y ci z d i 0 相交于一点的条件。
解: 四个平面相交于一点,即线性方程组
a1 x b1 y c1 z d1 0 a x b y c z d 0 2 2 2 2 a3 x b3 y c3 z d 3 0 a4 x b4 y c4 z d 4 0
0 7
9 5 0
5 13
2
1
1 3 0 6 D 0 2 1 2 1 4 7 6
1 3 0 3 2 1 2 7 7 12
8 1 5
c1 2c2
3 5
3
0 1 0 27 7 2 c3 2c2 7 7 2
D1 81 所以 x1 3, D 27
x2 4, x3 1,

《线性代数》第四章:线性方程组-PPT课件

《线性代数》第四章:线性方程组-PPT课件
三角形线性方程组要求方程组所含方程的个数等于未知量的个数且第个方程第个变量的系数三角形线性方程组是一类特殊的情形解法也简单由克莱姆法则可以判断其解惟一一般只需要从最后一个方程开始求解逐步回代就可求出方程组的全部解11定义416线性方程组中自上而下的各方程所含未知量个数依次减少这种形式的方程组称为n元阶梯形线性方程组
❖ 例如 axbyc 是一个二元方程,a , b 不同时
为零时,方程有无穷多解,如 b0时,x0,yc
b
为二元方程 的一个特解, axbyc
b0 时 , xk,ycakk R
bb
为二元方程的通解;当 a , b 同时为零,若时c ,0
方程无解;当
a同, b 时为零,若 时c , 0 方程
有无穷多解任意一对有序实数都是方程的解。
❖ 消元法的目的就是利用方程组的初等变换将 原方程组化为阶梯形方程组, 由于这个阶梯形 方程组与原线性方程组同解, 解这个阶梯形方 程组得到的解就是原方程组的解。
❖ 注意:将一个方程组化为行阶梯形方程组的 步骤并不是惟一的, 所以,同一个方程组的行 阶梯形方程组也不是唯一的。
❖ n元线性方程组的一般形式为
cnnxn 0
❖ 其中 crr 0 则线性方程组有唯一解,即仅有零解。
❖ (2) 当 r n 时,方程组可以化为
c11x1 c12x2 c1rxr c1nxn 0
c22x2 c2rxr c2nxn 0 ..........................
crrxr crnxn 0
❖ 其中 crr 0 将其改写成
a11x1a12x2 a1rxrb1a1r1xr1 a1nxn a22x2 a2rxrb2a2r1xr1 a2nxn arrxrbrarr1xr1 arnxn

《线性代数》课件第4章

《线性代数》课件第4章

此时A的第j列元素恰为αj表示成β1, β2,…, βt的线性组合时的
系数.
证明:若向量组a1,a2,…,as可由β1, β2,…, βt线性表示,即每个ai
均可由β1, β2,…, βt线性表示,则有
α1 = a11β1 + a21β2 + + at1βt = (β1, β2,
, βt )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝aaa12t111 ⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟,
我们有下面的定理: 定理 1.1 矩阵的秩数=行秩数=列秩数.
例1.3 设
α1 = (1, 2, 0,1)T , α2 = (0,1,1,1)T , α3 = (1, 3,1, 2)T , α4 = (1,1,−1, 0)T
求此向量组的秩数及一个极大无关组.
解 考虑向量组构成的矩阵
A=(α1,
α2,
我们有下面的命题:
命题1.
1. α1, α2,…, αs线性无关; 2.方程x1α1 + x2α2 + … + xxαs只有零解 3. 对于任意一组不全为零的数c1,c2,…,cs均有
c1α1 + c2α2 + + csαs ≠ 0, 4. 对于任意一组数c1,c2,…,cs, 若c1α1 + c2α2 +
定义1.4 两个可以互相表示的向量组称为等价向量组.
容易看出: 1. 向量组的等价是一个等价关系; 2. 等价向量组的秩数相同; 3. 任何向量组等价于其极大无关组; 4. 两个向量组等价当且仅当它们的极大无关组等价.
最后我们给出化简向量组的一种技巧 为此先给出一个定义
定义1.5 设α1, α2,…, αs和β1, β2,…, βs是两个向量组, 若对于任意一组数c1,c2,…,cs均有

工学四川大学线性代数课件第三章第一节 可逆矩阵

工学四川大学线性代数课件第三章第一节 可逆矩阵

A32=-4 A33=2
得 所以
b1
B
b2
b3
1/ b1
如b1b2b30,
B可逆,

B1
1/ b2
1/ b3
求逆运算容易出错, 在求得A1后, 可验证 AA1=E, 保证结果是正确的.
可逆矩阵的性质:
(1)如果方阵A可逆,则其逆矩阵唯一。
(2) 若 A E 或 B B E , 则 A B A 1 .
3若 A 可,则 逆 A 有 1A 1.
4 若 A 可 ,则 A 逆 1 亦 ,且 可 A 1 1 A 逆 .
5 若A, B为同阶方阵且均可逆,则AB亦可逆,且
AB 1 B 1 A 1
证明 A B 1 A B 1 A B 1 A 1 B
AE1AAA 1E,
A 1 B B 1 A 1 .
即 A1 1 A A
定理1
矩阵 A可逆的充要条件是 A 0 ,且 A1 1 A, A
其A 中 为矩 A的 阵伴随 . 矩阵
例1 下列矩阵A,B是否可逆? 若可逆, 求其逆矩阵.
b1
B b2
b3
解 因为
2 A 2 0
所以A-1存在。
同理可得
A12=-3 A22=10 A13=1 A23=-4
2
又 A 2 A 由 2 E 0
A 2 E A 3 E 4 E 0 所以A A 22E E可逆1 4,A A 32 E E 1 E A 12E A 13E
4
课后思考: 设方阵满足方程 A 2 3 A 1 E 0 0 证:明 A和 A4E都可逆,并逆 求矩 出阵
例5:设方阵B为幂等矩阵,
满足什么条件的方阵是可逆的 ?
设n阶方阵A可逆,由 A A-1= A-1 A=E 有

线性代数完整版ppt课件

线性代数完整版ppt课件
a 31 a 32 a 33 a13a22a31a12a21a33a11a23a32
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22

线性代数相关知识培训教程PPT课件( 93页)

线性代数相关知识培训教程PPT课件( 93页)
那末 A称为对称阵.
例如A162
6 8
1 0
为对称. 阵
1 0 6
说明 对称阵的元素以主对角线为对称轴对应相
等.
同型矩阵与矩阵相等
1)两个矩阵的行数相等,列数相等时,称为同型矩阵.
例如
1 5
2 6


14 8
3 4
为同型矩阵.
3 7 3 9
Aij (1)i j Mij, Aij叫做元素 aij的代数余子.式
A a i1 A i1 a i2 A i2 a iA n in ( i 1 ,2 , ,n ) A a i1 A j1 a i2 A j2 a iA n jn ( i j)
例1 3 1 1 2 5 1 3 4
p1p2pn
列取 . 和
N阶行列式是一个数,该数是n!项的代数和, 每项为取自表中不同行不同列n个元素的乘 积,符号由这n个元素列标排列的逆序数决定 (行标按自然顺序排列),奇排列带负号,偶排 列带正号.
2. 行列式的性质
1)行列式与它的转置行式列相等,即D DT. 2)互换行列式的两行 (列),行列式变号. 3)如果行列式有两行 (列)完全相同,则此行列式 等于零. 4)行列式的某一行(列)中所有的元素都乘以同 一数k,等于用数k 乘此行列式.
6)逆矩阵
伴随矩阵定义
行列式 A 的各个元素的代数余子式A ij 所
构成的如下矩阵
A11
A


A12
A1n
A21 An1 A22 An2 A2n Ann
称为矩阵 A 的伴随矩阵.
伴随矩阵性质
AA A AA E .
逆矩阵定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D2 D
,, xn
Dn D
.
14
由于方程组 2 与方程组 1 等价, 故
x1
D1 D
,
x2
D2 D
,
x3
D2 D
,, xn
Dn D
.
也是方程组的 1 解.
15
例1 用克拉默则解方程组
2 x1 x2 5 x3 x4 8,
x1 3 x2 6 x4 9, 2 x2 x3 2 x4 5,
3,
x3
D3 D
27 27
1,
2 1 5 8 1 3 0 9 D4 0 2 1 5 1 4 7 0
27,
x2
D2 D
108 27
4,
7 7 2
3 3
27,
7 2
8 1 5 1 9 3 0 6 D1 5 2 1 2 0 4 7 6
81,
2 8 5 1 1 9 0 6 D2 0 5 1 2 1 0 7 6 108,
17
21 8 1 1 3 9 6 D3 0 2 5 2 14 0 6
27,
x1
D1 D
81 27
第三章 矩阵的逆
第二节 初等矩阵和逆矩阵的求法
1
矩阵的初等变换
1. 用一个非零数乘矩阵的某行;(列) ri k ci k
2. 交换矩阵的两行;(列)
ri rj ci c j
(列)
3. 把矩阵某行的k倍加到另一行(. 列)ri krj ci kc j
以上三种对矩阵施行的变换称为矩阵的初等行变换.
1 2
0 0 1 0 1 1
1 3 5
2 2 2
A1
1 2
1 2
1 2
0 1 1
7
第三章 矩阵的逆
第三节 Cramer法则
8
二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 , b2 .
即 当系数行列式 D≠0时, 二元线性方程组的解为
b1
x1
D1 D
b2 a11
a21
(列)
矩阵的初等行(列)变换统称为矩阵的初等变换.
注:对矩阵施行初等变换后得到的是一个新的矩阵,它和
原来的矩阵不同,两者间不能写“=”。
2
初等矩阵
由单位矩阵 E 经过一次初等变换得到的方 阵称为初等矩阵.
设A是m n矩阵,对A施行一次初等行变换, 相当于在A的左边乘一个相应的m阶初等矩阵; 对A施行一次初等列变换,相当于在A的右边 乘一个相应的n阶初等矩阵。
6
1 1 2 0 1 0
1 1 2 0 1 0
r3r1 0
2
1
1
0
0
r2r3 0
2
0
1
1
1
0 0 1 0 1 1
0 0 1 0 1 1
1 1 2 0 1 0
r212 0 1
0
1
1
1
0
0
1
2 0
2 1
2 1
1 0 0 1 3 5
2 2 2
r1 r22r3 0 1 0
1 2
1 2
a31 a32 a33
则三元线性方程组的解为:
x1
D1 D
,
x2
D2 D
,
x3
D3 D
.
10
Cramer法则
a11 x1 a12 x2
若n元线性方程组
a21x1Fra biblioteka22 x2an1 x1 an2 x2
a1n xn b1 a2n xn b2 (1)
ann xn bn
a11 a12
n
akn Akj xn
k1
k1
k1
n
bk Akj ,
k 1
由代数余子式的性质可知, 上式中x j的系数等于D,
而其余xi i j的系数均为0; 又等式右端为Dj .
于是 Dxj Dj j 1,2,,n.
2
当 D 0 时,方程组 2 有唯一的一个解
x1
D1 D
,
x2
D2 D
,
x3
1
1, j1
1n
Dj
a a b a a n1
n , j1
n
n , j1
nn
第j列
12
证明 用D中第j列元素的代数余子式A1 j , A2 j ,, Anj
依次乘方程组1的n个方程,得
a11 x1 a12 x2 a1n xn A1 j b1 A1 j
a21 x1 a22 x2 a2n xn A2 j b2 A2 j
3
用矩阵的初等变换求逆矩阵
用矩阵的初等行变换求逆矩阵方法
A E 初等 行变换 E A1
特别地, A B 初等 行变换 E A1B
用矩阵的初等列变换求逆矩阵方法
A E
初等 列变换
E A1
特别地,
A B
初等 列变换
E BA1
4
注: 1. A 与 E 每一次变换必须同步; 2. 求逆时,自始至终每一步都只能用初等行(列)变 换,千万不能夹杂任何初等列(行)变换.
3. 若作初等行变换时,出现全行为0,则矩阵的行列式 等于0。结论:矩阵不可逆!
练习 :用初等行变换求可逆矩阵A的逆矩阵
0 2 1
A
1 1
1 1
21
0 2 1 1 0 0
A
E
1 1
1 1
2 1
0 0
1 0
0 1
1 r1 r2 0
1 2 0 1 0 2 1 1 0 0
1 1 1 0 0 1
an1 x1 an2 x2 ann xn Anj bn Anj
在把 n 个方程依次相加,得
n
ak1 Akj x1
k1
n
akj Akj x j
k1
n
n
akn Akj xn
k1
bk Akj ,
k 1
13
n
ak1 Akj x1
n
akj Akj x j
x1 4 x2 7 x3 6x4 0.
解 2 1 5 1
0 7 5 13
1 3 0 6 r1 2r2 1 3 0 6
D 0 2 1 2
r4 r2
0 2 1 2
1 4 7 6
0 7 7 12
16
7 5 13 2 1 2
7 7 12
c1 2c2 c3 2c2
3 5 3 0 1 0
a12 a22 , a12 a22
a11
x2
D2 D
a21 a11
a21
b1 b2 . a12 a22
9
三元线性方程组
aa2111xx11
a12 x2 a22 x2
a13 x3 a23 x3
b1 , b2 ,
a31x1 a32 x2 a33 x3 b3;
的系数行列式
a11 a12 a13 D a21 a22 a23 0,
a1n
的系数行列式 D A a21 a22
a2n 0
an1 an2
ann
则方程组(1)有唯一解,且
x1
D1 D
,
x2
D2 D
,
x3
D2 D
, , xn
Dn D
.
11
其中Dj 是把系数行列式 D 中第 j 列的元素用方程 组右端的常数项代替后所得到的 n 阶行列式,即
a a b a a 11
1, j1
相关文档
最新文档